power: supply: sbs-battery: Add alert callback
[linux-2.6/btrfs-unstable.git] / fs / f2fs / node.c
blob481aa8dc79f46f4c156cf67cca665e8160e36e6a
1 /*
2 * fs/f2fs/node.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
33 struct f2fs_nm_info *nm_i = NM_I(sbi);
34 struct sysinfo val;
35 unsigned long avail_ram;
36 unsigned long mem_size = 0;
37 bool res = false;
39 si_meminfo(&val);
41 /* only uses low memory */
42 avail_ram = val.totalram - val.totalhigh;
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47 if (type == FREE_NIDS) {
48 mem_size = (nm_i->nid_cnt[FREE_NID_LIST] *
49 sizeof(struct free_nid)) >> PAGE_SHIFT;
50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 } else if (type == NAT_ENTRIES) {
52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 PAGE_SHIFT;
54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 if (excess_cached_nats(sbi))
56 res = false;
57 } else if (type == DIRTY_DENTS) {
58 if (sbi->sb->s_bdi->wb.dirty_exceeded)
59 return false;
60 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
61 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
62 } else if (type == INO_ENTRIES) {
63 int i;
65 for (i = 0; i <= UPDATE_INO; i++)
66 mem_size += (sbi->im[i].ino_num *
67 sizeof(struct ino_entry)) >> PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
69 } else if (type == EXTENT_CACHE) {
70 mem_size = (atomic_read(&sbi->total_ext_tree) *
71 sizeof(struct extent_tree) +
72 atomic_read(&sbi->total_ext_node) *
73 sizeof(struct extent_node)) >> PAGE_SHIFT;
74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 } else {
76 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
77 return true;
79 return res;
82 static void clear_node_page_dirty(struct page *page)
84 struct address_space *mapping = page->mapping;
85 unsigned int long flags;
87 if (PageDirty(page)) {
88 spin_lock_irqsave(&mapping->tree_lock, flags);
89 radix_tree_tag_clear(&mapping->page_tree,
90 page_index(page),
91 PAGECACHE_TAG_DIRTY);
92 spin_unlock_irqrestore(&mapping->tree_lock, flags);
94 clear_page_dirty_for_io(page);
95 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
97 ClearPageUptodate(page);
100 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
102 pgoff_t index = current_nat_addr(sbi, nid);
103 return get_meta_page(sbi, index);
106 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
108 struct page *src_page;
109 struct page *dst_page;
110 pgoff_t src_off;
111 pgoff_t dst_off;
112 void *src_addr;
113 void *dst_addr;
114 struct f2fs_nm_info *nm_i = NM_I(sbi);
116 src_off = current_nat_addr(sbi, nid);
117 dst_off = next_nat_addr(sbi, src_off);
119 /* get current nat block page with lock */
120 src_page = get_meta_page(sbi, src_off);
121 dst_page = grab_meta_page(sbi, dst_off);
122 f2fs_bug_on(sbi, PageDirty(src_page));
124 src_addr = page_address(src_page);
125 dst_addr = page_address(dst_page);
126 memcpy(dst_addr, src_addr, PAGE_SIZE);
127 set_page_dirty(dst_page);
128 f2fs_put_page(src_page, 1);
130 set_to_next_nat(nm_i, nid);
132 return dst_page;
135 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
137 return radix_tree_lookup(&nm_i->nat_root, n);
140 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
141 nid_t start, unsigned int nr, struct nat_entry **ep)
143 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
146 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
148 list_del(&e->list);
149 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
150 nm_i->nat_cnt--;
151 kmem_cache_free(nat_entry_slab, e);
154 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
155 struct nat_entry *ne)
157 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
158 struct nat_entry_set *head;
160 if (get_nat_flag(ne, IS_DIRTY))
161 return;
163 head = radix_tree_lookup(&nm_i->nat_set_root, set);
164 if (!head) {
165 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
167 INIT_LIST_HEAD(&head->entry_list);
168 INIT_LIST_HEAD(&head->set_list);
169 head->set = set;
170 head->entry_cnt = 0;
171 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
173 list_move_tail(&ne->list, &head->entry_list);
174 nm_i->dirty_nat_cnt++;
175 head->entry_cnt++;
176 set_nat_flag(ne, IS_DIRTY, true);
179 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
180 struct nat_entry *ne)
182 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
183 struct nat_entry_set *head;
185 head = radix_tree_lookup(&nm_i->nat_set_root, set);
186 if (head) {
187 list_move_tail(&ne->list, &nm_i->nat_entries);
188 set_nat_flag(ne, IS_DIRTY, false);
189 head->entry_cnt--;
190 nm_i->dirty_nat_cnt--;
194 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
195 nid_t start, unsigned int nr, struct nat_entry_set **ep)
197 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
198 start, nr);
201 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
203 struct f2fs_nm_info *nm_i = NM_I(sbi);
204 struct nat_entry *e;
205 bool need = false;
207 down_read(&nm_i->nat_tree_lock);
208 e = __lookup_nat_cache(nm_i, nid);
209 if (e) {
210 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
211 !get_nat_flag(e, HAS_FSYNCED_INODE))
212 need = true;
214 up_read(&nm_i->nat_tree_lock);
215 return need;
218 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
220 struct f2fs_nm_info *nm_i = NM_I(sbi);
221 struct nat_entry *e;
222 bool is_cp = true;
224 down_read(&nm_i->nat_tree_lock);
225 e = __lookup_nat_cache(nm_i, nid);
226 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
227 is_cp = false;
228 up_read(&nm_i->nat_tree_lock);
229 return is_cp;
232 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
234 struct f2fs_nm_info *nm_i = NM_I(sbi);
235 struct nat_entry *e;
236 bool need_update = true;
238 down_read(&nm_i->nat_tree_lock);
239 e = __lookup_nat_cache(nm_i, ino);
240 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
241 (get_nat_flag(e, IS_CHECKPOINTED) ||
242 get_nat_flag(e, HAS_FSYNCED_INODE)))
243 need_update = false;
244 up_read(&nm_i->nat_tree_lock);
245 return need_update;
248 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
249 bool no_fail)
251 struct nat_entry *new;
253 if (no_fail) {
254 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
255 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
256 } else {
257 new = kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
258 if (!new)
259 return NULL;
260 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
261 kmem_cache_free(nat_entry_slab, new);
262 return NULL;
266 memset(new, 0, sizeof(struct nat_entry));
267 nat_set_nid(new, nid);
268 nat_reset_flag(new);
269 list_add_tail(&new->list, &nm_i->nat_entries);
270 nm_i->nat_cnt++;
271 return new;
274 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
275 struct f2fs_nat_entry *ne)
277 struct f2fs_nm_info *nm_i = NM_I(sbi);
278 struct nat_entry *e;
280 e = __lookup_nat_cache(nm_i, nid);
281 if (!e) {
282 e = grab_nat_entry(nm_i, nid, false);
283 if (e)
284 node_info_from_raw_nat(&e->ni, ne);
285 } else {
286 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
287 nat_get_blkaddr(e) !=
288 le32_to_cpu(ne->block_addr) ||
289 nat_get_version(e) != ne->version);
293 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
294 block_t new_blkaddr, bool fsync_done)
296 struct f2fs_nm_info *nm_i = NM_I(sbi);
297 struct nat_entry *e;
299 down_write(&nm_i->nat_tree_lock);
300 e = __lookup_nat_cache(nm_i, ni->nid);
301 if (!e) {
302 e = grab_nat_entry(nm_i, ni->nid, true);
303 copy_node_info(&e->ni, ni);
304 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
305 } else if (new_blkaddr == NEW_ADDR) {
307 * when nid is reallocated,
308 * previous nat entry can be remained in nat cache.
309 * So, reinitialize it with new information.
