net: core: Specify skb_pad()/skb_put_padto() SKB freeing
[linux-2.6/btrfs-unstable.git] / net / core / skbuff.c
blobe0755660628407e5a1cefc9ed2c4a725f68628a0
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/sctp.h>
53 #include <linux/netdevice.h>
54 #ifdef CONFIG_NET_CLS_ACT
55 #include <net/pkt_sched.h>
56 #endif
57 #include <linux/string.h>
58 #include <linux/skbuff.h>
59 #include <linux/splice.h>
60 #include <linux/cache.h>
61 #include <linux/rtnetlink.h>
62 #include <linux/init.h>
63 #include <linux/scatterlist.h>
64 #include <linux/errqueue.h>
65 #include <linux/prefetch.h>
66 #include <linux/if_vlan.h>
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/ip6_checksum.h>
73 #include <net/xfrm.h>
75 #include <linux/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
81 struct kmem_cache *skbuff_head_cache __read_mostly;
82 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
84 EXPORT_SYMBOL(sysctl_max_skb_frags);
86 /**
87 * skb_panic - private function for out-of-line support
88 * @skb: buffer
89 * @sz: size
90 * @addr: address
91 * @msg: skb_over_panic or skb_under_panic
93 * Out-of-line support for skb_put() and skb_push().
94 * Called via the wrapper skb_over_panic() or skb_under_panic().
95 * Keep out of line to prevent kernel bloat.
96 * __builtin_return_address is not used because it is not always reliable.
98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
99 const char msg[])
101 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
102 msg, addr, skb->len, sz, skb->head, skb->data,
103 (unsigned long)skb->tail, (unsigned long)skb->end,
104 skb->dev ? skb->dev->name : "<NULL>");
105 BUG();
108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
110 skb_panic(skb, sz, addr, __func__);
113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
115 skb_panic(skb, sz, addr, __func__);
119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
120 * the caller if emergency pfmemalloc reserves are being used. If it is and
121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
122 * may be used. Otherwise, the packet data may be discarded until enough
123 * memory is free
125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
126 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
129 unsigned long ip, bool *pfmemalloc)
131 void *obj;
132 bool ret_pfmemalloc = false;
135 * Try a regular allocation, when that fails and we're not entitled
136 * to the reserves, fail.
138 obj = kmalloc_node_track_caller(size,
139 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
140 node);
141 if (obj || !(gfp_pfmemalloc_allowed(flags)))
142 goto out;
144 /* Try again but now we are using pfmemalloc reserves */
145 ret_pfmemalloc = true;
146 obj = kmalloc_node_track_caller(size, flags, node);
148 out:
149 if (pfmemalloc)
150 *pfmemalloc = ret_pfmemalloc;
152 return obj;
155 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
156 * 'private' fields and also do memory statistics to find all the
157 * [BEEP] leaks.
161 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
163 struct sk_buff *skb;
165 /* Get the HEAD */
166 skb = kmem_cache_alloc_node(skbuff_head_cache,
167 gfp_mask & ~__GFP_DMA, node);
168 if (!skb)
169 goto out;
172 * Only clear those fields we need to clear, not those that we will
173 * actually initialise below. Hence, don't put any more fields after
174 * the tail pointer in struct sk_buff!
176 memset(skb, 0, offsetof(struct sk_buff, tail));
177 skb->head = NULL;
178 skb->truesize = sizeof(struct sk_buff);
179 refcount_set(&skb->users, 1);
181 skb->mac_header = (typeof(skb->mac_header))~0U;
182 out:
183 return skb;
187 * __alloc_skb - allocate a network buffer
188 * @size: size to allocate
189 * @gfp_mask: allocation mask
190 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
191 * instead of head cache and allocate a cloned (child) skb.
192 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
193 * allocations in case the data is required for writeback
194 * @node: numa node to allocate memory on
196 * Allocate a new &sk_buff. The returned buffer has no headroom and a
197 * tail room of at least size bytes. The object has a reference count
198 * of one. The return is the buffer. On a failure the return is %NULL.
200 * Buffers may only be allocated from interrupts using a @gfp_mask of
201 * %GFP_ATOMIC.
203 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
204 int flags, int node)
206 struct kmem_cache *cache;
207 struct skb_shared_info *shinfo;
208 struct sk_buff *skb;
209 u8 *data;
210 bool pfmemalloc;
212 cache = (flags & SKB_ALLOC_FCLONE)
213 ? skbuff_fclone_cache : skbuff_head_cache;
215 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
216 gfp_mask |= __GFP_MEMALLOC;
218 /* Get the HEAD */
219 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
220 if (!skb)
221 goto out;
222 prefetchw(skb);
224 /* We do our best to align skb_shared_info on a separate cache
225 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
226 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
227 * Both skb->head and skb_shared_info are cache line aligned.
229 size = SKB_DATA_ALIGN(size);
230 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
231 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
232 if (!data)
233 goto nodata;
234 /* kmalloc(size) might give us more room than requested.
235 * Put skb_shared_info exactly at the end of allocated zone,
236 * to allow max possible filling before reallocation.
238 size = SKB_WITH_OVERHEAD(ksize(data));
239 prefetchw(data + size);
242 * Only clear those fields we need to clear, not those that we will
243 * actually initialise below. Hence, don't put any more fields after
244 * the tail pointer in struct sk_buff!
246 memset(skb, 0, offsetof(struct sk_buff, tail));
247 /* Account for allocated memory : skb + skb->head */
248 skb->truesize = SKB_TRUESIZE(size);
249 skb->pfmemalloc = pfmemalloc;
250 refcount_set(&skb->users, 1);
251 skb->head = data;
252 skb->data = data;
253 skb_reset_tail_pointer(skb);
254 skb->end = skb->tail + size;
255 skb->mac_header = (typeof(skb->mac_header))~0U;
256 skb->transport_header = (typeof(skb->transport_header))~0U;
258 /* make sure we initialize shinfo sequentially */
259 shinfo = skb_shinfo(skb);
260 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
261 atomic_set(&shinfo->dataref, 1);
262 kmemcheck_annotate_variable(shinfo->destructor_arg);
264 if (flags & SKB_ALLOC_FCLONE) {
265 struct sk_buff_fclones *fclones;
267 fclones = container_of(skb, struct sk_buff_fclones, skb1);
269 kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
270 skb->fclone = SKB_FCLONE_ORIG;
271 refcount_set(&fclones->fclone_ref, 1);
273 fclones->skb2.fclone = SKB_FCLONE_CLONE;
275 out:
276 return skb;
277 nodata:
278 kmem_cache_free(cache, skb);
279 skb = NULL;
280 goto out;
282 EXPORT_SYMBOL(__alloc_skb);
285 * __build_skb - build a network buffer
286 * @data: data buffer provided by caller
287 * @frag_size: size of data, or 0 if head was kmalloced
289 * Allocate a new &sk_buff. Caller provides space holding head and
290 * skb_shared_info. @data must have been allocated by kmalloc() only if
291 * @frag_size is 0, otherwise data should come from the page allocator
292 * or vmalloc()
293 * The return is the new skb buffer.
294 * On a failure the return is %NULL, and @data is not freed.
295 * Notes :
296 * Before IO, driver allocates only data buffer where NIC put incoming frame
297 * Driver should add room at head (NET_SKB_PAD) and
298 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
299 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
300 * before giving packet to stack.
301 * RX rings only contains data buffers, not full skbs.
303 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
305 struct skb_shared_info *shinfo;
306 struct sk_buff *skb;
307 unsigned int size = frag_size ? : ksize(data);
309 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
310 if (!skb)
311 return NULL;
313 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
315 memset(skb, 0, offsetof(struct sk_buff, tail));
316 skb->truesize = SKB_TRUESIZE(size);
317 refcount_set(&skb->users, 1);
318 skb->head = data;
319 skb->data = data;
320 skb_reset_tail_pointer(skb);
321 skb->end = skb->tail + size;
322 skb->mac_header = (typeof(skb->mac_header))~0U;
323 skb->transport_header = (typeof(skb->transport_header))~0U;
325 /* make sure we initialize shinfo sequentially */
326 shinfo = skb_shinfo(skb);
327 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
328 atomic_set(&shinfo->dataref, 1);
329 kmemcheck_annotate_variable(shinfo->destructor_arg);
331 return skb;
334 /* build_skb() is wrapper over __build_skb(), that specifically
335 * takes care of skb->head and skb->pfmemalloc
336 * This means that if @frag_size is not zero, then @data must be backed
337 * by a page fragment, not kmalloc() or vmalloc()
339 struct sk_buff *build_skb(void *data, unsigned int frag_size)
341 struct sk_buff *skb = __build_skb(data, frag_size);
343 if (skb && frag_size) {
344 skb->head_frag = 1;
345 if (page_is_pfmemalloc(virt_to_head_page(data)))
346 skb->pfmemalloc = 1;
348 return skb;
350 EXPORT_SYMBOL(build_skb);
352 #define NAPI_SKB_CACHE_SIZE 64
354 struct napi_alloc_cache {
355 struct page_frag_cache page;
356 unsigned int skb_count;
357 void *skb_cache[NAPI_SKB_CACHE_SIZE];
360 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
361 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
363 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
365 struct page_frag_cache *nc;
366 unsigned long flags;
367 void *data;
369 local_irq_save(flags);
370 nc = this_cpu_ptr(&netdev_alloc_cache);
371 data = page_frag_alloc(nc, fragsz, gfp_mask);
372 local_irq_restore(flags);
373 return data;
377 * netdev_alloc_frag - allocate a page fragment
378 * @fragsz: fragment size
380 * Allocates a frag from a page for receive buffer.
381 * Uses GFP_ATOMIC allocations.
383 void *netdev_alloc_frag(unsigned int fragsz)
385 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
387 EXPORT_SYMBOL(netdev_alloc_frag);
389 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
391 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
393 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
396 void *napi_alloc_frag(unsigned int fragsz)
398 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
400 EXPORT_SYMBOL(napi_alloc_frag);
403 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
404 * @dev: network device to receive on
405 * @len: length to allocate
406 * @gfp_mask: get_free_pages mask, passed to alloc_skb
408 * Allocate a new &sk_buff and assign it a usage count of one. The
409 * buffer has NET_SKB_PAD headroom built in. Users should allocate
410 * the headroom they think they need without accounting for the
411 * built in space. The built in space is used for optimisations.
413 * %NULL is returned if there is no free memory.
415 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
416 gfp_t gfp_mask)
418 struct page_frag_cache *nc;
419 unsigned long flags;
420 struct sk_buff *skb;
421 bool pfmemalloc;
422 void *data;
424 len += NET_SKB_PAD;
426 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
427 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
428 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
429 if (!skb)
430 goto skb_fail;
431 goto skb_success;
434 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
435 len = SKB_DATA_ALIGN(len);
437 if (sk_memalloc_socks())
438 gfp_mask |= __GFP_MEMALLOC;
440 local_irq_save(flags);
442 nc = this_cpu_ptr(&netdev_alloc_cache);
443 data = page_frag_alloc(nc, len, gfp_mask);
444 pfmemalloc = nc->pfmemalloc;
446 local_irq_restore(flags);
448 if (unlikely(!data))
449 return NULL;
451 skb = __build_skb(data, len);
452 if (unlikely(!skb)) {
453 skb_free_frag(data);
454 return NULL;
457 /* use OR instead of assignment to avoid clearing of bits in mask */
458 if (pfmemalloc)
459 skb->pfmemalloc = 1;
460 skb->head_frag = 1;
462 skb_success:
463 skb_reserve(skb, NET_SKB_PAD);
464 skb->dev = dev;
466 skb_fail:
467 return skb;
469 EXPORT_SYMBOL(__netdev_alloc_skb);
472 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
473 * @napi: napi instance this buffer was allocated for
474 * @len: length to allocate
475 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
477 * Allocate a new sk_buff for use in NAPI receive. This buffer will
478 * attempt to allocate the head from a special reserved region used
479 * only for NAPI Rx allocation. By doing this we can save several
480 * CPU cycles by avoiding having to disable and re-enable IRQs.
482 * %NULL is returned if there is no free memory.
