perf tools: Add PARSE_OPT_DISABLED flag
[linux-2.6/btrfs-unstable.git] / drivers / dma / fsldma.c
blob994bcb2c6b92ceb44edcb643300e879003455db8
1 /*
2 * Freescale MPC85xx, MPC83xx DMA Engine support
4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
6 * Author:
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
10 * Description:
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA controller is also added.
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
18 * on some platforms.
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_address.h>
37 #include <linux/of_irq.h>
38 #include <linux/of_platform.h>
39 #include <linux/fsldma.h>
40 #include "dmaengine.h"
41 #include "fsldma.h"
43 #define chan_dbg(chan, fmt, arg...) \
44 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
45 #define chan_err(chan, fmt, arg...) \
46 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
48 static const char msg_ld_oom[] = "No free memory for link descriptor";
51 * Register Helpers
54 static void set_sr(struct fsldma_chan *chan, u32 val)
56 DMA_OUT(chan, &chan->regs->sr, val, 32);
59 static u32 get_sr(struct fsldma_chan *chan)
61 return DMA_IN(chan, &chan->regs->sr, 32);
64 static void set_mr(struct fsldma_chan *chan, u32 val)
66 DMA_OUT(chan, &chan->regs->mr, val, 32);
69 static u32 get_mr(struct fsldma_chan *chan)
71 return DMA_IN(chan, &chan->regs->mr, 32);
74 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
76 DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
79 static dma_addr_t get_cdar(struct fsldma_chan *chan)
81 return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
84 static void set_bcr(struct fsldma_chan *chan, u32 val)
86 DMA_OUT(chan, &chan->regs->bcr, val, 32);
89 static u32 get_bcr(struct fsldma_chan *chan)
91 return DMA_IN(chan, &chan->regs->bcr, 32);
95 * Descriptor Helpers
98 static void set_desc_cnt(struct fsldma_chan *chan,
99 struct fsl_dma_ld_hw *hw, u32 count)
101 hw->count = CPU_TO_DMA(chan, count, 32);
104 static void set_desc_src(struct fsldma_chan *chan,
105 struct fsl_dma_ld_hw *hw, dma_addr_t src)
107 u64 snoop_bits;
109 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
110 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
111 hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
114 static void set_desc_dst(struct fsldma_chan *chan,
115 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
117 u64 snoop_bits;
119 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
120 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
121 hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
124 static void set_desc_next(struct fsldma_chan *chan,
125 struct fsl_dma_ld_hw *hw, dma_addr_t next)
127 u64 snoop_bits;
129 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
130 ? FSL_DMA_SNEN : 0;
131 hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
134 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
136 u64 snoop_bits;
138 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
139 ? FSL_DMA_SNEN : 0;
141 desc->hw.next_ln_addr = CPU_TO_DMA(chan,
142 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
143 | snoop_bits, 64);
147 * DMA Engine Hardware Control Helpers
150 static void dma_init(struct fsldma_chan *chan)
152 /* Reset the channel */
153 set_mr(chan, 0);
155 switch (chan->feature & FSL_DMA_IP_MASK) {
156 case FSL_DMA_IP_85XX:
157 /* Set the channel to below modes:
158 * EIE - Error interrupt enable
159 * EOLNIE - End of links interrupt enable
160 * BWC - Bandwidth sharing among channels
162 set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
163 | FSL_DMA_MR_EOLNIE);
164 break;
165 case FSL_DMA_IP_83XX:
166 /* Set the channel to below modes:
167 * EOTIE - End-of-transfer interrupt enable
168 * PRC_RM - PCI read multiple
170 set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
171 break;
175 static int dma_is_idle(struct fsldma_chan *chan)
177 u32 sr = get_sr(chan);
178 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
182 * Start the DMA controller
184 * Preconditions:
185 * - the CDAR register must point to the start descriptor
186 * - the MRn[CS] bit must be cleared
188 static void dma_start(struct fsldma_chan *chan)
190 u32 mode;
192 mode = get_mr(chan);
194 if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
195 set_bcr(chan, 0);
196 mode |= FSL_DMA_MR_EMP_EN;
197 } else {
198 mode &= ~FSL_DMA_MR_EMP_EN;
201 if (chan->feature & FSL_DMA_CHAN_START_EXT) {
202 mode |= FSL_DMA_MR_EMS_EN;
203 } else {
204 mode &= ~FSL_DMA_MR_EMS_EN;
205 mode |= FSL_DMA_MR_CS;
208 set_mr(chan, mode);
211 static void dma_halt(struct fsldma_chan *chan)
213 u32 mode;
214 int i;
216 /* read the mode register */
217 mode = get_mr(chan);
220 * The 85xx controller supports channel abort, which will stop
221 * the current transfer. On 83xx, this bit is the transfer error
222 * mask bit, which should not be changed.
