slub: Add method to verify memory is not freed
[linux-2.6/btrfs-unstable.git] / include / linux / slub_def.h
blob4b35c06dfbc5448b46b85422659f5552af817c37
1 #ifndef _LINUX_SLUB_DEF_H
2 #define _LINUX_SLUB_DEF_H
4 /*
5 * SLUB : A Slab allocator without object queues.
7 * (C) 2007 SGI, Christoph Lameter
8 */
9 #include <linux/types.h>
10 #include <linux/gfp.h>
11 #include <linux/workqueue.h>
12 #include <linux/kobject.h>
14 #include <linux/kmemleak.h>
16 enum stat_item {
17 ALLOC_FASTPATH, /* Allocation from cpu slab */
18 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
19 FREE_FASTPATH, /* Free to cpu slub */
20 FREE_SLOWPATH, /* Freeing not to cpu slab */
21 FREE_FROZEN, /* Freeing to frozen slab */
22 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
23 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
24 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
25 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
26 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
27 FREE_SLAB, /* Slab freed to the page allocator */
28 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
29 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
30 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
31 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
32 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
33 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
34 ORDER_FALLBACK, /* Number of times fallback was necessary */
35 CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
36 NR_SLUB_STAT_ITEMS };
38 struct kmem_cache_cpu {
39 void **freelist; /* Pointer to next available object */
40 unsigned long tid; /* Globally unique transaction id */
41 struct page *page; /* The slab from which we are allocating */
42 int node; /* The node of the page (or -1 for debug) */
43 #ifdef CONFIG_SLUB_STATS
44 unsigned stat[NR_SLUB_STAT_ITEMS];
45 #endif
48 struct kmem_cache_node {
49 spinlock_t list_lock; /* Protect partial list and nr_partial */
50 unsigned long nr_partial;
51 struct list_head partial;
52 #ifdef CONFIG_SLUB_DEBUG
53 atomic_long_t nr_slabs;
54 atomic_long_t total_objects;
55 struct list_head full;
56 #endif
60 * Word size structure that can be atomically updated or read and that
61 * contains both the order and the number of objects that a slab of the
62 * given order would contain.
64 struct kmem_cache_order_objects {
65 unsigned long x;
69 * Slab cache management.
71 struct kmem_cache {
72 struct kmem_cache_cpu __percpu *cpu_slab;
73 /* Used for retriving partial slabs etc */
74 unsigned long flags;
75 unsigned long min_partial;
76 int size; /* The size of an object including meta data */
77 int objsize; /* The size of an object without meta data */
78 int offset; /* Free pointer offset. */
79 struct kmem_cache_order_objects oo;
81 /* Allocation and freeing of slabs */
82 struct kmem_cache_order_objects max;
83 struct kmem_cache_order_objects min;
84 gfp_t allocflags; /* gfp flags to use on each alloc */
85 int refcount; /* Refcount for slab cache destroy */
86 void (*ctor)(void *);
87 int inuse; /* Offset to metadata */
88 int align; /* Alignment */
89 int reserved; /* Reserved bytes at the end of slabs */
90 const char *name; /* Name (only for display!) */
91 struct list_head list; /* List of slab caches */
92 #ifdef CONFIG_SYSFS
93 struct kobject kobj; /* For sysfs */
94 #endif
96 #ifdef CONFIG_NUMA
98 * Defragmentation by allocating from a remote node.
100 int remote_node_defrag_ratio;
101 #endif
102 struct kmem_cache_node *node[MAX_NUMNODES];
106 * Kmalloc subsystem.
108 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
109 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
110 #else
111 #define KMALLOC_MIN_SIZE 8
112 #endif
114 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
117 * Maximum kmalloc object size handled by SLUB. Larger object allocations
118 * are passed through to the page allocator. The page allocator "fastpath"
119 * is relatively slow so we need this value sufficiently high so that
120 * performance critical objects are allocated through the SLUB fastpath.
122 * This should be dropped to PAGE_SIZE / 2 once the page allocator
123 * "fastpath" becomes competitive with the slab allocator fastpaths.
125 #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
127 #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
129 #ifdef CONFIG_ZONE_DMA
130 #define SLUB_DMA __GFP_DMA
131 #else
132 /* Disable DMA functionality */
133 #define SLUB_DMA (__force gfp_t)0
134 #endif
137 * We keep the general caches in an array of slab caches that are used for
138 * 2^x bytes of allocations.
