power: supply: sbs-battery: Add alert callback
[linux-2.6/btrfs-unstable.git] / fs / f2fs / recovery.c
blobd025aa83fb5bb344fcb5799f080d033895e584aa
1 /*
2 * fs/f2fs/recovery.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include "f2fs.h"
14 #include "node.h"
15 #include "segment.h"
18 * Roll forward recovery scenarios.
20 * [Term] F: fsync_mark, D: dentry_mark
22 * 1. inode(x) | CP | inode(x) | dnode(F)
23 * -> Update the latest inode(x).
25 * 2. inode(x) | CP | inode(F) | dnode(F)
26 * -> No problem.
28 * 3. inode(x) | CP | dnode(F) | inode(x)
29 * -> Recover to the latest dnode(F), and drop the last inode(x)
31 * 4. inode(x) | CP | dnode(F) | inode(F)
32 * -> No problem.
34 * 5. CP | inode(x) | dnode(F)
35 * -> The inode(DF) was missing. Should drop this dnode(F).
37 * 6. CP | inode(DF) | dnode(F)
38 * -> No problem.
40 * 7. CP | dnode(F) | inode(DF)
41 * -> If f2fs_iget fails, then goto next to find inode(DF).
43 * 8. CP | dnode(F) | inode(x)
44 * -> If f2fs_iget fails, then goto next to find inode(DF).
45 * But it will fail due to no inode(DF).
48 static struct kmem_cache *fsync_entry_slab;
50 bool space_for_roll_forward(struct f2fs_sb_info *sbi)
52 s64 nalloc = percpu_counter_sum_positive(&sbi->alloc_valid_block_count);
54 if (sbi->last_valid_block_count + nalloc > sbi->user_block_count)
55 return false;
56 return true;
59 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
60 nid_t ino)
62 struct fsync_inode_entry *entry;
64 list_for_each_entry(entry, head, list)
65 if (entry->inode->i_ino == ino)
66 return entry;
68 return NULL;
71 static struct fsync_inode_entry *add_fsync_inode(struct f2fs_sb_info *sbi,
72 struct list_head *head, nid_t ino)
74 struct inode *inode;
75 struct fsync_inode_entry *entry;
77 inode = f2fs_iget_retry(sbi->sb, ino);
78 if (IS_ERR(inode))
79 return ERR_CAST(inode);
81 entry = f2fs_kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO);
82 entry->inode = inode;
83 list_add_tail(&entry->list, head);
85 return entry;
88 static void del_fsync_inode(struct fsync_inode_entry *entry)
90 iput(entry->inode);
91 list_del(&entry->list);
92 kmem_cache_free(fsync_entry_slab, entry);
95 static int recover_dentry(struct inode *inode, struct page *ipage,
96 struct list_head *dir_list)
98 struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
99 nid_t pino = le32_to_cpu(raw_inode->i_pino);
100 struct f2fs_dir_entry *de;
101 struct fscrypt_name fname;
102 struct page *page;
103 struct inode *dir, *einode;
104 struct fsync_inode_entry *entry;
105 int err = 0;
106 char *name;
108 entry = get_fsync_inode(dir_list, pino);
109 if (!entry) {
110 entry = add_fsync_inode(F2FS_I_SB(inode), dir_list, pino);
111 if (IS_ERR(entry)) {
112 dir = ERR_CAST(entry);
113 err = PTR_ERR(entry);
114 goto out;
118 dir = entry->inode;
120 memset(&fname, 0, sizeof(struct fscrypt_name));
121 fname.disk_name.len = le32_to_cpu(raw_inode->i_namelen);
122 fname.disk_name.name = raw_inode->i_name;
124 if (unlikely(fname.disk_name.len > F2FS_NAME_LEN)) {
125 WARN_ON(1);
126 err = -ENAMETOOLONG;
127 goto out;
129 retry:
130 de = __f2fs_find_entry(dir, &fname, &page);
131 if (de && inode->i_ino == le32_to_cpu(de->ino))
132 goto out_unmap_put;
134 if (de) {
135 einode = f2fs_iget_retry(inode->i_sb, le32_to_cpu(de->ino));
136 if (IS_ERR(einode)) {
137 WARN_ON(1);
138 err = PTR_ERR(einode);
139 if (err == -ENOENT)
140 err = -EEXIST;
141 goto out_unmap_put;
143 err = acquire_orphan_inode(F2FS_I_SB(inode));
144 if (err) {
145 iput(einode);
146 goto out_unmap_put;
148 f2fs_delete_entry(de, page, dir, einode);
149 iput(einode);
150 goto retry;
151 } else if (IS_ERR(page)) {
152 err = PTR_ERR(page);
153 } else {
154 err = __f2fs_do_add_link(dir, &fname, inode,
155 inode->i_ino, inode->i_mode);
157 if (err == -ENOMEM)
158 goto retry;
159 goto out;
161 out_unmap_put:
162 f2fs_dentry_kunmap(dir, page);
163 f2fs_put_page(page, 0);
164 out:
165 if (file_enc_name(inode))
166 name = "<encrypted>";
167 else
168 name = raw_inode->i_name;
169 f2fs_msg(inode->i_sb, KERN_NOTICE,
170 "%s: ino = %x, name = %s, dir = %lx, err = %d",
171 __func__, ino_of_node(ipage), name,
172 IS_ERR(dir) ? 0 : dir->i_ino, err);
173 return err;
176 static void recover_inode(struct inode *inode, struct page *page)
178 struct f2fs_inode *raw = F2FS_INODE(page);