224 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
225 mode |= FSL_DMA_MR_CA;
226 set_mr(chan, mode);
228 mode &= ~FSL_DMA_MR_CA;
231 /* stop the DMA controller */
232 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
233 set_mr(chan, mode);
235 /* wait for the DMA controller to become idle */
236 for (i = 0; i < 100; i++) {
237 if (dma_is_idle(chan))
238 return;
240 udelay(10);
243 if (!dma_is_idle(chan))
244 chan_err(chan, "DMA halt timeout!\n");
248 * fsl_chan_set_src_loop_size - Set source address hold transfer size
249 * @chan : Freescale DMA channel
250 * @size : Address loop size, 0 for disable loop
252 * The set source address hold transfer size. The source
253 * address hold or loop transfer size is when the DMA transfer
254 * data from source address (SA), if the loop size is 4, the DMA will
255 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
256 * SA + 1 ... and so on.
258 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
260 u32 mode;
262 mode = get_mr(chan);
264 switch (size) {
265 case 0:
266 mode &= ~FSL_DMA_MR_SAHE;
267 break;
268 case 1:
269 case 2:
270 case 4:
271 case 8:
272 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
273 break;
276 set_mr(chan, mode);
280 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
281 * @chan : Freescale DMA channel
282 * @size : Address loop size, 0 for disable loop
284 * The set destination address hold transfer size. The destination
285 * address hold or loop transfer size is when the DMA transfer
286 * data to destination address (TA), if the loop size is 4, the DMA will
287 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
288 * TA + 1 ... and so on.
290 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
292 u32 mode;
294 mode = get_mr(chan);
296 switch (size) {
297 case 0:
298 mode &= ~FSL_DMA_MR_DAHE;
299 break;
300 case 1:
301 case 2:
302 case 4:
303 case 8:
304 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
305 break;
308 set_mr(chan, mode);
312 * fsl_chan_set_request_count - Set DMA Request Count for external control
313 * @chan : Freescale DMA channel
314 * @size : Number of bytes to transfer in a single request
316 * The Freescale DMA channel can be controlled by the external signal DREQ#.
317 * The DMA request count is how many bytes are allowed to transfer before
318 * pausing the channel, after which a new assertion of DREQ# resumes channel
319 * operation.
321 * A size of 0 disables external pause control. The maximum size is 1024.
323 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
325 u32 mode;
327 BUG_ON(size > 1024);
329 mode = get_mr(chan);
330 mode |= (__ilog2(size) << 24) & 0x0f000000;
332 set_mr(chan, mode);
336 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
337 * @chan : Freescale DMA channel
338 * @enable : 0 is disabled, 1 is enabled.
340 * The Freescale DMA channel can be controlled by the external signal DREQ#.
341 * The DMA Request Count feature should be used in addition to this feature
342 * to set the number of bytes to transfer before pausing the channel.
344 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
346 if (enable)
347 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
348 else
349 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
353 * fsl_chan_toggle_ext_start - Toggle channel external start status
354 * @chan : Freescale DMA channel
355 * @enable : 0 is disabled, 1 is enabled.
357 * If enable the external start, the channel can be started by an
358 * external DMA start pin. So the dma_start() does not start the
359 * transfer immediately. The DMA channel will wait for the
360 * control pin asserted.
362 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
364 if (enable)
365 chan->feature |= FSL_DMA_CHAN_START_EXT;
366 else
367 chan->feature &= ~FSL_DMA_CHAN_START_EXT;
370 int fsl_dma_external_start(struct dma_chan *dchan, int enable)
372 struct fsldma_chan *chan;
374 if (!dchan)
375 return -EINVAL;
377 chan = to_fsl_chan(dchan);
379 fsl_chan_toggle_ext_start(chan, enable);
380 return 0;
382 EXPORT_SYMBOL_GPL(fsl_dma_external_start);
384 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
386 struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
388 if (list_empty(&chan->ld_pending))
389 goto out_splice;
392 * Add the hardware descriptor to the chain of hardware descriptors
393 * that already exists in memory.
395 * This will un-set the EOL bit of the existing transaction, and the
396 * last link in this transaction will become the EOL descriptor.
398 set_desc_next(chan, &tail->hw, desc->async_tx.phys);
401 * Add the software descriptor and all children to the list
402 * of pending transactions
404 out_splice:
405 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
408 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
410 struct fsldma_chan *chan = to_fsl_chan(tx->chan);
411 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
412 struct fsl_desc_sw *child;
413 dma_cookie_t cookie = -EINVAL;
415 spin_lock_bh(&chan->desc_lock);
417 #ifdef CONFIG_PM
418 if (unlikely(chan->pm_state != RUNNING)) {
419 chan_dbg(chan, "cannot submit due to suspend\n");
420 spin_unlock_bh(&chan->desc_lock);
421 return -1;
423 #endif
426 * assign cookies to all of the software descriptors
427 * that make up this transaction
429 list_for_each_entry(child, &desc->tx_list, node) {
430 cookie = dma_cookie_assign(&child->async_tx);
433 /* put this transaction onto the tail of the pending queue */
434 append_ld_queue(chan, desc);
436 spin_unlock_bh(&chan->desc_lock);
438 return cookie;
442 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
443 * @chan : Freescale DMA channel
444 * @desc: descriptor to be freed
446 static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
447 struct fsl_desc_sw *desc)
449 list_del(&desc->node);
450 chan_dbg(chan, "LD %p free\n", desc);
451 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
455 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
456 * @chan : Freescale DMA channel
458 * Return - The descriptor allocated. NULL for failed.