140 extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
143 * Sorry that the following has to be that ugly but some versions of GCC
144 * have trouble with constant propagation and loops.
146 static __always_inline int kmalloc_index(size_t size)
148 if (!size)
149 return 0;
151 if (size <= KMALLOC_MIN_SIZE)
152 return KMALLOC_SHIFT_LOW;
154 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
155 return 1;
156 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
157 return 2;
158 if (size <= 8) return 3;
159 if (size <= 16) return 4;
160 if (size <= 32) return 5;
161 if (size <= 64) return 6;
162 if (size <= 128) return 7;
163 if (size <= 256) return 8;
164 if (size <= 512) return 9;
165 if (size <= 1024) return 10;
166 if (size <= 2 * 1024) return 11;
167 if (size <= 4 * 1024) return 12;
169 * The following is only needed to support architectures with a larger page
170 * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page
171 * size we would have to go up to 128k.
173 if (size <= 8 * 1024) return 13;
174 if (size <= 16 * 1024) return 14;
175 if (size <= 32 * 1024) return 15;
176 if (size <= 64 * 1024) return 16;
177 if (size <= 128 * 1024) return 17;
178 if (size <= 256 * 1024) return 18;
179 if (size <= 512 * 1024) return 19;
180 if (size <= 1024 * 1024) return 20;
181 if (size <= 2 * 1024 * 1024) return 21;
182 BUG();
183 return -1; /* Will never be reached */
186 * What we really wanted to do and cannot do because of compiler issues is:
187 * int i;
188 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
189 * if (size <= (1 << i))
190 * return i;
195 * Find the slab cache for a given combination of allocation flags and size.
197 * This ought to end up with a global pointer to the right cache
198 * in kmalloc_caches.
200 static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
202 int index = kmalloc_index(size);
204 if (index == 0)
205 return NULL;
207 return kmalloc_caches[index];
210 void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
211 void *__kmalloc(size_t size, gfp_t flags);
213 static __always_inline void *
214 kmalloc_order(size_t size, gfp_t flags, unsigned int order)
216 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
217 kmemleak_alloc(ret, size, 1, flags);
218 return ret;
222 * Calling this on allocated memory will check that the memory
223 * is expected to be in use, and print warnings if not.
225 #ifdef CONFIG_SLUB_DEBUG
226 extern bool verify_mem_not_deleted(const void *x);
227 #else
228 static inline bool verify_mem_not_deleted(const void *x)
230 return true;
232 #endif
234 #ifdef CONFIG_TRACING
235 extern void *
236 kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
237 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
238 #else
239 static __always_inline void *
240 kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
242 return kmem_cache_alloc(s, gfpflags);
245 static __always_inline void *
246 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
248 return kmalloc_order(size, flags, order);
250 #endif
252 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
254 unsigned int order = get_order(size);
255 return kmalloc_order_trace(size, flags, order);
258 static __always_inline void *kmalloc(size_t size, gfp_t flags)
260 if (__builtin_constant_p(size)) {
261 if (size > SLUB_MAX_SIZE)
262 return kmalloc_large(size, flags);
264 if (!(flags & SLUB_DMA)) {
265 struct kmem_cache *s = kmalloc_slab(size);
267 if (!s)
268 return ZERO_SIZE_PTR;
270 return kmem_cache_alloc_trace(s, flags, size);
273 return __kmalloc(size, flags);
276 #ifdef CONFIG_NUMA
277 void *__kmalloc_node(size_t size, gfp_t flags, int node);
278 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
280 #ifdef CONFIG_TRACING
281 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
282 gfp_t gfpflags,
283 int node, size_t size);
284 #else
285 static __always_inline void *
286 kmem_cache_alloc_node_trace(struct kmem_cache *s,
287 gfp_t gfpflags,
288 int node, size_t size)
290 return kmem_cache_alloc_node(s, gfpflags, node);
292 #endif
294 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
296 if (__builtin_constant_p(size) &&
297 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
298 struct kmem_cache *s = kmalloc_slab(size);
300 if (!s)
301 return ZERO_SIZE_PTR;
303 return kmem_cache_alloc_node_trace(s, flags, node, size);
305 return __kmalloc_node(size, flags, node);
307 #endif
309 #endif /* _LINUX_SLUB_DEF_H */