firewire: remove unnecessary alloc/OOM messages
[linux-2.6/btrfs-unstable.git] / drivers / firewire / ohci.c
blobd9be53c1d806e102cc4d6aea9c12bbcfe3f190c7
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
47 #include <asm/byteorder.h>
48 #include <asm/page.h>
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
52 #endif
54 #include "core.h"
55 #include "ohci.h"
57 #define DESCRIPTOR_OUTPUT_MORE 0
58 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
59 #define DESCRIPTOR_INPUT_MORE (2 << 12)
60 #define DESCRIPTOR_INPUT_LAST (3 << 12)
61 #define DESCRIPTOR_STATUS (1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
63 #define DESCRIPTOR_PING (1 << 7)
64 #define DESCRIPTOR_YY (1 << 6)
65 #define DESCRIPTOR_NO_IRQ (0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
69 #define DESCRIPTOR_WAIT (3 << 0)
71 struct descriptor {
72 __le16 req_count;
73 __le16 control;
74 __le32 data_address;
75 __le32 branch_address;
76 __le16 res_count;
77 __le16 transfer_status;
78 } __attribute__((aligned(16)));
80 #define CONTROL_SET(regs) (regs)
81 #define CONTROL_CLEAR(regs) ((regs) + 4)
82 #define COMMAND_PTR(regs) ((regs) + 12)
83 #define CONTEXT_MATCH(regs) ((regs) + 16)
85 #define AR_BUFFER_SIZE (32*1024)
86 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87 /* we need at least two pages for proper list management */
88 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90 #define MAX_ASYNC_PAYLOAD 4096
91 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
92 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
94 struct ar_context {
95 struct fw_ohci *ohci;
96 struct page *pages[AR_BUFFERS];
97 void *buffer;
98 struct descriptor *descriptors;
99 dma_addr_t descriptors_bus;
100 void *pointer;
101 unsigned int last_buffer_index;
102 u32 regs;
103 struct tasklet_struct tasklet;
106 struct context;
108 typedef int (*descriptor_callback_t)(struct context *ctx,
109 struct descriptor *d,
110 struct descriptor *last);
113 * A buffer that contains a block of DMA-able coherent memory used for
114 * storing a portion of a DMA descriptor program.
116 struct descriptor_buffer {
117 struct list_head list;
118 dma_addr_t buffer_bus;
119 size_t buffer_size;
120 size_t used;
121 struct descriptor buffer[0];
124 struct context {
125 struct fw_ohci *ohci;
126 u32 regs;
127 int total_allocation;
128 u32 current_bus;
129 bool running;
130 bool flushing;
133 * List of page-sized buffers for storing DMA descriptors.
134 * Head of list contains buffers in use and tail of list contains
135 * free buffers.
137 struct list_head buffer_list;
140 * Pointer to a buffer inside buffer_list that contains the tail
141 * end of the current DMA program.
143 struct descriptor_buffer *buffer_tail;
146 * The descriptor containing the branch address of the first
147 * descriptor that has not yet been filled by the device.
149 struct descriptor *last;
152 * The last descriptor in the DMA program. It contains the branch
153 * address that must be updated upon appending a new descriptor.
155 struct descriptor *prev;
157 descriptor_callback_t callback;
159 struct tasklet_struct tasklet;
162 #define IT_HEADER_SY(v) ((v) << 0)
163 #define IT_HEADER_TCODE(v) ((v) << 4)
164 #define IT_HEADER_CHANNEL(v) ((v) << 8)
165 #define IT_HEADER_TAG(v) ((v) << 14)
166 #define IT_HEADER_SPEED(v) ((v) << 16)
167 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
169 struct iso_context {
170 struct fw_iso_context base;
171 struct context context;
172 void *header;
173 size_t header_length;
174 unsigned long flushing_completions;
175 u32 mc_buffer_bus;
176 u16 mc_completed;
177 u16 last_timestamp;
178 u8 sync;
179 u8 tags;
182 #define CONFIG_ROM_SIZE 1024
184 struct fw_ohci {
185 struct fw_card card;
187 __iomem char *registers;
188 int node_id;
189 int generation;
190 int request_generation; /* for timestamping incoming requests */
191 unsigned quirks;
192 unsigned int pri_req_max;
193 u32 bus_time;
194 bool bus_time_running;
195 bool is_root;
196 bool csr_state_setclear_abdicate;
197 int n_ir;
198 int n_it;
200 * Spinlock for accessing fw_ohci data. Never call out of
201 * this driver with this lock held.
203 spinlock_t lock;
205 struct mutex phy_reg_mutex;
207 void *misc_buffer;
208 dma_addr_t misc_buffer_bus;
210 struct ar_context ar_request_ctx;
211 struct ar_context ar_response_ctx;
212 struct context at_request_ctx;
213 struct context at_response_ctx;
215 u32 it_context_support;
216 u32 it_context_mask; /* unoccupied IT contexts */
217 struct iso_context *it_context_list;
218 u64 ir_context_channels; /* unoccupied channels */
219 u32 ir_context_support;
220 u32 ir_context_mask; /* unoccupied IR contexts */
221 struct iso_context *ir_context_list;
222 u64 mc_channels; /* channels in use by the multichannel IR context */
223 bool mc_allocated;
225 __be32 *config_rom;
226 dma_addr_t config_rom_bus;
227 __be32 *next_config_rom;
228 dma_addr_t next_config_rom_bus;
229 __be32 next_header;
231 __le32 *self_id_cpu;
232 dma_addr_t self_id_bus;
233 struct work_struct bus_reset_work;
235 u32 self_id_buffer[512];
238 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
240 return container_of(card, struct fw_ohci, card);
243 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
244 #define IR_CONTEXT_BUFFER_FILL 0x80000000
245 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
246 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
247 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
248 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
250 #define CONTEXT_RUN 0x8000
251 #define CONTEXT_WAKE 0x1000
252 #define CONTEXT_DEAD 0x0800
253 #define CONTEXT_ACTIVE 0x0400
255 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
256 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
257 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
259 #define OHCI1394_REGISTER_SIZE 0x800
260 #define OHCI1394_PCI_HCI_Control 0x40
261 #define SELF_ID_BUF_SIZE 0x800
262 #define OHCI_TCODE_PHY_PACKET 0x0e
263 #define OHCI_VERSION_1_1 0x010010
265 static char ohci_driver_name[] = KBUILD_MODNAME;
267 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
268 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
269 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
270 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
271 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
272 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
273 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
275 #define QUIRK_CYCLE_TIMER 1
276 #define QUIRK_RESET_PACKET 2
277 #define QUIRK_BE_HEADERS 4
278 #define QUIRK_NO_1394A 8
279 #define QUIRK_NO_MSI 16
280 #define QUIRK_TI_SLLZ059 32
282 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
283 static const struct {
284 unsigned short vendor, device, revision, flags;
285 } ohci_quirks[] = {
286 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
287 QUIRK_CYCLE_TIMER},
289 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
290 QUIRK_BE_HEADERS},
292 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
293 QUIRK_NO_MSI},
295 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
296 QUIRK_RESET_PACKET},
298 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
299 QUIRK_NO_MSI},
301 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
302 QUIRK_CYCLE_TIMER},
304 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
305 QUIRK_NO_MSI},
307 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
308 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
310 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
311 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
313 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
314 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
316 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
317 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
319 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
320 QUIRK_RESET_PACKET},
322 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
323 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
326 /* This overrides anything that was found in ohci_quirks[]. */
327 static int param_quirks;
328 module_param_named(quirks, param_quirks, int, 0644);
329 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
330 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
331 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
332 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS)
333 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
334 ", disable MSI = " __stringify(QUIRK_NO_MSI)
335 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
336 ")");
338 #define OHCI_PARAM_DEBUG_AT_AR 1
339 #define OHCI_PARAM_DEBUG_SELFIDS 2
340 #define OHCI_PARAM_DEBUG_IRQS 4
341 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
343 static int param_debug;
344 module_param_named(debug, param_debug, int, 0644);
345 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
346 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
347 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
348 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
349 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
350 ", or a combination, or all = -1)");
352 static void log_irqs(struct fw_ohci *ohci, u32 evt)
354 if (likely(!(param_debug &
355 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
356 return;
358 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
359 !(evt & OHCI1394_busReset))
360 return;
362 dev_notice(ohci->card.device,
363 "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
364 evt & OHCI1394_selfIDComplete ? " selfID" : "",
365 evt & OHCI1394_RQPkt ? " AR_req" : "",
366 evt & OHCI1394_RSPkt ? " AR_resp" : "",
367 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
368 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
369 evt & OHCI1394_isochRx ? " IR" : "",
370 evt & OHCI1394_isochTx ? " IT" : "",
371 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
372 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
373 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
374 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
375 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
376 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
377 evt & OHCI1394_busReset ? " busReset" : "",
378 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
379 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
380 OHCI1394_respTxComplete | OHCI1394_isochRx |
381 OHCI1394_isochTx | OHCI1394_postedWriteErr |
382 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
383 OHCI1394_cycleInconsistent |
384 OHCI1394_regAccessFail | OHCI1394_busReset)
385 ? " ?" : "");
388 static const char *speed[] = {
389 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
391 static const char *power[] = {
392 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
393 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
395 static const char port[] = { '.', '-', 'p', 'c', };
397 static char _p(u32 *s, int shift)
399 return port[*s >> shift & 3];
402 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
404 u32 *s;
406 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
407 return;
409 dev_notice(ohci->card.device,
410 "%d selfIDs, generation %d, local node ID %04x\n",
411 self_id_count, generation, ohci->node_id);
413 for (s = ohci->self_id_buffer; self_id_count--; ++s)
414 if ((*s & 1 << 23) == 0)
415 dev_notice(ohci->card.device,
416 "selfID 0: %08x, phy %d [%c%c%c] "
417 "%s gc=%d %s %s%s%s\n",
418 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
419 speed[*s >> 14 & 3], *s >> 16 & 63,
420 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
421 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
422 else
423 dev_notice(ohci->card.device,
424 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
425 *s, *s >> 24 & 63,
426 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
427 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
430 static const char *evts[] = {
431 [0x00] = "evt_no_status", [0x01] = "-reserved-",
432 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
433 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
434 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
435 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
436 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
437 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
438 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
439 [0x10] = "-reserved-", [0x11] = "ack_complete",
440 [0x12] = "ack_pending ", [0x13] = "-reserved-",
441 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
442 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
443 [0x18] = "-reserved-", [0x19] = "-reserved-",
444 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
445 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
446 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
447 [0x20] = "pending/cancelled",
449 static const char *tcodes[] = {
450 [0x0] = "QW req", [0x1] = "BW req",
451 [0x2] = "W resp", [0x3] = "-reserved-",
452 [0x4] = "QR req", [0x5] = "BR req",
453 [0x6] = "QR resp", [0x7] = "BR resp",
454 [0x8] = "cycle start", [0x9] = "Lk req",
455 [0xa] = "async stream packet", [0xb] = "Lk resp",
456 [0xc] = "-reserved-", [0xd] = "-reserved-",
457 [0xe] = "link internal", [0xf] = "-reserved-",
460 static void log_ar_at_event(struct fw_ohci *ohci,
461 char dir, int speed, u32 *header, int evt)
463 int tcode = header[0] >> 4 & 0xf;
464 char specific[12];
466 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
467 return;
469 if (unlikely(evt >= ARRAY_SIZE(evts)))
470 evt = 0x1f;
472 if (evt == OHCI1394_evt_bus_reset) {
473 dev_notice(ohci->card.device,
474 "A%c evt_bus_reset, generation %d\n",
475 dir, (header[2] >> 16) & 0xff);
476 return;
479 switch (tcode) {
480 case 0x0: case 0x6: case 0x8:
481 snprintf(specific, sizeof(specific), " = %08x",
482 be32_to_cpu((__force __be32)header[3]));
483 break;
484 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
485 snprintf(specific, sizeof(specific), " %x,%x",
486 header[3] >> 16, header[3] & 0xffff);
487 break;
488 default:
489 specific[0] = '\0';
492 switch (tcode) {
493 case 0xa:
494 dev_notice(ohci->card.device,
495 "A%c %s, %s\n",
496 dir, evts[evt], tcodes[tcode]);
497 break;
498 case 0xe:
499 dev_notice(ohci->card.device,
500 "A%c %s, PHY %08x %08x\n",
501 dir, evts[evt], header[1], header[2]);
502 break;
503 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
504 dev_notice(ohci->card.device,
505 "A%c spd %x tl %02x, "
506 "%04x -> %04x, %s, "
507 "%s, %04x%08x%s\n",
508 dir, speed, header[0] >> 10 & 0x3f,
509 header[1] >> 16, header[0] >> 16, evts[evt],
510 tcodes[tcode], header[1] & 0xffff, header[2], specific);
511 break;
512 default:
513 dev_notice(ohci->card.device,
514 "A%c spd %x tl %02x, "
515 "%04x -> %04x, %s, "
516 "%s%s\n",
517 dir, speed, header[0] >> 10 & 0x3f,
518 header[1] >> 16, header[0] >> 16, evts[evt],
519 tcodes[tcode], specific);
523 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
525 writel(data, ohci->registers + offset);
528 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
530 return readl(ohci->registers + offset);
533 static inline void flush_writes(const struct fw_ohci *ohci)
535 /* Do a dummy read to flush writes. */
536 reg_read(ohci, OHCI1394_Version);
540 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
541 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
542 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
543 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
545 static int read_phy_reg(struct fw_ohci *ohci, int addr)
547 u32 val;
548 int i;
550 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
551 for (i = 0; i < 3 + 100; i++) {
552 val = reg_read(ohci, OHCI1394_PhyControl);
553 if (!~val)
554 return -ENODEV; /* Card was ejected. */
556 if (val & OHCI1394_PhyControl_ReadDone)
557 return OHCI1394_PhyControl_ReadData(val);
560 * Try a few times without waiting. Sleeping is necessary
561 * only when the link/PHY interface is busy.
