2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
45 /* The 'colour' (ie low bits) within a PMD of a page offset. */
46 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
47 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
49 static wait_queue_head_t wait_table
[DAX_WAIT_TABLE_ENTRIES
];
51 static int __init
init_dax_wait_table(void)
55 for (i
= 0; i
< DAX_WAIT_TABLE_ENTRIES
; i
++)
56 init_waitqueue_head(wait_table
+ i
);
59 fs_initcall(init_dax_wait_table
);
62 * We use lowest available bit in exceptional entry for locking, one bit for
63 * the entry size (PMD) and two more to tell us if the entry is a zero page or
64 * an empty entry that is just used for locking. In total four special bits.
66 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
67 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
70 #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
71 #define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
72 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
73 #define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
74 #define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
76 static unsigned long dax_radix_pfn(void *entry
)
78 return (unsigned long)entry
>> RADIX_DAX_SHIFT
;
81 static void *dax_radix_locked_entry(unsigned long pfn
, unsigned long flags
)
83 return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY
| flags
|
84 (pfn
<< RADIX_DAX_SHIFT
) | RADIX_DAX_ENTRY_LOCK
);
87 static unsigned int dax_radix_order(void *entry
)
89 if ((unsigned long)entry
& RADIX_DAX_PMD
)
90 return PMD_SHIFT
- PAGE_SHIFT
;
94 static int dax_is_pmd_entry(void *entry
)
96 return (unsigned long)entry
& RADIX_DAX_PMD
;
99 static int dax_is_pte_entry(void *entry
)
101 return !((unsigned long)entry
& RADIX_DAX_PMD
);
104 static int dax_is_zero_entry(void *entry
)
106 return (unsigned long)entry
& RADIX_DAX_ZERO_PAGE
;
109 static int dax_is_empty_entry(void *entry
)
111 return (unsigned long)entry
& RADIX_DAX_EMPTY
;
115 * DAX radix tree locking
117 struct exceptional_entry_key
{
118 struct address_space
*mapping
;
122 struct wait_exceptional_entry_queue
{
123 wait_queue_entry_t wait
;
124 struct exceptional_entry_key key
;
127 static wait_queue_head_t
*dax_entry_waitqueue(struct address_space
*mapping
,
128 pgoff_t index
, void *entry
, struct exceptional_entry_key
*key
)
133 * If 'entry' is a PMD, align the 'index' that we use for the wait
134 * queue to the start of that PMD. This ensures that all offsets in
135 * the range covered by the PMD map to the same bit lock.
137 if (dax_is_pmd_entry(entry
))
138 index
&= ~PG_PMD_COLOUR
;
140 key
->mapping
= mapping
;
141 key
->entry_start
= index
;
143 hash
= hash_long((unsigned long)mapping
^ index
, DAX_WAIT_TABLE_BITS
);
144 return wait_table
+ hash
;
147 static int wake_exceptional_entry_func(wait_queue_entry_t
*wait
, unsigned int mode
,
148 int sync
, void *keyp
)
150 struct exceptional_entry_key
*key
= keyp
;
151 struct wait_exceptional_entry_queue
*ewait
=
152 container_of(wait
, struct wait_exceptional_entry_queue
, wait
);
154 if (key
->mapping
!= ewait
->key
.mapping
||
155 key
->entry_start
!= ewait
->key
.entry_start
)
157 return autoremove_wake_function(wait
, mode
, sync
, NULL
);
161 * @entry may no longer be the entry at the index in the mapping.
162 * The important information it's conveying is whether the entry at
163 * this index used to be a PMD entry.
165 static void dax_wake_mapping_entry_waiter(struct address_space
*mapping
,
166 pgoff_t index
, void *entry
, bool wake_all
)
168 struct exceptional_entry_key key
;
169 wait_queue_head_t
*wq
;
171 wq
= dax_entry_waitqueue(mapping
, index
, entry
, &key
);
174 * Checking for locked entry and prepare_to_wait_exclusive() happens
175 * under the i_pages lock, ditto for entry handling in our callers.
176 * So at this point all tasks that could have seen our entry locked
177 * must be in the waitqueue and the following check will see them.
179 if (waitqueue_active(wq
))
180 __wake_up(wq
, TASK_NORMAL
, wake_all
? 0 : 1, &key
);
184 * Check whether the given slot is locked. Must be called with the i_pages
187 static inline int slot_locked(struct address_space
*mapping
, void **slot
)
189 unsigned long entry
= (unsigned long)
190 radix_tree_deref_slot_protected(slot
, &mapping
->i_pages
.xa_lock
);
191 return entry
& RADIX_DAX_ENTRY_LOCK
;
195 * Mark the given slot as locked. Must be called with the i_pages lock held.
197 static inline void *lock_slot(struct address_space
*mapping
, void **slot
)
199 unsigned long entry
= (unsigned long)
200 radix_tree_deref_slot_protected(slot
, &mapping
->i_pages
.xa_lock
);
202 entry
|= RADIX_DAX_ENTRY_LOCK
;
203 radix_tree_replace_slot(&mapping
->i_pages
, slot
, (void *)entry
);
204 return (void *)entry
;
208 * Mark the given slot as unlocked. Must be called with the i_pages lock held.
210 static inline void *unlock_slot(struct address_space
*mapping
, void **slot
)
212 unsigned long entry
= (unsigned long)
213 radix_tree_deref_slot_protected(slot
, &mapping
->i_pages
.xa_lock
);
215 entry
&= ~(unsigned long)RADIX_DAX_ENTRY_LOCK
;
216 radix_tree_replace_slot(&mapping
->i_pages
, slot
, (void *)entry
);
217 return (void *)entry
;
221 * Lookup entry in radix tree, wait for it to become unlocked if it is
222 * exceptional entry and return it. The caller must call
223 * put_unlocked_mapping_entry() when he decided not to lock the entry or
224 * put_locked_mapping_entry() when he locked the entry and now wants to
227 * Must be called with the i_pages lock held.
229 static void *__get_unlocked_mapping_entry(struct address_space
*mapping
,
230 pgoff_t index
, void ***slotp
, bool (*wait_fn
)(void))
233 struct wait_exceptional_entry_queue ewait
;
234 wait_queue_head_t
*wq
;
236 init_wait(&ewait
.wait
);
237 ewait
.wait
.func
= wake_exceptional_entry_func
;
242 entry
= __radix_tree_lookup(&mapping
->i_pages
, index
, NULL
,
245 WARN_ON_ONCE(!radix_tree_exceptional_entry(entry
)) ||
246 !slot_locked(mapping
, slot
)) {
252 wq
= dax_entry_waitqueue(mapping
, index
, entry
, &ewait
.key
);
253 prepare_to_wait_exclusive(wq
, &ewait
.wait
,
254 TASK_UNINTERRUPTIBLE
);
255 xa_unlock_irq(&mapping
->i_pages
);
256 revalidate
= wait_fn();
257 finish_wait(wq
, &ewait
.wait
);
258 xa_lock_irq(&mapping
->i_pages
);
260 return ERR_PTR(-EAGAIN
);
264 static bool entry_wait(void)
268 * Never return an ERR_PTR() from
269 * __get_unlocked_mapping_entry(), just keep looping.