460 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
462 struct fsl_desc_sw *desc;
463 dma_addr_t pdesc;
465 desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
466 if (!desc) {
467 chan_dbg(chan, "out of memory for link descriptor\n");
468 return NULL;
471 memset(desc, 0, sizeof(*desc));
472 INIT_LIST_HEAD(&desc->tx_list);
473 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
474 desc->async_tx.tx_submit = fsl_dma_tx_submit;
475 desc->async_tx.phys = pdesc;
477 chan_dbg(chan, "LD %p allocated\n", desc);
479 return desc;
483 * fsldma_clean_completed_descriptor - free all descriptors which
484 * has been completed and acked
485 * @chan: Freescale DMA channel
487 * This function is used on all completed and acked descriptors.
488 * All descriptors should only be freed in this function.
490 static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
492 struct fsl_desc_sw *desc, *_desc;
494 /* Run the callback for each descriptor, in order */
495 list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
496 if (async_tx_test_ack(&desc->async_tx))
497 fsl_dma_free_descriptor(chan, desc);
501 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
502 * @chan: Freescale DMA channel
503 * @desc: descriptor to cleanup and free
504 * @cookie: Freescale DMA transaction identifier
506 * This function is used on a descriptor which has been executed by the DMA
507 * controller. It will run any callbacks, submit any dependencies.
509 static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
510 struct fsl_desc_sw *desc, dma_cookie_t cookie)
512 struct dma_async_tx_descriptor *txd = &desc->async_tx;
513 dma_cookie_t ret = cookie;
515 BUG_ON(txd->cookie < 0);
517 if (txd->cookie > 0) {
518 ret = txd->cookie;
520 /* Run the link descriptor callback function */
521 if (txd->callback) {
522 chan_dbg(chan, "LD %p callback\n", desc);
523 txd->callback(txd->callback_param);
527 /* Run any dependencies */
528 dma_run_dependencies(txd);
530 return ret;
534 * fsldma_clean_running_descriptor - move the completed descriptor from
535 * ld_running to ld_completed
536 * @chan: Freescale DMA channel
537 * @desc: the descriptor which is completed
539 * Free the descriptor directly if acked by async_tx api, or move it to
540 * queue ld_completed.
542 static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
543 struct fsl_desc_sw *desc)
545 /* Remove from the list of transactions */
546 list_del(&desc->node);
549 * the client is allowed to attach dependent operations
550 * until 'ack' is set
552 if (!async_tx_test_ack(&desc->async_tx)) {
554 * Move this descriptor to the list of descriptors which is
555 * completed, but still awaiting the 'ack' bit to be set.
557 list_add_tail(&desc->node, &chan->ld_completed);
558 return;
561 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
565 * fsl_chan_xfer_ld_queue - transfer any pending transactions
566 * @chan : Freescale DMA channel
568 * HARDWARE STATE: idle
569 * LOCKING: must hold chan->desc_lock
571 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
573 struct fsl_desc_sw *desc;
576 * If the list of pending descriptors is empty, then we
577 * don't need to do any work at all
579 if (list_empty(&chan->ld_pending)) {
580 chan_dbg(chan, "no pending LDs\n");
581 return;
585 * The DMA controller is not idle, which means that the interrupt
586 * handler will start any queued transactions when it runs after
587 * this transaction finishes
589 if (!chan->idle) {
590 chan_dbg(chan, "DMA controller still busy\n");
591 return;
595 * If there are some link descriptors which have not been
596 * transferred, we need to start the controller
600 * Move all elements from the queue of pending transactions
601 * onto the list of running transactions
603 chan_dbg(chan, "idle, starting controller\n");
604 desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
605 list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
608 * The 85xx DMA controller doesn't clear the channel start bit
609 * automatically at the end of a transfer. Therefore we must clear
610 * it in software before starting the transfer.
612 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
613 u32 mode;
615 mode = get_mr(chan);
616 mode &= ~FSL_DMA_MR_CS;
617 set_mr(chan, mode);
621 * Program the descriptor's address into the DMA controller,
622 * then start the DMA transaction
624 set_cdar(chan, desc->async_tx.phys);
625 get_cdar(chan);
627 dma_start(chan);
628 chan->idle = false;
632 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
633 * and move them to ld_completed to free until flag 'ack' is set
634 * @chan: Freescale DMA channel
636 * This function is used on descriptors which have been executed by the DMA
637 * controller. It will run any callbacks, submit any dependencies, then
638 * free these descriptors if flag 'ack' is set.