563 if (i >= 3)
564 msleep(1);
566 dev_err(ohci->card.device, "failed to read phy reg\n");
568 return -EBUSY;
571 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
573 int i;
575 reg_write(ohci, OHCI1394_PhyControl,
576 OHCI1394_PhyControl_Write(addr, val));
577 for (i = 0; i < 3 + 100; i++) {
578 val = reg_read(ohci, OHCI1394_PhyControl);
579 if (!~val)
580 return -ENODEV; /* Card was ejected. */
582 if (!(val & OHCI1394_PhyControl_WritePending))
583 return 0;
585 if (i >= 3)
586 msleep(1);
588 dev_err(ohci->card.device, "failed to write phy reg\n");
590 return -EBUSY;
593 static int update_phy_reg(struct fw_ohci *ohci, int addr,
594 int clear_bits, int set_bits)
596 int ret = read_phy_reg(ohci, addr);
597 if (ret < 0)
598 return ret;
601 * The interrupt status bits are cleared by writing a one bit.
602 * Avoid clearing them unless explicitly requested in set_bits.
604 if (addr == 5)
605 clear_bits |= PHY_INT_STATUS_BITS;
607 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
610 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
612 int ret;
614 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
615 if (ret < 0)
616 return ret;
618 return read_phy_reg(ohci, addr);
621 static int ohci_read_phy_reg(struct fw_card *card, int addr)
623 struct fw_ohci *ohci = fw_ohci(card);
624 int ret;
626 mutex_lock(&ohci->phy_reg_mutex);
627 ret = read_phy_reg(ohci, addr);
628 mutex_unlock(&ohci->phy_reg_mutex);
630 return ret;
633 static int ohci_update_phy_reg(struct fw_card *card, int addr,
634 int clear_bits, int set_bits)
636 struct fw_ohci *ohci = fw_ohci(card);
637 int ret;
639 mutex_lock(&ohci->phy_reg_mutex);
640 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
641 mutex_unlock(&ohci->phy_reg_mutex);
643 return ret;
646 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
648 return page_private(ctx->pages[i]);
651 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
653 struct descriptor *d;
655 d = &ctx->descriptors[index];
656 d->branch_address &= cpu_to_le32(~0xf);
657 d->res_count = cpu_to_le16(PAGE_SIZE);
658 d->transfer_status = 0;
660 wmb(); /* finish init of new descriptors before branch_address update */
661 d = &ctx->descriptors[ctx->last_buffer_index];
662 d->branch_address |= cpu_to_le32(1);
664 ctx->last_buffer_index = index;
666 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
669 static void ar_context_release(struct ar_context *ctx)
671 unsigned int i;
673 if (ctx->buffer)
674 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
676 for (i = 0; i < AR_BUFFERS; i++)
677 if (ctx->pages[i]) {
678 dma_unmap_page(ctx->ohci->card.device,
679 ar_buffer_bus(ctx, i),
680 PAGE_SIZE, DMA_FROM_DEVICE);
681 __free_page(ctx->pages[i]);
685 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
687 struct fw_ohci *ohci = ctx->ohci;
689 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
690 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
691 flush_writes(ohci);
693 dev_err(ohci->card.device, "AR error: %s; DMA stopped\n",
694 error_msg);
696 /* FIXME: restart? */
699 static inline unsigned int ar_next_buffer_index(unsigned int index)
701 return (index + 1) % AR_BUFFERS;
704 static inline unsigned int ar_prev_buffer_index(unsigned int index)
706 return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
709 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
711 return ar_next_buffer_index(ctx->last_buffer_index);
715 * We search for the buffer that contains the last AR packet DMA data written
716 * by the controller.
718 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
719 unsigned int *buffer_offset)
721 unsigned int i, next_i, last = ctx->last_buffer_index;
722 __le16 res_count, next_res_count;
724 i = ar_first_buffer_index(ctx);
725 res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
727 /* A buffer that is not yet completely filled must be the last one. */
728 while (i != last && res_count == 0) {
730 /* Peek at the next descriptor. */
731 next_i = ar_next_buffer_index(i);
732 rmb(); /* read descriptors in order */
733 next_res_count = ACCESS_ONCE(
734 ctx->descriptors[next_i].res_count);
736 * If the next descriptor is still empty, we must stop at this
737 * descriptor.
739 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
741 * The exception is when the DMA data for one packet is
742 * split over three buffers; in this case, the middle
743 * buffer's descriptor might be never updated by the
744 * controller and look still empty, and we have to peek
745 * at the third one.
747 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
748 next_i = ar_next_buffer_index(next_i);
749 rmb();
750 next_res_count = ACCESS_ONCE(
751 ctx->descriptors[next_i].res_count);
752 if (next_res_count != cpu_to_le16(PAGE_SIZE))
753 goto next_buffer_is_active;
756 break;
759 next_buffer_is_active:
760 i = next_i;
761 res_count = next_res_count;
764 rmb(); /* read res_count before the DMA data */
766 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
767 if (*buffer_offset > PAGE_SIZE) {
768 *buffer_offset = 0;
769 ar_context_abort(ctx, "corrupted descriptor");
772 return i;
775 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
776 unsigned int end_buffer_index,
777 unsigned int end_buffer_offset)
779 unsigned int i;
781 i = ar_first_buffer_index(ctx);
782 while (i != end_buffer_index) {
783 dma_sync_single_for_cpu(ctx->ohci->card.device,
784 ar_buffer_bus(ctx, i),
785 PAGE_SIZE, DMA_FROM_DEVICE);
786 i = ar_next_buffer_index(i);
788 if (end_buffer_offset > 0)
789 dma_sync_single_for_cpu(ctx->ohci->card.device,
790 ar_buffer_bus(ctx, i),
791 end_buffer_offset, DMA_FROM_DEVICE);
794 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
795 #define cond_le32_to_cpu(v) \
796 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
797 #else
798 #define cond_le32_to_cpu(v) le32_to_cpu(v)
799 #endif
801 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
803 struct fw_ohci *ohci = ctx->ohci;
804 struct fw_packet p;
805 u32 status, length, tcode;
806 int evt;
808 p.header[0] = cond_le32_to_cpu(buffer[0]);
809 p.header[1] = cond_le32_to_cpu(buffer[1]);
810 p.header[2] = cond_le32_to_cpu(buffer[2]);
812 tcode = (p.header[0] >> 4) & 0x0f;
813 switch (tcode) {
814 case TCODE_WRITE_QUADLET_REQUEST:
815 case TCODE_READ_QUADLET_RESPONSE:
816 p.header[3] = (__force __u32) buffer[3];
817 p.header_length = 16;
818 p.payload_length = 0;
819 break;
821 case TCODE_READ_BLOCK_REQUEST :
822 p.header[3] = cond_le32_to_cpu(buffer[3]);
823 p.header_length = 16;
824 p.payload_length = 0;
825 break;
827 case TCODE_WRITE_BLOCK_REQUEST:
828 case TCODE_READ_BLOCK_RESPONSE:
829 case TCODE_LOCK_REQUEST:
830 case TCODE_LOCK_RESPONSE:
831 p.header[3] = cond_le32_to_cpu(buffer[3]);
832 p.header_length = 16;
833 p.payload_length = p.header[3] >> 16;
834 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
835 ar_context_abort(ctx, "invalid packet length");
836 return NULL;
838 break;
840 case TCODE_WRITE_RESPONSE:
841 case TCODE_READ_QUADLET_REQUEST:
842 case OHCI_TCODE_PHY_PACKET:
843 p.header_length = 12;
844 p.payload_length = 0;
845 break;
847 default:
848 ar_context_abort(ctx, "invalid tcode");
849 return NULL;
852 p.payload = (void *) buffer + p.header_length;
854 /* FIXME: What to do about evt_* errors? */
855 length = (p.header_length + p.payload_length + 3) / 4;
856 status = cond_le32_to_cpu(buffer[length]);
857 evt = (status >> 16) & 0x1f;
859 p.ack = evt - 16;
860 p.speed = (status >> 21) & 0x7;
861 p.timestamp = status & 0xffff;
862 p.generation = ohci->request_generation;
864 log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
867 * Several controllers, notably from NEC and VIA, forget to
868 * write ack_complete status at PHY packet reception.
870 if (evt == OHCI1394_evt_no_status &&
871 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
872 p.ack = ACK_COMPLETE;
875 * The OHCI bus reset handler synthesizes a PHY packet with
876 * the new generation number when a bus reset happens (see
877 * section 8.4.2.3). This helps us determine when a request
878 * was received and make sure we send the response in the same
879 * generation. We only need this for requests; for responses
880 * we use the unique tlabel for finding the matching
881 * request.
883 * Alas some chips sometimes emit bus reset packets with a
884 * wrong generation. We set the correct generation for these
885 * at a slightly incorrect time (in bus_reset_work).
887 if (evt == OHCI1394_evt_bus_reset) {
888 if (!(ohci->quirks & QUIRK_RESET_PACKET))
889 ohci->request_generation = (p.header[2] >> 16) & 0xff;
890 } else if (ctx == &ohci->ar_request_ctx) {
891 fw_core_handle_request(&ohci->card, &p);
892 } else {
893 fw_core_handle_response(&ohci->card, &p);
896 return buffer + length + 1;
899 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
901 void *next;
903 while (p < end) {
904 next = handle_ar_packet(ctx, p);
905 if (!next)
906 return p;
907 p = next;
910 return p;
913 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
915 unsigned int i;
917 i = ar_first_buffer_index(ctx);
918 while (i != end_buffer) {
919 dma_sync_single_for_device(ctx->ohci->card.device,
920 ar_buffer_bus(ctx, i),
921 PAGE_SIZE, DMA_FROM_DEVICE);
922 ar_context_link_page(ctx, i);
923 i = ar_next_buffer_index(i);
927 static void ar_context_tasklet(unsigned long data)
929 struct ar_context *ctx = (struct ar_context *)data;
930 unsigned int end_buffer_index, end_buffer_offset;
931 void *p, *end;
933 p = ctx->pointer;
934 if (!p)
935 return;
937 end_buffer_index = ar_search_last_active_buffer(ctx,
938 &end_buffer_offset);
939 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
940 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
942 if (end_buffer_index < ar_first_buffer_index(ctx)) {
944 * The filled part of the overall buffer wraps around; handle
945 * all packets up to the buffer end here. If the last packet
946 * wraps around, its tail will be visible after the buffer end
947 * because the buffer start pages are mapped there again.
949 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
950 p = handle_ar_packets(ctx, p, buffer_end);
951 if (p < buffer_end)
952 goto error;
953 /* adjust p to point back into the actual buffer */
954 p -= AR_BUFFERS * PAGE_SIZE;
957 p = handle_ar_packets(ctx, p, end);
958 if (p != end) {
959 if (p > end)
960 ar_context_abort(ctx, "inconsistent descriptor");
961 goto error;
964 ctx->pointer = p;
965 ar_recycle_buffers(ctx, end_buffer_index);
967 return;
969 error:
970 ctx->pointer = NULL;
973 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
974 unsigned int descriptors_offset, u32 regs)
976 unsigned int i;
977 dma_addr_t dma_addr;
978 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
979 struct descriptor *d;
981 ctx->regs = regs;
982 ctx->ohci = ohci;
983 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
985 for (i = 0; i < AR_BUFFERS; i++) {
986 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
987 if (!ctx->pages[i])
988 goto out_of_memory;
989 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
990 0, PAGE_SIZE, DMA_FROM_DEVICE);
991 if (dma_mapping_error(ohci->card.device, dma_addr)) {
992 __free_page(ctx->pages[i]);
993 ctx->pages[i] = NULL;
994 goto out_of_memory;
996 set_page_private(ctx->pages[i], dma_addr);
999 for (i = 0; i < AR_BUFFERS; i++)
1000 pages[i] = ctx->pages[i];
1001 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1002 pages[AR_BUFFERS + i] = ctx->pages[i];
1003 ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1004 -1, PAGE_KERNEL);
1005 if (!ctx->buffer)
1006 goto out_of_memory;
1008 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
1009 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1011 for (i = 0; i < AR_BUFFERS; i++) {
1012 d = &ctx->descriptors[i];
1013 d->req_count = cpu_to_le16(PAGE_SIZE);
1014 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1015 DESCRIPTOR_STATUS |
1016 DESCRIPTOR_BRANCH_ALWAYS);
1017 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
1018 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1019 ar_next_buffer_index(i) * sizeof(struct descriptor));
1022 return 0;
1024 out_of_memory:
1025 ar_context_release(ctx);
1027 return -ENOMEM;
1030 static void ar_context_run(struct ar_context *ctx)
1032 unsigned int i;
1034 for (i = 0; i < AR_BUFFERS; i++)
1035 ar_context_link_page(ctx, i);
1037 ctx->pointer = ctx->buffer;
1039 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1040 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1043 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1045 __le16 branch;
1047 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1049 /* figure out which descriptor the branch address goes in */
1050 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1051 return d;
1052 else
1053 return d + z - 1;
1056 static void context_tasklet(unsigned long data)
1058 struct context *ctx = (struct context *) data;
1059 struct descriptor *d, *last;
1060 u32 address;
1061 int z;
1062 struct descriptor_buffer *desc;
1064 desc = list_entry(ctx->buffer_list.next,
1065 struct descriptor_buffer, list);
1066 last = ctx->last;
1067 while (last->branch_address != 0) {
1068 struct descriptor_buffer *old_desc = desc;
1069 address = le32_to_cpu(last->branch_address);
1070 z = address & 0xf;
1071 address &= ~0xf;
1072 ctx->current_bus = address;
1074 /* If the branch address points to a buffer outside of the
1075 * current buffer, advance to the next buffer. */
1076 if (address < desc->buffer_bus ||
1077 address >= desc->buffer_bus + desc->used)
1078 desc = list_entry(desc->list.next,
1079 struct descriptor_buffer, list);
1080 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1081 last = find_branch_descriptor(d, z);
1083 if (!ctx->callback(ctx, d, last))
1084 break;
1086 if (old_desc != desc) {
1087 /* If we've advanced to the next buffer, move the
1088 * previous buffer to the free list. */
1089 unsigned long flags;
1090 old_desc->used = 0;
1091 spin_lock_irqsave(&ctx->ohci->lock, flags);
1092 list_move_tail(&old_desc->list, &ctx->buffer_list);
1093 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1095 ctx->last = last;
1100 * Allocate a new buffer and add it to the list of free buffers for this
1101 * context. Must be called with ohci->lock held.