274 static void *get_unlocked_mapping_entry(struct address_space
*mapping
,
275 pgoff_t index
, void ***slotp
)
277 return __get_unlocked_mapping_entry(mapping
, index
, slotp
, entry_wait
);
280 static void unlock_mapping_entry(struct address_space
*mapping
, pgoff_t index
)
284 xa_lock_irq(&mapping
->i_pages
);
285 entry
= __radix_tree_lookup(&mapping
->i_pages
, index
, NULL
, &slot
);
286 if (WARN_ON_ONCE(!entry
|| !radix_tree_exceptional_entry(entry
) ||
287 !slot_locked(mapping
, slot
))) {
288 xa_unlock_irq(&mapping
->i_pages
);
291 unlock_slot(mapping
, slot
);
292 xa_unlock_irq(&mapping
->i_pages
);
293 dax_wake_mapping_entry_waiter(mapping
, index
, entry
, false);
296 static void put_locked_mapping_entry(struct address_space
*mapping
,
299 unlock_mapping_entry(mapping
, index
);
303 * Called when we are done with radix tree entry we looked up via
304 * get_unlocked_mapping_entry() and which we didn't lock in the end.
306 static void put_unlocked_mapping_entry(struct address_space
*mapping
,
307 pgoff_t index
, void *entry
)
312 /* We have to wake up next waiter for the radix tree entry lock */
313 dax_wake_mapping_entry_waiter(mapping
, index
, entry
, false);
316 static unsigned long dax_entry_size(void *entry
)
318 if (dax_is_zero_entry(entry
))
320 else if (dax_is_empty_entry(entry
))
322 else if (dax_is_pmd_entry(entry
))
328 static unsigned long dax_radix_end_pfn(void *entry
)
330 return dax_radix_pfn(entry
) + dax_entry_size(entry
) / PAGE_SIZE
;
334 * Iterate through all mapped pfns represented by an entry, i.e. skip
335 * 'empty' and 'zero' entries.
337 #define for_each_mapped_pfn(entry, pfn) \
338 for (pfn = dax_radix_pfn(entry); \
339 pfn < dax_radix_end_pfn(entry); pfn++)
342 * TODO: for reflink+dax we need a way to associate a single page with
343 * multiple address_space instances at different linear_page_index()
346 static void dax_associate_entry(void *entry
, struct address_space
*mapping
,
347 struct vm_area_struct
*vma
, unsigned long address
)
349 unsigned long size
= dax_entry_size(entry
), pfn
, index
;
352 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED
))
355 index
= linear_page_index(vma
, address
& ~(size
- 1));
356 for_each_mapped_pfn(entry
, pfn
) {
357 struct page
*page
= pfn_to_page(pfn
);
359 WARN_ON_ONCE(page
->mapping
);
360 page
->mapping
= mapping
;
361 page
->index
= index
+ i
++;
365 static void dax_disassociate_entry(void *entry
, struct address_space
*mapping
,
370 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED
))
373 for_each_mapped_pfn(entry
, pfn
) {
374 struct page
*page
= pfn_to_page(pfn
);
376 WARN_ON_ONCE(trunc
&& page_ref_count(page
) > 1);
377 WARN_ON_ONCE(page
->mapping
&& page
->mapping
!= mapping
);
378 page
->mapping
= NULL
;
383 static struct page
*dax_busy_page(void *entry
)
387 for_each_mapped_pfn(entry
, pfn
) {
388 struct page
*page
= pfn_to_page(pfn
);
390 if (page_ref_count(page
) > 1)
396 static bool entry_wait_revalidate(void)
403 * Tell __get_unlocked_mapping_entry() to take a break, we need
404 * to revalidate page->mapping after dropping locks
409 bool dax_lock_mapping_entry(struct page
*page
)
413 bool did_lock
= false;
414 void *entry
= NULL
, **slot
;
415 struct address_space
*mapping
;
419 mapping
= READ_ONCE(page
->mapping
);
421 if (!dax_mapping(mapping
))
425 * In the device-dax case there's no need to lock, a
426 * struct dev_pagemap pin is sufficient to keep the
427 * inode alive, and we assume we have dev_pagemap pin
428 * otherwise we would not have a valid pfn_to_page()
431 inode
= mapping
->host
;
432 if (S_ISCHR(inode
->i_mode
)) {
437 xa_lock_irq(&mapping
->i_pages
);
438 if (mapping
!= page
->mapping
) {
439 xa_unlock_irq(&mapping
->i_pages
);
444 entry
= __get_unlocked_mapping_entry(mapping
, index
, &slot
,
445 entry_wait_revalidate
);
447 xa_unlock_irq(&mapping
->i_pages
);
449 } else if (IS_ERR(entry
)) {
450 WARN_ON_ONCE(PTR_ERR(entry
) != -EAGAIN
);
453 lock_slot(mapping
, slot
);
455 xa_unlock_irq(&mapping
->i_pages
);
463 void dax_unlock_mapping_entry(struct page
*page
)
465 struct address_space
*mapping
= page
->mapping
;
466 struct inode
*inode
= mapping
->host
;
468 if (S_ISCHR(inode
->i_mode
))
471 unlock_mapping_entry(mapping
, page
->index
);
475 * Find radix tree entry at given index. If it points to an exceptional entry,
476 * return it with the radix tree entry locked. If the radix tree doesn't
477 * contain given index, create an empty exceptional entry for the index and
478 * return with it locked.
480 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
481 * either return that locked entry or will return an error. This error will
482 * happen if there are any 4k entries within the 2MiB range that we are
485 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
486 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
487 * insertion will fail if it finds any 4k entries already in the tree, and a
488 * 4k insertion will cause an existing 2MiB entry to be unmapped and
489 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
490 * well as 2MiB empty entries.