640 static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
642 struct fsl_desc_sw *desc, *_desc;
643 dma_cookie_t cookie = 0;
644 dma_addr_t curr_phys = get_cdar(chan);
645 int seen_current = 0;
647 fsldma_clean_completed_descriptor(chan);
649 /* Run the callback for each descriptor, in order */
650 list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
652 * do not advance past the current descriptor loaded into the
653 * hardware channel, subsequent descriptors are either in
654 * process or have not been submitted
656 if (seen_current)
657 break;
660 * stop the search if we reach the current descriptor and the
661 * channel is busy
663 if (desc->async_tx.phys == curr_phys) {
664 seen_current = 1;
665 if (!dma_is_idle(chan))
666 break;
669 cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
671 fsldma_clean_running_descriptor(chan, desc);
675 * Start any pending transactions automatically
677 * In the ideal case, we keep the DMA controller busy while we go
678 * ahead and free the descriptors below.
680 fsl_chan_xfer_ld_queue(chan);
682 if (cookie > 0)
683 chan->common.completed_cookie = cookie;
687 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
688 * @chan : Freescale DMA channel
690 * This function will create a dma pool for descriptor allocation.
692 * Return - The number of descriptors allocated.
694 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
696 struct fsldma_chan *chan = to_fsl_chan(dchan);
698 /* Has this channel already been allocated? */
699 if (chan->desc_pool)
700 return 1;
703 * We need the descriptor to be aligned to 32bytes
704 * for meeting FSL DMA specification requirement.
706 chan->desc_pool = dma_pool_create(chan->name, chan->dev,
707 sizeof(struct fsl_desc_sw),
708 __alignof__(struct fsl_desc_sw), 0);
709 if (!chan->desc_pool) {
710 chan_err(chan, "unable to allocate descriptor pool\n");
711 return -ENOMEM;
714 /* there is at least one descriptor free to be allocated */
715 return 1;
719 * fsldma_free_desc_list - Free all descriptors in a queue
720 * @chan: Freescae DMA channel
721 * @list: the list to free
723 * LOCKING: must hold chan->desc_lock
725 static void fsldma_free_desc_list(struct fsldma_chan *chan,
726 struct list_head *list)
728 struct fsl_desc_sw *desc, *_desc;
730 list_for_each_entry_safe(desc, _desc, list, node)
731 fsl_dma_free_descriptor(chan, desc);
734 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
735 struct list_head *list)
737 struct fsl_desc_sw *desc, *_desc;
739 list_for_each_entry_safe_reverse(desc, _desc, list, node)
740 fsl_dma_free_descriptor(chan, desc);
744 * fsl_dma_free_chan_resources - Free all resources of the channel.
745 * @chan : Freescale DMA channel
747 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
749 struct fsldma_chan *chan = to_fsl_chan(dchan);
751 chan_dbg(chan, "free all channel resources\n");
752 spin_lock_bh(&chan->desc_lock);
753 fsldma_cleanup_descriptors(chan);
754 fsldma_free_desc_list(chan, &chan->ld_pending);
755 fsldma_free_desc_list(chan, &chan->ld_running);
756 fsldma_free_desc_list(chan, &chan->ld_completed);
757 spin_unlock_bh(&chan->desc_lock);
759 dma_pool_destroy(chan->desc_pool);
760 chan->desc_pool = NULL;
763 static struct dma_async_tx_descriptor *
764 fsl_dma_prep_memcpy(struct dma_chan *dchan,
765 dma_addr_t dma_dst, dma_addr_t dma_src,
766 size_t len, unsigned long flags)
768 struct fsldma_chan *chan;
769 struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
770 size_t copy;
772 if (!dchan)
773 return NULL;
775 if (!len)
776 return NULL;
778 chan = to_fsl_chan(dchan);
780 do {
782 /* Allocate the link descriptor from DMA pool */
783 new = fsl_dma_alloc_descriptor(chan);
784 if (!new) {
785 chan_err(chan, "%s\n", msg_ld_oom);
786 goto fail;
789 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
791 set_desc_cnt(chan, &new->hw, copy);
792 set_desc_src(chan, &new->hw, dma_src);
793 set_desc_dst(chan, &new->hw, dma_dst);
795 if (!first)
796 first = new;
797 else
798 set_desc_next(chan, &prev->hw, new->async_tx.phys);
800 new->async_tx.cookie = 0;
801 async_tx_ack(&new->async_tx);
803 prev = new;
804 len -= copy;
805 dma_src += copy;
806 dma_dst += copy;
808 /* Insert the link descriptor to the LD ring */
809 list_add_tail(&new->node, &first->tx_list);
810 } while (len);
812 new->async_tx.flags = flags; /* client is in control of this ack */
813 new->async_tx.cookie = -EBUSY;
815 /* Set End-of-link to the last link descriptor of new list */
816 set_ld_eol(chan, new);
818 return &first->async_tx;
820 fail:
821 if (!first)
822 return NULL;
824 fsldma_free_desc_list_reverse(chan, &first->tx_list);
825 return NULL;
828 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
829 struct scatterlist *dst_sg, unsigned int dst_nents,
830 struct scatterlist *src_sg, unsigned int src_nents,
831 unsigned long flags)
833 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
834 struct fsldma_chan *chan = to_fsl_chan(dchan);
835 size_t dst_avail, src_avail;
836 dma_addr_t dst, src;
837 size_t len;
839 /* basic sanity checks */
840 if (dst_nents == 0 || src_nents == 0)
841 return NULL;
843 if (dst_sg == NULL || src_sg == NULL)
844 return NULL;
847 * TODO: should we check that both scatterlists have the same
848 * TODO: number of bytes in total? Is that really an error?