1103 static int context_add_buffer(struct context *ctx)
1105 struct descriptor_buffer *desc;
1106 dma_addr_t uninitialized_var(bus_addr);
1107 int offset;
1110 * 16MB of descriptors should be far more than enough for any DMA
1111 * program. This will catch run-away userspace or DoS attacks.
1113 if (ctx->total_allocation >= 16*1024*1024)
1114 return -ENOMEM;
1116 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1117 &bus_addr, GFP_ATOMIC);
1118 if (!desc)
1119 return -ENOMEM;
1121 offset = (void *)&desc->buffer - (void *)desc;
1122 desc->buffer_size = PAGE_SIZE - offset;
1123 desc->buffer_bus = bus_addr + offset;
1124 desc->used = 0;
1126 list_add_tail(&desc->list, &ctx->buffer_list);
1127 ctx->total_allocation += PAGE_SIZE;
1129 return 0;
1132 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1133 u32 regs, descriptor_callback_t callback)
1135 ctx->ohci = ohci;
1136 ctx->regs = regs;
1137 ctx->total_allocation = 0;
1139 INIT_LIST_HEAD(&ctx->buffer_list);
1140 if (context_add_buffer(ctx) < 0)
1141 return -ENOMEM;
1143 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1144 struct descriptor_buffer, list);
1146 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1147 ctx->callback = callback;
1150 * We put a dummy descriptor in the buffer that has a NULL
1151 * branch address and looks like it's been sent. That way we
1152 * have a descriptor to append DMA programs to.
1154 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1155 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1156 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1157 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1158 ctx->last = ctx->buffer_tail->buffer;
1159 ctx->prev = ctx->buffer_tail->buffer;
1161 return 0;
1164 static void context_release(struct context *ctx)
1166 struct fw_card *card = &ctx->ohci->card;
1167 struct descriptor_buffer *desc, *tmp;
1169 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1170 dma_free_coherent(card->device, PAGE_SIZE, desc,
1171 desc->buffer_bus -
1172 ((void *)&desc->buffer - (void *)desc));
1175 /* Must be called with ohci->lock held */
1176 static struct descriptor *context_get_descriptors(struct context *ctx,
1177 int z, dma_addr_t *d_bus)
1179 struct descriptor *d = NULL;
1180 struct descriptor_buffer *desc = ctx->buffer_tail;
1182 if (z * sizeof(*d) > desc->buffer_size)
1183 return NULL;
1185 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1186 /* No room for the descriptor in this buffer, so advance to the
1187 * next one. */
1189 if (desc->list.next == &ctx->buffer_list) {
1190 /* If there is no free buffer next in the list,
1191 * allocate one. */
1192 if (context_add_buffer(ctx) < 0)
1193 return NULL;
1195 desc = list_entry(desc->list.next,
1196 struct descriptor_buffer, list);
1197 ctx->buffer_tail = desc;
1200 d = desc->buffer + desc->used / sizeof(*d);
1201 memset(d, 0, z * sizeof(*d));
1202 *d_bus = desc->buffer_bus + desc->used;
1204 return d;
1207 static void context_run(struct context *ctx, u32 extra)
1209 struct fw_ohci *ohci = ctx->ohci;
1211 reg_write(ohci, COMMAND_PTR(ctx->regs),
1212 le32_to_cpu(ctx->last->branch_address));
1213 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1214 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1215 ctx->running = true;
1216 flush_writes(ohci);
1219 static void context_append(struct context *ctx,
1220 struct descriptor *d, int z, int extra)
1222 dma_addr_t d_bus;
1223 struct descriptor_buffer *desc = ctx->buffer_tail;
1225 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1227 desc->used += (z + extra) * sizeof(*d);
1229 wmb(); /* finish init of new descriptors before branch_address update */
1230 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1231 ctx->prev = find_branch_descriptor(d, z);
1234 static void context_stop(struct context *ctx)
1236 struct fw_ohci *ohci = ctx->ohci;
1237 u32 reg;
1238 int i;
1240 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1241 ctx->running = false;
1243 for (i = 0; i < 1000; i++) {
1244 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1245 if ((reg & CONTEXT_ACTIVE) == 0)
1246 return;
1248 if (i)
1249 udelay(10);
1251 dev_err(ohci->card.device, "DMA context still active (0x%08x)\n", reg);
1254 struct driver_data {
1255 u8 inline_data[8];
1256 struct fw_packet *packet;
1260 * This function apppends a packet to the DMA queue for transmission.
1261 * Must always be called with the ochi->lock held to ensure proper
1262 * generation handling and locking around packet queue manipulation.
1264 static int at_context_queue_packet(struct context *ctx,
1265 struct fw_packet *packet)
1267 struct fw_ohci *ohci = ctx->ohci;
1268 dma_addr_t d_bus, uninitialized_var(payload_bus);
1269 struct driver_data *driver_data;
1270 struct descriptor *d, *last;
1271 __le32 *header;
1272 int z, tcode;
1274 d = context_get_descriptors(ctx, 4, &d_bus);
1275 if (d == NULL) {
1276 packet->ack = RCODE_SEND_ERROR;
1277 return -1;
1280 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1281 d[0].res_count = cpu_to_le16(packet->timestamp);
1284 * The DMA format for asynchronous link packets is different
1285 * from the IEEE1394 layout, so shift the fields around
1286 * accordingly.
1289 tcode = (packet->header[0] >> 4) & 0x0f;
1290 header = (__le32 *) &d[1];
1291 switch (tcode) {
1292 case TCODE_WRITE_QUADLET_REQUEST:
1293 case TCODE_WRITE_BLOCK_REQUEST:
1294 case TCODE_WRITE_RESPONSE:
1295 case TCODE_READ_QUADLET_REQUEST:
1296 case TCODE_READ_BLOCK_REQUEST:
1297 case TCODE_READ_QUADLET_RESPONSE:
1298 case TCODE_READ_BLOCK_RESPONSE:
1299 case TCODE_LOCK_REQUEST:
1300 case TCODE_LOCK_RESPONSE:
1301 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1302 (packet->speed << 16));
1303 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1304 (packet->header[0] & 0xffff0000));
1305 header[2] = cpu_to_le32(packet->header[2]);
1307 if (TCODE_IS_BLOCK_PACKET(tcode))
1308 header[3] = cpu_to_le32(packet->header[3]);
1309 else
1310 header[3] = (__force __le32) packet->header[3];
1312 d[0].req_count = cpu_to_le16(packet->header_length);
1313 break;
1315 case TCODE_LINK_INTERNAL:
1316 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1317 (packet->speed << 16));
1318 header[1] = cpu_to_le32(packet->header[1]);
1319 header[2] = cpu_to_le32(packet->header[2]);
1320 d[0].req_count = cpu_to_le16(12);
1322 if (is_ping_packet(&packet->header[1]))
1323 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1324 break;
1326 case TCODE_STREAM_DATA:
1327 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1328 (packet->speed << 16));
1329 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1330 d[0].req_count = cpu_to_le16(8);
1331 break;
1333 default:
1334 /* BUG(); */
1335 packet->ack = RCODE_SEND_ERROR;
1336 return -1;
1339 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1340 driver_data = (struct driver_data *) &d[3];
1341 driver_data->packet = packet;
1342 packet->driver_data = driver_data;
1344 if (packet->payload_length > 0) {
1345 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1346 payload_bus = dma_map_single(ohci->card.device,
1347 packet->payload,
1348 packet->payload_length,
1349 DMA_TO_DEVICE);
1350 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1351 packet->ack = RCODE_SEND_ERROR;
1352 return -1;
1354 packet->payload_bus = payload_bus;
1355 packet->payload_mapped = true;
1356 } else {
1357 memcpy(driver_data->inline_data, packet->payload,
1358 packet->payload_length);
1359 payload_bus = d_bus + 3 * sizeof(*d);
1362 d[2].req_count = cpu_to_le16(packet->payload_length);
1363 d[2].data_address = cpu_to_le32(payload_bus);
1364 last = &d[2];
1365 z = 3;
1366 } else {
1367 last = &d[0];
1368 z = 2;
1371 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1372 DESCRIPTOR_IRQ_ALWAYS |
1373 DESCRIPTOR_BRANCH_ALWAYS);
1375 /* FIXME: Document how the locking works. */
1376 if (ohci->generation != packet->generation) {
1377 if (packet->payload_mapped)
1378 dma_unmap_single(ohci->card.device, payload_bus,
1379 packet->payload_length, DMA_TO_DEVICE);
1380 packet->ack = RCODE_GENERATION;
1381 return -1;
1384 context_append(ctx, d, z, 4 - z);
1386 if (ctx->running)
1387 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1388 else
1389 context_run(ctx, 0);
1391 return 0;
1394 static void at_context_flush(struct context *ctx)
1396 tasklet_disable(&ctx->tasklet);
1398 ctx->flushing = true;
1399 context_tasklet((unsigned long)ctx);
1400 ctx->flushing = false;
1402 tasklet_enable(&ctx->tasklet);
1405 static int handle_at_packet(struct context *context,
1406 struct descriptor *d,
1407 struct descriptor *last)
1409 struct driver_data *driver_data;
1410 struct fw_packet *packet;
1411 struct fw_ohci *ohci = context->ohci;
1412 int evt;
1414 if (last->transfer_status == 0 && !context->flushing)
1415 /* This descriptor isn't done yet, stop iteration. */
1416 return 0;
1418 driver_data = (struct driver_data *) &d[3];
1419 packet = driver_data->packet;
1420 if (packet == NULL)
1421 /* This packet was cancelled, just continue. */
1422 return 1;
1424 if (packet->payload_mapped)
1425 dma_unmap_single(ohci->card.device, packet->payload_bus,
1426 packet->payload_length, DMA_TO_DEVICE);
1428 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1429 packet->timestamp = le16_to_cpu(last->res_count);
1431 log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1433 switch (evt) {
1434 case OHCI1394_evt_timeout:
1435 /* Async response transmit timed out. */
1436 packet->ack = RCODE_CANCELLED;
1437 break;
1439 case OHCI1394_evt_flushed:
1441 * The packet was flushed should give same error as
1442 * when we try to use a stale generation count.
1444 packet->ack = RCODE_GENERATION;
1445 break;
1447 case OHCI1394_evt_missing_ack:
1448 if (context->flushing)
1449 packet->ack = RCODE_GENERATION;
1450 else {
1452 * Using a valid (current) generation count, but the
1453 * node is not on the bus or not sending acks.