492 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
493 * real storage backing them. We will leave these real 2MiB DAX entries in
494 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
496 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
497 * persistent memory the benefit is doubtful. We can add that later if we can
500 static void *grab_mapping_entry(struct address_space
*mapping
, pgoff_t index
,
501 unsigned long size_flag
)
503 bool pmd_downgrade
= false; /* splitting 2MiB entry into 4k entries? */
507 xa_lock_irq(&mapping
->i_pages
);
508 entry
= get_unlocked_mapping_entry(mapping
, index
, &slot
);
510 if (WARN_ON_ONCE(entry
&& !radix_tree_exceptional_entry(entry
))) {
511 entry
= ERR_PTR(-EIO
);
516 if (size_flag
& RADIX_DAX_PMD
) {
517 if (dax_is_pte_entry(entry
)) {
518 put_unlocked_mapping_entry(mapping
, index
,
520 entry
= ERR_PTR(-EEXIST
);
523 } else { /* trying to grab a PTE entry */
524 if (dax_is_pmd_entry(entry
) &&
525 (dax_is_zero_entry(entry
) ||
526 dax_is_empty_entry(entry
))) {
527 pmd_downgrade
= true;
532 /* No entry for given index? Make sure radix tree is big enough. */
533 if (!entry
|| pmd_downgrade
) {
538 * Make sure 'entry' remains valid while we drop
541 entry
= lock_slot(mapping
, slot
);
544 xa_unlock_irq(&mapping
->i_pages
);
546 * Besides huge zero pages the only other thing that gets
547 * downgraded are empty entries which don't need to be
550 if (pmd_downgrade
&& dax_is_zero_entry(entry
))
551 unmap_mapping_pages(mapping
, index
& ~PG_PMD_COLOUR
,
554 err
= radix_tree_preload(
555 mapping_gfp_mask(mapping
) & ~__GFP_HIGHMEM
);
558 put_locked_mapping_entry(mapping
, index
);
561 xa_lock_irq(&mapping
->i_pages
);
565 * We needed to drop the i_pages lock while calling
566 * radix_tree_preload() and we didn't have an entry to
567 * lock. See if another thread inserted an entry at
568 * our index during this time.
570 entry
= __radix_tree_lookup(&mapping
->i_pages
, index
,
573 radix_tree_preload_end();
574 xa_unlock_irq(&mapping
->i_pages
);
580 dax_disassociate_entry(entry
, mapping
, false);
581 radix_tree_delete(&mapping
->i_pages
, index
);
582 mapping
->nrexceptional
--;
583 dax_wake_mapping_entry_waiter(mapping
, index
, entry
,
587 entry
= dax_radix_locked_entry(0, size_flag
| RADIX_DAX_EMPTY
);
589 err
= __radix_tree_insert(&mapping
->i_pages
, index
,
590 dax_radix_order(entry
), entry
);
591 radix_tree_preload_end();
593 xa_unlock_irq(&mapping
->i_pages
);
595 * Our insertion of a DAX entry failed, most likely
596 * because we were inserting a PMD entry and it
597 * collided with a PTE sized entry at a different
598 * index in the PMD range. We haven't inserted
599 * anything into the radix tree and have no waiters to
604 /* Good, we have inserted empty locked entry into the tree. */
605 mapping
->nrexceptional
++;
606 xa_unlock_irq(&mapping
->i_pages
);
609 entry
= lock_slot(mapping
, slot
);
611 xa_unlock_irq(&mapping
->i_pages
);
616 * dax_layout_busy_page - find first pinned page in @mapping
617 * @mapping: address space to scan for a page with ref count > 1
619 * DAX requires ZONE_DEVICE mapped pages. These pages are never
620 * 'onlined' to the page allocator so they are considered idle when
621 * page->count == 1. A filesystem uses this interface to determine if
622 * any page in the mapping is busy, i.e. for DMA, or other
623 * get_user_pages() usages.
625 * It is expected that the filesystem is holding locks to block the
626 * establishment of new mappings in this address_space. I.e. it expects
627 * to be able to run unmap_mapping_range() and subsequently not race
628 * mapping_mapped() becoming true.
630 struct page
*dax_layout_busy_page(struct address_space
*mapping
)
632 pgoff_t indices
[PAGEVEC_SIZE
];
633 struct page
*page
= NULL
;
639 * In the 'limited' case get_user_pages() for dax is disabled.
641 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED
))
644 if (!dax_mapping(mapping
) || !mapping_mapped(mapping
))
652 * If we race get_user_pages_fast() here either we'll see the
653 * elevated page count in the pagevec_lookup and wait, or
654 * get_user_pages_fast() will see that the page it took a reference
655 * against is no longer mapped in the page tables and bail to the
656 * get_user_pages() slow path. The slow path is protected by
657 * pte_lock() and pmd_lock(). New references are not taken without
658 * holding those locks, and unmap_mapping_range() will not zero the
659 * pte or pmd without holding the respective lock, so we are
660 * guaranteed to either see new references or prevent new
661 * references from being established.
663 unmap_mapping_range(mapping
, 0, 0, 1);
665 while (index
< end
&& pagevec_lookup_entries(&pvec
, mapping
, index
,
666 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
668 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
669 struct page
*pvec_ent
= pvec
.pages
[i
];
677 !radix_tree_exceptional_entry(pvec_ent
)))
680 xa_lock_irq(&mapping
->i_pages
);
681 entry
= get_unlocked_mapping_entry(mapping
, index
, NULL
);
683 page
= dax_busy_page(entry
);
684 put_unlocked_mapping_entry(mapping
, index
, entry
);
685 xa_unlock_irq(&mapping
->i_pages
);
691 * We don't expect normal struct page entries to exist in our
692 * tree, but we keep these pagevec calls so that this code is
693 * consistent with the common pattern for handling pagevecs
694 * throughout the kernel.
696 pagevec_remove_exceptionals(&pvec
);
697 pagevec_release(&pvec
);
705 EXPORT_SYMBOL_GPL(dax_layout_busy_page
);
707 static int __dax_invalidate_mapping_entry(struct address_space
*mapping
,
708 pgoff_t index
, bool trunc
)
712 struct radix_tree_root
*pages
= &mapping
->i_pages
;
715 entry
= get_unlocked_mapping_entry(mapping
, index
, NULL
);
716 if (!entry
|| WARN_ON_ONCE(!radix_tree_exceptional_entry(entry
)))
719 (radix_tree_tag_get(pages
, index
, PAGECACHE_TAG_DIRTY
) ||
720 radix_tree_tag_get(pages
, index
, PAGECACHE_TAG_TOWRITE
)))
722 dax_disassociate_entry(entry
, mapping
, trunc
);
723 radix_tree_delete(pages
, index
);
724 mapping
->nrexceptional
--;
727 put_unlocked_mapping_entry(mapping
, index
, entry
);
728 xa_unlock_irq(pages
);
732 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
733 * entry to get unlocked before deleting it.
735 int dax_delete_mapping_entry(struct address_space
*mapping
, pgoff_t index
)
737 int ret
= __dax_invalidate_mapping_entry(mapping
, index
, true);
740 * This gets called from truncate / punch_hole path. As such, the caller
741 * must hold locks protecting against concurrent modifications of the
742 * radix tree (usually fs-private i_mmap_sem for writing). Since the
743 * caller has seen exceptional entry for this index, we better find it
744 * at that index as well...