311 copy_node_info(&e->ni, ni);
312 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
315 /* sanity check */
316 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
317 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
318 new_blkaddr == NULL_ADDR);
319 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
320 new_blkaddr == NEW_ADDR);
321 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
322 nat_get_blkaddr(e) != NULL_ADDR &&
323 new_blkaddr == NEW_ADDR);
325 /* increment version no as node is removed */
326 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
327 unsigned char version = nat_get_version(e);
328 nat_set_version(e, inc_node_version(version));
330 /* in order to reuse the nid */
331 if (nm_i->next_scan_nid > ni->nid)
332 nm_i->next_scan_nid = ni->nid;
335 /* change address */
336 nat_set_blkaddr(e, new_blkaddr);
337 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
338 set_nat_flag(e, IS_CHECKPOINTED, false);
339 __set_nat_cache_dirty(nm_i, e);
341 /* update fsync_mark if its inode nat entry is still alive */
342 if (ni->nid != ni->ino)
343 e = __lookup_nat_cache(nm_i, ni->ino);
344 if (e) {
345 if (fsync_done && ni->nid == ni->ino)
346 set_nat_flag(e, HAS_FSYNCED_INODE, true);
347 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
349 up_write(&nm_i->nat_tree_lock);
352 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
354 struct f2fs_nm_info *nm_i = NM_I(sbi);
355 int nr = nr_shrink;
357 if (!down_write_trylock(&nm_i->nat_tree_lock))
358 return 0;
360 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
361 struct nat_entry *ne;
362 ne = list_first_entry(&nm_i->nat_entries,
363 struct nat_entry, list);
364 __del_from_nat_cache(nm_i, ne);
365 nr_shrink--;
367 up_write(&nm_i->nat_tree_lock);
368 return nr - nr_shrink;
372 * This function always returns success
374 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
376 struct f2fs_nm_info *nm_i = NM_I(sbi);
377 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
378 struct f2fs_journal *journal = curseg->journal;
379 nid_t start_nid = START_NID(nid);
380 struct f2fs_nat_block *nat_blk;
381 struct page *page = NULL;
382 struct f2fs_nat_entry ne;
383 struct nat_entry *e;
384 int i;
386 ni->nid = nid;
388 /* Check nat cache */
389 down_read(&nm_i->nat_tree_lock);
390 e = __lookup_nat_cache(nm_i, nid);
391 if (e) {
392 ni->ino = nat_get_ino(e);
393 ni->blk_addr = nat_get_blkaddr(e);
394 ni->version = nat_get_version(e);
395 up_read(&nm_i->nat_tree_lock);
396 return;
399 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
401 /* Check current segment summary */
402 down_read(&curseg->journal_rwsem);
403 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
404 if (i >= 0) {
405 ne = nat_in_journal(journal, i);
406 node_info_from_raw_nat(ni, &ne);
408 up_read(&curseg->journal_rwsem);
409 if (i >= 0)
410 goto cache;
412 /* Fill node_info from nat page */
413 page = get_current_nat_page(sbi, start_nid);
414 nat_blk = (struct f2fs_nat_block *)page_address(page);
415 ne = nat_blk->entries[nid - start_nid];
416 node_info_from_raw_nat(ni, &ne);
417 f2fs_put_page(page, 1);
418 cache:
419 up_read(&nm_i->nat_tree_lock);
420 /* cache nat entry */
421 down_write(&nm_i->nat_tree_lock);
422 cache_nat_entry(sbi, nid, &ne);
423 up_write(&nm_i->nat_tree_lock);
427 * readahead MAX_RA_NODE number of node pages.
429 static void ra_node_pages(struct page *parent, int start, int n)
431 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
432 struct blk_plug plug;
433 int i, end;
434 nid_t nid;
436 blk_start_plug(&plug);
438 /* Then, try readahead for siblings of the desired node */
439 end = start + n;
440 end = min(end, NIDS_PER_BLOCK);
441 for (i = start; i < end; i++) {
442 nid = get_nid(parent, i, false);
443 ra_node_page(sbi, nid);
446 blk_finish_plug(&plug);
449 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
451 const long direct_index = ADDRS_PER_INODE(dn->inode);
452 const long direct_blks = ADDRS_PER_BLOCK;
453 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
454 unsigned int skipped_unit = ADDRS_PER_BLOCK;
455 int cur_level = dn->cur_level;
456 int max_level = dn->max_level;
457 pgoff_t base = 0;
459 if (!dn->max_level)
460 return pgofs + 1;
462 while (max_level-- > cur_level)
463 skipped_unit *= NIDS_PER_BLOCK;
465 switch (dn->max_level) {
466 case 3:
467 base += 2 * indirect_blks;
468 case 2:
469 base += 2 * direct_blks;
470 case 1:
471 base += direct_index;
472 break;
473 default:
474 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
477 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
481 * The maximum depth is four.
482 * Offset[0] will have raw inode offset.
484 static int get_node_path(struct inode *inode, long block,
485 int offset[4], unsigned int noffset[4])
487 const long direct_index = ADDRS_PER_INODE(inode);
488 const long direct_blks = ADDRS_PER_BLOCK;
489 const long dptrs_per_blk = NIDS_PER_BLOCK;
490 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
491 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
492 int n = 0;
493 int level = 0;
495 noffset[0] = 0;
497 if (block < direct_index) {
498 offset[n] = block;
499 goto got;
501 block -= direct_index;
502 if (block < direct_blks) {
503 offset[n++] = NODE_DIR1_BLOCK;
504 noffset[n] = 1;
505 offset[n] = block;
506 level = 1;
507 goto got;
509 block -= direct_blks;
510 if (block < direct_blks) {
511 offset[n++] = NODE_DIR2_BLOCK;
512 noffset[n] = 2;
513 offset[n] = block;
514 level = 1;
515 goto got;
517 block -= direct_blks;
518 if (block < indirect_blks) {
519 offset[n++] = NODE_IND1_BLOCK;
520 noffset[n] = 3;
521 offset[n++] = block / direct_blks;
522 noffset[n] = 4 + offset[n - 1];
523 offset[n] = block % direct_blks;
524 level = 2;
525 goto got;
527 block -= indirect_blks;
528 if (block < indirect_blks) {
529 offset[n++] = NODE_IND2_BLOCK;
530 noffset[n] = 4 + dptrs_per_blk;
531 offset[n++] = block / direct_blks;
532 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
533 offset[n] = block % direct_blks;
534 level = 2;
535 goto got;
537 block -= indirect_blks;
538 if (block < dindirect_blks) {
539 offset[n++] = NODE_DIND_BLOCK;
540 noffset[n] = 5 + (dptrs_per_blk * 2);
541 offset[n++] = block / indirect_blks;
542 noffset[n] = 6 + (dptrs_per_blk * 2) +
543 offset[n - 1] * (dptrs_per_blk + 1);
544 offset[n++] = (block / direct_blks) % dptrs_per_blk;
545 noffset[n] = 7 + (dptrs_per_blk * 2) +
546 offset[n - 2] * (dptrs_per_blk + 1) +
547 offset[n - 1];
548 offset[n] = block % direct_blks;
549 level = 3;
550 goto got;
551 } else {
552 BUG();
554 got:
555 return level;
559 * Caller should call f2fs_put_dnode(dn).
560 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
561 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
562 * In the case of RDONLY_NODE, we don't need to care about mutex.
564 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
566 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
567 struct page *npage[4];
568 struct page *parent = NULL;
569 int offset[4];
570 unsigned int noffset[4];
571 nid_t nids[4];
572 int level, i = 0;
573 int err = 0;
575 level = get_node_path(dn->inode, index, offset, noffset);
577 nids[0] = dn->inode->i_ino;
578 npage[0] = dn->inode_page;
580 if (!npage[0]) {
581 npage[0] = get_node_page(sbi, nids[0]);
582 if (IS_ERR(npage[0]))
583 return PTR_ERR(npage[0]);
586 /* if inline_data is set, should not report any block indices */
587 if (f2fs_has_inline_data(dn->inode) && index) {
588 err = -ENOENT;
589 f2fs_put_page(npage[0], 1);
590 goto release_out;
593 parent = npage[0];
594 if (level != 0)
595 nids[1] = get_nid(parent, offset[0], true);
596 dn->inode_page = npage[0];
597 dn->inode_page_locked = true;
599 /* get indirect or direct nodes */
600 for (i = 1; i <= level; i++) {
601 bool done = false;
603 if (!nids[i] && mode == ALLOC_NODE) {
604 /* alloc new node */
605 if (!alloc_nid(sbi, &(nids[i]))) {
606 err = -ENOSPC;
607 goto release_pages;
610 dn->nid = nids[i];
611 npage[i] = new_node_page(dn, noffset[i], NULL);
612 if (IS_ERR(npage[i])) {
613 alloc_nid_failed(sbi, nids[i]);
614 err = PTR_ERR(npage[i]);
615 goto release_pages;
618 set_nid(parent, offset[i - 1], nids[i], i == 1);
619 alloc_nid_done(sbi, nids[i]);
620 done = true;
621 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
622 npage[i] = get_node_page_ra(parent, offset[i - 1]);
623 if (IS_ERR(npage[i])) {
624 err = PTR_ERR(npage[i]);
625 goto release_pages;
627 done = true;
629 if (i == 1) {
630 dn->inode_page_locked = false;
631 unlock_page(parent);
632 } else {
633 f2fs_put_page(parent, 1);
636 if (!done) {
637 npage[i] = get_node_page(sbi, nids[i]);
638 if (IS_ERR(npage[i])) {
639 err = PTR_ERR(npage[i]);
640 f2fs_put_page(npage[0], 0);
641 goto release_out;
644 if (i < level) {
645 parent = npage[i];
646 nids[i + 1] = get_nid(parent, offset[i], false);
649 dn->nid = nids[level];
650 dn->ofs_in_node = offset[level];
651 dn->node_page = npage[level];
652 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
653 return 0;
655 release_pages:
656 f2fs_put_page(parent, 1);
657 if (i > 1)
658 f2fs_put_page(npage[0], 0);
659 release_out:
660 dn->inode_page = NULL;
661 dn->node_page = NULL;
662 if (err == -ENOENT) {
663 dn->cur_level = i;
664 dn->max_level = level;
665 dn->ofs_in_node = offset[level];
667 return err;
670 static void truncate_node(struct dnode_of_data *dn)
672 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
673 struct node_info ni;
675 get_node_info(sbi, dn->nid, &ni);
676 if (dn->inode->i_blocks == 0) {
677 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
678 goto invalidate;
680 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