1455 packet->ack = RCODE_NO_ACK;
1457 break;
1459 case ACK_COMPLETE + 0x10:
1460 case ACK_PENDING + 0x10:
1461 case ACK_BUSY_X + 0x10:
1462 case ACK_BUSY_A + 0x10:
1463 case ACK_BUSY_B + 0x10:
1464 case ACK_DATA_ERROR + 0x10:
1465 case ACK_TYPE_ERROR + 0x10:
1466 packet->ack = evt - 0x10;
1467 break;
1469 case OHCI1394_evt_no_status:
1470 if (context->flushing) {
1471 packet->ack = RCODE_GENERATION;
1472 break;
1474 /* fall through */
1476 default:
1477 packet->ack = RCODE_SEND_ERROR;
1478 break;
1481 packet->callback(packet, &ohci->card, packet->ack);
1483 return 1;
1486 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1487 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1488 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1489 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1490 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1492 static void handle_local_rom(struct fw_ohci *ohci,
1493 struct fw_packet *packet, u32 csr)
1495 struct fw_packet response;
1496 int tcode, length, i;
1498 tcode = HEADER_GET_TCODE(packet->header[0]);
1499 if (TCODE_IS_BLOCK_PACKET(tcode))
1500 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1501 else
1502 length = 4;
1504 i = csr - CSR_CONFIG_ROM;
1505 if (i + length > CONFIG_ROM_SIZE) {
1506 fw_fill_response(&response, packet->header,
1507 RCODE_ADDRESS_ERROR, NULL, 0);
1508 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1509 fw_fill_response(&response, packet->header,
1510 RCODE_TYPE_ERROR, NULL, 0);
1511 } else {
1512 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1513 (void *) ohci->config_rom + i, length);
1516 fw_core_handle_response(&ohci->card, &response);
1519 static void handle_local_lock(struct fw_ohci *ohci,
1520 struct fw_packet *packet, u32 csr)
1522 struct fw_packet response;
1523 int tcode, length, ext_tcode, sel, try;
1524 __be32 *payload, lock_old;
1525 u32 lock_arg, lock_data;
1527 tcode = HEADER_GET_TCODE(packet->header[0]);
1528 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1529 payload = packet->payload;
1530 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1532 if (tcode == TCODE_LOCK_REQUEST &&
1533 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1534 lock_arg = be32_to_cpu(payload[0]);
1535 lock_data = be32_to_cpu(payload[1]);
1536 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1537 lock_arg = 0;
1538 lock_data = 0;
1539 } else {
1540 fw_fill_response(&response, packet->header,
1541 RCODE_TYPE_ERROR, NULL, 0);
1542 goto out;
1545 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1546 reg_write(ohci, OHCI1394_CSRData, lock_data);
1547 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1548 reg_write(ohci, OHCI1394_CSRControl, sel);
1550 for (try = 0; try < 20; try++)
1551 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1552 lock_old = cpu_to_be32(reg_read(ohci,
1553 OHCI1394_CSRData));
1554 fw_fill_response(&response, packet->header,
1555 RCODE_COMPLETE,
1556 &lock_old, sizeof(lock_old));
1557 goto out;
1560 dev_err(ohci->card.device, "swap not done (CSR lock timeout)\n");
1561 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1563 out:
1564 fw_core_handle_response(&ohci->card, &response);
1567 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1569 u64 offset, csr;
1571 if (ctx == &ctx->ohci->at_request_ctx) {
1572 packet->ack = ACK_PENDING;
1573 packet->callback(packet, &ctx->ohci->card, packet->ack);
1576 offset =
1577 ((unsigned long long)
1578 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1579 packet->header[2];
1580 csr = offset - CSR_REGISTER_BASE;
1582 /* Handle config rom reads. */
1583 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1584 handle_local_rom(ctx->ohci, packet, csr);
1585 else switch (csr) {
1586 case CSR_BUS_MANAGER_ID:
1587 case CSR_BANDWIDTH_AVAILABLE:
1588 case CSR_CHANNELS_AVAILABLE_HI:
1589 case CSR_CHANNELS_AVAILABLE_LO:
1590 handle_local_lock(ctx->ohci, packet, csr);
1591 break;
1592 default:
1593 if (ctx == &ctx->ohci->at_request_ctx)
1594 fw_core_handle_request(&ctx->ohci->card, packet);
1595 else
1596 fw_core_handle_response(&ctx->ohci->card, packet);
1597 break;
1600 if (ctx == &ctx->ohci->at_response_ctx) {
1601 packet->ack = ACK_COMPLETE;
1602 packet->callback(packet, &ctx->ohci->card, packet->ack);
1606 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1608 unsigned long flags;
1609 int ret;
1611 spin_lock_irqsave(&ctx->ohci->lock, flags);
1613 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1614 ctx->ohci->generation == packet->generation) {
1615 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1616 handle_local_request(ctx, packet);
1617 return;
1620 ret = at_context_queue_packet(ctx, packet);
1621 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1623 if (ret < 0)
1624 packet->callback(packet, &ctx->ohci->card, packet->ack);
1628 static void detect_dead_context(struct fw_ohci *ohci,
1629 const char *name, unsigned int regs)
1631 u32 ctl;
1633 ctl = reg_read(ohci, CONTROL_SET(regs));
1634 if (ctl & CONTEXT_DEAD)
1635 dev_err(ohci->card.device,
1636 "DMA context %s has stopped, error code: %s\n",
1637 name, evts[ctl & 0x1f]);
1640 static void handle_dead_contexts(struct fw_ohci *ohci)
1642 unsigned int i;
1643 char name[8];
1645 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1646 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1647 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1648 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1649 for (i = 0; i < 32; ++i) {
1650 if (!(ohci->it_context_support & (1 << i)))
1651 continue;
1652 sprintf(name, "IT%u", i);
1653 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1655 for (i = 0; i < 32; ++i) {
1656 if (!(ohci->ir_context_support & (1 << i)))
1657 continue;
1658 sprintf(name, "IR%u", i);
1659 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1661 /* TODO: maybe try to flush and restart the dead contexts */
1664 static u32 cycle_timer_ticks(u32 cycle_timer)
1666 u32 ticks;
1668 ticks = cycle_timer & 0xfff;
1669 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1670 ticks += (3072 * 8000) * (cycle_timer >> 25);
1672 return ticks;
1676 * Some controllers exhibit one or more of the following bugs when updating the
1677 * iso cycle timer register:
1678 * - When the lowest six bits are wrapping around to zero, a read that happens
1679 * at the same time will return garbage in the lowest ten bits.
1680 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1681 * not incremented for about 60 ns.
1682 * - Occasionally, the entire register reads zero.
1684 * To catch these, we read the register three times and ensure that the
1685 * difference between each two consecutive reads is approximately the same, i.e.
1686 * less than twice the other. Furthermore, any negative difference indicates an
1687 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1688 * execute, so we have enough precision to compute the ratio of the differences.)
1690 static u32 get_cycle_time(struct fw_ohci *ohci)
1692 u32 c0, c1, c2;
1693 u32 t0, t1, t2;
1694 s32 diff01, diff12;
1695 int i;
1697 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1699 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1700 i = 0;
1701 c1 = c2;
1702 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1703 do {
1704 c0 = c1;
1705 c1 = c2;
1706 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1707 t0 = cycle_timer_ticks(c0);
1708 t1 = cycle_timer_ticks(c1);
1709 t2 = cycle_timer_ticks(c2);
1710 diff01 = t1 - t0;
1711 diff12 = t2 - t1;
1712 } while ((diff01 <= 0 || diff12 <= 0 ||
1713 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1714 && i++ < 20);
1717 return c2;
1721 * This function has to be called at least every 64 seconds. The bus_time
1722 * field stores not only the upper 25 bits of the BUS_TIME register but also
1723 * the most significant bit of the cycle timer in bit 6 so that we can detect
1724 * changes in this bit.
1726 static u32 update_bus_time(struct fw_ohci *ohci)
1728 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1730 if (unlikely(!ohci->bus_time_running)) {
1731 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1732 ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1733 (cycle_time_seconds & 0x40);
1734 ohci->bus_time_running = true;
1737 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1738 ohci->bus_time += 0x40;
1740 return ohci->bus_time | cycle_time_seconds;
1743 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1745 int reg;
1747 mutex_lock(&ohci->phy_reg_mutex);
1748 reg = write_phy_reg(ohci, 7, port_index);
1749 if (reg >= 0)
1750 reg = read_phy_reg(ohci, 8);
1751 mutex_unlock(&ohci->phy_reg_mutex);
1752 if (reg < 0)
1753 return reg;
1755 switch (reg & 0x0f) {
1756 case 0x06:
1757 return 2; /* is child node (connected to parent node) */
1758 case 0x0e:
1759 return 3; /* is parent node (connected to child node) */
1761 return 1; /* not connected */
1764 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1765 int self_id_count)
1767 int i;
1768 u32 entry;
1770 for (i = 0; i < self_id_count; i++) {
1771 entry = ohci->self_id_buffer[i];
1772 if ((self_id & 0xff000000) == (entry & 0xff000000))
1773 return -1;
1774 if ((self_id & 0xff000000) < (entry & 0xff000000))
1775 return i;
1777 return i;
1780 static int initiated_reset(struct fw_ohci *ohci)
1782 int reg;
1783 int ret = 0;
1785 mutex_lock(&ohci->phy_reg_mutex);
1786 reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1787 if (reg >= 0) {
1788 reg = read_phy_reg(ohci, 8);
1789 reg |= 0x40;
1790 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1791 if (reg >= 0) {
1792 reg = read_phy_reg(ohci, 12); /* read register 12 */
1793 if (reg >= 0) {
1794 if ((reg & 0x08) == 0x08) {
1795 /* bit 3 indicates "initiated reset" */
1796 ret = 0x2;
1801 mutex_unlock(&ohci->phy_reg_mutex);
1802 return ret;
1806 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1807 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1808 * Construct the selfID from phy register contents.
1810 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1812 int reg, i, pos, status;
1813 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1814 u32 self_id = 0x8040c800;
1816 reg = reg_read(ohci, OHCI1394_NodeID);
1817 if (!(reg & OHCI1394_NodeID_idValid)) {
1818 dev_notice(ohci->card.device,
1819 "node ID not valid, new bus reset in progress\n");
1820 return -EBUSY;
1822 self_id |= ((reg & 0x3f) << 24); /* phy ID */
1824 reg = ohci_read_phy_reg(&ohci->card, 4);
1825 if (reg < 0)
1826 return reg;
1827 self_id |= ((reg & 0x07) << 8); /* power class */
1829 reg = ohci_read_phy_reg(&ohci->card, 1);
1830 if (reg < 0)
1831 return reg;
1832 self_id |= ((reg & 0x3f) << 16); /* gap count */
1834 for (i = 0; i < 3; i++) {
1835 status = get_status_for_port(ohci, i);
1836 if (status < 0)
1837 return status;
1838 self_id |= ((status & 0x3) << (6 - (i * 2)));
1841 self_id |= initiated_reset(ohci);
1843 pos = get_self_id_pos(ohci, self_id, self_id_count);
1844 if (pos >= 0) {
1845 memmove(&(ohci->self_id_buffer[pos+1]),
1846 &(ohci->self_id_buffer[pos]),
1847 (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1848 ohci->self_id_buffer[pos] = self_id;
1849 self_id_count++;
1851 return self_id_count;
1854 static void bus_reset_work(struct work_struct *work)
1856 struct fw_ohci *ohci =
1857 container_of(work, struct fw_ohci, bus_reset_work);
1858 int self_id_count, generation, new_generation, i, j;
1859 u32 reg;
1860 void *free_rom = NULL;
1861 dma_addr_t free_rom_bus = 0;
1862 bool is_new_root;
1864 reg = reg_read(ohci, OHCI1394_NodeID);
1865 if (!(reg & OHCI1394_NodeID_idValid)) {
1866 dev_notice(ohci->card.device,
1867 "node ID not valid, new bus reset in progress\n");
1868 return;
1870 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1871 dev_notice(ohci->card.device, "malconfigured bus\n");
1872 return;
1874 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1875 OHCI1394_NodeID_nodeNumber);
1877 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1878 if (!(ohci->is_root && is_new_root))
1879 reg_write(ohci, OHCI1394_LinkControlSet,
1880 OHCI1394_LinkControl_cycleMaster);
1881 ohci->is_root = is_new_root;
1883 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1884 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1885 dev_notice(ohci->card.device, "inconsistent self IDs\n");
1886 return;
1889 * The count in the SelfIDCount register is the number of
1890 * bytes in the self ID receive buffer. Since we also receive
1891 * the inverted quadlets and a header quadlet, we shift one
1892 * bit extra to get the actual number of self IDs.
1894 self_id_count = (reg >> 3) & 0xff;
1896 if (self_id_count > 252) {
1897 dev_notice(ohci->card.device, "inconsistent self IDs\n");
1898 return;
1901 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1902 rmb();
1904 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1905 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1907 * If the invalid data looks like a cycle start packet,
1908 * it's likely to be the result of the cycle master
1909 * having a wrong gap count. In this case, the self IDs
1910 * so far are valid and should be processed so that the
1911 * bus manager can then correct the gap count.
1913 if (cond_le32_to_cpu(ohci->self_id_cpu[i])
1914 == 0xffff008f) {
1915 dev_notice(ohci->card.device,
1916 "ignoring spurious self IDs\n");
1917 self_id_count = j;
1918 break;
1919 } else {
1920 dev_notice(ohci->card.device,
1921 "inconsistent self IDs\n");
1922 return;
1925 ohci->self_id_buffer[j] =
1926 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1929 if (ohci->quirks & QUIRK_TI_SLLZ059) {
1930 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1931 if (self_id_count < 0) {
1932 dev_notice(ohci->card.device,
1933 "could not construct local self ID\n");
1934 return;
1938 if (self_id_count == 0) {
1939 dev_notice(ohci->card.device, "inconsistent self IDs\n");
1940 return;
1942 rmb();
1945 * Check the consistency of the self IDs we just read. The
1946 * problem we face is that a new bus reset can start while we
1947 * read out the self IDs from the DMA buffer. If this happens,
1948 * the DMA buffer will be overwritten with new self IDs and we
1949 * will read out inconsistent data. The OHCI specification
1950 * (section 11.2) recommends a technique similar to
1951 * linux/seqlock.h, where we remember the generation of the
1952 * self IDs in the buffer before reading them out and compare
1953 * it to the current generation after reading them out. If
1954 * the two generations match we know we have a consistent set
1955 * of self IDs.