751 * Invalidate exceptional DAX entry if it is clean.
753 int dax_invalidate_mapping_entry_sync(struct address_space
*mapping
,
756 return __dax_invalidate_mapping_entry(mapping
, index
, false);
759 static int copy_user_dax(struct block_device
*bdev
, struct dax_device
*dax_dev
,
760 sector_t sector
, size_t size
, struct page
*to
,
768 rc
= bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
);
772 id
= dax_read_lock();
773 rc
= dax_direct_access(dax_dev
, pgoff
, PHYS_PFN(size
), &kaddr
, NULL
);
778 vto
= kmap_atomic(to
);
779 copy_user_page(vto
, (void __force
*)kaddr
, vaddr
, to
);
786 * By this point grab_mapping_entry() has ensured that we have a locked entry
787 * of the appropriate size so we don't have to worry about downgrading PMDs to
788 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
789 * already in the tree, we will skip the insertion and just dirty the PMD as
792 static void *dax_insert_mapping_entry(struct address_space
*mapping
,
793 struct vm_fault
*vmf
,
794 void *entry
, pfn_t pfn_t
,
795 unsigned long flags
, bool dirty
)
797 struct radix_tree_root
*pages
= &mapping
->i_pages
;
798 unsigned long pfn
= pfn_t_to_pfn(pfn_t
);
799 pgoff_t index
= vmf
->pgoff
;
803 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
805 if (dax_is_zero_entry(entry
) && !(flags
& RADIX_DAX_ZERO_PAGE
)) {
806 /* we are replacing a zero page with block mapping */
807 if (dax_is_pmd_entry(entry
))
808 unmap_mapping_pages(mapping
, index
& ~PG_PMD_COLOUR
,
811 unmap_mapping_pages(mapping
, vmf
->pgoff
, 1, false);
815 new_entry
= dax_radix_locked_entry(pfn
, flags
);
816 if (dax_entry_size(entry
) != dax_entry_size(new_entry
)) {
817 dax_disassociate_entry(entry
, mapping
, false);
818 dax_associate_entry(new_entry
, mapping
, vmf
->vma
, vmf
->address
);
821 if (dax_is_zero_entry(entry
) || dax_is_empty_entry(entry
)) {
823 * Only swap our new entry into the radix tree if the current
824 * entry is a zero page or an empty entry. If a normal PTE or
825 * PMD entry is already in the tree, we leave it alone. This
826 * means that if we are trying to insert a PTE and the
827 * existing entry is a PMD, we will just leave the PMD in the
828 * tree and dirty it if necessary.
830 struct radix_tree_node
*node
;
834 ret
= __radix_tree_lookup(pages
, index
, &node
, &slot
);
835 WARN_ON_ONCE(ret
!= entry
);
836 __radix_tree_replace(pages
, node
, slot
,
842 radix_tree_tag_set(pages
, index
, PAGECACHE_TAG_DIRTY
);
844 xa_unlock_irq(pages
);
848 static inline unsigned long
849 pgoff_address(pgoff_t pgoff
, struct vm_area_struct
*vma
)
851 unsigned long address
;
853 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
854 VM_BUG_ON_VMA(address
< vma
->vm_start
|| address
>= vma
->vm_end
, vma
);
858 /* Walk all mappings of a given index of a file and writeprotect them */
859 static void dax_mapping_entry_mkclean(struct address_space
*mapping
,
860 pgoff_t index
, unsigned long pfn
)
862 struct vm_area_struct
*vma
;
863 pte_t pte
, *ptep
= NULL
;
867 i_mmap_lock_read(mapping
);
868 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, index
, index
) {
869 unsigned long address
, start
, end
;
873 if (!(vma
->vm_flags
& VM_SHARED
))
876 address
= pgoff_address(index
, vma
);
879 * Note because we provide start/end to follow_pte_pmd it will
880 * call mmu_notifier_invalidate_range_start() on our behalf
881 * before taking any lock.
883 if (follow_pte_pmd(vma
->vm_mm
, address
, &start
, &end
, &ptep
, &pmdp
, &ptl
))
887 * No need to call mmu_notifier_invalidate_range() as we are
888 * downgrading page table protection not changing it to point
891 * See Documentation/vm/mmu_notifier.rst
894 #ifdef CONFIG_FS_DAX_PMD
897 if (pfn
!= pmd_pfn(*pmdp
))
899 if (!pmd_dirty(*pmdp
) && !pmd_write(*pmdp
))
902 flush_cache_page(vma
, address
, pfn
);
903 pmd
= pmdp_huge_clear_flush(vma
, address
, pmdp
);
904 pmd
= pmd_wrprotect(pmd
);
905 pmd
= pmd_mkclean(pmd
);
906 set_pmd_at(vma
->vm_mm
, address
, pmdp
, pmd
);
911 if (pfn
!= pte_pfn(*ptep
))
913 if (!pte_dirty(*ptep
) && !pte_write(*ptep
))
916 flush_cache_page(vma
, address
, pfn
);
917 pte
= ptep_clear_flush(vma
, address
, ptep
);
918 pte
= pte_wrprotect(pte
);
919 pte
= pte_mkclean(pte
);
920 set_pte_at(vma
->vm_mm
, address
, ptep
, pte
);
922 pte_unmap_unlock(ptep
, ptl
);
925 mmu_notifier_invalidate_range_end(vma
->vm_mm
, start
, end
);
927 i_mmap_unlock_read(mapping
);
930 static int dax_writeback_one(struct dax_device
*dax_dev
,
931 struct address_space
*mapping
, pgoff_t index
, void *entry
)
933 struct radix_tree_root
*pages
= &mapping
->i_pages
;
934 void *entry2
, **slot
;
940 * A page got tagged dirty in DAX mapping? Something is seriously
943 if (WARN_ON(!radix_tree_exceptional_entry(entry
)))
947 entry2
= get_unlocked_mapping_entry(mapping
, index
, &slot
);
948 /* Entry got punched out / reallocated? */
949 if (!entry2
|| WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2
)))
952 * Entry got reallocated elsewhere? No need to writeback. We have to
953 * compare pfns as we must not bail out due to difference in lockbit
956 if (dax_radix_pfn(entry2
) != dax_radix_pfn(entry
))
958 if (WARN_ON_ONCE(dax_is_empty_entry(entry
) ||
959 dax_is_zero_entry(entry
))) {
964 /* Another fsync thread may have already written back this entry */
965 if (!radix_tree_tag_get(pages
, index
, PAGECACHE_TAG_TOWRITE
))
967 /* Lock the entry to serialize with page faults */
968 entry
= lock_slot(mapping
, slot
);
970 * We can clear the tag now but we have to be careful so that concurrent
971 * dax_writeback_one() calls for the same index cannot finish before we
972 * actually flush the caches. This is achieved as the calls will look
973 * at the entry only under the i_pages lock and once they do that
974 * they will see the entry locked and wait for it to unlock.