682 /* Deallocate node address */
683 invalidate_blocks(sbi, ni.blk_addr);
684 dec_valid_node_count(sbi, dn->inode);
685 set_node_addr(sbi, &ni, NULL_ADDR, false);
687 if (dn->nid == dn->inode->i_ino) {
688 remove_orphan_inode(sbi, dn->nid);
689 dec_valid_inode_count(sbi);
690 f2fs_inode_synced(dn->inode);
692 invalidate:
693 clear_node_page_dirty(dn->node_page);
694 set_sbi_flag(sbi, SBI_IS_DIRTY);
696 f2fs_put_page(dn->node_page, 1);
698 invalidate_mapping_pages(NODE_MAPPING(sbi),
699 dn->node_page->index, dn->node_page->index);
701 dn->node_page = NULL;
702 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
705 static int truncate_dnode(struct dnode_of_data *dn)
707 struct page *page;
709 if (dn->nid == 0)
710 return 1;
712 /* get direct node */
713 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
714 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
715 return 1;
716 else if (IS_ERR(page))
717 return PTR_ERR(page);
719 /* Make dnode_of_data for parameter */
720 dn->node_page = page;
721 dn->ofs_in_node = 0;
722 truncate_data_blocks(dn);
723 truncate_node(dn);
724 return 1;
727 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
728 int ofs, int depth)
730 struct dnode_of_data rdn = *dn;
731 struct page *page;
732 struct f2fs_node *rn;
733 nid_t child_nid;
734 unsigned int child_nofs;
735 int freed = 0;
736 int i, ret;
738 if (dn->nid == 0)
739 return NIDS_PER_BLOCK + 1;
741 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
743 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
744 if (IS_ERR(page)) {
745 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
746 return PTR_ERR(page);
749 ra_node_pages(page, ofs, NIDS_PER_BLOCK);
751 rn = F2FS_NODE(page);
752 if (depth < 3) {
753 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
754 child_nid = le32_to_cpu(rn->in.nid[i]);
755 if (child_nid == 0)
756 continue;
757 rdn.nid = child_nid;
758 ret = truncate_dnode(&rdn);
759 if (ret < 0)
760 goto out_err;
761 if (set_nid(page, i, 0, false))
762 dn->node_changed = true;
764 } else {
765 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
766 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
767 child_nid = le32_to_cpu(rn->in.nid[i]);
768 if (child_nid == 0) {
769 child_nofs += NIDS_PER_BLOCK + 1;
770 continue;
772 rdn.nid = child_nid;
773 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
774 if (ret == (NIDS_PER_BLOCK + 1)) {
775 if (set_nid(page, i, 0, false))
776 dn->node_changed = true;
777 child_nofs += ret;
778 } else if (ret < 0 && ret != -ENOENT) {
779 goto out_err;
782 freed = child_nofs;
785 if (!ofs) {
786 /* remove current indirect node */
787 dn->node_page = page;
788 truncate_node(dn);
789 freed++;
790 } else {
791 f2fs_put_page(page, 1);
793 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
794 return freed;
796 out_err:
797 f2fs_put_page(page, 1);
798 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
799 return ret;
802 static int truncate_partial_nodes(struct dnode_of_data *dn,
803 struct f2fs_inode *ri, int *offset, int depth)
805 struct page *pages[2];
806 nid_t nid[3];
807 nid_t child_nid;
808 int err = 0;
809 int i;
810 int idx = depth - 2;
812 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
813 if (!nid[0])
814 return 0;
816 /* get indirect nodes in the path */
817 for (i = 0; i < idx + 1; i++) {
818 /* reference count'll be increased */
819 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
820 if (IS_ERR(pages[i])) {
821 err = PTR_ERR(pages[i]);
822 idx = i - 1;
823 goto fail;
825 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
828 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
830 /* free direct nodes linked to a partial indirect node */
831 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
832 child_nid = get_nid(pages[idx], i, false);
833 if (!child_nid)
834 continue;
835 dn->nid = child_nid;
836 err = truncate_dnode(dn);
837 if (err < 0)
838 goto fail;
839 if (set_nid(pages[idx], i, 0, false))
840 dn->node_changed = true;
843 if (offset[idx + 1] == 0) {
844 dn->node_page = pages[idx];
845 dn->nid = nid[idx];
846 truncate_node(dn);
847 } else {
848 f2fs_put_page(pages[idx], 1);
850 offset[idx]++;
851 offset[idx + 1] = 0;
852 idx--;
853 fail:
854 for (i = idx; i >= 0; i--)
855 f2fs_put_page(pages[i], 1);
857 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
859 return err;
863 * All the block addresses of data and nodes should be nullified.
865 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
867 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
868 int err = 0, cont = 1;
869 int level, offset[4], noffset[4];
870 unsigned int nofs = 0;
871 struct f2fs_inode *ri;
872 struct dnode_of_data dn;
873 struct page *page;
875 trace_f2fs_truncate_inode_blocks_enter(inode, from);
877 level = get_node_path(inode, from, offset, noffset);
879 page = get_node_page(sbi, inode->i_ino);
880 if (IS_ERR(page)) {
881 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
882 return PTR_ERR(page);
885 set_new_dnode(&dn, inode, page, NULL, 0);
886 unlock_page(page);
888 ri = F2FS_INODE(page);
889 switch (level) {
890 case 0:
891 case 1:
892 nofs = noffset[1];
893 break;
894 case 2:
895 nofs = noffset[1];
896 if (!offset[level - 1])
897 goto skip_partial;
898 err = truncate_partial_nodes(&dn, ri, offset, level);
899 if (err < 0 && err != -ENOENT)
900 goto fail;
901 nofs += 1 + NIDS_PER_BLOCK;
902 break;
903 case 3:
904 nofs = 5 + 2 * NIDS_PER_BLOCK;
905 if (!offset[level - 1])
906 goto skip_partial;
907 err = truncate_partial_nodes(&dn, ri, offset, level);
908 if (err < 0 && err != -ENOENT)
909 goto fail;
910 break;
911 default:
912 BUG();
915 skip_partial:
916 while (cont) {
917 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
918 switch (offset[0]) {
919 case NODE_DIR1_BLOCK:
920 case NODE_DIR2_BLOCK:
921 err = truncate_dnode(&dn);
922 break;
924 case NODE_IND1_BLOCK:
925 case NODE_IND2_BLOCK:
926 err = truncate_nodes(&dn, nofs, offset[1], 2);
927 break;
929 case NODE_DIND_BLOCK:
930 err = truncate_nodes(&dn, nofs, offset[1], 3);
931 cont = 0;
932 break;
934 default:
935 BUG();
937 if (err < 0 && err != -ENOENT)
938 goto fail;
939 if (offset[1] == 0 &&
940 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
941 lock_page(page);
942 BUG_ON(page->mapping != NODE_MAPPING(sbi));
943 f2fs_wait_on_page_writeback(page, NODE, true);
944 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
945 set_page_dirty(page);
946 unlock_page(page);
948 offset[1] = 0;
949 offset[0]++;
950 nofs += err;
952 fail:
953 f2fs_put_page(page, 0);
954 trace_f2fs_truncate_inode_blocks_exit(inode, err);
955 return err > 0 ? 0 : err;
958 int truncate_xattr_node(struct inode *inode, struct page *page)
960 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
961 nid_t nid = F2FS_I(inode)->i_xattr_nid;
962 struct dnode_of_data dn;
963 struct page *npage;
965 if (!nid)
966 return 0;
968 npage = get_node_page(sbi, nid);
969 if (IS_ERR(npage))
970 return PTR_ERR(npage);
972 f2fs_i_xnid_write(inode, 0);
974 set_new_dnode(&dn, inode, page, npage, nid);
976 if (page)
977 dn.inode_page_locked = true;
978 truncate_node(&dn);
979 return 0;
983 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
984 * f2fs_unlock_op().
986 int remove_inode_page(struct inode *inode)
988 struct dnode_of_data dn;
989 int err;
991 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
992 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
993 if (err)
994 return err;
996 err = truncate_xattr_node(inode, dn.inode_page);
997 if (err) {
998 f2fs_put_dnode(&dn);
999 return err;
1002 /* remove potential inline_data blocks */
1003 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1004 S_ISLNK(inode->i_mode))
1005 truncate_data_blocks_range(&dn, 1);
1007 /* 0 is possible, after f2fs_new_inode() has failed */
1008 f2fs_bug_on(F2FS_I_SB(inode),
1009 inode->i_blocks != 0 && inode->i_blocks != 1);
1011 /* will put inode & node pages */
1012 truncate_node(&dn);
1013 return 0;
1016 struct page *new_inode_page(struct inode *inode)
1018 struct dnode_of_data dn;
1020 /* allocate inode page for new inode */
1021 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1023 /* caller should f2fs_put_page(page, 1); */
1024 return new_node_page(&dn, 0, NULL);
1027 struct page *new_node_page(struct dnode_of_data *dn,
1028 unsigned int ofs, struct page *ipage)
1030 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1031 struct node_info new_ni;
1032 struct page *page;
1033 int err;
1035 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1036 return ERR_PTR(-EPERM);
1038 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1039 if (!page)
1040 return ERR_PTR(-ENOMEM);
1042 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1043 err = -ENOSPC;
1044 goto fail;
1046 #ifdef CONFIG_F2FS_CHECK_FS
1047 get_node_info(sbi, dn->nid, &new_ni);
1048 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1049 #endif
1050 new_ni.nid = dn->nid;
1051 new_ni.ino = dn->inode->i_ino;
1052 new_ni.blk_addr = NULL_ADDR;
1053 new_ni.flag = 0;
1054 new_ni.version = 0;
1055 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1057 f2fs_wait_on_page_writeback(page, NODE, true);
1058 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1059 set_cold_node(dn->inode, page);
1060 if (!PageUptodate(page))
1061 SetPageUptodate(page);
1062 if (set_page_dirty(page))
1063 dn->node_changed = true;
1065 if (f2fs_has_xattr_block(ofs))
1066 f2fs_i_xnid_write(dn->inode, dn->nid);
1068 if (ofs == 0)
1069 inc_valid_inode_count(sbi);
1070 return page;
1072 fail:
1073 clear_node_page_dirty(page);
1074 f2fs_put_page(page, 1);
1075 return ERR_PTR(err);
1079 * Caller should do after getting the following values.