851 /* get prepared for the loop */
852 dst_avail = sg_dma_len(dst_sg);
853 src_avail = sg_dma_len(src_sg);
855 /* run until we are out of scatterlist entries */
856 while (true) {
858 /* create the largest transaction possible */
859 len = min_t(size_t, src_avail, dst_avail);
860 len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
861 if (len == 0)
862 goto fetch;
864 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
865 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
867 /* allocate and populate the descriptor */
868 new = fsl_dma_alloc_descriptor(chan);
869 if (!new) {
870 chan_err(chan, "%s\n", msg_ld_oom);
871 goto fail;
874 set_desc_cnt(chan, &new->hw, len);
875 set_desc_src(chan, &new->hw, src);
876 set_desc_dst(chan, &new->hw, dst);
878 if (!first)
879 first = new;
880 else
881 set_desc_next(chan, &prev->hw, new->async_tx.phys);
883 new->async_tx.cookie = 0;
884 async_tx_ack(&new->async_tx);
885 prev = new;
887 /* Insert the link descriptor to the LD ring */
888 list_add_tail(&new->node, &first->tx_list);
890 /* update metadata */
891 dst_avail -= len;
892 src_avail -= len;
894 fetch:
895 /* fetch the next dst scatterlist entry */
896 if (dst_avail == 0) {
898 /* no more entries: we're done */
899 if (dst_nents == 0)
900 break;
902 /* fetch the next entry: if there are no more: done */
903 dst_sg = sg_next(dst_sg);
904 if (dst_sg == NULL)
905 break;
907 dst_nents--;
908 dst_avail = sg_dma_len(dst_sg);
911 /* fetch the next src scatterlist entry */
912 if (src_avail == 0) {
914 /* no more entries: we're done */
915 if (src_nents == 0)
916 break;
918 /* fetch the next entry: if there are no more: done */
919 src_sg = sg_next(src_sg);
920 if (src_sg == NULL)
921 break;
923 src_nents--;
924 src_avail = sg_dma_len(src_sg);
928 new->async_tx.flags = flags; /* client is in control of this ack */
929 new->async_tx.cookie = -EBUSY;
931 /* Set End-of-link to the last link descriptor of new list */
932 set_ld_eol(chan, new);
934 return &first->async_tx;
936 fail:
937 if (!first)
938 return NULL;
940 fsldma_free_desc_list_reverse(chan, &first->tx_list);
941 return NULL;
945 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
946 * @chan: DMA channel
947 * @sgl: scatterlist to transfer to/from
948 * @sg_len: number of entries in @scatterlist
949 * @direction: DMA direction
950 * @flags: DMAEngine flags
951 * @context: transaction context (ignored)
953 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
954 * DMA_SLAVE API, this gets the device-specific information from the
955 * chan->private variable.
957 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
958 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
959 enum dma_transfer_direction direction, unsigned long flags,
960 void *context)
963 * This operation is not supported on the Freescale DMA controller
965 * However, we need to provide the function pointer to allow the
966 * device_control() method to work.
968 return NULL;
971 static int fsl_dma_device_control(struct dma_chan *dchan,
972 enum dma_ctrl_cmd cmd, unsigned long arg)
974 struct dma_slave_config *config;
975 struct fsldma_chan *chan;
976 int size;
978 if (!dchan)
979 return -EINVAL;
981 chan = to_fsl_chan(dchan);
983 switch (cmd) {
984 case DMA_TERMINATE_ALL:
985 spin_lock_bh(&chan->desc_lock);
987 /* Halt the DMA engine */
988 dma_halt(chan);
990 /* Remove and free all of the descriptors in the LD queue */
991 fsldma_free_desc_list(chan, &chan->ld_pending);
992 fsldma_free_desc_list(chan, &chan->ld_running);
993 fsldma_free_desc_list(chan, &chan->ld_completed);
994 chan->idle = true;
996 spin_unlock_bh(&chan->desc_lock);
997 return 0;
999 case DMA_SLAVE_CONFIG:
1000 config = (struct dma_slave_config *)arg;
1002 /* make sure the channel supports setting burst size */
1003 if (!chan->set_request_count)
1004 return -ENXIO;
1006 /* we set the controller burst size depending on direction */
1007 if (config->direction == DMA_MEM_TO_DEV)
1008 size = config->dst_addr_width * config->dst_maxburst;
1009 else
1010 size = config->src_addr_width * config->src_maxburst;
1012 chan->set_request_count(chan, size);
1013 return 0;
1015 default:
1016 return -ENXIO;
1019 return 0;
1023 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
1024 * @chan : Freescale DMA channel
1026 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
1028 struct fsldma_chan *chan = to_fsl_chan(dchan);
1030 spin_lock_bh(&chan->desc_lock);
1031 fsl_chan_xfer_ld_queue(chan);
1032 spin_unlock_bh(&chan->desc_lock);
1036 * fsl_tx_status - Determine the DMA status
1037 * @chan : Freescale DMA channel
1039 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
1040 dma_cookie_t cookie,
1041 struct dma_tx_state *txstate)
1043 struct fsldma_chan *chan = to_fsl_chan(dchan);
1044 enum dma_status ret;
1046 ret = dma_cookie_status(dchan, cookie, txstate);
1047 if (ret == DMA_COMPLETE)