976 radix_tree_tag_clear(pages
, index
, PAGECACHE_TAG_TOWRITE
);
977 xa_unlock_irq(pages
);
980 * Even if dax_writeback_mapping_range() was given a wbc->range_start
981 * in the middle of a PMD, the 'index' we are given will be aligned to
982 * the start index of the PMD, as will the pfn we pull from 'entry'.
983 * This allows us to flush for PMD_SIZE and not have to worry about
984 * partial PMD writebacks.
986 pfn
= dax_radix_pfn(entry
);
987 size
= PAGE_SIZE
<< dax_radix_order(entry
);
989 dax_mapping_entry_mkclean(mapping
, index
, pfn
);
990 dax_flush(dax_dev
, page_address(pfn_to_page(pfn
)), size
);
992 * After we have flushed the cache, we can clear the dirty tag. There
993 * cannot be new dirty data in the pfn after the flush has completed as
994 * the pfn mappings are writeprotected and fault waits for mapping
998 radix_tree_tag_clear(pages
, index
, PAGECACHE_TAG_DIRTY
);
999 xa_unlock_irq(pages
);
1000 trace_dax_writeback_one(mapping
->host
, index
, size
>> PAGE_SHIFT
);
1001 put_locked_mapping_entry(mapping
, index
);
1005 put_unlocked_mapping_entry(mapping
, index
, entry2
);
1006 xa_unlock_irq(pages
);
1011 * Flush the mapping to the persistent domain within the byte range of [start,
1012 * end]. This is required by data integrity operations to ensure file data is
1013 * on persistent storage prior to completion of the operation.
1015 int dax_writeback_mapping_range(struct address_space
*mapping
,
1016 struct block_device
*bdev
, struct writeback_control
*wbc
)
1018 struct inode
*inode
= mapping
->host
;
1019 pgoff_t start_index
, end_index
;
1020 pgoff_t indices
[PAGEVEC_SIZE
];
1021 struct dax_device
*dax_dev
;
1022 struct pagevec pvec
;
1026 if (WARN_ON_ONCE(inode
->i_blkbits
!= PAGE_SHIFT
))
1029 if (!mapping
->nrexceptional
|| wbc
->sync_mode
!= WB_SYNC_ALL
)
1032 dax_dev
= dax_get_by_host(bdev
->bd_disk
->disk_name
);
1036 start_index
= wbc
->range_start
>> PAGE_SHIFT
;
1037 end_index
= wbc
->range_end
>> PAGE_SHIFT
;
1039 trace_dax_writeback_range(inode
, start_index
, end_index
);
1041 tag_pages_for_writeback(mapping
, start_index
, end_index
);
1043 pagevec_init(&pvec
);
1045 pvec
.nr
= find_get_entries_tag(mapping
, start_index
,
1046 PAGECACHE_TAG_TOWRITE
, PAGEVEC_SIZE
,
1047 pvec
.pages
, indices
);
1052 for (i
= 0; i
< pvec
.nr
; i
++) {
1053 if (indices
[i
] > end_index
) {
1058 ret
= dax_writeback_one(dax_dev
, mapping
, indices
[i
],
1061 mapping_set_error(mapping
, ret
);
1065 start_index
= indices
[pvec
.nr
- 1] + 1;
1069 trace_dax_writeback_range_done(inode
, start_index
, end_index
);
1070 return (ret
< 0 ? ret
: 0);
1072 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range
);
1074 static sector_t
dax_iomap_sector(struct iomap
*iomap
, loff_t pos
)
1076 return (iomap
->addr
+ (pos
& PAGE_MASK
) - iomap
->offset
) >> 9;
1079 static int dax_iomap_pfn(struct iomap
*iomap
, loff_t pos
, size_t size
,
1082 const sector_t sector
= dax_iomap_sector(iomap
, pos
);
1087 rc
= bdev_dax_pgoff(iomap
->bdev
, sector
, size
, &pgoff
);
1090 id
= dax_read_lock();
1091 length
= dax_direct_access(iomap
->dax_dev
, pgoff
, PHYS_PFN(size
),
1098 if (PFN_PHYS(length
) < size
)
1100 if (pfn_t_to_pfn(*pfnp
) & (PHYS_PFN(size
)-1))
1102 /* For larger pages we need devmap */
1103 if (length
> 1 && !pfn_t_devmap(*pfnp
))
1107 dax_read_unlock(id
);
1112 * The user has performed a load from a hole in the file. Allocating a new
1113 * page in the file would cause excessive storage usage for workloads with
1114 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1115 * If this page is ever written to we will re-fault and change the mapping to
1116 * point to real DAX storage instead.
1118 static vm_fault_t
dax_load_hole(struct address_space
*mapping
, void *entry
,
1119 struct vm_fault
*vmf
)
1121 struct inode
*inode
= mapping
->host
;
1122 unsigned long vaddr
= vmf
->address
;
1123 vm_fault_t ret
= VM_FAULT_NOPAGE
;
1124 struct page
*zero_page
;
1127 zero_page
= ZERO_PAGE(0);
1128 if (unlikely(!zero_page
)) {
1133 pfn
= page_to_pfn_t(zero_page
);
1134 dax_insert_mapping_entry(mapping
, vmf
, entry
, pfn
, RADIX_DAX_ZERO_PAGE
,
1136 ret
= vmf_insert_mixed(vmf
->vma
, vaddr
, pfn
);
1138 trace_dax_load_hole(inode
, vmf
, ret
);
1142 static bool dax_range_is_aligned(struct block_device
*bdev
,
1143 unsigned int offset
, unsigned int length
)
1145 unsigned short sector_size
= bdev_logical_block_size(bdev
);
1147 if (!IS_ALIGNED(offset
, sector_size
))
1149 if (!IS_ALIGNED(length
, sector_size
))
1155 int __dax_zero_page_range(struct block_device
*bdev
,
1156 struct dax_device
*dax_dev
, sector_t sector
,
1157 unsigned int offset
, unsigned int size
)
1159 if (dax_range_is_aligned(bdev
, offset
, size
)) {
1160 sector_t start_sector
= sector
+ (offset
>> 9);
1162 return blkdev_issue_zeroout(bdev
, start_sector
,
1163 size
>> 9, GFP_NOFS
, 0);
1169 rc
= bdev_dax_pgoff(bdev
, sector
, PAGE_SIZE
, &pgoff
);
1173 id
= dax_read_lock();
1174 rc
= dax_direct_access(dax_dev
, pgoff
, 1, &kaddr
, NULL
);
1176 dax_read_unlock(id
);
1179 memset(kaddr
+ offset
, 0, size
);
1180 dax_flush(dax_dev
, kaddr
+ offset
, size
);
1181 dax_read_unlock(id
);
1185 EXPORT_SYMBOL_GPL(__dax_zero_page_range
);
1188 dax_iomap_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
1189 struct iomap
*iomap
)
1191 struct block_device
*bdev
= iomap
->bdev
;
1192 struct dax_device
*dax_dev
= iomap
->dax_dev
;
1193 struct iov_iter
*iter
= data
;
1194 loff_t end
= pos
+ length
, done
= 0;
1199 if (iov_iter_rw(iter
) == READ
) {
1200 end
= min(end
, i_size_read(inode
));
1204 if (iomap
->type
== IOMAP_HOLE
|| iomap
->type
== IOMAP_UNWRITTEN
)
1205 return iov_iter_zero(min(length
, end
- pos
), iter
);
1208 if (WARN_ON_ONCE(iomap
->type
!= IOMAP_MAPPED
))
1212 * Write can allocate block for an area which has a hole page mapped
1213 * into page tables. We have to tear down these mappings so that data
1214 * written by write(2) is visible in mmap.