1080 * 0: f2fs_put_page(page, 0)
1081 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1083 static int read_node_page(struct page *page, int op_flags)
1085 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1086 struct node_info ni;
1087 struct f2fs_io_info fio = {
1088 .sbi = sbi,
1089 .type = NODE,
1090 .op = REQ_OP_READ,
1091 .op_flags = op_flags,
1092 .page = page,
1093 .encrypted_page = NULL,
1096 if (PageUptodate(page))
1097 return LOCKED_PAGE;
1099 get_node_info(sbi, page->index, &ni);
1101 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1102 ClearPageUptodate(page);
1103 return -ENOENT;
1106 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1107 return f2fs_submit_page_bio(&fio);
1111 * Readahead a node page
1113 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1115 struct page *apage;
1116 int err;
1118 if (!nid)
1119 return;
1120 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1122 rcu_read_lock();
1123 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1124 rcu_read_unlock();
1125 if (apage)
1126 return;
1128 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1129 if (!apage)
1130 return;
1132 err = read_node_page(apage, REQ_RAHEAD);
1133 f2fs_put_page(apage, err ? 1 : 0);
1136 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1137 struct page *parent, int start)
1139 struct page *page;
1140 int err;
1142 if (!nid)
1143 return ERR_PTR(-ENOENT);
1144 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1145 repeat:
1146 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1147 if (!page)
1148 return ERR_PTR(-ENOMEM);
1150 err = read_node_page(page, 0);
1151 if (err < 0) {
1152 f2fs_put_page(page, 1);
1153 return ERR_PTR(err);
1154 } else if (err == LOCKED_PAGE) {
1155 goto page_hit;
1158 if (parent)
1159 ra_node_pages(parent, start + 1, MAX_RA_NODE);
1161 lock_page(page);
1163 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1164 f2fs_put_page(page, 1);
1165 goto repeat;
1168 if (unlikely(!PageUptodate(page)))
1169 goto out_err;
1170 page_hit:
1171 if(unlikely(nid != nid_of_node(page))) {
1172 f2fs_bug_on(sbi, 1);
1173 ClearPageUptodate(page);
1174 out_err:
1175 f2fs_put_page(page, 1);
1176 return ERR_PTR(-EIO);
1178 return page;
1181 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1183 return __get_node_page(sbi, nid, NULL, 0);
1186 struct page *get_node_page_ra(struct page *parent, int start)
1188 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1189 nid_t nid = get_nid(parent, start, false);
1191 return __get_node_page(sbi, nid, parent, start);
1194 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1196 struct inode *inode;
1197 struct page *page;
1198 int ret;
1200 /* should flush inline_data before evict_inode */
1201 inode = ilookup(sbi->sb, ino);
1202 if (!inode)
1203 return;
1205 page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1206 if (!page)
1207 goto iput_out;
1209 if (!PageUptodate(page))
1210 goto page_out;
1212 if (!PageDirty(page))
1213 goto page_out;
1215 if (!clear_page_dirty_for_io(page))
1216 goto page_out;
1218 ret = f2fs_write_inline_data(inode, page);
1219 inode_dec_dirty_pages(inode);
1220 remove_dirty_inode(inode);
1221 if (ret)
1222 set_page_dirty(page);
1223 page_out:
1224 f2fs_put_page(page, 1);
1225 iput_out:
1226 iput(inode);
1229 void move_node_page(struct page *node_page, int gc_type)
1231 if (gc_type == FG_GC) {
1232 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1233 struct writeback_control wbc = {
1234 .sync_mode = WB_SYNC_ALL,
1235 .nr_to_write = 1,
1236 .for_reclaim = 0,
1239 set_page_dirty(node_page);
1240 f2fs_wait_on_page_writeback(node_page, NODE, true);
1242 f2fs_bug_on(sbi, PageWriteback(node_page));
1243 if (!clear_page_dirty_for_io(node_page))
1244 goto out_page;
1246 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1247 unlock_page(node_page);
1248 goto release_page;
1249 } else {
1250 /* set page dirty and write it */
1251 if (!PageWriteback(node_page))
1252 set_page_dirty(node_page);
1254 out_page:
1255 unlock_page(node_page);
1256 release_page:
1257 f2fs_put_page(node_page, 0);
1260 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1262 pgoff_t index, end;
1263 struct pagevec pvec;
1264 struct page *last_page = NULL;
1266 pagevec_init(&pvec, 0);
1267 index = 0;
1268 end = ULONG_MAX;
1270 while (index <= end) {
1271 int i, nr_pages;
1272 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1273 PAGECACHE_TAG_DIRTY,
1274 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1275 if (nr_pages == 0)
1276 break;
1278 for (i = 0; i < nr_pages; i++) {
1279 struct page *page = pvec.pages[i];
1281 if (unlikely(f2fs_cp_error(sbi))) {
1282 f2fs_put_page(last_page, 0);
1283 pagevec_release(&pvec);
1284 return ERR_PTR(-EIO);
1287 if (!IS_DNODE(page) || !is_cold_node(page))
1288 continue;
1289 if (ino_of_node(page) != ino)
1290 continue;
1292 lock_page(page);
1294 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1295 continue_unlock:
1296 unlock_page(page);
1297 continue;
1299 if (ino_of_node(page) != ino)
1300 goto continue_unlock;
1302 if (!PageDirty(page)) {
1303 /* someone wrote it for us */
1304 goto continue_unlock;
1307 if (last_page)
1308 f2fs_put_page(last_page, 0);
1310 get_page(page);
1311 last_page = page;
1312 unlock_page(page);
1314 pagevec_release(&pvec);
1315 cond_resched();
1317 return last_page;
1320 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1321 struct writeback_control *wbc)
1323 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1324 nid_t nid;
1325 struct node_info ni;
1326 struct f2fs_io_info fio = {
1327 .sbi = sbi,
1328 .type = NODE,
1329 .op = REQ_OP_WRITE,
1330 .op_flags = wbc_to_write_flags(wbc),
1331 .page = page,
1332 .encrypted_page = NULL,
1333 .submitted = false,
1336 trace_f2fs_writepage(page, NODE);
1338 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1339 goto redirty_out;
1340 if (unlikely(f2fs_cp_error(sbi)))
1341 goto redirty_out;
1343 /* get old block addr of this node page */
1344 nid = nid_of_node(page);
1345 f2fs_bug_on(sbi, page->index != nid);
1347 if (wbc->for_reclaim) {
1348 if (!down_read_trylock(&sbi->node_write))
1349 goto redirty_out;
1350 } else {
1351 down_read(&sbi->node_write);
1354 get_node_info(sbi, nid, &ni);
1356 /* This page is already truncated */
1357 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1358 ClearPageUptodate(page);
1359 dec_page_count(sbi, F2FS_DIRTY_NODES);
1360 up_read(&sbi->node_write);
1361 unlock_page(page);
1362 return 0;
1365 if (atomic && !test_opt(sbi, NOBARRIER))
1366 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1368 set_page_writeback(page);
1369 fio.old_blkaddr = ni.blk_addr;
1370 write_node_page(nid, &fio);
1371 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1372 dec_page_count(sbi, F2FS_DIRTY_NODES);
1373 up_read(&sbi->node_write);
1375 if (wbc->for_reclaim) {
1376 f2fs_submit_merged_bio_cond(sbi, page->mapping->host, 0,
1377 page->index, NODE, WRITE);
1378 submitted = NULL;
1381 unlock_page(page);
1383 if (unlikely(f2fs_cp_error(sbi))) {
1384 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1385 submitted = NULL;
1387 if (submitted)
1388 *submitted = fio.submitted;
1390 return 0;
1392 redirty_out:
1393 redirty_page_for_writepage(wbc, page);
1394 return AOP_WRITEPAGE_ACTIVATE;
1397 static int f2fs_write_node_page(struct page *page,
1398 struct writeback_control *wbc)
1400 return __write_node_page(page, false, NULL, wbc);
1403 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1404 struct writeback_control *wbc, bool atomic)
1406 pgoff_t index, end;
1407 pgoff_t last_idx = ULONG_MAX;
1408 struct pagevec pvec;
1409 int ret = 0;
1410 struct page *last_page = NULL;
1411 bool marked = false;
1412 nid_t ino = inode->i_ino;
1414 if (atomic) {
1415 last_page = last_fsync_dnode(sbi, ino);
1416 if (IS_ERR_OR_NULL(last_page))
1417 return PTR_ERR_OR_ZERO(last_page);
1419 retry:
1420 pagevec_init(&pvec, 0);
1421 index = 0;
1422 end = ULONG_MAX;
1424 while (index <= end) {