1048 return ret;
1050 spin_lock_bh(&chan->desc_lock);
1051 fsldma_cleanup_descriptors(chan);
1052 spin_unlock_bh(&chan->desc_lock);
1054 return dma_cookie_status(dchan, cookie, txstate);
1057 /*----------------------------------------------------------------------------*/
1058 /* Interrupt Handling */
1059 /*----------------------------------------------------------------------------*/
1061 static irqreturn_t fsldma_chan_irq(int irq, void *data)
1063 struct fsldma_chan *chan = data;
1064 u32 stat;
1066 /* save and clear the status register */
1067 stat = get_sr(chan);
1068 set_sr(chan, stat);
1069 chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1071 /* check that this was really our device */
1072 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1073 if (!stat)
1074 return IRQ_NONE;
1076 if (stat & FSL_DMA_SR_TE)
1077 chan_err(chan, "Transfer Error!\n");
1080 * Programming Error
1081 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1082 * trigger a PE interrupt.
1084 if (stat & FSL_DMA_SR_PE) {
1085 chan_dbg(chan, "irq: Programming Error INT\n");
1086 stat &= ~FSL_DMA_SR_PE;
1087 if (get_bcr(chan) != 0)
1088 chan_err(chan, "Programming Error!\n");
1092 * For MPC8349, EOCDI event need to update cookie
1093 * and start the next transfer if it exist.
1095 if (stat & FSL_DMA_SR_EOCDI) {
1096 chan_dbg(chan, "irq: End-of-Chain link INT\n");
1097 stat &= ~FSL_DMA_SR_EOCDI;
1101 * If it current transfer is the end-of-transfer,
1102 * we should clear the Channel Start bit for
1103 * prepare next transfer.
1105 if (stat & FSL_DMA_SR_EOLNI) {
1106 chan_dbg(chan, "irq: End-of-link INT\n");
1107 stat &= ~FSL_DMA_SR_EOLNI;
1110 /* check that the DMA controller is really idle */
1111 if (!dma_is_idle(chan))
1112 chan_err(chan, "irq: controller not idle!\n");
1114 /* check that we handled all of the bits */
1115 if (stat)
1116 chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1119 * Schedule the tasklet to handle all cleanup of the current
1120 * transaction. It will start a new transaction if there is
1121 * one pending.
1123 tasklet_schedule(&chan->tasklet);
1124 chan_dbg(chan, "irq: Exit\n");
1125 return IRQ_HANDLED;
1128 static void dma_do_tasklet(unsigned long data)
1130 struct fsldma_chan *chan = (struct fsldma_chan *)data;
1132 chan_dbg(chan, "tasklet entry\n");
1134 spin_lock_bh(&chan->desc_lock);
1136 /* the hardware is now idle and ready for more */
1137 chan->idle = true;
1139 /* Run all cleanup for descriptors which have been completed */
1140 fsldma_cleanup_descriptors(chan);
1142 spin_unlock_bh(&chan->desc_lock);
1144 chan_dbg(chan, "tasklet exit\n");
1147 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1149 struct fsldma_device *fdev = data;
1150 struct fsldma_chan *chan;
1151 unsigned int handled = 0;
1152 u32 gsr, mask;
1153 int i;
1155 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1156 : in_le32(fdev->regs);
1157 mask = 0xff000000;
1158 dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1160 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1161 chan = fdev->chan[i];
1162 if (!chan)
1163 continue;
1165 if (gsr & mask) {
1166 dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1167 fsldma_chan_irq(irq, chan);
1168 handled++;
1171 gsr &= ~mask;
1172 mask >>= 8;
1175 return IRQ_RETVAL(handled);
1178 static void fsldma_free_irqs(struct fsldma_device *fdev)
1180 struct fsldma_chan *chan;
1181 int i;
1183 if (fdev->irq != NO_IRQ) {
1184 dev_dbg(fdev->dev, "free per-controller IRQ\n");
1185 free_irq(fdev->irq, fdev);
1186 return;
1189 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1190 chan = fdev->chan[i];
1191 if (chan && chan->irq != NO_IRQ) {
1192 chan_dbg(chan, "free per-channel IRQ\n");
1193 free_irq(chan->irq, chan);
1198 static int fsldma_request_irqs(struct fsldma_device *fdev)
1200 struct fsldma_chan *chan;
1201 int ret;
1202 int i;
1204 /* if we have a per-controller IRQ, use that */
1205 if (fdev->irq != NO_IRQ) {
1206 dev_dbg(fdev->dev, "request per-controller IRQ\n");
1207 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1208 "fsldma-controller", fdev);
1209 return ret;
1212 /* no per-controller IRQ, use the per-channel IRQs */
1213 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1214 chan = fdev->chan[i];
1215 if (!chan)
1216 continue;
1218 if (chan->irq == NO_IRQ) {
1219 chan_err(chan, "interrupts property missing in device tree\n");
1220 ret = -ENODEV;
1221 goto out_unwind;
1224 chan_dbg(chan, "request per-channel IRQ\n");
1225 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1226 "fsldma-chan", chan);
1227 if (ret) {
1228 chan_err(chan, "unable to request per-channel IRQ\n");
1229 goto out_unwind;
1233 return 0;
1235 out_unwind:
1236 for (/* none */; i >= 0; i--) {
1237 chan = fdev->chan[i];
1238 if (!chan)
1239 continue;
1241 if (chan->irq == NO_IRQ)
1242 continue;
1244 free_irq(chan->irq, chan);