484 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
485 gfp_t gfp_mask)
487 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
488 struct sk_buff *skb;
489 void *data;
491 len += NET_SKB_PAD + NET_IP_ALIGN;
493 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
494 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
495 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
496 if (!skb)
497 goto skb_fail;
498 goto skb_success;
501 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
502 len = SKB_DATA_ALIGN(len);
504 if (sk_memalloc_socks())
505 gfp_mask |= __GFP_MEMALLOC;
507 data = page_frag_alloc(&nc->page, len, gfp_mask);
508 if (unlikely(!data))
509 return NULL;
511 skb = __build_skb(data, len);
512 if (unlikely(!skb)) {
513 skb_free_frag(data);
514 return NULL;
517 /* use OR instead of assignment to avoid clearing of bits in mask */
518 if (nc->page.pfmemalloc)
519 skb->pfmemalloc = 1;
520 skb->head_frag = 1;
522 skb_success:
523 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
524 skb->dev = napi->dev;
526 skb_fail:
527 return skb;
529 EXPORT_SYMBOL(__napi_alloc_skb);
531 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
532 int size, unsigned int truesize)
534 skb_fill_page_desc(skb, i, page, off, size);
535 skb->len += size;
536 skb->data_len += size;
537 skb->truesize += truesize;
539 EXPORT_SYMBOL(skb_add_rx_frag);
541 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
542 unsigned int truesize)
544 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
546 skb_frag_size_add(frag, size);
547 skb->len += size;
548 skb->data_len += size;
549 skb->truesize += truesize;
551 EXPORT_SYMBOL(skb_coalesce_rx_frag);
553 static void skb_drop_list(struct sk_buff **listp)
555 kfree_skb_list(*listp);
556 *listp = NULL;
559 static inline void skb_drop_fraglist(struct sk_buff *skb)
561 skb_drop_list(&skb_shinfo(skb)->frag_list);
564 static void skb_clone_fraglist(struct sk_buff *skb)
566 struct sk_buff *list;
568 skb_walk_frags(skb, list)
569 skb_get(list);
572 static void skb_free_head(struct sk_buff *skb)
574 unsigned char *head = skb->head;
576 if (skb->head_frag)
577 skb_free_frag(head);
578 else
579 kfree(head);
582 static void skb_release_data(struct sk_buff *skb)
584 struct skb_shared_info *shinfo = skb_shinfo(skb);
585 int i;
587 if (skb->cloned &&
588 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
589 &shinfo->dataref))
590 return;
592 for (i = 0; i < shinfo->nr_frags; i++)
593 __skb_frag_unref(&shinfo->frags[i]);
596 * If skb buf is from userspace, we need to notify the caller
597 * the lower device DMA has done;
599 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
600 struct ubuf_info *uarg;
602 uarg = shinfo->destructor_arg;
603 if (uarg->callback)
604 uarg->callback(uarg, true);
607 if (shinfo->frag_list)
608 kfree_skb_list(shinfo->frag_list);
610 skb_free_head(skb);
614 * Free an skbuff by memory without cleaning the state.
616 static void kfree_skbmem(struct sk_buff *skb)
618 struct sk_buff_fclones *fclones;
620 switch (skb->fclone) {
621 case SKB_FCLONE_UNAVAILABLE:
622 kmem_cache_free(skbuff_head_cache, skb);
623 return;
625 case SKB_FCLONE_ORIG:
626 fclones = container_of(skb, struct sk_buff_fclones, skb1);
628 /* We usually free the clone (TX completion) before original skb
629 * This test would have no chance to be true for the clone,
630 * while here, branch prediction will be good.
632 if (refcount_read(&fclones->fclone_ref) == 1)
633 goto fastpath;
634 break;
636 default: /* SKB_FCLONE_CLONE */
637 fclones = container_of(skb, struct sk_buff_fclones, skb2);
638 break;
640 if (!refcount_dec_and_test(&fclones->fclone_ref))
641 return;
642 fastpath:
643 kmem_cache_free(skbuff_fclone_cache, fclones);
646 void skb_release_head_state(struct sk_buff *skb)
648 skb_dst_drop(skb);
649 secpath_reset(skb);
650 if (skb->destructor) {
651 WARN_ON(in_irq());
652 skb->destructor(skb);
654 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
655 nf_conntrack_put(skb_nfct(skb));
656 #endif
657 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
658 nf_bridge_put(skb->nf_bridge);
659 #endif
662 /* Free everything but the sk_buff shell. */
663 static void skb_release_all(struct sk_buff *skb)
665 skb_release_head_state(skb);
666 if (likely(skb->head))
667 skb_release_data(skb);
671 * __kfree_skb - private function
672 * @skb: buffer
674 * Free an sk_buff. Release anything attached to the buffer.
675 * Clean the state. This is an internal helper function. Users should
676 * always call kfree_skb
679 void __kfree_skb(struct sk_buff *skb)
681 skb_release_all(skb);
682 kfree_skbmem(skb);
684 EXPORT_SYMBOL(__kfree_skb);
687 * kfree_skb - free an sk_buff
688 * @skb: buffer to free
690 * Drop a reference to the buffer and free it if the usage count has
691 * hit zero.
693 void kfree_skb(struct sk_buff *skb)
695 if (!skb_unref(skb))
696 return;
698 trace_kfree_skb(skb, __builtin_return_address(0));
699 __kfree_skb(skb);
701 EXPORT_SYMBOL(kfree_skb);
703 void kfree_skb_list(struct sk_buff *segs)
705 while (segs) {
706 struct sk_buff *next = segs->next;
708 kfree_skb(segs);
709 segs = next;
712 EXPORT_SYMBOL(kfree_skb_list);
715 * skb_tx_error - report an sk_buff xmit error
716 * @skb: buffer that triggered an error
718 * Report xmit error if a device callback is tracking this skb.
719 * skb must be freed afterwards.
721 void skb_tx_error(struct sk_buff *skb)
723 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
724 struct ubuf_info *uarg;
726 uarg = skb_shinfo(skb)->destructor_arg;
727 if (uarg->callback)
728 uarg->callback(uarg, false);
729 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
732 EXPORT_SYMBOL(skb_tx_error);
735 * consume_skb - free an skbuff
736 * @skb: buffer to free
738 * Drop a ref to the buffer and free it if the usage count has hit zero
739 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
740 * is being dropped after a failure and notes that
742 void consume_skb(struct sk_buff *skb)
744 if (!skb_unref(skb))
745 return;
747 trace_consume_skb(skb);
748 __kfree_skb(skb);
750 EXPORT_SYMBOL(consume_skb);
753 * consume_stateless_skb - free an skbuff, assuming it is stateless
754 * @skb: buffer to free
756 * Works like consume_skb(), but this variant assumes that all the head
757 * states have been already dropped.
759 void consume_stateless_skb(struct sk_buff *skb)
761 if (!skb_unref(skb))
762 return;
764 trace_consume_skb(skb);
765 if (likely(skb->head))
766 skb_release_data(skb);
767 kfree_skbmem(skb);
770 void __kfree_skb_flush(void)
772 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
774 /* flush skb_cache if containing objects */
775 if (nc->skb_count) {
776 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
777 nc->skb_cache);
778 nc->skb_count = 0;
782 static inline void _kfree_skb_defer(struct sk_buff *skb)
784 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
786 /* drop skb->head and call any destructors for packet */
787 skb_release_all(skb);
789 /* record skb to CPU local list */
790 nc->skb_cache[nc->skb_count++] = skb;
792 #ifdef CONFIG_SLUB
793 /* SLUB writes into objects when freeing */
794 prefetchw(skb);
795 #endif
797 /* flush skb_cache if it is filled */
798 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
799 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
800 nc->skb_cache);
801 nc->skb_count = 0;
804 void __kfree_skb_defer(struct sk_buff *skb)
806 _kfree_skb_defer(skb);
809 void napi_consume_skb(struct sk_buff *skb, int budget)
811 if (unlikely(!skb))
812 return;
814 /* Zero budget indicate non-NAPI context called us, like netpoll */
815 if (unlikely(!budget)) {
816 dev_consume_skb_any(skb);
817 return;
820 if (!skb_unref(skb))
821 return;
823 /* if reaching here SKB is ready to free */
824 trace_consume_skb(skb);
826 /* if SKB is a clone, don't handle this case */
827 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
828 __kfree_skb(skb);
829 return;
832 _kfree_skb_defer(skb);
834 EXPORT_SYMBOL(napi_consume_skb);
836 /* Make sure a field is enclosed inside headers_start/headers_end section */
837 #define CHECK_SKB_FIELD(field) \
838 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
839 offsetof(struct sk_buff, headers_start)); \
840 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
841 offsetof(struct sk_buff, headers_end)); \
843 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
845 new->tstamp = old->tstamp;
846 /* We do not copy old->sk */
847 new->dev = old->dev;
848 memcpy(new->cb, old->cb, sizeof(old->cb));
849 skb_dst_copy(new, old);
850 #ifdef CONFIG_XFRM
851 new->sp = secpath_get(old->sp);
852 #endif
853 __nf_copy(new, old, false);
855 /* Note : this field could be in headers_start/headers_end section
856 * It is not yet because we do not want to have a 16 bit hole
858 new->queue_mapping = old->queue_mapping;
860 memcpy(&new->headers_start, &old->headers_start,
861 offsetof(struct sk_buff, headers_end) -
862 offsetof(struct sk_buff, headers_start));
863 CHECK_SKB_FIELD(protocol);
864 CHECK_SKB_FIELD(csum);
865 CHECK_SKB_FIELD(hash);
866 CHECK_SKB_FIELD(priority);
867 CHECK_SKB_FIELD(skb_iif);
868 CHECK_SKB_FIELD(vlan_proto);
869 CHECK_SKB_FIELD(vlan_tci);
870 CHECK_SKB_FIELD(transport_header);
871 CHECK_SKB_FIELD(network_header);
872 CHECK_SKB_FIELD(mac_header);
873 CHECK_SKB_FIELD(inner_protocol);
874 CHECK_SKB_FIELD(inner_transport_header);
875 CHECK_SKB_FIELD(inner_network_header);
876 CHECK_SKB_FIELD(inner_mac_header);
877 CHECK_SKB_FIELD(mark);
878 #ifdef CONFIG_NETWORK_SECMARK
879 CHECK_SKB_FIELD(secmark);
880 #endif
881 #ifdef CONFIG_NET_RX_BUSY_POLL
882 CHECK_SKB_FIELD(napi_id);
883 #endif
884 #ifdef CONFIG_XPS
885 CHECK_SKB_FIELD(sender_cpu);
886 #endif
887 #ifdef CONFIG_NET_SCHED
888 CHECK_SKB_FIELD(tc_index);
889 #endif
894 * You should not add any new code to this function. Add it to
895 * __copy_skb_header above instead.
897 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
899 #define C(x) n->x = skb->x
901 n->next = n->prev = NULL;
902 n->sk = NULL;
903 __copy_skb_header(n, skb);
905 C(len);
906 C(data_len);
907 C(mac_len);
908 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
909 n->cloned = 1;
910 n->nohdr = 0;
911 n->destructor = NULL;
912 C(tail);
913 C(end);
914 C(head);
915 C(head_frag);
916 C(data);
917 C(truesize);
918 refcount_set(&n->users, 1);
920 atomic_inc(&(skb_shinfo(skb)->dataref));
921 skb->cloned = 1;
923 return n;
924 #undef C
928 * skb_morph - morph one skb into another
929 * @dst: the skb to receive the contents
930 * @src: the skb to supply the contents
932 * This is identical to skb_clone except that the target skb is
933 * supplied by the user.
935 * The target skb is returned upon exit.
937 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
939 skb_release_all(dst);
940 return __skb_clone(dst, src);
942 EXPORT_SYMBOL_GPL(skb_morph);
945 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
946 * @skb: the skb to modify
947 * @gfp_mask: allocation priority
949 * This must be called on SKBTX_DEV_ZEROCOPY skb.
950 * It will copy all frags into kernel and drop the reference
951 * to userspace pages.
953 * If this function is called from an interrupt gfp_mask() must be
954 * %GFP_ATOMIC.
956 * Returns 0 on success or a negative error code on failure
957 * to allocate kernel memory to copy to.