1216 if (iomap
->flags
& IOMAP_F_NEW
) {
1217 invalidate_inode_pages2_range(inode
->i_mapping
,
1219 (end
- 1) >> PAGE_SHIFT
);
1222 id
= dax_read_lock();
1224 unsigned offset
= pos
& (PAGE_SIZE
- 1);
1225 const size_t size
= ALIGN(length
+ offset
, PAGE_SIZE
);
1226 const sector_t sector
= dax_iomap_sector(iomap
, pos
);
1231 if (fatal_signal_pending(current
)) {
1236 ret
= bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
);
1240 map_len
= dax_direct_access(dax_dev
, pgoff
, PHYS_PFN(size
),
1247 map_len
= PFN_PHYS(map_len
);
1250 if (map_len
> end
- pos
)
1251 map_len
= end
- pos
;
1254 * The userspace address for the memory copy has already been
1255 * validated via access_ok() in either vfs_read() or
1256 * vfs_write(), depending on which operation we are doing.
1258 if (iov_iter_rw(iter
) == WRITE
)
1259 xfer
= dax_copy_from_iter(dax_dev
, pgoff
, kaddr
,
1262 xfer
= dax_copy_to_iter(dax_dev
, pgoff
, kaddr
,
1274 dax_read_unlock(id
);
1276 return done
? done
: ret
;
1280 * dax_iomap_rw - Perform I/O to a DAX file
1281 * @iocb: The control block for this I/O
1282 * @iter: The addresses to do I/O from or to
1283 * @ops: iomap ops passed from the file system
1285 * This function performs read and write operations to directly mapped
1286 * persistent memory. The callers needs to take care of read/write exclusion
1287 * and evicting any page cache pages in the region under I/O.
1290 dax_iomap_rw(struct kiocb
*iocb
, struct iov_iter
*iter
,
1291 const struct iomap_ops
*ops
)
1293 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
1294 struct inode
*inode
= mapping
->host
;
1295 loff_t pos
= iocb
->ki_pos
, ret
= 0, done
= 0;
1298 if (iov_iter_rw(iter
) == WRITE
) {
1299 lockdep_assert_held_exclusive(&inode
->i_rwsem
);
1300 flags
|= IOMAP_WRITE
;
1302 lockdep_assert_held(&inode
->i_rwsem
);
1305 while (iov_iter_count(iter
)) {
1306 ret
= iomap_apply(inode
, pos
, iov_iter_count(iter
), flags
, ops
,
1307 iter
, dax_iomap_actor
);
1314 iocb
->ki_pos
+= done
;
1315 return done
? done
: ret
;
1317 EXPORT_SYMBOL_GPL(dax_iomap_rw
);
1319 static vm_fault_t
dax_fault_return(int error
)
1322 return VM_FAULT_NOPAGE
;
1323 if (error
== -ENOMEM
)
1324 return VM_FAULT_OOM
;
1325 return VM_FAULT_SIGBUS
;
1329 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1330 * flushed on write-faults (non-cow), but not read-faults.
1332 static bool dax_fault_is_synchronous(unsigned long flags
,
1333 struct vm_area_struct
*vma
, struct iomap
*iomap
)
1335 return (flags
& IOMAP_WRITE
) && (vma
->vm_flags
& VM_SYNC
)
1336 && (iomap
->flags
& IOMAP_F_DIRTY
);
1339 static vm_fault_t
dax_iomap_pte_fault(struct vm_fault
*vmf
, pfn_t
*pfnp
,
1340 int *iomap_errp
, const struct iomap_ops
*ops
)
1342 struct vm_area_struct
*vma
= vmf
->vma
;
1343 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1344 struct inode
*inode
= mapping
->host
;
1345 unsigned long vaddr
= vmf
->address
;
1346 loff_t pos
= (loff_t
)vmf
->pgoff
<< PAGE_SHIFT
;
1347 struct iomap iomap
= { 0 };
1348 unsigned flags
= IOMAP_FAULT
;
1349 int error
, major
= 0;
1350 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1356 trace_dax_pte_fault(inode
, vmf
, ret
);
1358 * Check whether offset isn't beyond end of file now. Caller is supposed
1359 * to hold locks serializing us with truncate / punch hole so this is
1362 if (pos
>= i_size_read(inode
)) {
1363 ret
= VM_FAULT_SIGBUS
;
1367 if (write
&& !vmf
->cow_page
)
1368 flags
|= IOMAP_WRITE
;
1370 entry
= grab_mapping_entry(mapping
, vmf
->pgoff
, 0);
1371 if (IS_ERR(entry
)) {
1372 ret
= dax_fault_return(PTR_ERR(entry
));
1377 * It is possible, particularly with mixed reads & writes to private
1378 * mappings, that we have raced with a PMD fault that overlaps with
1379 * the PTE we need to set up. If so just return and the fault will be
1382 if (pmd_trans_huge(*vmf
->pmd
) || pmd_devmap(*vmf
->pmd
)) {
1383 ret
= VM_FAULT_NOPAGE
;
1388 * Note that we don't bother to use iomap_apply here: DAX required
1389 * the file system block size to be equal the page size, which means
1390 * that we never have to deal with more than a single extent here.