179 char *name;
181 inode->i_mode = le16_to_cpu(raw->i_mode);
182 f2fs_i_size_write(inode, le64_to_cpu(raw->i_size));
183 inode->i_atime.tv_sec = le64_to_cpu(raw->i_atime);
184 inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime);
185 inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime);
186 inode->i_atime.tv_nsec = le32_to_cpu(raw->i_atime_nsec);
187 inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec);
188 inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
190 F2FS_I(inode)->i_advise = raw->i_advise;
192 if (file_enc_name(inode))
193 name = "<encrypted>";
194 else
195 name = F2FS_INODE(page)->i_name;
197 f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
198 ino_of_node(page), name);
201 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
203 struct curseg_info *curseg;
204 struct page *page = NULL;
205 block_t blkaddr;
206 int err = 0;
208 /* get node pages in the current segment */
209 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
210 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
212 while (1) {
213 struct fsync_inode_entry *entry;
215 if (!is_valid_blkaddr(sbi, blkaddr, META_POR))
216 return 0;
218 page = get_tmp_page(sbi, blkaddr);
220 if (!is_recoverable_dnode(page))
221 break;
223 if (!is_fsync_dnode(page))
224 goto next;
226 entry = get_fsync_inode(head, ino_of_node(page));
227 if (!entry) {
228 if (IS_INODE(page) && is_dent_dnode(page)) {
229 err = recover_inode_page(sbi, page);
230 if (err)
231 break;
235 * CP | dnode(F) | inode(DF)
236 * For this case, we should not give up now.
238 entry = add_fsync_inode(sbi, head, ino_of_node(page));
239 if (IS_ERR(entry)) {
240 err = PTR_ERR(entry);
241 if (err == -ENOENT) {
242 err = 0;
243 goto next;
245 break;
248 entry->blkaddr = blkaddr;
250 if (IS_INODE(page) && is_dent_dnode(page))
251 entry->last_dentry = blkaddr;
252 next:
253 /* check next segment */
254 blkaddr = next_blkaddr_of_node(page);
255 f2fs_put_page(page, 1);
257 ra_meta_pages_cond(sbi, blkaddr);
259 f2fs_put_page(page, 1);
260 return err;
263 static void destroy_fsync_dnodes(struct list_head *head)
265 struct fsync_inode_entry *entry, *tmp;
267 list_for_each_entry_safe(entry, tmp, head, list)
268 del_fsync_inode(entry);
271 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
272 block_t blkaddr, struct dnode_of_data *dn)
274 struct seg_entry *sentry;
275 unsigned int segno = GET_SEGNO(sbi, blkaddr);
276 unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
277 struct f2fs_summary_block *sum_node;
278 struct f2fs_summary sum;
279 struct page *sum_page, *node_page;
280 struct dnode_of_data tdn = *dn;
281 nid_t ino, nid;
282 struct inode *inode;
283 unsigned int offset;
284 block_t bidx;
285 int i;
287 sentry = get_seg_entry(sbi, segno);
288 if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
289 return 0;
291 /* Get the previous summary */
292 for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
293 struct curseg_info *curseg = CURSEG_I(sbi, i);
294 if (curseg->segno == segno) {
295 sum = curseg->sum_blk->entries[blkoff];
296 goto got_it;
300 sum_page = get_sum_page(sbi, segno);
301 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
302 sum = sum_node->entries[blkoff];
303 f2fs_put_page(sum_page, 1);
304 got_it:
305 /* Use the locked dnode page and inode */
306 nid = le32_to_cpu(sum.nid);
307 if (dn->inode->i_ino == nid) {
308 tdn.nid = nid;
309 if (!dn->inode_page_locked)
310 lock_page(dn->inode_page);
311 tdn.node_page = dn->inode_page;
312 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
313 goto truncate_out;
314 } else if (dn->nid == nid) {
315 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
316 goto truncate_out;
319 /* Get the node page */
320 node_page = get_node_page(sbi, nid);
321 if (IS_ERR(node_page))
322 return PTR_ERR(node_page);
324 offset = ofs_of_node(node_page);
325 ino = ino_of_node(node_page);
326 f2fs_put_page(node_page, 1);
328 if (ino != dn->inode->i_ino) {
329 /* Deallocate previous index in the node page */
330 inode = f2fs_iget_retry(sbi->sb, ino);
331 if (IS_ERR(inode))
332 return PTR_ERR(inode);
333 } else {
334 inode = dn->inode;
337 bidx = start_bidx_of_node(offset, inode) + le16_to_cpu(sum.ofs_in_node);
340 * if inode page is locked, unlock temporarily, but its reference
341 * count keeps alive.