1425 int i, nr_pages;
1426 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1427 PAGECACHE_TAG_DIRTY,
1428 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1429 if (nr_pages == 0)
1430 break;
1432 for (i = 0; i < nr_pages; i++) {
1433 struct page *page = pvec.pages[i];
1434 bool submitted = false;
1436 if (unlikely(f2fs_cp_error(sbi))) {
1437 f2fs_put_page(last_page, 0);
1438 pagevec_release(&pvec);
1439 ret = -EIO;
1440 goto out;
1443 if (!IS_DNODE(page) || !is_cold_node(page))
1444 continue;
1445 if (ino_of_node(page) != ino)
1446 continue;
1448 lock_page(page);
1450 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1451 continue_unlock:
1452 unlock_page(page);
1453 continue;
1455 if (ino_of_node(page) != ino)
1456 goto continue_unlock;
1458 if (!PageDirty(page) && page != last_page) {
1459 /* someone wrote it for us */
1460 goto continue_unlock;
1463 f2fs_wait_on_page_writeback(page, NODE, true);
1464 BUG_ON(PageWriteback(page));
1466 if (!atomic || page == last_page) {
1467 set_fsync_mark(page, 1);
1468 if (IS_INODE(page)) {
1469 if (is_inode_flag_set(inode,
1470 FI_DIRTY_INODE))
1471 update_inode(inode, page);
1472 set_dentry_mark(page,
1473 need_dentry_mark(sbi, ino));
1475 /* may be written by other thread */
1476 if (!PageDirty(page))
1477 set_page_dirty(page);
1480 if (!clear_page_dirty_for_io(page))
1481 goto continue_unlock;
1483 ret = __write_node_page(page, atomic &&
1484 page == last_page,
1485 &submitted, wbc);
1486 if (ret) {
1487 unlock_page(page);
1488 f2fs_put_page(last_page, 0);
1489 break;
1490 } else if (submitted) {
1491 last_idx = page->index;
1494 if (page == last_page) {
1495 f2fs_put_page(page, 0);
1496 marked = true;
1497 break;
1500 pagevec_release(&pvec);
1501 cond_resched();
1503 if (ret || marked)
1504 break;
1506 if (!ret && atomic && !marked) {
1507 f2fs_msg(sbi->sb, KERN_DEBUG,
1508 "Retry to write fsync mark: ino=%u, idx=%lx",
1509 ino, last_page->index);
1510 lock_page(last_page);
1511 f2fs_wait_on_page_writeback(last_page, NODE, true);
1512 set_page_dirty(last_page);
1513 unlock_page(last_page);
1514 goto retry;
1516 out:
1517 if (last_idx != ULONG_MAX)
1518 f2fs_submit_merged_bio_cond(sbi, NULL, ino, last_idx,
1519 NODE, WRITE);
1520 return ret ? -EIO: 0;
1523 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1525 pgoff_t index, end;
1526 struct pagevec pvec;
1527 int step = 0;
1528 int nwritten = 0;
1529 int ret = 0;
1531 pagevec_init(&pvec, 0);
1533 next_step:
1534 index = 0;
1535 end = ULONG_MAX;
1537 while (index <= end) {
1538 int i, nr_pages;
1539 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1540 PAGECACHE_TAG_DIRTY,
1541 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1542 if (nr_pages == 0)
1543 break;
1545 for (i = 0; i < nr_pages; i++) {
1546 struct page *page = pvec.pages[i];
1547 bool submitted = false;
1549 if (unlikely(f2fs_cp_error(sbi))) {
1550 pagevec_release(&pvec);
1551 ret = -EIO;
1552 goto out;
1556 * flushing sequence with step:
1557 * 0. indirect nodes
1558 * 1. dentry dnodes
1559 * 2. file dnodes
1561 if (step == 0 && IS_DNODE(page))
1562 continue;
1563 if (step == 1 && (!IS_DNODE(page) ||
1564 is_cold_node(page)))
1565 continue;
1566 if (step == 2 && (!IS_DNODE(page) ||
1567 !is_cold_node(page)))
1568 continue;
1569 lock_node:
1570 if (!trylock_page(page))
1571 continue;
1573 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1574 continue_unlock:
1575 unlock_page(page);
1576 continue;
1579 if (!PageDirty(page)) {
1580 /* someone wrote it for us */
1581 goto continue_unlock;
1584 /* flush inline_data */
1585 if (is_inline_node(page)) {
1586 clear_inline_node(page);
1587 unlock_page(page);
1588 flush_inline_data(sbi, ino_of_node(page));
1589 goto lock_node;
1592 f2fs_wait_on_page_writeback(page, NODE, true);
1594 BUG_ON(PageWriteback(page));
1595 if (!clear_page_dirty_for_io(page))
1596 goto continue_unlock;
1598 set_fsync_mark(page, 0);
1599 set_dentry_mark(page, 0);
1601 ret = __write_node_page(page, false, &submitted, wbc);
1602 if (ret)
1603 unlock_page(page);
1604 else if (submitted)
1605 nwritten++;
1607 if (--wbc->nr_to_write == 0)
1608 break;
1610 pagevec_release(&pvec);
1611 cond_resched();
1613 if (wbc->nr_to_write == 0) {
1614 step = 2;
1615 break;
1619 if (step < 2) {
1620 step++;
1621 goto next_step;
1623 out:
1624 if (nwritten)
1625 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1626 return ret;
1629 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1631 pgoff_t index = 0, end = ULONG_MAX;
1632 struct pagevec pvec;
1633 int ret2, ret = 0;
1635 pagevec_init(&pvec, 0);
1637 while (index <= end) {
1638 int i, nr_pages;
1639 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1640 PAGECACHE_TAG_WRITEBACK,
1641 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1642 if (nr_pages == 0)
1643 break;
1645 for (i = 0; i < nr_pages; i++) {
1646 struct page *page = pvec.pages[i];
1648 /* until radix tree lookup accepts end_index */
1649 if (unlikely(page->index > end))
1650 continue;
1652 if (ino && ino_of_node(page) == ino) {
1653 f2fs_wait_on_page_writeback(page, NODE, true);
1654 if (TestClearPageError(page))
1655 ret = -EIO;
1658 pagevec_release(&pvec);
1659 cond_resched();
1662 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1663 if (!ret)
1664 ret = ret2;
1665 return ret;
1668 static int f2fs_write_node_pages(struct address_space *mapping,
1669 struct writeback_control *wbc)
1671 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1672 struct blk_plug plug;
1673 long diff;
1675 /* balancing f2fs's metadata in background */
1676 f2fs_balance_fs_bg(sbi);
1678 /* collect a number of dirty node pages and write together */
1679 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1680 goto skip_write;
1682 trace_f2fs_writepages(mapping->host, wbc, NODE);
1684 diff = nr_pages_to_write(sbi, NODE, wbc);
1685 wbc->sync_mode = WB_SYNC_NONE;
1686 blk_start_plug(&plug);
1687 sync_node_pages(sbi, wbc);
1688 blk_finish_plug(&plug);
1689 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1690 return 0;
1692 skip_write:
1693 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1694 trace_f2fs_writepages(mapping->host, wbc, NODE);
1695 return 0;
1698 static int f2fs_set_node_page_dirty(struct page *page)
1700 trace_f2fs_set_page_dirty(page, NODE);
1702 if (!PageUptodate(page))
1703 SetPageUptodate(page);
1704 if (!PageDirty(page)) {
1705 f2fs_set_page_dirty_nobuffers(page);
1706 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1707 SetPagePrivate(page);
1708 f2fs_trace_pid(page);
1709 return 1;
1711 return 0;
1715 * Structure of the f2fs node operations
1717 const struct address_space_operations f2fs_node_aops = {
1718 .writepage = f2fs_write_node_page,
1719 .writepages = f2fs_write_node_pages,
1720 .set_page_dirty = f2fs_set_node_page_dirty,
1721 .invalidatepage = f2fs_invalidate_page,
1722 .releasepage = f2fs_release_page,
1723 #ifdef CONFIG_MIGRATION
1724 .migratepage = f2fs_migrate_page,
1725 #endif
1728 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1729 nid_t n)
1731 return radix_tree_lookup(&nm_i->free_nid_root, n);
1734 static int __insert_nid_to_list(struct f2fs_sb_info *sbi,
1735 struct free_nid *i, enum nid_list list, bool new)
1737 struct f2fs_nm_info *nm_i = NM_I(sbi);
1739 if (new) {
1740 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1741 if (err)
1742 return err;
1745 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1746 i->state != NID_ALLOC);
1747 nm_i->nid_cnt[list]++;
1748 list_add_tail(&i->list, &nm_i->nid_list[list]);
1749 return 0;
1752 static void __remove_nid_from_list(struct f2fs_sb_info *sbi,
1753 struct free_nid *i, enum nid_list list, bool reuse)
1755 struct f2fs_nm_info *nm_i = NM_I(sbi);
1757 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1758 i->state != NID_ALLOC);
1759 nm_i->nid_cnt[list]--;
1760 list_del(&i->list);
1761 if (!reuse)
1762 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1765 /* return if the nid is recognized as free */