1247 return ret;
1250 /*----------------------------------------------------------------------------*/
1251 /* OpenFirmware Subsystem */
1252 /*----------------------------------------------------------------------------*/
1254 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1255 struct device_node *node, u32 feature, const char *compatible)
1257 struct fsldma_chan *chan;
1258 struct resource res;
1259 int err;
1261 /* alloc channel */
1262 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1263 if (!chan) {
1264 dev_err(fdev->dev, "no free memory for DMA channels!\n");
1265 err = -ENOMEM;
1266 goto out_return;
1269 /* ioremap registers for use */
1270 chan->regs = of_iomap(node, 0);
1271 if (!chan->regs) {
1272 dev_err(fdev->dev, "unable to ioremap registers\n");
1273 err = -ENOMEM;
1274 goto out_free_chan;
1277 err = of_address_to_resource(node, 0, &res);
1278 if (err) {
1279 dev_err(fdev->dev, "unable to find 'reg' property\n");
1280 goto out_iounmap_regs;
1283 chan->feature = feature;
1284 if (!fdev->feature)
1285 fdev->feature = chan->feature;
1288 * If the DMA device's feature is different than the feature
1289 * of its channels, report the bug
1291 WARN_ON(fdev->feature != chan->feature);
1293 chan->dev = fdev->dev;
1294 chan->id = (res.start & 0xfff) < 0x300 ?
1295 ((res.start - 0x100) & 0xfff) >> 7 :
1296 ((res.start - 0x200) & 0xfff) >> 7;
1297 if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1298 dev_err(fdev->dev, "too many channels for device\n");
1299 err = -EINVAL;
1300 goto out_iounmap_regs;
1303 fdev->chan[chan->id] = chan;
1304 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1305 snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1307 /* Initialize the channel */
1308 dma_init(chan);
1310 /* Clear cdar registers */
1311 set_cdar(chan, 0);
1313 switch (chan->feature & FSL_DMA_IP_MASK) {
1314 case FSL_DMA_IP_85XX:
1315 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1316 case FSL_DMA_IP_83XX:
1317 chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1318 chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1319 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1320 chan->set_request_count = fsl_chan_set_request_count;
1323 spin_lock_init(&chan->desc_lock);
1324 INIT_LIST_HEAD(&chan->ld_pending);
1325 INIT_LIST_HEAD(&chan->ld_running);
1326 INIT_LIST_HEAD(&chan->ld_completed);
1327 chan->idle = true;
1328 #ifdef CONFIG_PM
1329 chan->pm_state = RUNNING;
1330 #endif
1332 chan->common.device = &fdev->common;
1333 dma_cookie_init(&chan->common);
1335 /* find the IRQ line, if it exists in the device tree */
1336 chan->irq = irq_of_parse_and_map(node, 0);
1338 /* Add the channel to DMA device channel list */
1339 list_add_tail(&chan->common.device_node, &fdev->common.channels);
1340 fdev->common.chancnt++;
1342 dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1343 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1345 return 0;
1347 out_iounmap_regs:
1348 iounmap(chan->regs);
1349 out_free_chan:
1350 kfree(chan);
1351 out_return:
1352 return err;
1355 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1357 irq_dispose_mapping(chan->irq);
1358 list_del(&chan->common.device_node);
1359 iounmap(chan->regs);
1360 kfree(chan);
1363 static int fsldma_of_probe(struct platform_device *op)
1365 struct fsldma_device *fdev;
1366 struct device_node *child;
1367 int err;
1369 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1370 if (!fdev) {
1371 dev_err(&op->dev, "No enough memory for 'priv'\n");
1372 err = -ENOMEM;
1373 goto out_return;
1376 fdev->dev = &op->dev;
1377 INIT_LIST_HEAD(&fdev->common.channels);
1379 /* ioremap the registers for use */
1380 fdev->regs = of_iomap(op->dev.of_node, 0);
1381 if (!fdev->regs) {
1382 dev_err(&op->dev, "unable to ioremap registers\n");
1383 err = -ENOMEM;
1384 goto out_free_fdev;
1387 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1388 fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1390 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1391 dma_cap_set(DMA_SG, fdev->common.cap_mask);
1392 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1393 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1394 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1395 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1396 fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1397 fdev->common.device_tx_status = fsl_tx_status;
1398 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1399 fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1400 fdev->common.device_control = fsl_dma_device_control;
1401 fdev->common.dev = &op->dev;
1403 dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1405 platform_set_drvdata(op, fdev);
1408 * We cannot use of_platform_bus_probe() because there is no
1409 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1410 * channel object.