1958 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1959 if (new_generation != generation) {
1960 dev_notice(ohci->card.device,
1961 "new bus reset, discarding self ids\n");
1962 return;
1965 /* FIXME: Document how the locking works. */
1966 spin_lock_irq(&ohci->lock);
1968 ohci->generation = -1; /* prevent AT packet queueing */
1969 context_stop(&ohci->at_request_ctx);
1970 context_stop(&ohci->at_response_ctx);
1972 spin_unlock_irq(&ohci->lock);
1975 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1976 * packets in the AT queues and software needs to drain them.
1977 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1979 at_context_flush(&ohci->at_request_ctx);
1980 at_context_flush(&ohci->at_response_ctx);
1982 spin_lock_irq(&ohci->lock);
1984 ohci->generation = generation;
1985 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1987 if (ohci->quirks & QUIRK_RESET_PACKET)
1988 ohci->request_generation = generation;
1991 * This next bit is unrelated to the AT context stuff but we
1992 * have to do it under the spinlock also. If a new config rom
1993 * was set up before this reset, the old one is now no longer
1994 * in use and we can free it. Update the config rom pointers
1995 * to point to the current config rom and clear the
1996 * next_config_rom pointer so a new update can take place.
1999 if (ohci->next_config_rom != NULL) {
2000 if (ohci->next_config_rom != ohci->config_rom) {
2001 free_rom = ohci->config_rom;
2002 free_rom_bus = ohci->config_rom_bus;
2004 ohci->config_rom = ohci->next_config_rom;
2005 ohci->config_rom_bus = ohci->next_config_rom_bus;
2006 ohci->next_config_rom = NULL;
2009 * Restore config_rom image and manually update
2010 * config_rom registers. Writing the header quadlet
2011 * will indicate that the config rom is ready, so we
2012 * do that last.
2014 reg_write(ohci, OHCI1394_BusOptions,
2015 be32_to_cpu(ohci->config_rom[2]));
2016 ohci->config_rom[0] = ohci->next_header;
2017 reg_write(ohci, OHCI1394_ConfigROMhdr,
2018 be32_to_cpu(ohci->next_header));
2021 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2022 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2023 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2024 #endif
2026 spin_unlock_irq(&ohci->lock);
2028 if (free_rom)
2029 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2030 free_rom, free_rom_bus);
2032 log_selfids(ohci, generation, self_id_count);
2034 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2035 self_id_count, ohci->self_id_buffer,
2036 ohci->csr_state_setclear_abdicate);
2037 ohci->csr_state_setclear_abdicate = false;
2040 static irqreturn_t irq_handler(int irq, void *data)
2042 struct fw_ohci *ohci = data;
2043 u32 event, iso_event;
2044 int i;
2046 event = reg_read(ohci, OHCI1394_IntEventClear);
2048 if (!event || !~event)
2049 return IRQ_NONE;
2052 * busReset and postedWriteErr must not be cleared yet
2053 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2055 reg_write(ohci, OHCI1394_IntEventClear,
2056 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2057 log_irqs(ohci, event);
2059 if (event & OHCI1394_selfIDComplete)
2060 queue_work(fw_workqueue, &ohci->bus_reset_work);
2062 if (event & OHCI1394_RQPkt)
2063 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2065 if (event & OHCI1394_RSPkt)
2066 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2068 if (event & OHCI1394_reqTxComplete)
2069 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2071 if (event & OHCI1394_respTxComplete)
2072 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2074 if (event & OHCI1394_isochRx) {
2075 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2076 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2078 while (iso_event) {
2079 i = ffs(iso_event) - 1;
2080 tasklet_schedule(
2081 &ohci->ir_context_list[i].context.tasklet);
2082 iso_event &= ~(1 << i);
2086 if (event & OHCI1394_isochTx) {
2087 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2088 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2090 while (iso_event) {
2091 i = ffs(iso_event) - 1;
2092 tasklet_schedule(
2093 &ohci->it_context_list[i].context.tasklet);
2094 iso_event &= ~(1 << i);
2098 if (unlikely(event & OHCI1394_regAccessFail))
2099 dev_err(ohci->card.device, "register access failure\n");
2101 if (unlikely(event & OHCI1394_postedWriteErr)) {
2102 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2103 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2104 reg_write(ohci, OHCI1394_IntEventClear,
2105 OHCI1394_postedWriteErr);
2106 if (printk_ratelimit())
2107 dev_err(ohci->card.device, "PCI posted write error\n");
2110 if (unlikely(event & OHCI1394_cycleTooLong)) {
2111 if (printk_ratelimit())
2112 dev_notice(ohci->card.device,
2113 "isochronous cycle too long\n");
2114 reg_write(ohci, OHCI1394_LinkControlSet,
2115 OHCI1394_LinkControl_cycleMaster);
2118 if (unlikely(event & OHCI1394_cycleInconsistent)) {
2120 * We need to clear this event bit in order to make
2121 * cycleMatch isochronous I/O work. In theory we should
2122 * stop active cycleMatch iso contexts now and restart
2123 * them at least two cycles later. (FIXME?)
2125 if (printk_ratelimit())
2126 dev_notice(ohci->card.device,
2127 "isochronous cycle inconsistent\n");
2130 if (unlikely(event & OHCI1394_unrecoverableError))
2131 handle_dead_contexts(ohci);
2133 if (event & OHCI1394_cycle64Seconds) {
2134 spin_lock(&ohci->lock);
2135 update_bus_time(ohci);
2136 spin_unlock(&ohci->lock);
2137 } else
2138 flush_writes(ohci);
2140 return IRQ_HANDLED;
2143 static int software_reset(struct fw_ohci *ohci)
2145 u32 val;
2146 int i;
2148 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2149 for (i = 0; i < 500; i++) {
2150 val = reg_read(ohci, OHCI1394_HCControlSet);
2151 if (!~val)
2152 return -ENODEV; /* Card was ejected. */
2154 if (!(val & OHCI1394_HCControl_softReset))
2155 return 0;
2157 msleep(1);
2160 return -EBUSY;
2163 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2165 size_t size = length * 4;
2167 memcpy(dest, src, size);
2168 if (size < CONFIG_ROM_SIZE)
2169 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2172 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2174 bool enable_1394a;
2175 int ret, clear, set, offset;
2177 /* Check if the driver should configure link and PHY. */
2178 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2179 OHCI1394_HCControl_programPhyEnable))
2180 return 0;
2182 /* Paranoia: check whether the PHY supports 1394a, too. */
2183 enable_1394a = false;
2184 ret = read_phy_reg(ohci, 2);
2185 if (ret < 0)
2186 return ret;
2187 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2188 ret = read_paged_phy_reg(ohci, 1, 8);
2189 if (ret < 0)
2190 return ret;
2191 if (ret >= 1)
2192 enable_1394a = true;
2195 if (ohci->quirks & QUIRK_NO_1394A)
2196 enable_1394a = false;
2198 /* Configure PHY and link consistently. */
2199 if (enable_1394a) {
2200 clear = 0;
2201 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2202 } else {
2203 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2204 set = 0;
2206 ret = update_phy_reg(ohci, 5, clear, set);
2207 if (ret < 0)
2208 return ret;
2210 if (enable_1394a)
2211 offset = OHCI1394_HCControlSet;
2212 else
2213 offset = OHCI1394_HCControlClear;
2214 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2216 /* Clean up: configuration has been taken care of. */
2217 reg_write(ohci, OHCI1394_HCControlClear,
2218 OHCI1394_HCControl_programPhyEnable);
2220 return 0;
2223 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2225 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2226 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2227 int reg, i;
2229 reg = read_phy_reg(ohci, 2);
2230 if (reg < 0)
2231 return reg;
2232 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2233 return 0;
2235 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2236 reg = read_paged_phy_reg(ohci, 1, i + 10);
2237 if (reg < 0)
2238 return reg;
2239 if (reg != id[i])
2240 return 0;
2242 return 1;
2245 static int ohci_enable(struct fw_card *card,
2246 const __be32 *config_rom, size_t length)
2248 struct fw_ohci *ohci = fw_ohci(card);
2249 struct pci_dev *dev = to_pci_dev(card->device);
2250 u32 lps, version, irqs;
2251 int i, ret;
2253 if (software_reset(ohci)) {
2254 dev_err(card->device, "failed to reset ohci card\n");
2255 return -EBUSY;
2259 * Now enable LPS, which we need in order to start accessing
2260 * most of the registers. In fact, on some cards (ALI M5251),
2261 * accessing registers in the SClk domain without LPS enabled
2262 * will lock up the machine. Wait 50msec to make sure we have
2263 * full link enabled. However, with some cards (well, at least
2264 * a JMicron PCIe card), we have to try again sometimes.
2266 reg_write(ohci, OHCI1394_HCControlSet,
2267 OHCI1394_HCControl_LPS |
2268 OHCI1394_HCControl_postedWriteEnable);
2269 flush_writes(ohci);
2271 for (lps = 0, i = 0; !lps && i < 3; i++) {
2272 msleep(50);
2273 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2274 OHCI1394_HCControl_LPS;
2277 if (!lps) {
2278 dev_err(card->device, "failed to set Link Power Status\n");
2279 return -EIO;
2282 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2283 ret = probe_tsb41ba3d(ohci);
2284 if (ret < 0)
2285 return ret;
2286 if (ret)
2287 dev_notice(card->device, "local TSB41BA3D phy\n");
2288 else
2289 ohci->quirks &= ~QUIRK_TI_SLLZ059;
2292 reg_write(ohci, OHCI1394_HCControlClear,
2293 OHCI1394_HCControl_noByteSwapData);
2295 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2296 reg_write(ohci, OHCI1394_LinkControlSet,
2297 OHCI1394_LinkControl_cycleTimerEnable |
2298 OHCI1394_LinkControl_cycleMaster);
2300 reg_write(ohci, OHCI1394_ATRetries,
2301 OHCI1394_MAX_AT_REQ_RETRIES |
2302 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2303 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2304 (200 << 16));
2306 ohci->bus_time_running = false;
2308 for (i = 0; i < 32; i++)
2309 if (ohci->ir_context_support & (1 << i))
2310 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2311 IR_CONTEXT_MULTI_CHANNEL_MODE);
2313 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2314 if (version >= OHCI_VERSION_1_1) {
2315 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2316 0xfffffffe);
2317 card->broadcast_channel_auto_allocated = true;
2320 /* Get implemented bits of the priority arbitration request counter. */
2321 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2322 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2323 reg_write(ohci, OHCI1394_FairnessControl, 0);
2324 card->priority_budget_implemented = ohci->pri_req_max != 0;
2326 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2327 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2328 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2330 ret = configure_1394a_enhancements(ohci);
2331 if (ret < 0)
2332 return ret;
2334 /* Activate link_on bit and contender bit in our self ID packets.*/
2335 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2336 if (ret < 0)
2337 return ret;
2340 * When the link is not yet enabled, the atomic config rom
2341 * update mechanism described below in ohci_set_config_rom()
2342 * is not active. We have to update ConfigRomHeader and
2343 * BusOptions manually, and the write to ConfigROMmap takes
2344 * effect immediately. We tie this to the enabling of the
2345 * link, so we have a valid config rom before enabling - the
2346 * OHCI requires that ConfigROMhdr and BusOptions have valid
2347 * values before enabling.
2349 * However, when the ConfigROMmap is written, some controllers
2350 * always read back quadlets 0 and 2 from the config rom to
2351 * the ConfigRomHeader and BusOptions registers on bus reset.
2352 * They shouldn't do that in this initial case where the link
2353 * isn't enabled. This means we have to use the same
2354 * workaround here, setting the bus header to 0 and then write
2355 * the right values in the bus reset tasklet.
2358 if (config_rom) {
2359 ohci->next_config_rom =
2360 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2361 &ohci->next_config_rom_bus,
2362 GFP_KERNEL);
2363 if (ohci->next_config_rom == NULL)
2364 return -ENOMEM;
2366 copy_config_rom(ohci->next_config_rom, config_rom, length);
2367 } else {
2369 * In the suspend case, config_rom is NULL, which
2370 * means that we just reuse the old config rom.
2372 ohci->next_config_rom = ohci->config_rom;
2373 ohci->next_config_rom_bus = ohci->config_rom_bus;
2376 ohci->next_header = ohci->next_config_rom[0];
2377 ohci->next_config_rom[0] = 0;
2378 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2379 reg_write(ohci, OHCI1394_BusOptions,
2380 be32_to_cpu(ohci->next_config_rom[2]));
2381 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2383 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2385 if (!(ohci->quirks & QUIRK_NO_MSI))
2386 pci_enable_msi(dev);
2387 if (request_irq(dev->irq, irq_handler,
2388 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2389 ohci_driver_name, ohci)) {
2390 dev_err(card->device, "failed to allocate interrupt %d\n",
2391 dev->irq);
2392 pci_disable_msi(dev);
2394 if (config_rom) {
2395 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2396 ohci->next_config_rom,
2397 ohci->next_config_rom_bus);
2398 ohci->next_config_rom = NULL;
2400 return -EIO;
2403 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2404 OHCI1394_RQPkt | OHCI1394_RSPkt |
2405 OHCI1394_isochTx | OHCI1394_isochRx |
2406 OHCI1394_postedWriteErr |
2407 OHCI1394_selfIDComplete |
2408 OHCI1394_regAccessFail |
2409 OHCI1394_cycleInconsistent |
2410 OHCI1394_unrecoverableError |
2411 OHCI1394_cycleTooLong |
2412 OHCI1394_masterIntEnable;
2413 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2414 irqs |= OHCI1394_busReset;
2415 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2417 reg_write(ohci, OHCI1394_HCControlSet,
2418 OHCI1394_HCControl_linkEnable |
2419 OHCI1394_HCControl_BIBimageValid);
2421 reg_write(ohci, OHCI1394_LinkControlSet,
2422 OHCI1394_LinkControl_rcvSelfID |
2423 OHCI1394_LinkControl_rcvPhyPkt);
2425 ar_context_run(&ohci->ar_request_ctx);
2426 ar_context_run(&ohci->ar_response_ctx);
2428 flush_writes(ohci);
2430 /* We are ready to go, reset bus to finish initialization. */
2431 fw_schedule_bus_reset(&ohci->card, false, true);
2433 return 0;
2436 static int ohci_set_config_rom(struct fw_card *card,
2437 const __be32 *config_rom, size_t length)
2439 struct fw_ohci *ohci;
2440 __be32 *next_config_rom;
2441 dma_addr_t uninitialized_var(next_config_rom_bus);
2443 ohci = fw_ohci(card);
2446 * When the OHCI controller is enabled, the config rom update
2447 * mechanism is a bit tricky, but easy enough to use. See
2448 * section 5.5.6 in the OHCI specification.