959 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
961 int i;
962 int num_frags = skb_shinfo(skb)->nr_frags;
963 struct page *page, *head = NULL;
964 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
966 for (i = 0; i < num_frags; i++) {
967 u8 *vaddr;
968 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
970 page = alloc_page(gfp_mask);
971 if (!page) {
972 while (head) {
973 struct page *next = (struct page *)page_private(head);
974 put_page(head);
975 head = next;
977 return -ENOMEM;
979 vaddr = kmap_atomic(skb_frag_page(f));
980 memcpy(page_address(page),
981 vaddr + f->page_offset, skb_frag_size(f));
982 kunmap_atomic(vaddr);
983 set_page_private(page, (unsigned long)head);
984 head = page;
987 /* skb frags release userspace buffers */
988 for (i = 0; i < num_frags; i++)
989 skb_frag_unref(skb, i);
991 uarg->callback(uarg, false);
993 /* skb frags point to kernel buffers */
994 for (i = num_frags - 1; i >= 0; i--) {
995 __skb_fill_page_desc(skb, i, head, 0,
996 skb_shinfo(skb)->frags[i].size);
997 head = (struct page *)page_private(head);
1000 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
1001 return 0;
1003 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1006 * skb_clone - duplicate an sk_buff
1007 * @skb: buffer to clone
1008 * @gfp_mask: allocation priority
1010 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1011 * copies share the same packet data but not structure. The new
1012 * buffer has a reference count of 1. If the allocation fails the
1013 * function returns %NULL otherwise the new buffer is returned.
1015 * If this function is called from an interrupt gfp_mask() must be
1016 * %GFP_ATOMIC.
1019 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1021 struct sk_buff_fclones *fclones = container_of(skb,
1022 struct sk_buff_fclones,
1023 skb1);
1024 struct sk_buff *n;
1026 if (skb_orphan_frags(skb, gfp_mask))
1027 return NULL;
1029 if (skb->fclone == SKB_FCLONE_ORIG &&
1030 refcount_read(&fclones->fclone_ref) == 1) {
1031 n = &fclones->skb2;
1032 refcount_set(&fclones->fclone_ref, 2);
1033 } else {
1034 if (skb_pfmemalloc(skb))
1035 gfp_mask |= __GFP_MEMALLOC;
1037 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1038 if (!n)
1039 return NULL;
1041 kmemcheck_annotate_bitfield(n, flags1);
1042 n->fclone = SKB_FCLONE_UNAVAILABLE;
1045 return __skb_clone(n, skb);
1047 EXPORT_SYMBOL(skb_clone);
1049 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1051 /* Only adjust this if it actually is csum_start rather than csum */
1052 if (skb->ip_summed == CHECKSUM_PARTIAL)
1053 skb->csum_start += off;
1054 /* {transport,network,mac}_header and tail are relative to skb->head */
1055 skb->transport_header += off;
1056 skb->network_header += off;
1057 if (skb_mac_header_was_set(skb))
1058 skb->mac_header += off;
1059 skb->inner_transport_header += off;
1060 skb->inner_network_header += off;
1061 skb->inner_mac_header += off;
1064 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1066 __copy_skb_header(new, old);
1068 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1069 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1070 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1073 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1075 if (skb_pfmemalloc(skb))
1076 return SKB_ALLOC_RX;
1077 return 0;
1081 * skb_copy - create private copy of an sk_buff
1082 * @skb: buffer to copy
1083 * @gfp_mask: allocation priority
1085 * Make a copy of both an &sk_buff and its data. This is used when the
1086 * caller wishes to modify the data and needs a private copy of the
1087 * data to alter. Returns %NULL on failure or the pointer to the buffer
1088 * on success. The returned buffer has a reference count of 1.
1090 * As by-product this function converts non-linear &sk_buff to linear
1091 * one, so that &sk_buff becomes completely private and caller is allowed
1092 * to modify all the data of returned buffer. This means that this
1093 * function is not recommended for use in circumstances when only
1094 * header is going to be modified. Use pskb_copy() instead.
1097 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1099 int headerlen = skb_headroom(skb);
1100 unsigned int size = skb_end_offset(skb) + skb->data_len;
1101 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1102 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1104 if (!n)
1105 return NULL;
1107 /* Set the data pointer */
1108 skb_reserve(n, headerlen);
1109 /* Set the tail pointer and length */
1110 skb_put(n, skb->len);
1112 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1113 BUG();
1115 copy_skb_header(n, skb);
1116 return n;
1118 EXPORT_SYMBOL(skb_copy);
1121 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1122 * @skb: buffer to copy
1123 * @headroom: headroom of new skb
1124 * @gfp_mask: allocation priority
1125 * @fclone: if true allocate the copy of the skb from the fclone
1126 * cache instead of the head cache; it is recommended to set this
1127 * to true for the cases where the copy will likely be cloned
1129 * Make a copy of both an &sk_buff and part of its data, located
1130 * in header. Fragmented data remain shared. This is used when
1131 * the caller wishes to modify only header of &sk_buff and needs
1132 * private copy of the header to alter. Returns %NULL on failure
1133 * or the pointer to the buffer on success.
1134 * The returned buffer has a reference count of 1.
1137 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1138 gfp_t gfp_mask, bool fclone)
1140 unsigned int size = skb_headlen(skb) + headroom;
1141 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1142 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1144 if (!n)
1145 goto out;
1147 /* Set the data pointer */
1148 skb_reserve(n, headroom);
1149 /* Set the tail pointer and length */
1150 skb_put(n, skb_headlen(skb));
1151 /* Copy the bytes */
1152 skb_copy_from_linear_data(skb, n->data, n->len);
1154 n->truesize += skb->data_len;
1155 n->data_len = skb->data_len;
1156 n->len = skb->len;
1158 if (skb_shinfo(skb)->nr_frags) {
1159 int i;
1161 if (skb_orphan_frags(skb, gfp_mask)) {
1162 kfree_skb(n);
1163 n = NULL;
1164 goto out;
1166 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1167 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1168 skb_frag_ref(skb, i);
1170 skb_shinfo(n)->nr_frags = i;
1173 if (skb_has_frag_list(skb)) {
1174 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1175 skb_clone_fraglist(n);
1178 copy_skb_header(n, skb);
1179 out:
1180 return n;
1182 EXPORT_SYMBOL(__pskb_copy_fclone);
1185 * pskb_expand_head - reallocate header of &sk_buff
1186 * @skb: buffer to reallocate
1187 * @nhead: room to add at head
1188 * @ntail: room to add at tail
1189 * @gfp_mask: allocation priority
1191 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1192 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1193 * reference count of 1. Returns zero in the case of success or error,
1194 * if expansion failed. In the last case, &sk_buff is not changed.
1196 * All the pointers pointing into skb header may change and must be
1197 * reloaded after call to this function.
1200 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1201 gfp_t gfp_mask)
1203 int i, osize = skb_end_offset(skb);
1204 int size = osize + nhead + ntail;
1205 long off;
1206 u8 *data;
1208 BUG_ON(nhead < 0);
1210 if (skb_shared(skb))
1211 BUG();
1213 size = SKB_DATA_ALIGN(size);
1215 if (skb_pfmemalloc(skb))
1216 gfp_mask |= __GFP_MEMALLOC;
1217 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1218 gfp_mask, NUMA_NO_NODE, NULL);
1219 if (!data)
1220 goto nodata;
1221 size = SKB_WITH_OVERHEAD(ksize(data));
1223 /* Copy only real data... and, alas, header. This should be
1224 * optimized for the cases when header is void.
1226 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1228 memcpy((struct skb_shared_info *)(data + size),
1229 skb_shinfo(skb),
1230 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1233 * if shinfo is shared we must drop the old head gracefully, but if it
1234 * is not we can just drop the old head and let the existing refcount
1235 * be since all we did is relocate the values
1237 if (skb_cloned(skb)) {
1238 /* copy this zero copy skb frags */
1239 if (skb_orphan_frags(skb, gfp_mask))
1240 goto nofrags;
1241 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1242 skb_frag_ref(skb, i);
1244 if (skb_has_frag_list(skb))
1245 skb_clone_fraglist(skb);
1247 skb_release_data(skb);
1248 } else {
1249 skb_free_head(skb);
1251 off = (data + nhead) - skb->head;
1253 skb->head = data;
1254 skb->head_frag = 0;
1255 skb->data += off;
1256 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1257 skb->end = size;
1258 off = nhead;
1259 #else
1260 skb->end = skb->head + size;
1261 #endif
1262 skb->tail += off;
1263 skb_headers_offset_update(skb, nhead);
1264 skb->cloned = 0;
1265 skb->hdr_len = 0;
1266 skb->nohdr = 0;
1267 atomic_set(&skb_shinfo(skb)->dataref, 1);
1269 /* It is not generally safe to change skb->truesize.
1270 * For the moment, we really care of rx path, or
1271 * when skb is orphaned (not attached to a socket).
1273 if (!skb->sk || skb->destructor == sock_edemux)
1274 skb->truesize += size - osize;
1276 return 0;
1278 nofrags:
1279 kfree(data);
1280 nodata:
1281 return -ENOMEM;
1283 EXPORT_SYMBOL(pskb_expand_head);
1285 /* Make private copy of skb with writable head and some headroom */
1287 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1289 struct sk_buff *skb2;
1290 int delta = headroom - skb_headroom(skb);
1292 if (delta <= 0)
1293 skb2 = pskb_copy(skb, GFP_ATOMIC);
1294 else {
1295 skb2 = skb_clone(skb, GFP_ATOMIC);
1296 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1297 GFP_ATOMIC)) {
1298 kfree_skb(skb2);
1299 skb2 = NULL;
1302 return skb2;
1304 EXPORT_SYMBOL(skb_realloc_headroom);
1307 * skb_copy_expand - copy and expand sk_buff
1308 * @skb: buffer to copy
1309 * @newheadroom: new free bytes at head
1310 * @newtailroom: new free bytes at tail
1311 * @gfp_mask: allocation priority
1313 * Make a copy of both an &sk_buff and its data and while doing so
1314 * allocate additional space.
1316 * This is used when the caller wishes to modify the data and needs a
1317 * private copy of the data to alter as well as more space for new fields.
1318 * Returns %NULL on failure or the pointer to the buffer
1319 * on success. The returned buffer has a reference count of 1.
1321 * You must pass %GFP_ATOMIC as the allocation priority if this function
1322 * is called from an interrupt.
1324 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1325 int newheadroom, int newtailroom,
1326 gfp_t gfp_mask)
1329 * Allocate the copy buffer
1331 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1332 gfp_mask, skb_alloc_rx_flag(skb),
1333 NUMA_NO_NODE);
1334 int oldheadroom = skb_headroom(skb);
1335 int head_copy_len, head_copy_off;
1337 if (!n)
1338 return NULL;
1340 skb_reserve(n, newheadroom);
1342 /* Set the tail pointer and length */
1343 skb_put(n, skb->len);
1345 head_copy_len = oldheadroom;
1346 head_copy_off = 0;
1347 if (newheadroom <= head_copy_len)
1348 head_copy_len = newheadroom;
1349 else
1350 head_copy_off = newheadroom - head_copy_len;
1352 /* Copy the linear header and data. */
1353 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1354 skb->len + head_copy_len))
1355 BUG();
1357 copy_skb_header(n, skb);
1359 skb_headers_offset_update(n, newheadroom - oldheadroom);
1361 return n;
1363 EXPORT_SYMBOL(skb_copy_expand);
1366 * __skb_pad - zero pad the tail of an skb
1367 * @skb: buffer to pad
1368 * @pad: space to pad
1369 * @free_on_error: free buffer on error
1371 * Ensure that a buffer is followed by a padding area that is zero
1372 * filled. Used by network drivers which may DMA or transfer data
1373 * beyond the buffer end onto the wire.
1375 * May return error in out of memory cases. The skb is freed on error
1376 * if @free_on_error is true.
1379 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1381 int err;
1382 int ntail;
1384 /* If the skbuff is non linear tailroom is always zero.. */
1385 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1386 memset(skb->data+skb->len, 0, pad);
1387 return 0;
1390 ntail = skb->data_len + pad - (skb->end - skb->tail);
1391 if (likely(skb_cloned(skb) || ntail > 0)) {
1392 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1393 if (unlikely(err))
1394 goto free_skb;
1397 /* FIXME: The use of this function with non-linear skb's really needs
1398 * to be audited.
1400 err = skb_linearize(skb);
1401 if (unlikely(err))
1402 goto free_skb;
1404 memset(skb->data + skb->len, 0, pad);
1405 return 0;
1407 free_skb:
1408 if (free_on_error)
1409 kfree_skb(skb);
1410 return err;
1412 EXPORT_SYMBOL(__skb_pad);
1415 * pskb_put - add data to the tail of a potentially fragmented buffer
1416 * @skb: start of the buffer to use
1417 * @tail: tail fragment of the buffer to use
1418 * @len: amount of data to add
1420 * This function extends the used data area of the potentially
1421 * fragmented buffer. @tail must be the last fragment of @skb -- or
1422 * @skb itself. If this would exceed the total buffer size the kernel
1423 * will panic. A pointer to the first byte of the extra data is
1424 * returned.