1766 static bool add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1768 struct f2fs_nm_info *nm_i = NM_I(sbi);
1769 struct free_nid *i;
1770 struct nat_entry *ne;
1771 int err;
1773 /* 0 nid should not be used */
1774 if (unlikely(nid == 0))
1775 return false;
1777 if (build) {
1778 /* do not add allocated nids */
1779 ne = __lookup_nat_cache(nm_i, nid);
1780 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1781 nat_get_blkaddr(ne) != NULL_ADDR))
1782 return false;
1785 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1786 i->nid = nid;
1787 i->state = NID_NEW;
1789 if (radix_tree_preload(GFP_NOFS)) {
1790 kmem_cache_free(free_nid_slab, i);
1791 return true;
1794 spin_lock(&nm_i->nid_list_lock);
1795 err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true);
1796 spin_unlock(&nm_i->nid_list_lock);
1797 radix_tree_preload_end();
1798 if (err) {
1799 kmem_cache_free(free_nid_slab, i);
1800 return true;
1802 return true;
1805 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1807 struct f2fs_nm_info *nm_i = NM_I(sbi);
1808 struct free_nid *i;
1809 bool need_free = false;
1811 spin_lock(&nm_i->nid_list_lock);
1812 i = __lookup_free_nid_list(nm_i, nid);
1813 if (i && i->state == NID_NEW) {
1814 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
1815 need_free = true;
1817 spin_unlock(&nm_i->nid_list_lock);
1819 if (need_free)
1820 kmem_cache_free(free_nid_slab, i);
1823 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
1824 bool set, bool build, bool locked)
1826 struct f2fs_nm_info *nm_i = NM_I(sbi);
1827 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1828 unsigned int nid_ofs = nid - START_NID(nid);
1830 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1831 return;
1833 if (set)
1834 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1835 else
1836 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1838 if (!locked)
1839 spin_lock(&nm_i->free_nid_lock);
1840 if (set)
1841 nm_i->free_nid_count[nat_ofs]++;
1842 else if (!build)
1843 nm_i->free_nid_count[nat_ofs]--;
1844 if (!locked)
1845 spin_unlock(&nm_i->free_nid_lock);
1848 static void scan_nat_page(struct f2fs_sb_info *sbi,
1849 struct page *nat_page, nid_t start_nid)
1851 struct f2fs_nm_info *nm_i = NM_I(sbi);
1852 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1853 block_t blk_addr;
1854 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1855 int i;
1857 if (test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1858 return;
1860 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1862 i = start_nid % NAT_ENTRY_PER_BLOCK;
1864 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1865 bool freed = false;
1867 if (unlikely(start_nid >= nm_i->max_nid))
1868 break;
1870 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1871 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1872 if (blk_addr == NULL_ADDR)
1873 freed = add_free_nid(sbi, start_nid, true);
1874 update_free_nid_bitmap(sbi, start_nid, freed, true, false);
1878 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
1880 struct f2fs_nm_info *nm_i = NM_I(sbi);
1881 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1882 struct f2fs_journal *journal = curseg->journal;
1883 unsigned int i, idx;
1885 down_read(&nm_i->nat_tree_lock);
1887 for (i = 0; i < nm_i->nat_blocks; i++) {
1888 if (!test_bit_le(i, nm_i->nat_block_bitmap))
1889 continue;
1890 if (!nm_i->free_nid_count[i])
1891 continue;
1892 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
1893 nid_t nid;
1895 if (!test_bit_le(idx, nm_i->free_nid_bitmap[i]))
1896 continue;
1898 nid = i * NAT_ENTRY_PER_BLOCK + idx;
1899 add_free_nid(sbi, nid, true);
1901 if (nm_i->nid_cnt[FREE_NID_LIST] >= MAX_FREE_NIDS)
1902 goto out;
1905 out:
1906 down_read(&curseg->journal_rwsem);
1907 for (i = 0; i < nats_in_cursum(journal); i++) {
1908 block_t addr;
1909 nid_t nid;
1911 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1912 nid = le32_to_cpu(nid_in_journal(journal, i));
1913 if (addr == NULL_ADDR)
1914 add_free_nid(sbi, nid, true);
1915 else
1916 remove_free_nid(sbi, nid);
1918 up_read(&curseg->journal_rwsem);
1919 up_read(&nm_i->nat_tree_lock);
1922 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
1924 struct f2fs_nm_info *nm_i = NM_I(sbi);
1925 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1926 struct f2fs_journal *journal = curseg->journal;
1927 int i = 0;
1928 nid_t nid = nm_i->next_scan_nid;
1930 /* Enough entries */
1931 if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK)
1932 return;
1934 if (!sync && !available_free_memory(sbi, FREE_NIDS))
1935 return;
1937 if (!mount) {
1938 /* try to find free nids in free_nid_bitmap */
1939 scan_free_nid_bits(sbi);
1941 if (nm_i->nid_cnt[FREE_NID_LIST])
1942 return;
1945 /* readahead nat pages to be scanned */
1946 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1947 META_NAT, true);
1949 down_read(&nm_i->nat_tree_lock);
1951 while (1) {
1952 struct page *page = get_current_nat_page(sbi, nid);
1954 scan_nat_page(sbi, page, nid);
1955 f2fs_put_page(page, 1);
1957 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1958 if (unlikely(nid >= nm_i->max_nid))
1959 nid = 0;
1961 if (++i >= FREE_NID_PAGES)
1962 break;
1965 /* go to the next free nat pages to find free nids abundantly */
1966 nm_i->next_scan_nid = nid;
1968 /* find free nids from current sum_pages */
1969 down_read(&curseg->journal_rwsem);
1970 for (i = 0; i < nats_in_cursum(journal); i++) {
1971 block_t addr;
1973 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1974 nid = le32_to_cpu(nid_in_journal(journal, i));
1975 if (addr == NULL_ADDR)
1976 add_free_nid(sbi, nid, true);
1977 else
1978 remove_free_nid(sbi, nid);
1980 up_read(&curseg->journal_rwsem);
1981 up_read(&nm_i->nat_tree_lock);
1983 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1984 nm_i->ra_nid_pages, META_NAT, false);
1987 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
1989 mutex_lock(&NM_I(sbi)->build_lock);
1990 __build_free_nids(sbi, sync, mount);
1991 mutex_unlock(&NM_I(sbi)->build_lock);
1995 * If this function returns success, caller can obtain a new nid
1996 * from second parameter of this function.
1997 * The returned nid could be used ino as well as nid when inode is created.
1999 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2001 struct f2fs_nm_info *nm_i = NM_I(sbi);
2002 struct free_nid *i = NULL;
2003 retry:
2004 #ifdef CONFIG_F2FS_FAULT_INJECTION
2005 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2006 f2fs_show_injection_info(FAULT_ALLOC_NID);
2007 return false;
2009 #endif
2010 spin_lock(&nm_i->nid_list_lock);
2012 if (unlikely(nm_i->available_nids == 0)) {
2013 spin_unlock(&nm_i->nid_list_lock);
2014 return false;
2017 /* We should not use stale free nids created by build_free_nids */
2018 if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) {
2019 f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST]));
2020 i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST],
2021 struct free_nid, list);
2022 *nid = i->nid;
2024 __remove_nid_from_list(sbi, i, FREE_NID_LIST, true);
2025 i->state = NID_ALLOC;
2026 __insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false);
2027 nm_i->available_nids--;
2029 update_free_nid_bitmap(sbi, *nid, false, false, false);
2031 spin_unlock(&nm_i->nid_list_lock);
2032 return true;
2034 spin_unlock(&nm_i->nid_list_lock);
2036 /* Let's scan nat pages and its caches to get free nids */
2037 build_free_nids(sbi, true, false);
2038 goto retry;
2042 * alloc_nid() should be called prior to this function.
2044 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2046 struct f2fs_nm_info *nm_i = NM_I(sbi);
2047 struct free_nid *i;
2049 spin_lock(&nm_i->nid_list_lock);
2050 i = __lookup_free_nid_list(nm_i, nid);
2051 f2fs_bug_on(sbi, !i);
2052 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
2053 spin_unlock(&nm_i->nid_list_lock);
2055 kmem_cache_free(free_nid_slab, i);
2059 * alloc_nid() should be called prior to this function.