343 if (ino == dn->inode->i_ino && dn->inode_page_locked)
344 unlock_page(dn->inode_page);
346 set_new_dnode(&tdn, inode, NULL, NULL, 0);
347 if (get_dnode_of_data(&tdn, bidx, LOOKUP_NODE))
348 goto out;
350 if (tdn.data_blkaddr == blkaddr)
351 truncate_data_blocks_range(&tdn, 1);
353 f2fs_put_dnode(&tdn);
354 out:
355 if (ino != dn->inode->i_ino)
356 iput(inode);
357 else if (dn->inode_page_locked)
358 lock_page(dn->inode_page);
359 return 0;
361 truncate_out:
362 if (datablock_addr(tdn.node_page, tdn.ofs_in_node) == blkaddr)
363 truncate_data_blocks_range(&tdn, 1);
364 if (dn->inode->i_ino == nid && !dn->inode_page_locked)
365 unlock_page(dn->inode_page);
366 return 0;
369 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
370 struct page *page, block_t blkaddr)
372 struct dnode_of_data dn;
373 struct node_info ni;
374 unsigned int start, end;
375 int err = 0, recovered = 0;
377 /* step 1: recover xattr */
378 if (IS_INODE(page)) {
379 recover_inline_xattr(inode, page);
380 } else if (f2fs_has_xattr_block(ofs_of_node(page))) {
381 err = recover_xattr_data(inode, page, blkaddr);
382 if (!err)
383 recovered++;
384 goto out;
387 /* step 2: recover inline data */
388 if (recover_inline_data(inode, page))
389 goto out;
391 /* step 3: recover data indices */
392 start = start_bidx_of_node(ofs_of_node(page), inode);
393 end = start + ADDRS_PER_PAGE(page, inode);
395 set_new_dnode(&dn, inode, NULL, NULL, 0);
396 retry_dn:
397 err = get_dnode_of_data(&dn, start, ALLOC_NODE);
398 if (err) {
399 if (err == -ENOMEM) {
400 congestion_wait(BLK_RW_ASYNC, HZ/50);
401 goto retry_dn;
403 goto out;
406 f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
408 get_node_info(sbi, dn.nid, &ni);
409 f2fs_bug_on(sbi, ni.ino != ino_of_node(page));
410 f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page));
412 for (; start < end; start++, dn.ofs_in_node++) {
413 block_t src, dest;
415 src = datablock_addr(dn.node_page, dn.ofs_in_node);
416 dest = datablock_addr(page, dn.ofs_in_node);
418 /* skip recovering if dest is the same as src */
419 if (src == dest)
420 continue;
422 /* dest is invalid, just invalidate src block */
423 if (dest == NULL_ADDR) {
424 truncate_data_blocks_range(&dn, 1);
425 continue;
428 if (!file_keep_isize(inode) &&
429 (i_size_read(inode) <= ((loff_t)start << PAGE_SHIFT)))
430 f2fs_i_size_write(inode,
431 (loff_t)(start + 1) << PAGE_SHIFT);
434 * dest is reserved block, invalidate src block
435 * and then reserve one new block in dnode page.