1412 for_each_child_of_node(op->dev.of_node, child) {
1413 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1414 fsl_dma_chan_probe(fdev, child,
1415 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1416 "fsl,eloplus-dma-channel");
1419 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1420 fsl_dma_chan_probe(fdev, child,
1421 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1422 "fsl,elo-dma-channel");
1427 * Hookup the IRQ handler(s)
1429 * If we have a per-controller interrupt, we prefer that to the
1430 * per-channel interrupts to reduce the number of shared interrupt
1431 * handlers on the same IRQ line
1433 err = fsldma_request_irqs(fdev);
1434 if (err) {
1435 dev_err(fdev->dev, "unable to request IRQs\n");
1436 goto out_free_fdev;
1439 dma_async_device_register(&fdev->common);
1440 return 0;
1442 out_free_fdev:
1443 irq_dispose_mapping(fdev->irq);
1444 kfree(fdev);
1445 out_return:
1446 return err;
1449 static int fsldma_of_remove(struct platform_device *op)
1451 struct fsldma_device *fdev;
1452 unsigned int i;
1454 fdev = platform_get_drvdata(op);
1455 dma_async_device_unregister(&fdev->common);
1457 fsldma_free_irqs(fdev);
1459 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1460 if (fdev->chan[i])
1461 fsl_dma_chan_remove(fdev->chan[i]);
1464 iounmap(fdev->regs);
1465 kfree(fdev);
1467 return 0;
1470 #ifdef CONFIG_PM
1471 static int fsldma_suspend_late(struct device *dev)
1473 struct platform_device *pdev = to_platform_device(dev);
1474 struct fsldma_device *fdev = platform_get_drvdata(pdev);
1475 struct fsldma_chan *chan;
1476 int i;
1478 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1479 chan = fdev->chan[i];
1480 if (!chan)
1481 continue;
1483 spin_lock_bh(&chan->desc_lock);
1484 if (unlikely(!chan->idle))
1485 goto out;
1486 chan->regs_save.mr = get_mr(chan);
1487 chan->pm_state = SUSPENDED;
1488 spin_unlock_bh(&chan->desc_lock);
1490 return 0;
1492 out:
1493 for (; i >= 0; i--) {
1494 chan = fdev->chan[i];
1495 if (!chan)
1496 continue;
1497 chan->pm_state = RUNNING;
1498 spin_unlock_bh(&chan->desc_lock);
1500 return -EBUSY;
1503 static int fsldma_resume_early(struct device *dev)
1505 struct platform_device *pdev = to_platform_device(dev);
1506 struct fsldma_device *fdev = platform_get_drvdata(pdev);
1507 struct fsldma_chan *chan;
1508 u32 mode;
1509 int i;
1511 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1512 chan = fdev->chan[i];
1513 if (!chan)
1514 continue;
1516 spin_lock_bh(&chan->desc_lock);
1517 mode = chan->regs_save.mr
1518 & ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1519 set_mr(chan, mode);
1520 chan->pm_state = RUNNING;
1521 spin_unlock_bh(&chan->desc_lock);
1524 return 0;
1527 static const struct dev_pm_ops fsldma_pm_ops = {
1528 .suspend_late = fsldma_suspend_late,
1529 .resume_early = fsldma_resume_early,
1531 #endif
1533 static const struct of_device_id fsldma_of_ids[] = {
1534 { .compatible = "fsl,elo3-dma", },
1535 { .compatible = "fsl,eloplus-dma", },
1536 { .compatible = "fsl,elo-dma", },
1540 static struct platform_driver fsldma_of_driver = {
1541 .driver = {
1542 .name = "fsl-elo-dma",
1543 .owner = THIS_MODULE,
1544 .of_match_table = fsldma_of_ids,
1545 #ifdef CONFIG_PM
1546 .pm = &fsldma_pm_ops,
1547 #endif
1549 .probe = fsldma_of_probe,
1550 .remove = fsldma_of_remove,
1553 /*----------------------------------------------------------------------------*/
1554 /* Module Init / Exit */
1555 /*----------------------------------------------------------------------------*/
1557 static __init int fsldma_init(void)
1559 pr_info("Freescale Elo series DMA driver\n");
1560 return platform_driver_register(&fsldma_of_driver);
1563 static void __exit fsldma_exit(void)
1565 platform_driver_unregister(&fsldma_of_driver);
1568 subsys_initcall(fsldma_init);
1569 module_exit(fsldma_exit);
1571 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1572 MODULE_LICENSE("GPL");