2061 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2063 struct f2fs_nm_info *nm_i = NM_I(sbi);
2064 struct free_nid *i;
2065 bool need_free = false;
2067 if (!nid)
2068 return;
2070 spin_lock(&nm_i->nid_list_lock);
2071 i = __lookup_free_nid_list(nm_i, nid);
2072 f2fs_bug_on(sbi, !i);
2074 if (!available_free_memory(sbi, FREE_NIDS)) {
2075 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
2076 need_free = true;
2077 } else {
2078 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true);
2079 i->state = NID_NEW;
2080 __insert_nid_to_list(sbi, i, FREE_NID_LIST, false);
2083 nm_i->available_nids++;
2085 update_free_nid_bitmap(sbi, nid, true, false, false);
2087 spin_unlock(&nm_i->nid_list_lock);
2089 if (need_free)
2090 kmem_cache_free(free_nid_slab, i);
2093 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2095 struct f2fs_nm_info *nm_i = NM_I(sbi);
2096 struct free_nid *i, *next;
2097 int nr = nr_shrink;
2099 if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
2100 return 0;
2102 if (!mutex_trylock(&nm_i->build_lock))
2103 return 0;
2105 spin_lock(&nm_i->nid_list_lock);
2106 list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST],
2107 list) {
2108 if (nr_shrink <= 0 ||
2109 nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
2110 break;
2112 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2113 kmem_cache_free(free_nid_slab, i);
2114 nr_shrink--;
2116 spin_unlock(&nm_i->nid_list_lock);
2117 mutex_unlock(&nm_i->build_lock);
2119 return nr - nr_shrink;
2122 void recover_inline_xattr(struct inode *inode, struct page *page)
2124 void *src_addr, *dst_addr;
2125 size_t inline_size;
2126 struct page *ipage;
2127 struct f2fs_inode *ri;
2129 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2130 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2132 ri = F2FS_INODE(page);
2133 if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
2134 clear_inode_flag(inode, FI_INLINE_XATTR);
2135 goto update_inode;
2138 dst_addr = inline_xattr_addr(ipage);
2139 src_addr = inline_xattr_addr(page);
2140 inline_size = inline_xattr_size(inode);
2142 f2fs_wait_on_page_writeback(ipage, NODE, true);
2143 memcpy(dst_addr, src_addr, inline_size);
2144 update_inode:
2145 update_inode(inode, ipage);
2146 f2fs_put_page(ipage, 1);
2149 int recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
2151 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2152 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2153 nid_t new_xnid = nid_of_node(page);
2154 struct node_info ni;
2155 struct page *xpage;
2157 if (!prev_xnid)
2158 goto recover_xnid;
2160 /* 1: invalidate the previous xattr nid */
2161 get_node_info(sbi, prev_xnid, &ni);
2162 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
2163 invalidate_blocks(sbi, ni.blk_addr);
2164 dec_valid_node_count(sbi, inode);
2165 set_node_addr(sbi, &ni, NULL_ADDR, false);
2167 recover_xnid:
2168 /* 2: update xattr nid in inode */
2169 remove_free_nid(sbi, new_xnid);
2170 f2fs_i_xnid_write(inode, new_xnid);
2171 if (unlikely(!inc_valid_node_count(sbi, inode)))
2172 f2fs_bug_on(sbi, 1);
2173 update_inode_page(inode);
2175 /* 3: update and set xattr node page dirty */
2176 xpage = grab_cache_page(NODE_MAPPING(sbi), new_xnid);
2177 if (!xpage)
2178 return -ENOMEM;
2180 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), PAGE_SIZE);
2182 get_node_info(sbi, new_xnid, &ni);
2183 ni.ino = inode->i_ino;
2184 set_node_addr(sbi, &ni, NEW_ADDR, false);
2185 set_page_dirty(xpage);
2186 f2fs_put_page(xpage, 1);
2188 return 0;
2191 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2193 struct f2fs_inode *src, *dst;
2194 nid_t ino = ino_of_node(page);
2195 struct node_info old_ni, new_ni;
2196 struct page *ipage;
2198 get_node_info(sbi, ino, &old_ni);
2200 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2201 return -EINVAL;
2202 retry:
2203 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2204 if (!ipage) {
2205 congestion_wait(BLK_RW_ASYNC, HZ/50);
2206 goto retry;
2209 /* Should not use this inode from free nid list */
2210 remove_free_nid(sbi, ino);
2212 if (!PageUptodate(ipage))
2213 SetPageUptodate(ipage);
2214 fill_node_footer(ipage, ino, ino, 0, true);
2216 src = F2FS_INODE(page);
2217 dst = F2FS_INODE(ipage);
2219 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2220 dst->i_size = 0;
2221 dst->i_blocks = cpu_to_le64(1);
2222 dst->i_links = cpu_to_le32(1);
2223 dst->i_xattr_nid = 0;
2224 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2226 new_ni = old_ni;
2227 new_ni.ino = ino;
2229 if (unlikely(!inc_valid_node_count(sbi, NULL)))
2230 WARN_ON(1);
2231 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2232 inc_valid_inode_count(sbi);
2233 set_page_dirty(ipage);
2234 f2fs_put_page(ipage, 1);
2235 return 0;
2238 int restore_node_summary(struct f2fs_sb_info *sbi,
2239 unsigned int segno, struct f2fs_summary_block *sum)
2241 struct f2fs_node *rn;
2242 struct f2fs_summary *sum_entry;
2243 block_t addr;
2244 int i, idx, last_offset, nrpages;
2246 /* scan the node segment */
2247 last_offset = sbi->blocks_per_seg;
2248 addr = START_BLOCK(sbi, segno);
2249 sum_entry = &sum->entries[0];
2251 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2252 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2254 /* readahead node pages */
2255 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2257 for (idx = addr; idx < addr + nrpages; idx++) {
2258 struct page *page = get_tmp_page(sbi, idx);
2260 rn = F2FS_NODE(page);
2261 sum_entry->nid = rn->footer.nid;
2262 sum_entry->version = 0;
2263 sum_entry->ofs_in_node = 0;
2264 sum_entry++;
2265 f2fs_put_page(page, 1);
2268 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2269 addr + nrpages);
2271 return 0;
2274 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2276 struct f2fs_nm_info *nm_i = NM_I(sbi);
2277 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2278 struct f2fs_journal *journal = curseg->journal;
2279 int i;
2281 down_write(&curseg->journal_rwsem);
2282 for (i = 0; i < nats_in_cursum(journal); i++) {
2283 struct nat_entry *ne;
2284 struct f2fs_nat_entry raw_ne;
2285 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2287 raw_ne = nat_in_journal(journal, i);
2289 ne = __lookup_nat_cache(nm_i, nid);
2290 if (!ne) {
2291 ne = grab_nat_entry(nm_i, nid, true);
2292 node_info_from_raw_nat(&ne->ni, &raw_ne);
2296 * if a free nat in journal has not been used after last
2297 * checkpoint, we should remove it from available nids,
2298 * since later we will add it again.
2300 if (!get_nat_flag(ne, IS_DIRTY) &&
2301 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2302 spin_lock(&nm_i->nid_list_lock);
2303 nm_i->available_nids--;
2304 spin_unlock(&nm_i->nid_list_lock);
2307 __set_nat_cache_dirty(nm_i, ne);
2309 update_nats_in_cursum(journal, -i);
2310 up_write(&curseg->journal_rwsem);
2313 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2314 struct list_head *head, int max)
2316 struct nat_entry_set *cur;
2318 if (nes->entry_cnt >= max)
2319 goto add_out;
2321 list_for_each_entry(cur, head, set_list) {
2322 if (cur->entry_cnt >= nes->entry_cnt) {
2323 list_add(&nes->set_list, cur->set_list.prev);
2324 return;
2327 add_out:
2328 list_add_tail(&nes->set_list, head);
2331 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2332 struct page *page)
2334 struct f2fs_nm_info *nm_i = NM_I(sbi);
2335 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2336 struct f2fs_nat_block *nat_blk = page_address(page);
2337 int valid = 0;
2338 int i;
2340 if (!enabled_nat_bits(sbi, NULL))
2341 return;
2343 for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) {
2344 if (start_nid == 0 && i == 0)
2345 valid++;
2346 if (nat_blk->entries[i].block_addr)
2347 valid++;
2349 if (valid == 0) {
2350 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2351 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2352 return;
2355 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2356 if (valid == NAT_ENTRY_PER_BLOCK)
2357 __set_bit_le(nat_index, nm_i->full_nat_bits);
2358 else
2359 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2362 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2363 struct nat_entry_set *set, struct cp_control *cpc)
2365 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2366 struct f2fs_journal *journal = curseg->journal;
2367 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2368 bool to_journal = true;
2369 struct f2fs_nat_block *nat_blk;
2370 struct nat_entry *ne, *cur;
2371 struct page *page = NULL;
2374 * there are two steps to flush nat entries:
2375 * #1, flush nat entries to journal in current hot data summary block.
2376 * #2, flush nat entries to nat page.
2378 if (enabled_nat_bits(sbi, cpc) ||
2379 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2380 to_journal = false;
2382 if (to_journal) {
2383 down_write(&curseg->journal_rwsem);
2384 } else {
2385 page = get_next_nat_page(sbi, start_nid);
2386 nat_blk = page_address(page);
2387 f2fs_bug_on(sbi, !nat_blk);
2390 /* flush dirty nats in nat entry set */
2391 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2392 struct f2fs_nat_entry *raw_ne;
2393 nid_t nid = nat_get_nid(ne);
2394 int offset;
2396 if (nat_get_blkaddr(ne) == NEW_ADDR)
2397 continue;
2399 if (to_journal) {
2400 offset = lookup_journal_in_cursum(journal,
2401 NAT_JOURNAL, nid, 1);
2402 f2fs_bug_on(sbi, offset < 0);
2403 raw_ne = &nat_in_journal(journal, offset);
2404 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2405 } else {
2406 raw_ne = &nat_blk->entries[nid - start_nid];
2408 raw_nat_from_node_info(raw_ne, &ne->ni);
2409 nat_reset_flag(ne);
2410 __clear_nat_cache_dirty(NM_I(sbi), ne);
2411 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2412 add_free_nid(sbi, nid, false);
2413 spin_lock(&NM_I(sbi)->nid_list_lock);
2414 NM_I(sbi)->available_nids++;
2415 update_free_nid_bitmap(sbi, nid, true, false, false);
2416 spin_unlock(&NM_I(sbi)->nid_list_lock);
2417 } else {
2418 spin_lock(&NM_I(sbi)->nid_list_lock);
2419 update_free_nid_bitmap(sbi, nid, false, false, false);
2420 spin_unlock(&NM_I(sbi)->nid_list_lock);
2424 if (to_journal) {
2425 up_write(&curseg->journal_rwsem);
2426 } else {
2427 __update_nat_bits(sbi, start_nid, page);
2428 f2fs_put_page(page, 1);
2431 f2fs_bug_on(sbi, set->entry_cnt);
2433 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2434 kmem_cache_free(nat_entry_set_slab, set);
2438 * This function is called during the checkpointing process.
2440 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2442 struct f2fs_nm_info *nm_i = NM_I(sbi);
2443 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2444 struct f2fs_journal *journal = curseg->journal;
2445 struct nat_entry_set *setvec[SETVEC_SIZE];
2446 struct nat_entry_set *set, *tmp;
2447 unsigned int found;
2448 nid_t set_idx = 0;
2449 LIST_HEAD(sets);
2451 if (!nm_i->dirty_nat_cnt)
2452 return;
2454 down_write(&nm_i->nat_tree_lock);
2457 * if there are no enough space in journal to store dirty nat
2458 * entries, remove all entries from journal and merge them
2459 * into nat entry set.