2450 * The OHCI controller caches the new config rom address in a
2451 * shadow register (ConfigROMmapNext) and needs a bus reset
2452 * for the changes to take place. When the bus reset is
2453 * detected, the controller loads the new values for the
2454 * ConfigRomHeader and BusOptions registers from the specified
2455 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2456 * shadow register. All automatically and atomically.
2458 * Now, there's a twist to this story. The automatic load of
2459 * ConfigRomHeader and BusOptions doesn't honor the
2460 * noByteSwapData bit, so with a be32 config rom, the
2461 * controller will load be32 values in to these registers
2462 * during the atomic update, even on litte endian
2463 * architectures. The workaround we use is to put a 0 in the
2464 * header quadlet; 0 is endian agnostic and means that the
2465 * config rom isn't ready yet. In the bus reset tasklet we
2466 * then set up the real values for the two registers.
2468 * We use ohci->lock to avoid racing with the code that sets
2469 * ohci->next_config_rom to NULL (see bus_reset_work).
2472 next_config_rom =
2473 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2474 &next_config_rom_bus, GFP_KERNEL);
2475 if (next_config_rom == NULL)
2476 return -ENOMEM;
2478 spin_lock_irq(&ohci->lock);
2481 * If there is not an already pending config_rom update,
2482 * push our new allocation into the ohci->next_config_rom
2483 * and then mark the local variable as null so that we
2484 * won't deallocate the new buffer.
2486 * OTOH, if there is a pending config_rom update, just
2487 * use that buffer with the new config_rom data, and
2488 * let this routine free the unused DMA allocation.
2491 if (ohci->next_config_rom == NULL) {
2492 ohci->next_config_rom = next_config_rom;
2493 ohci->next_config_rom_bus = next_config_rom_bus;
2494 next_config_rom = NULL;
2497 copy_config_rom(ohci->next_config_rom, config_rom, length);
2499 ohci->next_header = config_rom[0];
2500 ohci->next_config_rom[0] = 0;
2502 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2504 spin_unlock_irq(&ohci->lock);
2506 /* If we didn't use the DMA allocation, delete it. */
2507 if (next_config_rom != NULL)
2508 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2509 next_config_rom, next_config_rom_bus);
2512 * Now initiate a bus reset to have the changes take
2513 * effect. We clean up the old config rom memory and DMA
2514 * mappings in the bus reset tasklet, since the OHCI
2515 * controller could need to access it before the bus reset
2516 * takes effect.
2519 fw_schedule_bus_reset(&ohci->card, true, true);
2521 return 0;
2524 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2526 struct fw_ohci *ohci = fw_ohci(card);
2528 at_context_transmit(&ohci->at_request_ctx, packet);
2531 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2533 struct fw_ohci *ohci = fw_ohci(card);
2535 at_context_transmit(&ohci->at_response_ctx, packet);
2538 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2540 struct fw_ohci *ohci = fw_ohci(card);
2541 struct context *ctx = &ohci->at_request_ctx;
2542 struct driver_data *driver_data = packet->driver_data;
2543 int ret = -ENOENT;
2545 tasklet_disable(&ctx->tasklet);
2547 if (packet->ack != 0)
2548 goto out;
2550 if (packet->payload_mapped)
2551 dma_unmap_single(ohci->card.device, packet->payload_bus,
2552 packet->payload_length, DMA_TO_DEVICE);
2554 log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2555 driver_data->packet = NULL;
2556 packet->ack = RCODE_CANCELLED;
2557 packet->callback(packet, &ohci->card, packet->ack);
2558 ret = 0;
2559 out:
2560 tasklet_enable(&ctx->tasklet);
2562 return ret;
2565 static int ohci_enable_phys_dma(struct fw_card *card,
2566 int node_id, int generation)
2568 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2569 return 0;
2570 #else
2571 struct fw_ohci *ohci = fw_ohci(card);
2572 unsigned long flags;
2573 int n, ret = 0;
2576 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2577 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2580 spin_lock_irqsave(&ohci->lock, flags);
2582 if (ohci->generation != generation) {
2583 ret = -ESTALE;
2584 goto out;
2588 * Note, if the node ID contains a non-local bus ID, physical DMA is
2589 * enabled for _all_ nodes on remote buses.
2592 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2593 if (n < 32)
2594 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2595 else
2596 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2598 flush_writes(ohci);
2599 out:
2600 spin_unlock_irqrestore(&ohci->lock, flags);
2602 return ret;
2603 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2606 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2608 struct fw_ohci *ohci = fw_ohci(card);
2609 unsigned long flags;
2610 u32 value;
2612 switch (csr_offset) {
2613 case CSR_STATE_CLEAR:
2614 case CSR_STATE_SET:
2615 if (ohci->is_root &&
2616 (reg_read(ohci, OHCI1394_LinkControlSet) &
2617 OHCI1394_LinkControl_cycleMaster))
2618 value = CSR_STATE_BIT_CMSTR;
2619 else
2620 value = 0;
2621 if (ohci->csr_state_setclear_abdicate)
2622 value |= CSR_STATE_BIT_ABDICATE;
2624 return value;
2626 case CSR_NODE_IDS:
2627 return reg_read(ohci, OHCI1394_NodeID) << 16;
2629 case CSR_CYCLE_TIME:
2630 return get_cycle_time(ohci);
2632 case CSR_BUS_TIME:
2634 * We might be called just after the cycle timer has wrapped
2635 * around but just before the cycle64Seconds handler, so we
2636 * better check here, too, if the bus time needs to be updated.
2638 spin_lock_irqsave(&ohci->lock, flags);
2639 value = update_bus_time(ohci);
2640 spin_unlock_irqrestore(&ohci->lock, flags);
2641 return value;
2643 case CSR_BUSY_TIMEOUT:
2644 value = reg_read(ohci, OHCI1394_ATRetries);
2645 return (value >> 4) & 0x0ffff00f;
2647 case CSR_PRIORITY_BUDGET:
2648 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2649 (ohci->pri_req_max << 8);
2651 default:
2652 WARN_ON(1);
2653 return 0;
2657 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2659 struct fw_ohci *ohci = fw_ohci(card);
2660 unsigned long flags;
2662 switch (csr_offset) {
2663 case CSR_STATE_CLEAR:
2664 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2665 reg_write(ohci, OHCI1394_LinkControlClear,
2666 OHCI1394_LinkControl_cycleMaster);
2667 flush_writes(ohci);
2669 if (value & CSR_STATE_BIT_ABDICATE)
2670 ohci->csr_state_setclear_abdicate = false;
2671 break;
2673 case CSR_STATE_SET:
2674 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2675 reg_write(ohci, OHCI1394_LinkControlSet,
2676 OHCI1394_LinkControl_cycleMaster);
2677 flush_writes(ohci);
2679 if (value & CSR_STATE_BIT_ABDICATE)
2680 ohci->csr_state_setclear_abdicate = true;
2681 break;
2683 case CSR_NODE_IDS:
2684 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2685 flush_writes(ohci);
2686 break;
2688 case CSR_CYCLE_TIME:
2689 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2690 reg_write(ohci, OHCI1394_IntEventSet,
2691 OHCI1394_cycleInconsistent);
2692 flush_writes(ohci);
2693 break;
2695 case CSR_BUS_TIME:
2696 spin_lock_irqsave(&ohci->lock, flags);
2697 ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2698 (value & ~0x7f);
2699 spin_unlock_irqrestore(&ohci->lock, flags);
2700 break;
2702 case CSR_BUSY_TIMEOUT:
2703 value = (value & 0xf) | ((value & 0xf) << 4) |
2704 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2705 reg_write(ohci, OHCI1394_ATRetries, value);
2706 flush_writes(ohci);
2707 break;
2709 case CSR_PRIORITY_BUDGET:
2710 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2711 flush_writes(ohci);
2712 break;
2714 default:
2715 WARN_ON(1);
2716 break;
2720 static void flush_iso_completions(struct iso_context *ctx)
2722 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2723 ctx->header_length, ctx->header,
2724 ctx->base.callback_data);
2725 ctx->header_length = 0;
2728 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2730 u32 *ctx_hdr;
2732 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE)
2733 flush_iso_completions(ctx);
2735 ctx_hdr = ctx->header + ctx->header_length;
2736 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2739 * The two iso header quadlets are byteswapped to little
2740 * endian by the controller, but we want to present them
2741 * as big endian for consistency with the bus endianness.
2743 if (ctx->base.header_size > 0)
2744 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2745 if (ctx->base.header_size > 4)
2746 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2747 if (ctx->base.header_size > 8)
2748 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2749 ctx->header_length += ctx->base.header_size;
2752 static int handle_ir_packet_per_buffer(struct context *context,
2753 struct descriptor *d,
2754 struct descriptor *last)
2756 struct iso_context *ctx =
2757 container_of(context, struct iso_context, context);
2758 struct descriptor *pd;
2759 u32 buffer_dma;
2761 for (pd = d; pd <= last; pd++)
2762 if (pd->transfer_status)
2763 break;
2764 if (pd > last)
2765 /* Descriptor(s) not done yet, stop iteration */
2766 return 0;
2768 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2769 d++;
2770 buffer_dma = le32_to_cpu(d->data_address);
2771 dma_sync_single_range_for_cpu(context->ohci->card.device,
2772 buffer_dma & PAGE_MASK,
2773 buffer_dma & ~PAGE_MASK,
2774 le16_to_cpu(d->req_count),
2775 DMA_FROM_DEVICE);
2778 copy_iso_headers(ctx, (u32 *) (last + 1));
2780 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2781 flush_iso_completions(ctx);
2783 return 1;
2786 /* d == last because each descriptor block is only a single descriptor. */
2787 static int handle_ir_buffer_fill(struct context *context,
2788 struct descriptor *d,
2789 struct descriptor *last)
2791 struct iso_context *ctx =
2792 container_of(context, struct iso_context, context);
2793 unsigned int req_count, res_count, completed;
2794 u32 buffer_dma;
2796 req_count = le16_to_cpu(last->req_count);
2797 res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2798 completed = req_count - res_count;
2799 buffer_dma = le32_to_cpu(last->data_address);
2801 if (completed > 0) {
2802 ctx->mc_buffer_bus = buffer_dma;
2803 ctx->mc_completed = completed;
2806 if (res_count != 0)
2807 /* Descriptor(s) not done yet, stop iteration */
2808 return 0;
2810 dma_sync_single_range_for_cpu(context->ohci->card.device,
2811 buffer_dma & PAGE_MASK,
2812 buffer_dma & ~PAGE_MASK,
2813 completed, DMA_FROM_DEVICE);
2815 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2816 ctx->base.callback.mc(&ctx->base,
2817 buffer_dma + completed,
2818 ctx->base.callback_data);
2819 ctx->mc_completed = 0;
2822 return 1;
2825 static void flush_ir_buffer_fill(struct iso_context *ctx)
2827 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2828 ctx->mc_buffer_bus & PAGE_MASK,
2829 ctx->mc_buffer_bus & ~PAGE_MASK,
2830 ctx->mc_completed, DMA_FROM_DEVICE);
2832 ctx->base.callback.mc(&ctx->base,
2833 ctx->mc_buffer_bus + ctx->mc_completed,
2834 ctx->base.callback_data);
2835 ctx->mc_completed = 0;
2838 static inline void sync_it_packet_for_cpu(struct context *context,
2839 struct descriptor *pd)
2841 __le16 control;
2842 u32 buffer_dma;
2844 /* only packets beginning with OUTPUT_MORE* have data buffers */
2845 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2846 return;
2848 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2849 pd += 2;
2852 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2853 * data buffer is in the context program's coherent page and must not
2854 * be synced.