1427 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1429 if (tail != skb) {
1430 skb->data_len += len;
1431 skb->len += len;
1433 return skb_put(tail, len);
1435 EXPORT_SYMBOL_GPL(pskb_put);
1438 * skb_put - add data to a buffer
1439 * @skb: buffer to use
1440 * @len: amount of data to add
1442 * This function extends the used data area of the buffer. If this would
1443 * exceed the total buffer size the kernel will panic. A pointer to the
1444 * first byte of the extra data is returned.
1446 void *skb_put(struct sk_buff *skb, unsigned int len)
1448 void *tmp = skb_tail_pointer(skb);
1449 SKB_LINEAR_ASSERT(skb);
1450 skb->tail += len;
1451 skb->len += len;
1452 if (unlikely(skb->tail > skb->end))
1453 skb_over_panic(skb, len, __builtin_return_address(0));
1454 return tmp;
1456 EXPORT_SYMBOL(skb_put);
1459 * skb_push - add data to the start of a buffer
1460 * @skb: buffer to use
1461 * @len: amount of data to add
1463 * This function extends the used data area of the buffer at the buffer
1464 * start. If this would exceed the total buffer headroom the kernel will
1465 * panic. A pointer to the first byte of the extra data is returned.
1467 void *skb_push(struct sk_buff *skb, unsigned int len)
1469 skb->data -= len;
1470 skb->len += len;
1471 if (unlikely(skb->data<skb->head))
1472 skb_under_panic(skb, len, __builtin_return_address(0));
1473 return skb->data;
1475 EXPORT_SYMBOL(skb_push);
1478 * skb_pull - remove data from the start of a buffer
1479 * @skb: buffer to use
1480 * @len: amount of data to remove
1482 * This function removes data from the start of a buffer, returning
1483 * the memory to the headroom. A pointer to the next data in the buffer
1484 * is returned. Once the data has been pulled future pushes will overwrite
1485 * the old data.
1487 void *skb_pull(struct sk_buff *skb, unsigned int len)
1489 return skb_pull_inline(skb, len);
1491 EXPORT_SYMBOL(skb_pull);
1494 * skb_trim - remove end from a buffer
1495 * @skb: buffer to alter
1496 * @len: new length
1498 * Cut the length of a buffer down by removing data from the tail. If
1499 * the buffer is already under the length specified it is not modified.
1500 * The skb must be linear.
1502 void skb_trim(struct sk_buff *skb, unsigned int len)
1504 if (skb->len > len)
1505 __skb_trim(skb, len);
1507 EXPORT_SYMBOL(skb_trim);
1509 /* Trims skb to length len. It can change skb pointers.
1512 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1514 struct sk_buff **fragp;
1515 struct sk_buff *frag;
1516 int offset = skb_headlen(skb);
1517 int nfrags = skb_shinfo(skb)->nr_frags;
1518 int i;
1519 int err;
1521 if (skb_cloned(skb) &&
1522 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1523 return err;
1525 i = 0;
1526 if (offset >= len)
1527 goto drop_pages;
1529 for (; i < nfrags; i++) {
1530 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1532 if (end < len) {
1533 offset = end;
1534 continue;
1537 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1539 drop_pages:
1540 skb_shinfo(skb)->nr_frags = i;
1542 for (; i < nfrags; i++)
1543 skb_frag_unref(skb, i);
1545 if (skb_has_frag_list(skb))
1546 skb_drop_fraglist(skb);
1547 goto done;
1550 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1551 fragp = &frag->next) {
1552 int end = offset + frag->len;
1554 if (skb_shared(frag)) {
1555 struct sk_buff *nfrag;
1557 nfrag = skb_clone(frag, GFP_ATOMIC);
1558 if (unlikely(!nfrag))
1559 return -ENOMEM;
1561 nfrag->next = frag->next;
1562 consume_skb(frag);
1563 frag = nfrag;
1564 *fragp = frag;
1567 if (end < len) {
1568 offset = end;
1569 continue;
1572 if (end > len &&
1573 unlikely((err = pskb_trim(frag, len - offset))))
1574 return err;
1576 if (frag->next)
1577 skb_drop_list(&frag->next);
1578 break;
1581 done:
1582 if (len > skb_headlen(skb)) {
1583 skb->data_len -= skb->len - len;
1584 skb->len = len;
1585 } else {
1586 skb->len = len;
1587 skb->data_len = 0;
1588 skb_set_tail_pointer(skb, len);
1591 if (!skb->sk || skb->destructor == sock_edemux)
1592 skb_condense(skb);
1593 return 0;
1595 EXPORT_SYMBOL(___pskb_trim);
1598 * __pskb_pull_tail - advance tail of skb header
1599 * @skb: buffer to reallocate
1600 * @delta: number of bytes to advance tail
1602 * The function makes a sense only on a fragmented &sk_buff,
1603 * it expands header moving its tail forward and copying necessary
1604 * data from fragmented part.
1606 * &sk_buff MUST have reference count of 1.
1608 * Returns %NULL (and &sk_buff does not change) if pull failed
1609 * or value of new tail of skb in the case of success.
1611 * All the pointers pointing into skb header may change and must be
1612 * reloaded after call to this function.
1615 /* Moves tail of skb head forward, copying data from fragmented part,
1616 * when it is necessary.
1617 * 1. It may fail due to malloc failure.
1618 * 2. It may change skb pointers.
1620 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1622 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1624 /* If skb has not enough free space at tail, get new one
1625 * plus 128 bytes for future expansions. If we have enough
1626 * room at tail, reallocate without expansion only if skb is cloned.
1628 int i, k, eat = (skb->tail + delta) - skb->end;
1630 if (eat > 0 || skb_cloned(skb)) {
1631 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1632 GFP_ATOMIC))
1633 return NULL;
1636 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1637 BUG();
1639 /* Optimization: no fragments, no reasons to preestimate
1640 * size of pulled pages. Superb.
1642 if (!skb_has_frag_list(skb))
1643 goto pull_pages;
1645 /* Estimate size of pulled pages. */
1646 eat = delta;
1647 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1648 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1650 if (size >= eat)
1651 goto pull_pages;
1652 eat -= size;
1655 /* If we need update frag list, we are in troubles.
1656 * Certainly, it possible to add an offset to skb data,
1657 * but taking into account that pulling is expected to
1658 * be very rare operation, it is worth to fight against
1659 * further bloating skb head and crucify ourselves here instead.
1660 * Pure masohism, indeed. 8)8)
1662 if (eat) {
1663 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1664 struct sk_buff *clone = NULL;
1665 struct sk_buff *insp = NULL;
1667 do {
1668 BUG_ON(!list);
1670 if (list->len <= eat) {
1671 /* Eaten as whole. */
1672 eat -= list->len;
1673 list = list->next;
1674 insp = list;
1675 } else {
1676 /* Eaten partially. */
1678 if (skb_shared(list)) {
1679 /* Sucks! We need to fork list. :-( */
1680 clone = skb_clone(list, GFP_ATOMIC);
1681 if (!clone)
1682 return NULL;
1683 insp = list->next;
1684 list = clone;
1685 } else {
1686 /* This may be pulled without
1687 * problems. */
1688 insp = list;
1690 if (!pskb_pull(list, eat)) {
1691 kfree_skb(clone);
1692 return NULL;
1694 break;
1696 } while (eat);
1698 /* Free pulled out fragments. */
1699 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1700 skb_shinfo(skb)->frag_list = list->next;
1701 kfree_skb(list);
1703 /* And insert new clone at head. */
1704 if (clone) {
1705 clone->next = list;
1706 skb_shinfo(skb)->frag_list = clone;
1709 /* Success! Now we may commit changes to skb data. */
1711 pull_pages:
1712 eat = delta;
1713 k = 0;
1714 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1715 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1717 if (size <= eat) {
1718 skb_frag_unref(skb, i);
1719 eat -= size;
1720 } else {
1721 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1722 if (eat) {
1723 skb_shinfo(skb)->frags[k].page_offset += eat;
1724 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1725 eat = 0;
1727 k++;
1730 skb_shinfo(skb)->nr_frags = k;
1732 skb->tail += delta;
1733 skb->data_len -= delta;
1735 return skb_tail_pointer(skb);
1737 EXPORT_SYMBOL(__pskb_pull_tail);
1740 * skb_copy_bits - copy bits from skb to kernel buffer
1741 * @skb: source skb
1742 * @offset: offset in source
1743 * @to: destination buffer
1744 * @len: number of bytes to copy
1746 * Copy the specified number of bytes from the source skb to the
1747 * destination buffer.
1749 * CAUTION ! :
1750 * If its prototype is ever changed,
1751 * check arch/{*}/net/{*}.S files,
1752 * since it is called from BPF assembly code.
1754 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1756 int start = skb_headlen(skb);
1757 struct sk_buff *frag_iter;
1758 int i, copy;
1760 if (offset > (int)skb->len - len)
1761 goto fault;
1763 /* Copy header. */
1764 if ((copy = start - offset) > 0) {
1765 if (copy > len)
1766 copy = len;
1767 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1768 if ((len -= copy) == 0)
1769 return 0;
1770 offset += copy;
1771 to += copy;
1774 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1775 int end;
1776 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1778 WARN_ON(start > offset + len);
1780 end = start + skb_frag_size(f);
1781 if ((copy = end - offset) > 0) {
1782 u8 *vaddr;
1784 if (copy > len)
1785 copy = len;
1787 vaddr = kmap_atomic(skb_frag_page(f));
1788 memcpy(to,
1789 vaddr + f->page_offset + offset - start,
1790 copy);
1791 kunmap_atomic(vaddr);
1793 if ((len -= copy) == 0)
1794 return 0;
1795 offset += copy;
1796 to += copy;
1798 start = end;
1801 skb_walk_frags(skb, frag_iter) {
1802 int end;
1804 WARN_ON(start > offset + len);
1806 end = start + frag_iter->len;
1807 if ((copy = end - offset) > 0) {
1808 if (copy > len)
1809 copy = len;
1810 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1811 goto fault;
1812 if ((len -= copy) == 0)
1813 return 0;
1814 offset += copy;
1815 to += copy;
1817 start = end;
1820 if (!len)
1821 return 0;
1823 fault:
1824 return -EFAULT;
1826 EXPORT_SYMBOL(skb_copy_bits);
1829 * Callback from splice_to_pipe(), if we need to release some pages
1830 * at the end of the spd in case we error'ed out in filling the pipe.
1832 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1834 put_page(spd->pages[i]);
1837 static struct page *linear_to_page(struct page *page, unsigned int *len,
1838 unsigned int *offset,
1839 struct sock *sk)
1841 struct page_frag *pfrag = sk_page_frag(sk);
1843 if (!sk_page_frag_refill(sk, pfrag))
1844 return NULL;
1846 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1848 memcpy(page_address(pfrag->page) + pfrag->offset,
1849 page_address(page) + *offset, *len);
1850 *offset = pfrag->offset;
1851 pfrag->offset += *len;
1853 return pfrag->page;
1856 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1857 struct page *page,
1858 unsigned int offset)
1860 return spd->nr_pages &&
1861 spd->pages[spd->nr_pages - 1] == page &&
1862 (spd->partial[spd->nr_pages - 1].offset +
1863 spd->partial[spd->nr_pages - 1].len == offset);
1867 * Fill page/offset/length into spd, if it can hold more pages.
1869 static bool spd_fill_page(struct splice_pipe_desc *spd,
1870 struct pipe_inode_info *pipe, struct page *page,
1871 unsigned int *len, unsigned int offset,
1872 bool linear,
1873 struct sock *sk)
1875 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1876 return true;
1878 if (linear) {
1879 page = linear_to_page(page, len, &offset, sk);
1880 if (!page)
1881 return true;
1883 if (spd_can_coalesce(spd, page, offset)) {
1884 spd->partial[spd->nr_pages - 1].len += *len;
1885 return false;
1887 get_page(page);
1888 spd->pages[spd->nr_pages] = page;
1889 spd->partial[spd->nr_pages].len = *len;
1890 spd->partial[spd->nr_pages].offset = offset;
1891 spd->nr_pages++;
1893 return false;
1896 static bool __splice_segment(struct page *page, unsigned int poff,
1897 unsigned int plen, unsigned int *off,
1898 unsigned int *len,
1899 struct splice_pipe_desc *spd, bool linear,
1900 struct sock *sk,
1901 struct pipe_inode_info *pipe)
1903 if (!*len)
1904 return true;
1906 /* skip this segment if already processed */
1907 if (*off >= plen) {
1908 *off -= plen;
1909 return false;
1912 /* ignore any bits we already processed */
1913 poff += *off;
1914 plen -= *off;
1915 *off = 0;
1917 do {
1918 unsigned int flen = min(*len, plen);
1920 if (spd_fill_page(spd, pipe, page, &flen, poff,
1921 linear, sk))
1922 return true;
1923 poff += flen;
1924 plen -= flen;
1925 *len -= flen;
1926 } while (*len && plen);
1928 return false;
1932 * Map linear and fragment data from the skb to spd. It reports true if the
1933 * pipe is full or if we already spliced the requested length.