437 if (dest == NEW_ADDR) {
438 truncate_data_blocks_range(&dn, 1);
439 reserve_new_block(&dn);
440 continue;
443 /* dest is valid block, try to recover from src to dest */
444 if (is_valid_blkaddr(sbi, dest, META_POR)) {
446 if (src == NULL_ADDR) {
447 err = reserve_new_block(&dn);
448 #ifdef CONFIG_F2FS_FAULT_INJECTION
449 while (err)
450 err = reserve_new_block(&dn);
451 #endif
452 /* We should not get -ENOSPC */
453 f2fs_bug_on(sbi, err);
454 if (err)
455 goto err;
457 retry_prev:
458 /* Check the previous node page having this index */
459 err = check_index_in_prev_nodes(sbi, dest, &dn);
460 if (err) {
461 if (err == -ENOMEM) {
462 congestion_wait(BLK_RW_ASYNC, HZ/50);
463 goto retry_prev;
465 goto err;
468 /* write dummy data page */
469 f2fs_replace_block(sbi, &dn, src, dest,
470 ni.version, false, false);
471 recovered++;
475 copy_node_footer(dn.node_page, page);
476 fill_node_footer(dn.node_page, dn.nid, ni.ino,
477 ofs_of_node(page), false);
478 set_page_dirty(dn.node_page);
479 err:
480 f2fs_put_dnode(&dn);
481 out:
482 f2fs_msg(sbi->sb, KERN_NOTICE,
483 "recover_data: ino = %lx (i_size: %s) recovered = %d, err = %d",
484 inode->i_ino,
485 file_keep_isize(inode) ? "keep" : "recover",
486 recovered, err);
487 return err;
490 static int recover_data(struct f2fs_sb_info *sbi, struct list_head *inode_list,
491 struct list_head *dir_list)
493 struct curseg_info *curseg;
494 struct page *page = NULL;
495 int err = 0;
496 block_t blkaddr;
498 /* get node pages in the current segment */
499 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
500 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
502 while (1) {
503 struct fsync_inode_entry *entry;
505 if (!is_valid_blkaddr(sbi, blkaddr, META_POR))
506 break;
508 ra_meta_pages_cond(sbi, blkaddr);
510 page = get_tmp_page(sbi, blkaddr);
512 if (!is_recoverable_dnode(page)) {
513 f2fs_put_page(page, 1);
514 break;
517 entry = get_fsync_inode(inode_list, ino_of_node(page));
518 if (!entry)
519 goto next;
521 * inode(x) | CP | inode(x) | dnode(F)
522 * In this case, we can lose the latest inode(x).
523 * So, call recover_inode for the inode update.
525 if (IS_INODE(page))
526 recover_inode(entry->inode, page);
527 if (entry->last_dentry == blkaddr) {
528 err = recover_dentry(entry->inode, page, dir_list);
529 if (err) {
530 f2fs_put_page(page, 1);
531 break;
534 err = do_recover_data(sbi, entry->inode, page, blkaddr);
535 if (err) {
536 f2fs_put_page(page, 1);
537 break;
540 if (entry->blkaddr == blkaddr)
541 del_fsync_inode(entry);
542 next:
543 /* check next segment */
544 blkaddr = next_blkaddr_of_node(page);
545 f2fs_put_page(page, 1);
547 if (!err)
548 allocate_new_segments(sbi);
549 return err;
552 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only)
554 struct list_head inode_list;
555 struct list_head dir_list;
556 int err;
557 int ret = 0;
558 bool need_writecp = false;
560 fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
561 sizeof(struct fsync_inode_entry));
562 if (!fsync_entry_slab)
563 return -ENOMEM;
565 INIT_LIST_HEAD(&inode_list);
566 INIT_LIST_HEAD(&dir_list);
568 /* prevent checkpoint */
569 mutex_lock(&sbi->cp_mutex);
571 /* step #1: find fsynced inode numbers */
572 err = find_fsync_dnodes(sbi, &inode_list);
573 if (err || list_empty(&inode_list))
574 goto out;
576 if (check_only) {
577 ret = 1;
578 goto out;
581 need_writecp = true;
583 /* step #2: recover data */
584 err = recover_data(sbi, &inode_list, &dir_list);
585 if (!err)
586 f2fs_bug_on(sbi, !list_empty(&inode_list));
587 out:
588 destroy_fsync_dnodes(&inode_list);
590 /* truncate meta pages to be used by the recovery */
591 truncate_inode_pages_range(META_MAPPING(sbi),
592 (loff_t)MAIN_BLKADDR(sbi) << PAGE_SHIFT, -1);
594 if (err) {
595 truncate_inode_pages_final(NODE_MAPPING(sbi));
596 truncate_inode_pages_final(META_MAPPING(sbi));
599 clear_sbi_flag(sbi, SBI_POR_DOING);
600 if (err)
601 set_ckpt_flags(sbi, CP_ERROR_FLAG);
602 mutex_unlock(&sbi->cp_mutex);
604 /* let's drop all the directory inodes for clean checkpoint */
605 destroy_fsync_dnodes(&dir_list);
607 if (!err && need_writecp) {
608 struct cp_control cpc = {
609 .reason = CP_RECOVERY,
611 err = write_checkpoint(sbi, &cpc);
614 kmem_cache_destroy(fsync_entry_slab);
615 return ret ? ret: err;