1392 error
= ops
->iomap_begin(inode
, pos
, PAGE_SIZE
, flags
, &iomap
);
1394 *iomap_errp
= error
;
1396 ret
= dax_fault_return(error
);
1399 if (WARN_ON_ONCE(iomap
.offset
+ iomap
.length
< pos
+ PAGE_SIZE
)) {
1400 error
= -EIO
; /* fs corruption? */
1401 goto error_finish_iomap
;
1404 if (vmf
->cow_page
) {
1405 sector_t sector
= dax_iomap_sector(&iomap
, pos
);
1407 switch (iomap
.type
) {
1409 case IOMAP_UNWRITTEN
:
1410 clear_user_highpage(vmf
->cow_page
, vaddr
);
1413 error
= copy_user_dax(iomap
.bdev
, iomap
.dax_dev
,
1414 sector
, PAGE_SIZE
, vmf
->cow_page
, vaddr
);
1423 goto error_finish_iomap
;
1425 __SetPageUptodate(vmf
->cow_page
);
1426 ret
= finish_fault(vmf
);
1428 ret
= VM_FAULT_DONE_COW
;
1432 sync
= dax_fault_is_synchronous(flags
, vma
, &iomap
);
1434 switch (iomap
.type
) {
1436 if (iomap
.flags
& IOMAP_F_NEW
) {
1437 count_vm_event(PGMAJFAULT
);
1438 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
1439 major
= VM_FAULT_MAJOR
;
1441 error
= dax_iomap_pfn(&iomap
, pos
, PAGE_SIZE
, &pfn
);
1443 goto error_finish_iomap
;
1445 entry
= dax_insert_mapping_entry(mapping
, vmf
, entry
, pfn
,
1449 * If we are doing synchronous page fault and inode needs fsync,
1450 * we can insert PTE into page tables only after that happens.
1451 * Skip insertion for now and return the pfn so that caller can
1452 * insert it after fsync is done.
1455 if (WARN_ON_ONCE(!pfnp
)) {
1457 goto error_finish_iomap
;
1460 ret
= VM_FAULT_NEEDDSYNC
| major
;
1463 trace_dax_insert_mapping(inode
, vmf
, entry
);
1465 ret
= vmf_insert_mixed_mkwrite(vma
, vaddr
, pfn
);
1467 ret
= vmf_insert_mixed(vma
, vaddr
, pfn
);
1470 case IOMAP_UNWRITTEN
:
1473 ret
= dax_load_hole(mapping
, entry
, vmf
);
1484 ret
= dax_fault_return(error
);
1486 if (ops
->iomap_end
) {
1487 int copied
= PAGE_SIZE
;
1489 if (ret
& VM_FAULT_ERROR
)
1492 * The fault is done by now and there's no way back (other
1493 * thread may be already happily using PTE we have installed).
1494 * Just ignore error from ->iomap_end since we cannot do much
1497 ops
->iomap_end(inode
, pos
, PAGE_SIZE
, copied
, flags
, &iomap
);
1500 put_locked_mapping_entry(mapping
, vmf
->pgoff
);
1502 trace_dax_pte_fault_done(inode
, vmf
, ret
);
1506 #ifdef CONFIG_FS_DAX_PMD
1507 static vm_fault_t
dax_pmd_load_hole(struct vm_fault
*vmf
, struct iomap
*iomap
,
1510 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1511 unsigned long pmd_addr
= vmf
->address
& PMD_MASK
;
1512 struct inode
*inode
= mapping
->host
;
1513 struct page
*zero_page
;
1519 zero_page
= mm_get_huge_zero_page(vmf
->vma
->vm_mm
);
1521 if (unlikely(!zero_page
))
1524 pfn
= page_to_pfn_t(zero_page
);
1525 ret
= dax_insert_mapping_entry(mapping
, vmf
, entry
, pfn
,
1526 RADIX_DAX_PMD
| RADIX_DAX_ZERO_PAGE
, false);
1528 ptl
= pmd_lock(vmf
->vma
->vm_mm
, vmf
->pmd
);
1529 if (!pmd_none(*(vmf
->pmd
))) {
1534 pmd_entry
= mk_pmd(zero_page
, vmf
->vma
->vm_page_prot
);
1535 pmd_entry
= pmd_mkhuge(pmd_entry
);
1536 set_pmd_at(vmf
->vma
->vm_mm
, pmd_addr
, vmf
->pmd
, pmd_entry
);
1538 trace_dax_pmd_load_hole(inode
, vmf
, zero_page
, ret
);
1539 return VM_FAULT_NOPAGE
;
1542 trace_dax_pmd_load_hole_fallback(inode
, vmf
, zero_page
, ret
);
1543 return VM_FAULT_FALLBACK
;
1546 static vm_fault_t
dax_iomap_pmd_fault(struct vm_fault
*vmf
, pfn_t
*pfnp
,
1547 const struct iomap_ops
*ops
)
1549 struct vm_area_struct
*vma
= vmf
->vma
;
1550 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1551 unsigned long pmd_addr
= vmf
->address
& PMD_MASK
;
1552 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1554 unsigned int iomap_flags
= (write
? IOMAP_WRITE
: 0) | IOMAP_FAULT
;
1555 struct inode
*inode
= mapping
->host
;
1556 vm_fault_t result
= VM_FAULT_FALLBACK
;
1557 struct iomap iomap
= { 0 };
1558 pgoff_t max_pgoff
, pgoff
;
1565 * Check whether offset isn't beyond end of file now. Caller is
1566 * supposed to hold locks serializing us with truncate / punch hole so
1567 * this is a reliable test.
1569 pgoff
= linear_page_index(vma
, pmd_addr
);
1570 max_pgoff
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
1572 trace_dax_pmd_fault(inode
, vmf
, max_pgoff
, 0);
1575 * Make sure that the faulting address's PMD offset (color) matches
1576 * the PMD offset from the start of the file. This is necessary so
1577 * that a PMD range in the page table overlaps exactly with a PMD
1578 * range in the radix tree.
1580 if ((vmf
->pgoff
& PG_PMD_COLOUR
) !=
1581 ((vmf
->address
>> PAGE_SHIFT
) & PG_PMD_COLOUR
))
1584 /* Fall back to PTEs if we're going to COW */
1585 if (write
&& !(vma
->vm_flags
& VM_SHARED
))
1588 /* If the PMD would extend outside the VMA */
1589 if (pmd_addr
< vma
->vm_start
)
1591 if ((pmd_addr
+ PMD_SIZE
) > vma
->vm_end
)
1594 if (pgoff
>= max_pgoff
) {
1595 result
= VM_FAULT_SIGBUS
;
1599 /* If the PMD would extend beyond the file size */
1600 if ((pgoff
| PG_PMD_COLOUR
) >= max_pgoff
)
1604 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1605 * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page
1606 * is already in the tree, for instance), it will return -EEXIST and
1607 * we just fall back to 4k entries.
1609 entry
= grab_mapping_entry(mapping
, pgoff
, RADIX_DAX_PMD
);
1614 * It is possible, particularly with mixed reads & writes to private
1615 * mappings, that we have raced with a PTE fault that overlaps with
1616 * the PMD we need to set up. If so just return and the fault will be
1619 if (!pmd_none(*vmf
->pmd
) && !pmd_trans_huge(*vmf
->pmd
) &&
1620 !pmd_devmap(*vmf
->pmd
)) {
1626 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1627 * setting up a mapping, so really we're using iomap_begin() as a way
1628 * to look up our filesystem block.