2461 if (enabled_nat_bits(sbi, cpc) ||
2462 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2463 remove_nats_in_journal(sbi);
2465 while ((found = __gang_lookup_nat_set(nm_i,
2466 set_idx, SETVEC_SIZE, setvec))) {
2467 unsigned idx;
2468 set_idx = setvec[found - 1]->set + 1;
2469 for (idx = 0; idx < found; idx++)
2470 __adjust_nat_entry_set(setvec[idx], &sets,
2471 MAX_NAT_JENTRIES(journal));
2474 /* flush dirty nats in nat entry set */
2475 list_for_each_entry_safe(set, tmp, &sets, set_list)
2476 __flush_nat_entry_set(sbi, set, cpc);
2478 up_write(&nm_i->nat_tree_lock);
2480 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2483 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2485 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2486 struct f2fs_nm_info *nm_i = NM_I(sbi);
2487 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2488 unsigned int i;
2489 __u64 cp_ver = cur_cp_version(ckpt);
2490 block_t nat_bits_addr;
2492 if (!enabled_nat_bits(sbi, NULL))
2493 return 0;
2495 nm_i->nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
2496 F2FS_BLKSIZE - 1);
2497 nm_i->nat_bits = kzalloc(nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS,
2498 GFP_KERNEL);
2499 if (!nm_i->nat_bits)
2500 return -ENOMEM;
2502 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2503 nm_i->nat_bits_blocks;
2504 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2505 struct page *page = get_meta_page(sbi, nat_bits_addr++);
2507 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2508 page_address(page), F2FS_BLKSIZE);
2509 f2fs_put_page(page, 1);
2512 cp_ver |= (cur_cp_crc(ckpt) << 32);
2513 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2514 disable_nat_bits(sbi, true);
2515 return 0;
2518 nm_i->full_nat_bits = nm_i->nat_bits + 8;
2519 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2521 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2522 return 0;
2525 inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2527 struct f2fs_nm_info *nm_i = NM_I(sbi);
2528 unsigned int i = 0;
2529 nid_t nid, last_nid;
2531 if (!enabled_nat_bits(sbi, NULL))
2532 return;
2534 for (i = 0; i < nm_i->nat_blocks; i++) {
2535 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2536 if (i >= nm_i->nat_blocks)
2537 break;
2539 __set_bit_le(i, nm_i->nat_block_bitmap);
2541 nid = i * NAT_ENTRY_PER_BLOCK;
2542 last_nid = (i + 1) * NAT_ENTRY_PER_BLOCK;
2544 spin_lock(&nm_i->free_nid_lock);
2545 for (; nid < last_nid; nid++)
2546 update_free_nid_bitmap(sbi, nid, true, true, true);
2547 spin_unlock(&nm_i->free_nid_lock);
2550 for (i = 0; i < nm_i->nat_blocks; i++) {
2551 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2552 if (i >= nm_i->nat_blocks)
2553 break;
2555 __set_bit_le(i, nm_i->nat_block_bitmap);
2559 static int init_node_manager(struct f2fs_sb_info *sbi)
2561 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2562 struct f2fs_nm_info *nm_i = NM_I(sbi);
2563 unsigned char *version_bitmap;
2564 unsigned int nat_segs;
2565 int err;
2567 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2569 /* segment_count_nat includes pair segment so divide to 2. */
2570 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2571 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2572 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2574 /* not used nids: 0, node, meta, (and root counted as valid node) */
2575 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2576 F2FS_RESERVED_NODE_NUM;
2577 nm_i->nid_cnt[FREE_NID_LIST] = 0;
2578 nm_i->nid_cnt[ALLOC_NID_LIST] = 0;
2579 nm_i->nat_cnt = 0;
2580 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2581 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2582 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2584 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2585 INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]);
2586 INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]);
2587 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2588 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2589 INIT_LIST_HEAD(&nm_i->nat_entries);
2591 mutex_init(&nm_i->build_lock);
2592 spin_lock_init(&nm_i->nid_list_lock);
2593 init_rwsem(&nm_i->nat_tree_lock);
2595 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2596 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2597 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2598 if (!version_bitmap)
2599 return -EFAULT;
2601 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2602 GFP_KERNEL);
2603 if (!nm_i->nat_bitmap)
2604 return -ENOMEM;
2606 err = __get_nat_bitmaps(sbi);
2607 if (err)
2608 return err;
2610 #ifdef CONFIG_F2FS_CHECK_FS
2611 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2612 GFP_KERNEL);
2613 if (!nm_i->nat_bitmap_mir)
2614 return -ENOMEM;
2615 #endif
2617 return 0;
2620 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2622 struct f2fs_nm_info *nm_i = NM_I(sbi);
2624 nm_i->free_nid_bitmap = f2fs_kvzalloc(nm_i->nat_blocks *
2625 NAT_ENTRY_BITMAP_SIZE, GFP_KERNEL);
2626 if (!nm_i->free_nid_bitmap)
2627 return -ENOMEM;
2629 nm_i->nat_block_bitmap = f2fs_kvzalloc(nm_i->nat_blocks / 8,
2630 GFP_KERNEL);
2631 if (!nm_i->nat_block_bitmap)
2632 return -ENOMEM;
2634 nm_i->free_nid_count = f2fs_kvzalloc(nm_i->nat_blocks *
2635 sizeof(unsigned short), GFP_KERNEL);
2636 if (!nm_i->free_nid_count)
2637 return -ENOMEM;
2639 spin_lock_init(&nm_i->free_nid_lock);
2641 return 0;
2644 int build_node_manager(struct f2fs_sb_info *sbi)
2646 int err;
2648 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2649 if (!sbi->nm_info)
2650 return -ENOMEM;
2652 err = init_node_manager(sbi);
2653 if (err)
2654 return err;
2656 err = init_free_nid_cache(sbi);
2657 if (err)
2658 return err;
2660 /* load free nid status from nat_bits table */
2661 load_free_nid_bitmap(sbi);
2663 build_free_nids(sbi, true, true);
2664 return 0;
2667 void destroy_node_manager(struct f2fs_sb_info *sbi)
2669 struct f2fs_nm_info *nm_i = NM_I(sbi);
2670 struct free_nid *i, *next_i;
2671 struct nat_entry *natvec[NATVEC_SIZE];
2672 struct nat_entry_set *setvec[SETVEC_SIZE];
2673 nid_t nid = 0;
2674 unsigned int found;
2676 if (!nm_i)
2677 return;
2679 /* destroy free nid list */
2680 spin_lock(&nm_i->nid_list_lock);
2681 list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST],
2682 list) {
2683 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2684 spin_unlock(&nm_i->nid_list_lock);
2685 kmem_cache_free(free_nid_slab, i);
2686 spin_lock(&nm_i->nid_list_lock);
2688 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]);
2689 f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]);
2690 f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST]));
2691 spin_unlock(&nm_i->nid_list_lock);
2693 /* destroy nat cache */
2694 down_write(&nm_i->nat_tree_lock);
2695 while ((found = __gang_lookup_nat_cache(nm_i,
2696 nid, NATVEC_SIZE, natvec))) {
2697 unsigned idx;
2699 nid = nat_get_nid(natvec[found - 1]) + 1;
2700 for (idx = 0; idx < found; idx++)
2701 __del_from_nat_cache(nm_i, natvec[idx]);
2703 f2fs_bug_on(sbi, nm_i->nat_cnt);
2705 /* destroy nat set cache */
2706 nid = 0;
2707 while ((found = __gang_lookup_nat_set(nm_i,
2708 nid, SETVEC_SIZE, setvec))) {
2709 unsigned idx;
2711 nid = setvec[found - 1]->set + 1;
2712 for (idx = 0; idx < found; idx++) {
2713 /* entry_cnt is not zero, when cp_error was occurred */
2714 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2715 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2716 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2719 up_write(&nm_i->nat_tree_lock);
2721 kvfree(nm_i->nat_block_bitmap);
2722 kvfree(nm_i->free_nid_bitmap);
2723 kvfree(nm_i->free_nid_count);
2725 kfree(nm_i->nat_bitmap);
2726 kfree(nm_i->nat_bits);
2727 #ifdef CONFIG_F2FS_CHECK_FS
2728 kfree(nm_i->nat_bitmap_mir);
2729 #endif
2730 sbi->nm_info = NULL;
2731 kfree(nm_i);
2734 int __init create_node_manager_caches(void)
2736 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2737 sizeof(struct nat_entry));
2738 if (!nat_entry_slab)
2739 goto fail;
2741 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2742 sizeof(struct free_nid));
2743 if (!free_nid_slab)
2744 goto destroy_nat_entry;
2746 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2747 sizeof(struct nat_entry_set));
2748 if (!nat_entry_set_slab)
2749 goto destroy_free_nid;
2750 return 0;
2752 destroy_free_nid:
2753 kmem_cache_destroy(free_nid_slab);
2754 destroy_nat_entry:
2755 kmem_cache_destroy(nat_entry_slab);
2756 fail:
2757 return -ENOMEM;
2760 void destroy_node_manager_caches(void)
2762 kmem_cache_destroy(nat_entry_set_slab);
2763 kmem_cache_destroy(free_nid_slab);
2764 kmem_cache_destroy(nat_entry_slab);