1935 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1936 unsigned int *offset, unsigned int *len,
1937 struct splice_pipe_desc *spd, struct sock *sk)
1939 int seg;
1940 struct sk_buff *iter;
1942 /* map the linear part :
1943 * If skb->head_frag is set, this 'linear' part is backed by a
1944 * fragment, and if the head is not shared with any clones then
1945 * we can avoid a copy since we own the head portion of this page.
1947 if (__splice_segment(virt_to_page(skb->data),
1948 (unsigned long) skb->data & (PAGE_SIZE - 1),
1949 skb_headlen(skb),
1950 offset, len, spd,
1951 skb_head_is_locked(skb),
1952 sk, pipe))
1953 return true;
1956 * then map the fragments
1958 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1959 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1961 if (__splice_segment(skb_frag_page(f),
1962 f->page_offset, skb_frag_size(f),
1963 offset, len, spd, false, sk, pipe))
1964 return true;
1967 skb_walk_frags(skb, iter) {
1968 if (*offset >= iter->len) {
1969 *offset -= iter->len;
1970 continue;
1972 /* __skb_splice_bits() only fails if the output has no room
1973 * left, so no point in going over the frag_list for the error
1974 * case.
1976 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
1977 return true;
1980 return false;
1984 * Map data from the skb to a pipe. Should handle both the linear part,
1985 * the fragments, and the frag list.
1987 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1988 struct pipe_inode_info *pipe, unsigned int tlen,
1989 unsigned int flags)
1991 struct partial_page partial[MAX_SKB_FRAGS];
1992 struct page *pages[MAX_SKB_FRAGS];
1993 struct splice_pipe_desc spd = {
1994 .pages = pages,
1995 .partial = partial,
1996 .nr_pages_max = MAX_SKB_FRAGS,
1997 .ops = &nosteal_pipe_buf_ops,
1998 .spd_release = sock_spd_release,
2000 int ret = 0;
2002 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2004 if (spd.nr_pages)
2005 ret = splice_to_pipe(pipe, &spd);
2007 return ret;
2009 EXPORT_SYMBOL_GPL(skb_splice_bits);
2012 * skb_store_bits - store bits from kernel buffer to skb
2013 * @skb: destination buffer
2014 * @offset: offset in destination
2015 * @from: source buffer
2016 * @len: number of bytes to copy
2018 * Copy the specified number of bytes from the source buffer to the
2019 * destination skb. This function handles all the messy bits of
2020 * traversing fragment lists and such.
2023 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2025 int start = skb_headlen(skb);
2026 struct sk_buff *frag_iter;
2027 int i, copy;
2029 if (offset > (int)skb->len - len)
2030 goto fault;
2032 if ((copy = start - offset) > 0) {
2033 if (copy > len)
2034 copy = len;
2035 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2036 if ((len -= copy) == 0)
2037 return 0;
2038 offset += copy;
2039 from += copy;
2042 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2043 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2044 int end;
2046 WARN_ON(start > offset + len);
2048 end = start + skb_frag_size(frag);
2049 if ((copy = end - offset) > 0) {
2050 u8 *vaddr;
2052 if (copy > len)
2053 copy = len;
2055 vaddr = kmap_atomic(skb_frag_page(frag));
2056 memcpy(vaddr + frag->page_offset + offset - start,
2057 from, copy);
2058 kunmap_atomic(vaddr);
2060 if ((len -= copy) == 0)
2061 return 0;
2062 offset += copy;
2063 from += copy;
2065 start = end;
2068 skb_walk_frags(skb, frag_iter) {
2069 int end;
2071 WARN_ON(start > offset + len);
2073 end = start + frag_iter->len;
2074 if ((copy = end - offset) > 0) {
2075 if (copy > len)
2076 copy = len;
2077 if (skb_store_bits(frag_iter, offset - start,
2078 from, copy))
2079 goto fault;
2080 if ((len -= copy) == 0)
2081 return 0;
2082 offset += copy;
2083 from += copy;
2085 start = end;
2087 if (!len)
2088 return 0;
2090 fault:
2091 return -EFAULT;
2093 EXPORT_SYMBOL(skb_store_bits);
2095 /* Checksum skb data. */
2096 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2097 __wsum csum, const struct skb_checksum_ops *ops)
2099 int start = skb_headlen(skb);
2100 int i, copy = start - offset;
2101 struct sk_buff *frag_iter;
2102 int pos = 0;
2104 /* Checksum header. */
2105 if (copy > 0) {
2106 if (copy > len)
2107 copy = len;
2108 csum = ops->update(skb->data + offset, copy, csum);
2109 if ((len -= copy) == 0)
2110 return csum;
2111 offset += copy;
2112 pos = copy;
2115 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2116 int end;
2117 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2119 WARN_ON(start > offset + len);
2121 end = start + skb_frag_size(frag);
2122 if ((copy = end - offset) > 0) {
2123 __wsum csum2;
2124 u8 *vaddr;
2126 if (copy > len)
2127 copy = len;
2128 vaddr = kmap_atomic(skb_frag_page(frag));
2129 csum2 = ops->update(vaddr + frag->page_offset +
2130 offset - start, copy, 0);
2131 kunmap_atomic(vaddr);
2132 csum = ops->combine(csum, csum2, pos, copy);
2133 if (!(len -= copy))
2134 return csum;
2135 offset += copy;
2136 pos += copy;
2138 start = end;
2141 skb_walk_frags(skb, frag_iter) {
2142 int end;
2144 WARN_ON(start > offset + len);
2146 end = start + frag_iter->len;
2147 if ((copy = end - offset) > 0) {
2148 __wsum csum2;
2149 if (copy > len)
2150 copy = len;
2151 csum2 = __skb_checksum(frag_iter, offset - start,
2152 copy, 0, ops);
2153 csum = ops->combine(csum, csum2, pos, copy);
2154 if ((len -= copy) == 0)
2155 return csum;
2156 offset += copy;
2157 pos += copy;
2159 start = end;
2161 BUG_ON(len);
2163 return csum;
2165 EXPORT_SYMBOL(__skb_checksum);
2167 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2168 int len, __wsum csum)
2170 const struct skb_checksum_ops ops = {
2171 .update = csum_partial_ext,
2172 .combine = csum_block_add_ext,
2175 return __skb_checksum(skb, offset, len, csum, &ops);
2177 EXPORT_SYMBOL(skb_checksum);
2179 /* Both of above in one bottle. */
2181 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2182 u8 *to, int len, __wsum csum)
2184 int start = skb_headlen(skb);
2185 int i, copy = start - offset;
2186 struct sk_buff *frag_iter;
2187 int pos = 0;
2189 /* Copy header. */
2190 if (copy > 0) {
2191 if (copy > len)
2192 copy = len;
2193 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2194 copy, csum);
2195 if ((len -= copy) == 0)
2196 return csum;
2197 offset += copy;
2198 to += copy;
2199 pos = copy;
2202 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2203 int end;
2205 WARN_ON(start > offset + len);
2207 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2208 if ((copy = end - offset) > 0) {
2209 __wsum csum2;
2210 u8 *vaddr;
2211 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2213 if (copy > len)
2214 copy = len;
2215 vaddr = kmap_atomic(skb_frag_page(frag));
2216 csum2 = csum_partial_copy_nocheck(vaddr +
2217 frag->page_offset +
2218 offset - start, to,
2219 copy, 0);
2220 kunmap_atomic(vaddr);
2221 csum = csum_block_add(csum, csum2, pos);
2222 if (!(len -= copy))
2223 return csum;
2224 offset += copy;
2225 to += copy;
2226 pos += copy;
2228 start = end;
2231 skb_walk_frags(skb, frag_iter) {
2232 __wsum csum2;
2233 int end;
2235 WARN_ON(start > offset + len);
2237 end = start + frag_iter->len;
2238 if ((copy = end - offset) > 0) {
2239 if (copy > len)
2240 copy = len;
2241 csum2 = skb_copy_and_csum_bits(frag_iter,
2242 offset - start,
2243 to, copy, 0);
2244 csum = csum_block_add(csum, csum2, pos);
2245 if ((len -= copy) == 0)
2246 return csum;
2247 offset += copy;
2248 to += copy;
2249 pos += copy;
2251 start = end;
2253 BUG_ON(len);
2254 return csum;
2256 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2258 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2260 net_warn_ratelimited(
2261 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2262 __func__);
2263 return 0;
2266 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2267 int offset, int len)
2269 net_warn_ratelimited(
2270 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2271 __func__);
2272 return 0;
2275 static const struct skb_checksum_ops default_crc32c_ops = {
2276 .update = warn_crc32c_csum_update,
2277 .combine = warn_crc32c_csum_combine,
2280 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2281 &default_crc32c_ops;
2282 EXPORT_SYMBOL(crc32c_csum_stub);
2285 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2286 * @from: source buffer
2288 * Calculates the amount of linear headroom needed in the 'to' skb passed
2289 * into skb_zerocopy().
2291 unsigned int
2292 skb_zerocopy_headlen(const struct sk_buff *from)
2294 unsigned int hlen = 0;
2296 if (!from->head_frag ||
2297 skb_headlen(from) < L1_CACHE_BYTES ||
2298 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2299 hlen = skb_headlen(from);
2301 if (skb_has_frag_list(from))
2302 hlen = from->len;
2304 return hlen;
2306 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2309 * skb_zerocopy - Zero copy skb to skb
2310 * @to: destination buffer
2311 * @from: source buffer
2312 * @len: number of bytes to copy from source buffer
2313 * @hlen: size of linear headroom in destination buffer
2315 * Copies up to `len` bytes from `from` to `to` by creating references
2316 * to the frags in the source buffer.
2318 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2319 * headroom in the `to` buffer.
2321 * Return value:
2322 * 0: everything is OK
2323 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2324 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2327 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2329 int i, j = 0;
2330 int plen = 0; /* length of skb->head fragment */
2331 int ret;
2332 struct page *page;
2333 unsigned int offset;
2335 BUG_ON(!from->head_frag && !hlen);
2337 /* dont bother with small payloads */
2338 if (len <= skb_tailroom(to))
2339 return skb_copy_bits(from, 0, skb_put(to, len), len);
2341 if (hlen) {
2342 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2343 if (unlikely(ret))
2344 return ret;
2345 len -= hlen;
2346 } else {
2347 plen = min_t(int, skb_headlen(from), len);
2348 if (plen) {
2349 page = virt_to_head_page(from->head);
2350 offset = from->data - (unsigned char *)page_address(page);
2351 __skb_fill_page_desc(to, 0, page, offset, plen);
2352 get_page(page);
2353 j = 1;
2354 len -= plen;
2358 to->truesize += len + plen;
2359 to->len += len + plen;
2360 to->data_len += len + plen;
2362 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2363 skb_tx_error(from);
2364 return -ENOMEM;
2367 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2368 if (!len)
2369 break;
2370 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2371 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2372 len -= skb_shinfo(to)->frags[j].size;
2373 skb_frag_ref(to, j);
2374 j++;
2376 skb_shinfo(to)->nr_frags = j;
2378 return 0;
2380 EXPORT_SYMBOL_GPL(skb_zerocopy);
2382 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2384 __wsum csum;
2385 long csstart;
2387 if (skb->ip_summed == CHECKSUM_PARTIAL)
2388 csstart = skb_checksum_start_offset(skb);
2389 else
2390 csstart = skb_headlen(skb);
2392 BUG_ON(csstart > skb_headlen(skb));
2394 skb_copy_from_linear_data(skb, to, csstart);
2396 csum = 0;
2397 if (csstart != skb->len)
2398 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2399 skb->len - csstart, 0);
2401 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2402 long csstuff = csstart + skb->csum_offset;
2404 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2407 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2410 * skb_dequeue - remove from the head of the queue
2411 * @list: list to dequeue from
2413 * Remove the head of the list. The list lock is taken so the function
2414 * may be used safely with other locking list functions. The head item is
2415 * returned or %NULL if the list is empty.