1630 pos
= (loff_t
)pgoff
<< PAGE_SHIFT
;
1631 error
= ops
->iomap_begin(inode
, pos
, PMD_SIZE
, iomap_flags
, &iomap
);
1635 if (iomap
.offset
+ iomap
.length
< pos
+ PMD_SIZE
)
1638 sync
= dax_fault_is_synchronous(iomap_flags
, vma
, &iomap
);
1640 switch (iomap
.type
) {
1642 error
= dax_iomap_pfn(&iomap
, pos
, PMD_SIZE
, &pfn
);
1646 entry
= dax_insert_mapping_entry(mapping
, vmf
, entry
, pfn
,
1647 RADIX_DAX_PMD
, write
&& !sync
);
1650 * If we are doing synchronous page fault and inode needs fsync,
1651 * we can insert PMD into page tables only after that happens.
1652 * Skip insertion for now and return the pfn so that caller can
1653 * insert it after fsync is done.
1656 if (WARN_ON_ONCE(!pfnp
))
1659 result
= VM_FAULT_NEEDDSYNC
;
1663 trace_dax_pmd_insert_mapping(inode
, vmf
, PMD_SIZE
, pfn
, entry
);
1664 result
= vmf_insert_pfn_pmd(vma
, vmf
->address
, vmf
->pmd
, pfn
,
1667 case IOMAP_UNWRITTEN
:
1669 if (WARN_ON_ONCE(write
))
1671 result
= dax_pmd_load_hole(vmf
, &iomap
, entry
);
1679 if (ops
->iomap_end
) {
1680 int copied
= PMD_SIZE
;
1682 if (result
== VM_FAULT_FALLBACK
)
1685 * The fault is done by now and there's no way back (other
1686 * thread may be already happily using PMD we have installed).
1687 * Just ignore error from ->iomap_end since we cannot do much
1690 ops
->iomap_end(inode
, pos
, PMD_SIZE
, copied
, iomap_flags
,
1694 put_locked_mapping_entry(mapping
, pgoff
);
1696 if (result
== VM_FAULT_FALLBACK
) {
1697 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1698 count_vm_event(THP_FAULT_FALLBACK
);
1701 trace_dax_pmd_fault_done(inode
, vmf
, max_pgoff
, result
);
1705 static vm_fault_t
dax_iomap_pmd_fault(struct vm_fault
*vmf
, pfn_t
*pfnp
,
1706 const struct iomap_ops
*ops
)
1708 return VM_FAULT_FALLBACK
;
1710 #endif /* CONFIG_FS_DAX_PMD */
1713 * dax_iomap_fault - handle a page fault on a DAX file
1714 * @vmf: The description of the fault
1715 * @pe_size: Size of the page to fault in
1716 * @pfnp: PFN to insert for synchronous faults if fsync is required
1717 * @iomap_errp: Storage for detailed error code in case of error
1718 * @ops: Iomap ops passed from the file system
1720 * When a page fault occurs, filesystems may call this helper in
1721 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1722 * has done all the necessary locking for page fault to proceed
1725 vm_fault_t
dax_iomap_fault(struct vm_fault
*vmf
, enum page_entry_size pe_size
,
1726 pfn_t
*pfnp
, int *iomap_errp
, const struct iomap_ops
*ops
)
1730 return dax_iomap_pte_fault(vmf
, pfnp
, iomap_errp
, ops
);
1732 return dax_iomap_pmd_fault(vmf
, pfnp
, ops
);
1734 return VM_FAULT_FALLBACK
;
1737 EXPORT_SYMBOL_GPL(dax_iomap_fault
);
1740 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1741 * @vmf: The description of the fault
1742 * @pe_size: Size of entry to be inserted
1743 * @pfn: PFN to insert
1745 * This function inserts writeable PTE or PMD entry into page tables for mmaped
1746 * DAX file. It takes care of marking corresponding radix tree entry as dirty
1749 static vm_fault_t
dax_insert_pfn_mkwrite(struct vm_fault
*vmf
,
1750 enum page_entry_size pe_size
,
1753 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1754 void *entry
, **slot
;
1755 pgoff_t index
= vmf
->pgoff
;
1758 xa_lock_irq(&mapping
->i_pages
);
1759 entry
= get_unlocked_mapping_entry(mapping
, index
, &slot
);
1760 /* Did we race with someone splitting entry or so? */
1762 (pe_size
== PE_SIZE_PTE
&& !dax_is_pte_entry(entry
)) ||
1763 (pe_size
== PE_SIZE_PMD
&& !dax_is_pmd_entry(entry
))) {
1764 put_unlocked_mapping_entry(mapping
, index
, entry
);
1765 xa_unlock_irq(&mapping
->i_pages
);
1766 trace_dax_insert_pfn_mkwrite_no_entry(mapping
->host
, vmf
,
1768 return VM_FAULT_NOPAGE
;
1770 radix_tree_tag_set(&mapping
->i_pages
, index
, PAGECACHE_TAG_DIRTY
);
1771 entry
= lock_slot(mapping
, slot
);
1772 xa_unlock_irq(&mapping
->i_pages
);
1775 ret
= vmf_insert_mixed_mkwrite(vmf
->vma
, vmf
->address
, pfn
);
1777 #ifdef CONFIG_FS_DAX_PMD
1779 ret
= vmf_insert_pfn_pmd(vmf
->vma
, vmf
->address
, vmf
->pmd
,
1784 ret
= VM_FAULT_FALLBACK
;
1786 put_locked_mapping_entry(mapping
, index
);
1787 trace_dax_insert_pfn_mkwrite(mapping
->host
, vmf
, ret
);
1792 * dax_finish_sync_fault - finish synchronous page fault
1793 * @vmf: The description of the fault
1794 * @pe_size: Size of entry to be inserted
1795 * @pfn: PFN to insert
1797 * This function ensures that the file range touched by the page fault is
1798 * stored persistently on the media and handles inserting of appropriate page
1801 vm_fault_t
dax_finish_sync_fault(struct vm_fault
*vmf
,
1802 enum page_entry_size pe_size
, pfn_t pfn
)
1805 loff_t start
= ((loff_t
)vmf
->pgoff
) << PAGE_SHIFT
;
1808 if (pe_size
== PE_SIZE_PTE
)
1810 else if (pe_size
== PE_SIZE_PMD
)
1814 err
= vfs_fsync_range(vmf
->vma
->vm_file
, start
, start
+ len
- 1, 1);
1816 return VM_FAULT_SIGBUS
;
1817 return dax_insert_pfn_mkwrite(vmf
, pe_size
, pfn
);
1819 EXPORT_SYMBOL_GPL(dax_finish_sync_fault
);