2856 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2857 (context->current_bus & PAGE_MASK)) {
2858 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2859 return;
2860 pd++;
2863 do {
2864 buffer_dma = le32_to_cpu(pd->data_address);
2865 dma_sync_single_range_for_cpu(context->ohci->card.device,
2866 buffer_dma & PAGE_MASK,
2867 buffer_dma & ~PAGE_MASK,
2868 le16_to_cpu(pd->req_count),
2869 DMA_TO_DEVICE);
2870 control = pd->control;
2871 pd++;
2872 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2875 static int handle_it_packet(struct context *context,
2876 struct descriptor *d,
2877 struct descriptor *last)
2879 struct iso_context *ctx =
2880 container_of(context, struct iso_context, context);
2881 struct descriptor *pd;
2882 __be32 *ctx_hdr;
2884 for (pd = d; pd <= last; pd++)
2885 if (pd->transfer_status)
2886 break;
2887 if (pd > last)
2888 /* Descriptor(s) not done yet, stop iteration */
2889 return 0;
2891 sync_it_packet_for_cpu(context, d);
2893 if (ctx->header_length + 4 > PAGE_SIZE)
2894 flush_iso_completions(ctx);
2896 ctx_hdr = ctx->header + ctx->header_length;
2897 ctx->last_timestamp = le16_to_cpu(last->res_count);
2898 /* Present this value as big-endian to match the receive code */
2899 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2900 le16_to_cpu(pd->res_count));
2901 ctx->header_length += 4;
2903 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2904 flush_iso_completions(ctx);
2906 return 1;
2909 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2911 u32 hi = channels >> 32, lo = channels;
2913 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2914 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2915 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2916 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2917 mmiowb();
2918 ohci->mc_channels = channels;
2921 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2922 int type, int channel, size_t header_size)
2924 struct fw_ohci *ohci = fw_ohci(card);
2925 struct iso_context *uninitialized_var(ctx);
2926 descriptor_callback_t uninitialized_var(callback);
2927 u64 *uninitialized_var(channels);
2928 u32 *uninitialized_var(mask), uninitialized_var(regs);
2929 int index, ret = -EBUSY;
2931 spin_lock_irq(&ohci->lock);
2933 switch (type) {
2934 case FW_ISO_CONTEXT_TRANSMIT:
2935 mask = &ohci->it_context_mask;
2936 callback = handle_it_packet;
2937 index = ffs(*mask) - 1;
2938 if (index >= 0) {
2939 *mask &= ~(1 << index);
2940 regs = OHCI1394_IsoXmitContextBase(index);
2941 ctx = &ohci->it_context_list[index];
2943 break;
2945 case FW_ISO_CONTEXT_RECEIVE:
2946 channels = &ohci->ir_context_channels;
2947 mask = &ohci->ir_context_mask;
2948 callback = handle_ir_packet_per_buffer;
2949 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2950 if (index >= 0) {
2951 *channels &= ~(1ULL << channel);
2952 *mask &= ~(1 << index);
2953 regs = OHCI1394_IsoRcvContextBase(index);
2954 ctx = &ohci->ir_context_list[index];
2956 break;
2958 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2959 mask = &ohci->ir_context_mask;
2960 callback = handle_ir_buffer_fill;
2961 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2962 if (index >= 0) {
2963 ohci->mc_allocated = true;
2964 *mask &= ~(1 << index);
2965 regs = OHCI1394_IsoRcvContextBase(index);
2966 ctx = &ohci->ir_context_list[index];
2968 break;
2970 default:
2971 index = -1;
2972 ret = -ENOSYS;
2975 spin_unlock_irq(&ohci->lock);
2977 if (index < 0)
2978 return ERR_PTR(ret);
2980 memset(ctx, 0, sizeof(*ctx));
2981 ctx->header_length = 0;
2982 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2983 if (ctx->header == NULL) {
2984 ret = -ENOMEM;
2985 goto out;
2987 ret = context_init(&ctx->context, ohci, regs, callback);
2988 if (ret < 0)
2989 goto out_with_header;
2991 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
2992 set_multichannel_mask(ohci, 0);
2993 ctx->mc_completed = 0;
2996 return &ctx->base;
2998 out_with_header:
2999 free_page((unsigned long)ctx->header);
3000 out:
3001 spin_lock_irq(&ohci->lock);
3003 switch (type) {
3004 case FW_ISO_CONTEXT_RECEIVE:
3005 *channels |= 1ULL << channel;
3006 break;
3008 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3009 ohci->mc_allocated = false;
3010 break;
3012 *mask |= 1 << index;
3014 spin_unlock_irq(&ohci->lock);
3016 return ERR_PTR(ret);
3019 static int ohci_start_iso(struct fw_iso_context *base,
3020 s32 cycle, u32 sync, u32 tags)
3022 struct iso_context *ctx = container_of(base, struct iso_context, base);
3023 struct fw_ohci *ohci = ctx->context.ohci;
3024 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3025 int index;
3027 /* the controller cannot start without any queued packets */
3028 if (ctx->context.last->branch_address == 0)
3029 return -ENODATA;
3031 switch (ctx->base.type) {
3032 case FW_ISO_CONTEXT_TRANSMIT:
3033 index = ctx - ohci->it_context_list;
3034 match = 0;
3035 if (cycle >= 0)
3036 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3037 (cycle & 0x7fff) << 16;
3039 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3040 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3041 context_run(&ctx->context, match);
3042 break;
3044 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3045 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3046 /* fall through */
3047 case FW_ISO_CONTEXT_RECEIVE:
3048 index = ctx - ohci->ir_context_list;
3049 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3050 if (cycle >= 0) {
3051 match |= (cycle & 0x07fff) << 12;
3052 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3055 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3056 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3057 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3058 context_run(&ctx->context, control);
3060 ctx->sync = sync;
3061 ctx->tags = tags;
3063 break;
3066 return 0;
3069 static int ohci_stop_iso(struct fw_iso_context *base)
3071 struct fw_ohci *ohci = fw_ohci(base->card);
3072 struct iso_context *ctx = container_of(base, struct iso_context, base);
3073 int index;
3075 switch (ctx->base.type) {
3076 case FW_ISO_CONTEXT_TRANSMIT:
3077 index = ctx - ohci->it_context_list;
3078 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3079 break;
3081 case FW_ISO_CONTEXT_RECEIVE:
3082 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3083 index = ctx - ohci->ir_context_list;
3084 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3085 break;
3087 flush_writes(ohci);
3088 context_stop(&ctx->context);
3089 tasklet_kill(&ctx->context.tasklet);
3091 return 0;
3094 static void ohci_free_iso_context(struct fw_iso_context *base)
3096 struct fw_ohci *ohci = fw_ohci(base->card);
3097 struct iso_context *ctx = container_of(base, struct iso_context, base);
3098 unsigned long flags;
3099 int index;
3101 ohci_stop_iso(base);
3102 context_release(&ctx->context);
3103 free_page((unsigned long)ctx->header);
3105 spin_lock_irqsave(&ohci->lock, flags);
3107 switch (base->type) {
3108 case FW_ISO_CONTEXT_TRANSMIT:
3109 index = ctx - ohci->it_context_list;
3110 ohci->it_context_mask |= 1 << index;
3111 break;
3113 case FW_ISO_CONTEXT_RECEIVE:
3114 index = ctx - ohci->ir_context_list;
3115 ohci->ir_context_mask |= 1 << index;
3116 ohci->ir_context_channels |= 1ULL << base->channel;
3117 break;
3119 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3120 index = ctx - ohci->ir_context_list;
3121 ohci->ir_context_mask |= 1 << index;
3122 ohci->ir_context_channels |= ohci->mc_channels;
3123 ohci->mc_channels = 0;
3124 ohci->mc_allocated = false;
3125 break;
3128 spin_unlock_irqrestore(&ohci->lock, flags);
3131 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3133 struct fw_ohci *ohci = fw_ohci(base->card);
3134 unsigned long flags;
3135 int ret;
3137 switch (base->type) {
3138 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3140 spin_lock_irqsave(&ohci->lock, flags);
3142 /* Don't allow multichannel to grab other contexts' channels. */
3143 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3144 *channels = ohci->ir_context_channels;
3145 ret = -EBUSY;
3146 } else {
3147 set_multichannel_mask(ohci, *channels);
3148 ret = 0;
3151 spin_unlock_irqrestore(&ohci->lock, flags);
3153 break;
3154 default:
3155 ret = -EINVAL;
3158 return ret;
3161 #ifdef CONFIG_PM
3162 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3164 int i;
3165 struct iso_context *ctx;
3167 for (i = 0 ; i < ohci->n_ir ; i++) {
3168 ctx = &ohci->ir_context_list[i];
3169 if (ctx->context.running)
3170 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3173 for (i = 0 ; i < ohci->n_it ; i++) {
3174 ctx = &ohci->it_context_list[i];
3175 if (ctx->context.running)
3176 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3179 #endif
3181 static int queue_iso_transmit(struct iso_context *ctx,
3182 struct fw_iso_packet *packet,
3183 struct fw_iso_buffer *buffer,
3184 unsigned long payload)
3186 struct descriptor *d, *last, *pd;
3187 struct fw_iso_packet *p;
3188 __le32 *header;
3189 dma_addr_t d_bus, page_bus;
3190 u32 z, header_z, payload_z, irq;
3191 u32 payload_index, payload_end_index, next_page_index;
3192 int page, end_page, i, length, offset;
3194 p = packet;
3195 payload_index = payload;
3197 if (p->skip)
3198 z = 1;
3199 else
3200 z = 2;
3201 if (p->header_length > 0)
3202 z++;
3204 /* Determine the first page the payload isn't contained in. */
3205 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3206 if (p->payload_length > 0)
3207 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3208 else
3209 payload_z = 0;
3211 z += payload_z;
3213 /* Get header size in number of descriptors. */
3214 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3216 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3217 if (d == NULL)
3218 return -ENOMEM;
3220 if (!p->skip) {
3221 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3222 d[0].req_count = cpu_to_le16(8);
3224 * Link the skip address to this descriptor itself. This causes
3225 * a context to skip a cycle whenever lost cycles or FIFO
3226 * overruns occur, without dropping the data. The application
3227 * should then decide whether this is an error condition or not.
3228 * FIXME: Make the context's cycle-lost behaviour configurable?
3230 d[0].branch_address = cpu_to_le32(d_bus | z);
3232 header = (__le32 *) &d[1];
3233 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3234 IT_HEADER_TAG(p->tag) |
3235 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3236 IT_HEADER_CHANNEL(ctx->base.channel) |
3237 IT_HEADER_SPEED(ctx->base.speed));
3238 header[1] =
3239 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3240 p->payload_length));
3243 if (p->header_length > 0) {
3244 d[2].req_count = cpu_to_le16(p->header_length);
3245 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3246 memcpy(&d[z], p->header, p->header_length);
3249 pd = d + z - payload_z;
3250 payload_end_index = payload_index + p->payload_length;
3251 for (i = 0; i < payload_z; i++) {
3252 page = payload_index >> PAGE_SHIFT;
3253 offset = payload_index & ~PAGE_MASK;
3254 next_page_index = (page + 1) << PAGE_SHIFT;
3255 length =
3256 min(next_page_index, payload_end_index) - payload_index;
3257 pd[i].req_count = cpu_to_le16(length);
3259 page_bus = page_private(buffer->pages[page]);
3260 pd[i].data_address = cpu_to_le32(page_bus + offset);
3262 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3263 page_bus, offset, length,
3264 DMA_TO_DEVICE);
3266 payload_index += length;
3269 if (p->interrupt)
3270 irq = DESCRIPTOR_IRQ_ALWAYS;
3271 else
3272 irq = DESCRIPTOR_NO_IRQ;
3274 last = z == 2 ? d : d + z - 1;
3275 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3276 DESCRIPTOR_STATUS |
3277 DESCRIPTOR_BRANCH_ALWAYS |
3278 irq);
3280 context_append(&ctx->context, d, z, header_z);
3282 return 0;
3285 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3286 struct fw_iso_packet *packet,
3287 struct fw_iso_buffer *buffer,
3288 unsigned long payload)
3290 struct device *device = ctx->context.ohci->card.device;
3291 struct descriptor *d, *pd;
3292 dma_addr_t d_bus, page_bus;
3293 u32 z, header_z, rest;
3294 int i, j, length;
3295 int page, offset, packet_count, header_size, payload_per_buffer;
3298 * The OHCI controller puts the isochronous header and trailer in the
3299 * buffer, so we need at least 8 bytes.