2418 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2420 unsigned long flags;
2421 struct sk_buff *result;
2423 spin_lock_irqsave(&list->lock, flags);
2424 result = __skb_dequeue(list);
2425 spin_unlock_irqrestore(&list->lock, flags);
2426 return result;
2428 EXPORT_SYMBOL(skb_dequeue);
2431 * skb_dequeue_tail - remove from the tail of the queue
2432 * @list: list to dequeue from
2434 * Remove the tail of the list. The list lock is taken so the function
2435 * may be used safely with other locking list functions. The tail item is
2436 * returned or %NULL if the list is empty.
2438 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2440 unsigned long flags;
2441 struct sk_buff *result;
2443 spin_lock_irqsave(&list->lock, flags);
2444 result = __skb_dequeue_tail(list);
2445 spin_unlock_irqrestore(&list->lock, flags);
2446 return result;
2448 EXPORT_SYMBOL(skb_dequeue_tail);
2451 * skb_queue_purge - empty a list
2452 * @list: list to empty
2454 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2455 * the list and one reference dropped. This function takes the list
2456 * lock and is atomic with respect to other list locking functions.
2458 void skb_queue_purge(struct sk_buff_head *list)
2460 struct sk_buff *skb;
2461 while ((skb = skb_dequeue(list)) != NULL)
2462 kfree_skb(skb);
2464 EXPORT_SYMBOL(skb_queue_purge);
2467 * skb_rbtree_purge - empty a skb rbtree
2468 * @root: root of the rbtree to empty
2470 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2471 * the list and one reference dropped. This function does not take
2472 * any lock. Synchronization should be handled by the caller (e.g., TCP
2473 * out-of-order queue is protected by the socket lock).
2475 void skb_rbtree_purge(struct rb_root *root)
2477 struct sk_buff *skb, *next;
2479 rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode)
2480 kfree_skb(skb);
2482 *root = RB_ROOT;
2486 * skb_queue_head - queue a buffer at the list head
2487 * @list: list to use
2488 * @newsk: buffer to queue
2490 * Queue a buffer at the start of the list. This function takes the
2491 * list lock and can be used safely with other locking &sk_buff functions
2492 * safely.
2494 * A buffer cannot be placed on two lists at the same time.
2496 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2498 unsigned long flags;
2500 spin_lock_irqsave(&list->lock, flags);
2501 __skb_queue_head(list, newsk);
2502 spin_unlock_irqrestore(&list->lock, flags);
2504 EXPORT_SYMBOL(skb_queue_head);
2507 * skb_queue_tail - queue a buffer at the list tail
2508 * @list: list to use
2509 * @newsk: buffer to queue
2511 * Queue a buffer at the tail of the list. This function takes the
2512 * list lock and can be used safely with other locking &sk_buff functions
2513 * safely.
2515 * A buffer cannot be placed on two lists at the same time.
2517 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2519 unsigned long flags;
2521 spin_lock_irqsave(&list->lock, flags);
2522 __skb_queue_tail(list, newsk);
2523 spin_unlock_irqrestore(&list->lock, flags);
2525 EXPORT_SYMBOL(skb_queue_tail);
2528 * skb_unlink - remove a buffer from a list
2529 * @skb: buffer to remove
2530 * @list: list to use
2532 * Remove a packet from a list. The list locks are taken and this
2533 * function is atomic with respect to other list locked calls
2535 * You must know what list the SKB is on.
2537 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2539 unsigned long flags;
2541 spin_lock_irqsave(&list->lock, flags);
2542 __skb_unlink(skb, list);
2543 spin_unlock_irqrestore(&list->lock, flags);
2545 EXPORT_SYMBOL(skb_unlink);
2548 * skb_append - append a buffer
2549 * @old: buffer to insert after
2550 * @newsk: buffer to insert
2551 * @list: list to use
2553 * Place a packet after a given packet in a list. The list locks are taken
2554 * and this function is atomic with respect to other list locked calls.
2555 * A buffer cannot be placed on two lists at the same time.
2557 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2559 unsigned long flags;
2561 spin_lock_irqsave(&list->lock, flags);
2562 __skb_queue_after(list, old, newsk);
2563 spin_unlock_irqrestore(&list->lock, flags);
2565 EXPORT_SYMBOL(skb_append);
2568 * skb_insert - insert a buffer
2569 * @old: buffer to insert before
2570 * @newsk: buffer to insert
2571 * @list: list to use
2573 * Place a packet before a given packet in a list. The list locks are
2574 * taken and this function is atomic with respect to other list locked
2575 * calls.
2577 * A buffer cannot be placed on two lists at the same time.
2579 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2581 unsigned long flags;
2583 spin_lock_irqsave(&list->lock, flags);
2584 __skb_insert(newsk, old->prev, old, list);
2585 spin_unlock_irqrestore(&list->lock, flags);
2587 EXPORT_SYMBOL(skb_insert);
2589 static inline void skb_split_inside_header(struct sk_buff *skb,
2590 struct sk_buff* skb1,
2591 const u32 len, const int pos)
2593 int i;
2595 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2596 pos - len);
2597 /* And move data appendix as is. */
2598 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2599 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2601 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2602 skb_shinfo(skb)->nr_frags = 0;
2603 skb1->data_len = skb->data_len;
2604 skb1->len += skb1->data_len;
2605 skb->data_len = 0;
2606 skb->len = len;
2607 skb_set_tail_pointer(skb, len);
2610 static inline void skb_split_no_header(struct sk_buff *skb,
2611 struct sk_buff* skb1,
2612 const u32 len, int pos)
2614 int i, k = 0;
2615 const int nfrags = skb_shinfo(skb)->nr_frags;
2617 skb_shinfo(skb)->nr_frags = 0;
2618 skb1->len = skb1->data_len = skb->len - len;
2619 skb->len = len;
2620 skb->data_len = len - pos;
2622 for (i = 0; i < nfrags; i++) {
2623 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2625 if (pos + size > len) {
2626 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2628 if (pos < len) {
2629 /* Split frag.
2630 * We have two variants in this case:
2631 * 1. Move all the frag to the second
2632 * part, if it is possible. F.e.
2633 * this approach is mandatory for TUX,
2634 * where splitting is expensive.
2635 * 2. Split is accurately. We make this.
2637 skb_frag_ref(skb, i);
2638 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2639 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2640 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2641 skb_shinfo(skb)->nr_frags++;
2643 k++;
2644 } else
2645 skb_shinfo(skb)->nr_frags++;
2646 pos += size;
2648 skb_shinfo(skb1)->nr_frags = k;
2652 * skb_split - Split fragmented skb to two parts at length len.
2653 * @skb: the buffer to split
2654 * @skb1: the buffer to receive the second part
2655 * @len: new length for skb
2657 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2659 int pos = skb_headlen(skb);
2661 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
2662 SKBTX_SHARED_FRAG;
2663 if (len < pos) /* Split line is inside header. */
2664 skb_split_inside_header(skb, skb1, len, pos);
2665 else /* Second chunk has no header, nothing to copy. */
2666 skb_split_no_header(skb, skb1, len, pos);
2668 EXPORT_SYMBOL(skb_split);
2670 /* Shifting from/to a cloned skb is a no-go.
2672 * Caller cannot keep skb_shinfo related pointers past calling here!
2674 static int skb_prepare_for_shift(struct sk_buff *skb)
2676 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2680 * skb_shift - Shifts paged data partially from skb to another
2681 * @tgt: buffer into which tail data gets added
2682 * @skb: buffer from which the paged data comes from
2683 * @shiftlen: shift up to this many bytes
2685 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2686 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2687 * It's up to caller to free skb if everything was shifted.
2689 * If @tgt runs out of frags, the whole operation is aborted.
2691 * Skb cannot include anything else but paged data while tgt is allowed
2692 * to have non-paged data as well.
2694 * TODO: full sized shift could be optimized but that would need
2695 * specialized skb free'er to handle frags without up-to-date nr_frags.
2697 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2699 int from, to, merge, todo;
2700 struct skb_frag_struct *fragfrom, *fragto;
2702 BUG_ON(shiftlen > skb->len);
2704 if (skb_headlen(skb))
2705 return 0;
2707 todo = shiftlen;
2708 from = 0;
2709 to = skb_shinfo(tgt)->nr_frags;
2710 fragfrom = &skb_shinfo(skb)->frags[from];
2712 /* Actual merge is delayed until the point when we know we can
2713 * commit all, so that we don't have to undo partial changes
2715 if (!to ||
2716 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2717 fragfrom->page_offset)) {
2718 merge = -1;
2719 } else {
2720 merge = to - 1;
2722 todo -= skb_frag_size(fragfrom);
2723 if (todo < 0) {
2724 if (skb_prepare_for_shift(skb) ||
2725 skb_prepare_for_shift(tgt))
2726 return 0;
2728 /* All previous frag pointers might be stale! */
2729 fragfrom = &skb_shinfo(skb)->frags[from];
2730 fragto = &skb_shinfo(tgt)->frags[merge];
2732 skb_frag_size_add(fragto, shiftlen);
2733 skb_frag_size_sub(fragfrom, shiftlen);
2734 fragfrom->page_offset += shiftlen;
2736 goto onlymerged;
2739 from++;
2742 /* Skip full, not-fitting skb to avoid expensive operations */
2743 if ((shiftlen == skb->len) &&
2744 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2745 return 0;
2747 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2748 return 0;
2750 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2751 if (to == MAX_SKB_FRAGS)
2752 return 0;
2754 fragfrom = &skb_shinfo(skb)->frags[from];
2755 fragto = &skb_shinfo(tgt)->frags[to];
2757 if (todo >= skb_frag_size(fragfrom)) {
2758 *fragto = *fragfrom;
2759 todo -= skb_frag_size(fragfrom);
2760 from++;
2761 to++;
2763 } else {
2764 __skb_frag_ref(fragfrom);
2765 fragto->page = fragfrom->page;
2766 fragto->page_offset = fragfrom->page_offset;
2767 skb_frag_size_set(fragto, todo);
2769 fragfrom->page_offset += todo;
2770 skb_frag_size_sub(fragfrom, todo);
2771 todo = 0;
2773 to++;
2774 break;
2778 /* Ready to "commit" this state change to tgt */
2779 skb_shinfo(tgt)->nr_frags = to;
2781 if (merge >= 0) {
2782 fragfrom = &skb_shinfo(skb)->frags[0];
2783 fragto = &skb_shinfo(tgt)->frags[merge];
2785 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2786 __skb_frag_unref(fragfrom);
2789 /* Reposition in the original skb */
2790 to = 0;
2791 while (from < skb_shinfo(skb)->nr_frags)
2792 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2793 skb_shinfo(skb)->nr_frags = to;
2795 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2797 onlymerged:
2798 /* Most likely the tgt won't ever need its checksum anymore, skb on
2799 * the other hand might need it if it needs to be resent
2801 tgt->ip_summed = CHECKSUM_PARTIAL;
2802 skb->ip_summed = CHECKSUM_PARTIAL;
2804 /* Yak, is it really working this way? Some helper please? */
2805 skb->len -= shiftlen;
2806 skb->data_len -= shiftlen;
2807 skb->truesize -= shiftlen;
2808 tgt->len += shiftlen;
2809 tgt->data_len += shiftlen;
2810 tgt->truesize += shiftlen;
2812 return shiftlen;
2816 * skb_prepare_seq_read - Prepare a sequential read of skb data
2817 * @skb: the buffer to read
2818 * @from: lower offset of data to be read
2819 * @to: upper offset of data to be read
2820 * @st: state variable
2822 * Initializes the specified state variable. Must be called before
2823 * invoking skb_seq_read() for the first time.
2825 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2826 unsigned int to, struct skb_seq_state *st)
2828 st->lower_offset = from;
2829 st->upper_offset = to;
2830 st->root_skb = st->cur_skb = skb;
2831 st->frag_idx = st->stepped_offset = 0;
2832 st->frag_data = NULL;
2834 EXPORT_SYMBOL(skb_prepare_seq_read);
2837 * skb_seq_read - Sequentially read skb data
2838 * @consumed: number of bytes consumed by the caller so far
2839 * @data: destination pointer for data to be returned
2840 * @st: state variable
2842 * Reads a block of skb data at @consumed relative to the
2843 * lower offset specified to skb_prepare_seq_read(). Assigns
2844 * the head of the data block to @data and returns the length
2845 * of the block or 0 if the end of the skb data or the upper
2846 * offset has been reached.
2848 * The caller is not required to consume all of the data
2849 * returned, i.e. @consumed is typically set to the number
2850 * of bytes already consumed and the next call to
2851 * skb_seq_read() will return the remaining part of the block.
2853 * Note 1: The size of each block of data returned can be arbitrary,
2854 * this limitation is the cost for zerocopy sequential
2855 * reads of potentially non linear data.
2857 * Note 2: Fragment lists within fragments are not implemented
2858 * at the moment, state->root_skb could be replaced with
2859 * a stack for this purpose.
2861 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2862 struct skb_seq_state *st)
2864 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2865 skb_frag_t *frag;
2867 if (unlikely(abs_offset >= st->upper_offset)) {
2868 if (st->frag_data) {
2869 kunmap_atomic(st->frag_data);
2870 st->frag_data = NULL;
2872 return 0;
2875 next_skb:
2876 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2878 if (abs_offset < block_limit && !st->frag_data) {
2879 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2880 return block_limit - abs_offset;
2883 if (st->frag_idx == 0 && !st->frag_data)
2884 st->stepped_offset += skb_headlen(st->cur_skb);
2886 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2887 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2888 block_limit = skb_frag_size(frag) + st->stepped_offset;
2890 if (abs_offset < block_limit) {
2891 if (!st->frag_data)
2892 st->frag_data = kmap_atomic(skb_frag_page(frag));
2894 *data = (u8 *) st->frag_data + frag->page_offset +
2895 (abs_offset - st->stepped_offset);
2897 return block_limit - abs_offset;
2900 if (st->frag_data) {
2901 kunmap_atomic(st->frag_data);
2902 st->frag_data = NULL;
2905 st->frag_idx++;
2906 st->stepped_offset += skb_frag_size(frag);
2909 if (st->frag_data) {
2910 kunmap_atomic(st->frag_data);
2911 st->frag_data = NULL;
2914 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2915 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2916 st->frag_idx = 0;
2917 goto next_skb;
2918 } else if (st->cur_skb->next) {
2919 st->cur_skb = st->cur_skb->next;
2920 st->frag_idx = 0;
2921 goto next_skb;
2924 return 0;
2926 EXPORT_SYMBOL(skb_seq_read);
2929 * skb_abort_seq_read - Abort a sequential read of skb data
2930 * @st: state variable
2932 * Must be called if skb_seq_read() was not called until it
2933 * returned 0.
2935 void skb_abort_seq_read(struct skb_seq_state *st)
2937 if (st->frag_data)
2938 kunmap_atomic(st->frag_data);
2940 EXPORT_SYMBOL(skb_abort_seq_read);
2942 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2944 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2945 struct ts_config *conf,
2946 struct ts_state *state)
2948 return skb_seq_read(offset, text, TS_SKB_CB(state));
2951 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2953 skb_abort_seq_read(TS_SKB_CB(state));
2957 * skb_find_text - Find a text pattern in skb data
2958 * @skb: the buffer to look in
2959 * @from: search offset
2960 * @to: search limit
2961 * @config: textsearch configuration
2963 * Finds a pattern in the skb data according to the specified
2964 * textsearch configuration. Use textsearch_next() to retrieve
2965 * subsequent occurrences of the pattern. Returns the offset
2966 * to the first occurrence or UINT_MAX if no match was found.
2968 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2969 unsigned int to, struct ts_config *config)
2971 struct ts_state state;
2972 unsigned int ret;
2974 config->get_next_block = skb_ts_get_next_block;
2975 config->finish = skb_ts_finish;
2977 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2979 ret = textsearch_find(config, &state);
2980 return (ret <= to - from ? ret : UINT_MAX);
2982 EXPORT_SYMBOL(skb_find_text);
2985 * skb_append_datato_frags - append the user data to a skb
2986 * @sk: sock structure
2987 * @skb: skb structure to be appended with user data.
2988 * @getfrag: call back function to be used for getting the user data
2989 * @from: pointer to user message iov
2990 * @length: length of the iov message
2992 * Description: This procedure append the user data in the fragment part
2993 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2995 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2996 int (*getfrag)(void *from, char *to, int offset,
2997 int len, int odd, struct sk_buff *skb),
2998 void *from, int length)
3000 int frg_cnt = skb_shinfo(skb)->nr_frags;
3001 int copy;
3002 int offset = 0;
3003 int ret;
3004 struct page_frag *pfrag = &current->task_frag;
3006 do {
3007 /* Return error if we don't have space for new frag */
3008 if (frg_cnt >= MAX_SKB_FRAGS)
3009 return -EMSGSIZE;
3011 if (!sk_page_frag_refill(sk, pfrag))
3012 return -ENOMEM;
3014 /* copy the user data to page */
3015 copy = min_t(int, length, pfrag->size - pfrag->offset);
3017 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3018 offset, copy, 0, skb);
3019 if (ret < 0)
3020 return -EFAULT;
3022 /* copy was successful so update the size parameters */
3023 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3024 copy);
3025 frg_cnt++;
3026 pfrag->offset += copy;
3027 get_page(pfrag->page);
3029 skb->truesize += copy;
3030 refcount_add(copy, &sk->sk_wmem_alloc);
3031 skb->len += copy;
3032 skb->data_len += copy;
3033 offset += copy;
3034 length -= copy;
3036 } while (length > 0);
3038 return 0;
3040 EXPORT_SYMBOL(skb_append_datato_frags);
3042 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3043 int offset, size_t size)
3045 int i = skb_shinfo(skb)->nr_frags;
3047 if (skb_can_coalesce(skb, i, page, offset)) {
3048 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3049 } else if (i < MAX_SKB_FRAGS) {
3050 get_page(page);
3051 skb_fill_page_desc(skb, i, page, offset, size);
3052 } else {
3053 return -EMSGSIZE;
3056 return 0;
3058 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3061 * skb_pull_rcsum - pull skb and update receive checksum
3062 * @skb: buffer to update
3063 * @len: length of data pulled
3065 * This function performs an skb_pull on the packet and updates
3066 * the CHECKSUM_COMPLETE checksum. It should be used on
3067 * receive path processing instead of skb_pull unless you know
3068 * that the checksum difference is zero (e.g., a valid IP header)
3069 * or you are setting ip_summed to CHECKSUM_NONE.
3071 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3073 unsigned char *data = skb->data;
3075 BUG_ON(len > skb->len);
3076 __skb_pull(skb, len);
3077 skb_postpull_rcsum(skb, data, len);
3078 return skb->data;
3080 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3083 * skb_segment - Perform protocol segmentation on skb.
3084 * @head_skb: buffer to segment
3085 * @features: features for the output path (see dev->features)
3087 * This function performs segmentation on the given skb. It returns
3088 * a pointer to the first in a list of new skbs for the segments.
3089 * In case of error it returns ERR_PTR(err).
3091 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3092 netdev_features_t features)
3094 struct sk_buff *segs = NULL;
3095 struct sk_buff *tail = NULL;
3096 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3097 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3098 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3099 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3100 struct sk_buff *frag_skb = head_skb;
3101 unsigned int offset = doffset;
3102 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3103 unsigned int partial_segs = 0;
3104 unsigned int headroom;
3105 unsigned int len = head_skb->len;
3106 __be16 proto;
3107 bool csum, sg;
3108 int nfrags = skb_shinfo(head_skb)->nr_frags;
3109 int err = -ENOMEM;
3110 int i = 0;
3111 int pos;
3112 int dummy;
3114 __skb_push(head_skb, doffset);
3115 proto = skb_network_protocol(head_skb, &dummy);
3116 if (unlikely(!proto))
3117 return ERR_PTR(-EINVAL);
3119 sg = !!(features & NETIF_F_SG);
3120 csum = !!can_checksum_protocol(features, proto);
3122 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3123 if (!(features & NETIF_F_GSO_PARTIAL)) {
3124 struct sk_buff *iter;
3125 unsigned int frag_len;
3127 if (!list_skb ||
3128 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3129 goto normal;
3131 /* If we get here then all the required
3132 * GSO features except frag_list are supported.
3133 * Try to split the SKB to multiple GSO SKBs
3134 * with no frag_list.
3135 * Currently we can do that only when the buffers don't
3136 * have a linear part and all the buffers except
3137 * the last are of the same length.
3139 frag_len = list_skb->len;
3140 skb_walk_frags(head_skb, iter) {
3141 if (frag_len != iter->len && iter->next)
3142 goto normal;
3143 if (skb_headlen(iter) && !iter->head_frag)
3144 goto normal;
3146 len -= iter->len;
3149 if (len != frag_len)
3150 goto normal;
3153 /* GSO partial only requires that we trim off any excess that
3154 * doesn't fit into an MSS sized block, so take care of that
3155 * now.
3157 partial_segs = len / mss;
3158 if (partial_segs > 1)
3159 mss *= partial_segs;
3160 else
3161 partial_segs = 0;
3164 normal:
3165 headroom = skb_headroom(head_skb);
3166 pos = skb_headlen(head_skb);
3168 do {
3169 struct sk_buff *nskb;
3170 skb_frag_t *nskb_frag;
3171 int hsize;
3172 int size;
3174 if (unlikely(mss == GSO_BY_FRAGS)) {
3175 len = list_skb->len;
3176 } else {
3177 len = head_skb->len - offset;
3178 if (len > mss)
3179 len = mss;
3182 hsize = skb_headlen(head_skb) - offset;
3183 if (hsize < 0)
3184 hsize = 0;
3185 if (hsize > len || !sg)
3186 hsize = len;
3188 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3189 (skb_headlen(list_skb) == len || sg)) {
3190 BUG_ON(skb_headlen(list_skb) > len);
3192 i = 0;
3193 nfrags = skb_shinfo(list_skb)->nr_frags;
3194 frag = skb_shinfo(list_skb)->frags;
3195 frag_skb = list_skb;
3196 pos += skb_headlen(list_skb);
3198 while (pos < offset + len) {
3199 BUG_ON(i >= nfrags);
3201 size = skb_frag_size(frag);
3202 if (pos + size > offset + len)
3203 break;
3205 i++;
3206 pos += size;
3207 frag++;
3210 nskb = skb_clone(list_skb, GFP_ATOMIC);
3211 list_skb = list_skb->next;
3213 if (unlikely(!nskb))
3214 goto err;
3216 if (unlikely(pskb_trim(nskb, len))) {
3217 kfree_skb(nskb);
3218 goto err;
3221 hsize = skb_end_offset(nskb);
3222 if (skb_cow_head(nskb, doffset + headroom)) {
3223 kfree_skb(nskb);
3224 goto err;
3227 nskb->truesize += skb_end_offset(nskb) - hsize;
3228 skb_release_head_state(nskb);
3229 __skb_push(nskb, doffset);
3230 } else {
3231 nskb = __alloc_skb(hsize + doffset + headroom,
3232 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3233 NUMA_NO_NODE);
3235 if (unlikely(!nskb))
3236 goto err;
3238 skb_reserve(nskb, headroom);
3239 __skb_put(nskb, doffset);
3242 if (segs)
3243 tail->next = nskb;
3244 else
3245 segs = nskb;
3246 tail = nskb;
3248 __copy_skb_header(nskb, head_skb);
3250 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3251 skb_reset_mac_len(nskb);
3253 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3254 nskb->data - tnl_hlen,
3255 doffset + tnl_hlen);
3257 if (nskb->len == len + doffset)
3258 goto perform_csum_check;
3260 if (!sg) {
3261 if (!nskb->remcsum_offload)
3262 nskb->ip_summed = CHECKSUM_NONE;
3263 SKB_GSO_CB(nskb)->csum =
3264 skb_copy_and_csum_bits(head_skb, offset,
3265 skb_put(nskb, len),
3266 len, 0);
3267 SKB_GSO_CB(nskb)->csum_start =
3268 skb_headroom(nskb) + doffset;
3269 continue;
3272 nskb_frag = skb_shinfo(nskb)->frags;
3274 skb_copy_from_linear_data_offset(head_skb, offset,
3275 skb_put(nskb, hsize), hsize);
3277 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3278 SKBTX_SHARED_FRAG;
3280 while (pos < offset + len) {
3281 if (i >= nfrags) {
3282 BUG_ON(skb_headlen(list_skb));
3284 i = 0;
3285 nfrags = skb_shinfo(list_skb)->nr_frags;
3286 frag = skb_shinfo(list_skb)->frags;
3287 frag_skb = list_skb;
3289 BUG_ON(!nfrags);
3291 list_skb = list_skb->next;
3294 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3295 MAX_SKB_FRAGS)) {
3296 net_warn_ratelimited(
3297 "skb_segment: too many frags: %u %u\n",
3298 pos, mss);
3299 goto err;
3302 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3303 goto err;
3305 *nskb_frag = *frag;
3306 __skb_frag_ref(nskb_frag);
3307 size = skb_frag_size(nskb_frag);
3309 if (pos < offset) {
3310 nskb_frag->page_offset += offset - pos;
3311 skb_frag_size_sub(nskb_frag, offset - pos);
3314 skb_shinfo(nskb)->nr_frags++;
3316 if (pos + size <= offset + len) {
3317 i++;
3318 frag++;
3319 pos += size;
3320 } else {
3321 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3322 goto skip_fraglist;
3325 nskb_frag++;
3328 skip_fraglist:
3329 nskb->data_len = len - hsize;
3330 nskb->len += nskb->data_len;
3331 nskb->truesize += nskb->data_len;
3333 perform_csum_check:
3334 if (!csum) {
3335 if (skb_has_shared_frag(nskb)) {
3336 err = __skb_linearize(nskb);
3337 if (err)
3338 goto err;
3340 if (!nskb->remcsum_offload)
3341 nskb->ip_summed = CHECKSUM_NONE;
3342 SKB_GSO_CB(nskb)->csum =
3343 skb_checksum(nskb, doffset,
3344 nskb->len - doffset, 0);
3345 SKB_GSO_CB(nskb)->csum_start =
3346 skb_headroom(nskb) + doffset;
3348 } while ((offset += len) < head_skb->len);
3350 /* Some callers want to get the end of the list.