3301 packet_count = packet->header_length / ctx->base.header_size;
3302 header_size = max(ctx->base.header_size, (size_t)8);
3304 /* Get header size in number of descriptors. */
3305 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3306 page = payload >> PAGE_SHIFT;
3307 offset = payload & ~PAGE_MASK;
3308 payload_per_buffer = packet->payload_length / packet_count;
3310 for (i = 0; i < packet_count; i++) {
3311 /* d points to the header descriptor */
3312 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3313 d = context_get_descriptors(&ctx->context,
3314 z + header_z, &d_bus);
3315 if (d == NULL)
3316 return -ENOMEM;
3318 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3319 DESCRIPTOR_INPUT_MORE);
3320 if (packet->skip && i == 0)
3321 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3322 d->req_count = cpu_to_le16(header_size);
3323 d->res_count = d->req_count;
3324 d->transfer_status = 0;
3325 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3327 rest = payload_per_buffer;
3328 pd = d;
3329 for (j = 1; j < z; j++) {
3330 pd++;
3331 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3332 DESCRIPTOR_INPUT_MORE);
3334 if (offset + rest < PAGE_SIZE)
3335 length = rest;
3336 else
3337 length = PAGE_SIZE - offset;
3338 pd->req_count = cpu_to_le16(length);
3339 pd->res_count = pd->req_count;
3340 pd->transfer_status = 0;
3342 page_bus = page_private(buffer->pages[page]);
3343 pd->data_address = cpu_to_le32(page_bus + offset);
3345 dma_sync_single_range_for_device(device, page_bus,
3346 offset, length,
3347 DMA_FROM_DEVICE);
3349 offset = (offset + length) & ~PAGE_MASK;
3350 rest -= length;
3351 if (offset == 0)
3352 page++;
3354 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3355 DESCRIPTOR_INPUT_LAST |
3356 DESCRIPTOR_BRANCH_ALWAYS);
3357 if (packet->interrupt && i == packet_count - 1)
3358 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3360 context_append(&ctx->context, d, z, header_z);
3363 return 0;
3366 static int queue_iso_buffer_fill(struct iso_context *ctx,
3367 struct fw_iso_packet *packet,
3368 struct fw_iso_buffer *buffer,
3369 unsigned long payload)
3371 struct descriptor *d;
3372 dma_addr_t d_bus, page_bus;
3373 int page, offset, rest, z, i, length;
3375 page = payload >> PAGE_SHIFT;
3376 offset = payload & ~PAGE_MASK;
3377 rest = packet->payload_length;
3379 /* We need one descriptor for each page in the buffer. */
3380 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3382 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3383 return -EFAULT;
3385 for (i = 0; i < z; i++) {
3386 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3387 if (d == NULL)
3388 return -ENOMEM;
3390 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3391 DESCRIPTOR_BRANCH_ALWAYS);
3392 if (packet->skip && i == 0)
3393 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3394 if (packet->interrupt && i == z - 1)
3395 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3397 if (offset + rest < PAGE_SIZE)
3398 length = rest;
3399 else
3400 length = PAGE_SIZE - offset;
3401 d->req_count = cpu_to_le16(length);
3402 d->res_count = d->req_count;
3403 d->transfer_status = 0;
3405 page_bus = page_private(buffer->pages[page]);
3406 d->data_address = cpu_to_le32(page_bus + offset);
3408 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3409 page_bus, offset, length,
3410 DMA_FROM_DEVICE);
3412 rest -= length;
3413 offset = 0;
3414 page++;
3416 context_append(&ctx->context, d, 1, 0);
3419 return 0;
3422 static int ohci_queue_iso(struct fw_iso_context *base,
3423 struct fw_iso_packet *packet,
3424 struct fw_iso_buffer *buffer,
3425 unsigned long payload)
3427 struct iso_context *ctx = container_of(base, struct iso_context, base);
3428 unsigned long flags;
3429 int ret = -ENOSYS;
3431 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3432 switch (base->type) {
3433 case FW_ISO_CONTEXT_TRANSMIT:
3434 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3435 break;
3436 case FW_ISO_CONTEXT_RECEIVE:
3437 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3438 break;
3439 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3440 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3441 break;
3443 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3445 return ret;
3448 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3450 struct context *ctx =
3451 &container_of(base, struct iso_context, base)->context;
3453 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3456 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3458 struct iso_context *ctx = container_of(base, struct iso_context, base);
3459 int ret = 0;
3461 tasklet_disable(&ctx->context.tasklet);
3463 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3464 context_tasklet((unsigned long)&ctx->context);
3466 switch (base->type) {
3467 case FW_ISO_CONTEXT_TRANSMIT:
3468 case FW_ISO_CONTEXT_RECEIVE:
3469 if (ctx->header_length != 0)
3470 flush_iso_completions(ctx);
3471 break;
3472 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3473 if (ctx->mc_completed != 0)
3474 flush_ir_buffer_fill(ctx);
3475 break;
3476 default:
3477 ret = -ENOSYS;
3480 clear_bit_unlock(0, &ctx->flushing_completions);
3481 smp_mb__after_clear_bit();
3484 tasklet_enable(&ctx->context.tasklet);
3486 return ret;
3489 static const struct fw_card_driver ohci_driver = {
3490 .enable = ohci_enable,
3491 .read_phy_reg = ohci_read_phy_reg,
3492 .update_phy_reg = ohci_update_phy_reg,
3493 .set_config_rom = ohci_set_config_rom,
3494 .send_request = ohci_send_request,
3495 .send_response = ohci_send_response,
3496 .cancel_packet = ohci_cancel_packet,
3497 .enable_phys_dma = ohci_enable_phys_dma,
3498 .read_csr = ohci_read_csr,
3499 .write_csr = ohci_write_csr,
3501 .allocate_iso_context = ohci_allocate_iso_context,
3502 .free_iso_context = ohci_free_iso_context,
3503 .set_iso_channels = ohci_set_iso_channels,
3504 .queue_iso = ohci_queue_iso,
3505 .flush_queue_iso = ohci_flush_queue_iso,
3506 .flush_iso_completions = ohci_flush_iso_completions,
3507 .start_iso = ohci_start_iso,
3508 .stop_iso = ohci_stop_iso,
3511 #ifdef CONFIG_PPC_PMAC
3512 static void pmac_ohci_on(struct pci_dev *dev)
3514 if (machine_is(powermac)) {
3515 struct device_node *ofn = pci_device_to_OF_node(dev);
3517 if (ofn) {
3518 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3519 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3524 static void pmac_ohci_off(struct pci_dev *dev)
3526 if (machine_is(powermac)) {
3527 struct device_node *ofn = pci_device_to_OF_node(dev);
3529 if (ofn) {
3530 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3531 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3535 #else
3536 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3537 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3538 #endif /* CONFIG_PPC_PMAC */
3540 static int pci_probe(struct pci_dev *dev,
3541 const struct pci_device_id *ent)
3543 struct fw_ohci *ohci;
3544 u32 bus_options, max_receive, link_speed, version;
3545 u64 guid;
3546 int i, err;
3547 size_t size;
3549 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3550 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3551 return -ENOSYS;
3554 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3555 if (ohci == NULL) {
3556 err = -ENOMEM;
3557 goto fail;
3560 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3562 pmac_ohci_on(dev);
3564 err = pci_enable_device(dev);
3565 if (err) {
3566 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3567 goto fail_free;
3570 pci_set_master(dev);
3571 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3572 pci_set_drvdata(dev, ohci);
3574 spin_lock_init(&ohci->lock);
3575 mutex_init(&ohci->phy_reg_mutex);
3577 INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3579 if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3580 pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3581 dev_err(&dev->dev, "invalid MMIO resource\n");
3582 err = -ENXIO;
3583 goto fail_disable;
3586 err = pci_request_region(dev, 0, ohci_driver_name);
3587 if (err) {
3588 dev_err(&dev->dev, "MMIO resource unavailable\n");
3589 goto fail_disable;
3592 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3593 if (ohci->registers == NULL) {
3594 dev_err(&dev->dev, "failed to remap registers\n");
3595 err = -ENXIO;
3596 goto fail_iomem;
3599 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3600 if ((ohci_quirks[i].vendor == dev->vendor) &&
3601 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3602 ohci_quirks[i].device == dev->device) &&
3603 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3604 ohci_quirks[i].revision >= dev->revision)) {
3605 ohci->quirks = ohci_quirks[i].flags;
3606 break;
3608 if (param_quirks)
3609 ohci->quirks = param_quirks;
3612 * Because dma_alloc_coherent() allocates at least one page,
3613 * we save space by using a common buffer for the AR request/
3614 * response descriptors and the self IDs buffer.
3616 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3617 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3618 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3619 PAGE_SIZE,
3620 &ohci->misc_buffer_bus,
3621 GFP_KERNEL);
3622 if (!ohci->misc_buffer) {
3623 err = -ENOMEM;
3624 goto fail_iounmap;
3627 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3628 OHCI1394_AsReqRcvContextControlSet);
3629 if (err < 0)
3630 goto fail_misc_buf;
3632 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3633 OHCI1394_AsRspRcvContextControlSet);
3634 if (err < 0)
3635 goto fail_arreq_ctx;
3637 err = context_init(&ohci->at_request_ctx, ohci,
3638 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3639 if (err < 0)
3640 goto fail_arrsp_ctx;
3642 err = context_init(&ohci->at_response_ctx, ohci,
3643 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3644 if (err < 0)
3645 goto fail_atreq_ctx;
3647 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3648 ohci->ir_context_channels = ~0ULL;
3649 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3650 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3651 ohci->ir_context_mask = ohci->ir_context_support;
3652 ohci->n_ir = hweight32(ohci->ir_context_mask);
3653 size = sizeof(struct iso_context) * ohci->n_ir;
3654 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3656 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3657 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3658 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3659 ohci->it_context_mask = ohci->it_context_support;
3660 ohci->n_it = hweight32(ohci->it_context_mask);
3661 size = sizeof(struct iso_context) * ohci->n_it;
3662 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3664 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3665 err = -ENOMEM;
3666 goto fail_contexts;
3669 ohci->self_id_cpu = ohci->misc_buffer + PAGE_SIZE/2;
3670 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3672 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3673 max_receive = (bus_options >> 12) & 0xf;
3674 link_speed = bus_options & 0x7;
3675 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3676 reg_read(ohci, OHCI1394_GUIDLo);
3678 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3679 if (err)
3680 goto fail_contexts;
3682 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3683 dev_notice(&dev->dev,
3684 "added OHCI v%x.%x device as card %d, "
3685 "%d IR + %d IT contexts, quirks 0x%x\n",
3686 version >> 16, version & 0xff, ohci->card.index,
3687 ohci->n_ir, ohci->n_it, ohci->quirks);
3689 return 0;
3691 fail_contexts:
3692 kfree(ohci->ir_context_list);
3693 kfree(ohci->it_context_list);
3694 context_release(&ohci->at_response_ctx);
3695 fail_atreq_ctx:
3696 context_release(&ohci->at_request_ctx);
3697 fail_arrsp_ctx:
3698 ar_context_release(&ohci->ar_response_ctx);
3699 fail_arreq_ctx:
3700 ar_context_release(&ohci->ar_request_ctx);
3701 fail_misc_buf:
3702 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3703 ohci->misc_buffer, ohci->misc_buffer_bus);
3704 fail_iounmap:
3705 pci_iounmap(dev, ohci->registers);
3706 fail_iomem:
3707 pci_release_region(dev, 0);
3708 fail_disable:
3709 pci_disable_device(dev);
3710 fail_free:
3711 kfree(ohci);
3712 pmac_ohci_off(dev);
3713 fail:
3714 return err;
3717 static void pci_remove(struct pci_dev *dev)
3719 struct fw_ohci *ohci;
3721 ohci = pci_get_drvdata(dev);
3722 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3723 flush_writes(ohci);
3724 cancel_work_sync(&ohci->bus_reset_work);
3725 fw_core_remove_card(&ohci->card);
3728 * FIXME: Fail all pending packets here, now that the upper
3729 * layers can't queue any more.
3732 software_reset(ohci);
3733 free_irq(dev->irq, ohci);
3735 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3736 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3737 ohci->next_config_rom, ohci->next_config_rom_bus);
3738 if (ohci->config_rom)
3739 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3740 ohci->config_rom, ohci->config_rom_bus);
3741 ar_context_release(&ohci->ar_request_ctx);
3742 ar_context_release(&ohci->ar_response_ctx);
3743 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3744 ohci->misc_buffer, ohci->misc_buffer_bus);
3745 context_release(&ohci->at_request_ctx);
3746 context_release(&ohci->at_response_ctx);
3747 kfree(ohci->it_context_list);
3748 kfree(ohci->ir_context_list);
3749 pci_disable_msi(dev);
3750 pci_iounmap(dev, ohci->registers);
3751 pci_release_region(dev, 0);
3752 pci_disable_device(dev);
3753 kfree(ohci);
3754 pmac_ohci_off(dev);
3756 dev_notice(&dev->dev, "removed fw-ohci device\n");
3759 #ifdef CONFIG_PM
3760 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3762 struct fw_ohci *ohci = pci_get_drvdata(dev);
3763 int err;
3765 software_reset(ohci);
3766 free_irq(dev->irq, ohci);
3767 pci_disable_msi(dev);
3768 err = pci_save_state(dev);
3769 if (err) {
3770 dev_err(&dev->dev, "pci_save_state failed\n");
3771 return err;
3773 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3774 if (err)
3775 dev_err(&dev->dev, "pci_set_power_state failed with %d\n", err);
3776 pmac_ohci_off(dev);
3778 return 0;
3781 static int pci_resume(struct pci_dev *dev)
3783 struct fw_ohci *ohci = pci_get_drvdata(dev);
3784 int err;
3786 pmac_ohci_on(dev);
3787 pci_set_power_state(dev, PCI_D0);
3788 pci_restore_state(dev);
3789 err = pci_enable_device(dev);
3790 if (err) {
3791 dev_err(&dev->dev, "pci_enable_device failed\n");
3792 return err;
3795 /* Some systems don't setup GUID register on resume from ram */
3796 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3797 !reg_read(ohci, OHCI1394_GUIDHi)) {
3798 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3799 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3802 err = ohci_enable(&ohci->card, NULL, 0);
3803 if (err)
3804 return err;
3806 ohci_resume_iso_dma(ohci);
3808 return 0;
3810 #endif
3812 static const struct pci_device_id pci_table[] = {
3813 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3817 MODULE_DEVICE_TABLE(pci, pci_table);
3819 static struct pci_driver fw_ohci_pci_driver = {
3820 .name = ohci_driver_name,
3821 .id_table = pci_table,
3822 .probe = pci_probe,
3823 .remove = pci_remove,
3824 #ifdef CONFIG_PM
3825 .resume = pci_resume,
3826 .suspend = pci_suspend,
3827 #endif
3830 module_pci_driver(fw_ohci_pci_driver);
3832 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3833 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3834 MODULE_LICENSE("GPL");
3836 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3837 MODULE_ALIAS("ohci1394");