3351 * Put it in segs->prev to avoid walking the list.
3352 * (see validate_xmit_skb_list() for example)
3354 segs->prev = tail;
3356 if (partial_segs) {
3357 struct sk_buff *iter;
3358 int type = skb_shinfo(head_skb)->gso_type;
3359 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3361 /* Update type to add partial and then remove dodgy if set */
3362 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3363 type &= ~SKB_GSO_DODGY;
3365 /* Update GSO info and prepare to start updating headers on
3366 * our way back down the stack of protocols.
3368 for (iter = segs; iter; iter = iter->next) {
3369 skb_shinfo(iter)->gso_size = gso_size;
3370 skb_shinfo(iter)->gso_segs = partial_segs;
3371 skb_shinfo(iter)->gso_type = type;
3372 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3375 if (tail->len - doffset <= gso_size)
3376 skb_shinfo(tail)->gso_size = 0;
3377 else if (tail != segs)
3378 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3381 /* Following permits correct backpressure, for protocols
3382 * using skb_set_owner_w().
3383 * Idea is to tranfert ownership from head_skb to last segment.
3385 if (head_skb->destructor == sock_wfree) {
3386 swap(tail->truesize, head_skb->truesize);
3387 swap(tail->destructor, head_skb->destructor);
3388 swap(tail->sk, head_skb->sk);
3390 return segs;
3392 err:
3393 kfree_skb_list(segs);
3394 return ERR_PTR(err);
3396 EXPORT_SYMBOL_GPL(skb_segment);
3398 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3400 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3401 unsigned int offset = skb_gro_offset(skb);
3402 unsigned int headlen = skb_headlen(skb);
3403 unsigned int len = skb_gro_len(skb);
3404 struct sk_buff *lp, *p = *head;
3405 unsigned int delta_truesize;
3407 if (unlikely(p->len + len >= 65536))
3408 return -E2BIG;
3410 lp = NAPI_GRO_CB(p)->last;
3411 pinfo = skb_shinfo(lp);
3413 if (headlen <= offset) {
3414 skb_frag_t *frag;
3415 skb_frag_t *frag2;
3416 int i = skbinfo->nr_frags;
3417 int nr_frags = pinfo->nr_frags + i;
3419 if (nr_frags > MAX_SKB_FRAGS)
3420 goto merge;
3422 offset -= headlen;
3423 pinfo->nr_frags = nr_frags;
3424 skbinfo->nr_frags = 0;
3426 frag = pinfo->frags + nr_frags;
3427 frag2 = skbinfo->frags + i;
3428 do {
3429 *--frag = *--frag2;
3430 } while (--i);
3432 frag->page_offset += offset;
3433 skb_frag_size_sub(frag, offset);
3435 /* all fragments truesize : remove (head size + sk_buff) */
3436 delta_truesize = skb->truesize -
3437 SKB_TRUESIZE(skb_end_offset(skb));
3439 skb->truesize -= skb->data_len;
3440 skb->len -= skb->data_len;
3441 skb->data_len = 0;
3443 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3444 goto done;
3445 } else if (skb->head_frag) {
3446 int nr_frags = pinfo->nr_frags;
3447 skb_frag_t *frag = pinfo->frags + nr_frags;
3448 struct page *page = virt_to_head_page(skb->head);
3449 unsigned int first_size = headlen - offset;
3450 unsigned int first_offset;
3452 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3453 goto merge;
3455 first_offset = skb->data -
3456 (unsigned char *)page_address(page) +
3457 offset;
3459 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3461 frag->page.p = page;
3462 frag->page_offset = first_offset;
3463 skb_frag_size_set(frag, first_size);
3465 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3466 /* We dont need to clear skbinfo->nr_frags here */
3468 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3469 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3470 goto done;
3473 merge:
3474 delta_truesize = skb->truesize;
3475 if (offset > headlen) {
3476 unsigned int eat = offset - headlen;
3478 skbinfo->frags[0].page_offset += eat;
3479 skb_frag_size_sub(&skbinfo->frags[0], eat);
3480 skb->data_len -= eat;
3481 skb->len -= eat;
3482 offset = headlen;
3485 __skb_pull(skb, offset);
3487 if (NAPI_GRO_CB(p)->last == p)
3488 skb_shinfo(p)->frag_list = skb;
3489 else
3490 NAPI_GRO_CB(p)->last->next = skb;
3491 NAPI_GRO_CB(p)->last = skb;
3492 __skb_header_release(skb);
3493 lp = p;
3495 done:
3496 NAPI_GRO_CB(p)->count++;
3497 p->data_len += len;
3498 p->truesize += delta_truesize;
3499 p->len += len;
3500 if (lp != p) {
3501 lp->data_len += len;
3502 lp->truesize += delta_truesize;
3503 lp->len += len;
3505 NAPI_GRO_CB(skb)->same_flow = 1;
3506 return 0;
3508 EXPORT_SYMBOL_GPL(skb_gro_receive);
3510 void __init skb_init(void)
3512 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3513 sizeof(struct sk_buff),
3515 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3516 NULL);
3517 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3518 sizeof(struct sk_buff_fclones),
3520 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3521 NULL);
3524 static int
3525 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3526 unsigned int recursion_level)
3528 int start = skb_headlen(skb);
3529 int i, copy = start - offset;
3530 struct sk_buff *frag_iter;
3531 int elt = 0;
3533 if (unlikely(recursion_level >= 24))
3534 return -EMSGSIZE;
3536 if (copy > 0) {
3537 if (copy > len)
3538 copy = len;
3539 sg_set_buf(sg, skb->data + offset, copy);
3540 elt++;
3541 if ((len -= copy) == 0)
3542 return elt;
3543 offset += copy;
3546 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3547 int end;
3549 WARN_ON(start > offset + len);
3551 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3552 if ((copy = end - offset) > 0) {
3553 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3554 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3555 return -EMSGSIZE;
3557 if (copy > len)
3558 copy = len;
3559 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3560 frag->page_offset+offset-start);
3561 elt++;
3562 if (!(len -= copy))
3563 return elt;
3564 offset += copy;
3566 start = end;
3569 skb_walk_frags(skb, frag_iter) {
3570 int end, ret;
3572 WARN_ON(start > offset + len);
3574 end = start + frag_iter->len;
3575 if ((copy = end - offset) > 0) {
3576 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3577 return -EMSGSIZE;
3579 if (copy > len)
3580 copy = len;
3581 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3582 copy, recursion_level + 1);
3583 if (unlikely(ret < 0))
3584 return ret;
3585 elt += ret;
3586 if ((len -= copy) == 0)
3587 return elt;
3588 offset += copy;
3590 start = end;
3592 BUG_ON(len);
3593 return elt;
3597 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3598 * @skb: Socket buffer containing the buffers to be mapped
3599 * @sg: The scatter-gather list to map into
3600 * @offset: The offset into the buffer's contents to start mapping
3601 * @len: Length of buffer space to be mapped
3603 * Fill the specified scatter-gather list with mappings/pointers into a
3604 * region of the buffer space attached to a socket buffer. Returns either
3605 * the number of scatterlist items used, or -EMSGSIZE if the contents
3606 * could not fit.
3608 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3610 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
3612 if (nsg <= 0)
3613 return nsg;
3615 sg_mark_end(&sg[nsg - 1]);
3617 return nsg;
3619 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3621 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3622 * sglist without mark the sg which contain last skb data as the end.
3623 * So the caller can mannipulate sg list as will when padding new data after
3624 * the first call without calling sg_unmark_end to expend sg list.
3626 * Scenario to use skb_to_sgvec_nomark:
3627 * 1. sg_init_table
3628 * 2. skb_to_sgvec_nomark(payload1)
3629 * 3. skb_to_sgvec_nomark(payload2)
3631 * This is equivalent to:
3632 * 1. sg_init_table
3633 * 2. skb_to_sgvec(payload1)
3634 * 3. sg_unmark_end
3635 * 4. skb_to_sgvec(payload2)
3637 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3638 * is more preferable.
3640 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3641 int offset, int len)
3643 return __skb_to_sgvec(skb, sg, offset, len, 0);
3645 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3650 * skb_cow_data - Check that a socket buffer's data buffers are writable
3651 * @skb: The socket buffer to check.
3652 * @tailbits: Amount of trailing space to be added
3653 * @trailer: Returned pointer to the skb where the @tailbits space begins
3655 * Make sure that the data buffers attached to a socket buffer are
3656 * writable. If they are not, private copies are made of the data buffers
3657 * and the socket buffer is set to use these instead.
3659 * If @tailbits is given, make sure that there is space to write @tailbits
3660 * bytes of data beyond current end of socket buffer. @trailer will be
3661 * set to point to the skb in which this space begins.
3663 * The number of scatterlist elements required to completely map the
3664 * COW'd and extended socket buffer will be returned.
3666 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3668 int copyflag;
3669 int elt;
3670 struct sk_buff *skb1, **skb_p;
3672 /* If skb is cloned or its head is paged, reallocate
3673 * head pulling out all the pages (pages are considered not writable
3674 * at the moment even if they are anonymous).
3676 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3677 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3678 return -ENOMEM;
3680 /* Easy case. Most of packets will go this way. */
3681 if (!skb_has_frag_list(skb)) {
3682 /* A little of trouble, not enough of space for trailer.
3683 * This should not happen, when stack is tuned to generate
3684 * good frames. OK, on miss we reallocate and reserve even more
3685 * space, 128 bytes is fair. */
3687 if (skb_tailroom(skb) < tailbits &&
3688 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3689 return -ENOMEM;
3691 /* Voila! */
3692 *trailer = skb;
3693 return 1;
3696 /* Misery. We are in troubles, going to mincer fragments... */
3698 elt = 1;
3699 skb_p = &skb_shinfo(skb)->frag_list;
3700 copyflag = 0;
3702 while ((skb1 = *skb_p) != NULL) {
3703 int ntail = 0;
3705 /* The fragment is partially pulled by someone,
3706 * this can happen on input. Copy it and everything
3707 * after it. */
3709 if (skb_shared(skb1))
3710 copyflag = 1;
3712 /* If the skb is the last, worry about trailer. */
3714 if (skb1->next == NULL && tailbits) {
3715 if (skb_shinfo(skb1)->nr_frags ||
3716 skb_has_frag_list(skb1) ||
3717 skb_tailroom(skb1) < tailbits)
3718 ntail = tailbits + 128;
3721 if (copyflag ||
3722 skb_cloned(skb1) ||
3723 ntail ||
3724 skb_shinfo(skb1)->nr_frags ||
3725 skb_has_frag_list(skb1)) {
3726 struct sk_buff *skb2;
3728 /* Fuck, we are miserable poor guys... */
3729 if (ntail == 0)
3730 skb2 = skb_copy(skb1, GFP_ATOMIC);
3731 else
3732 skb2 = skb_copy_expand(skb1,
3733 skb_headroom(skb1),
3734 ntail,
3735 GFP_ATOMIC);
3736 if (unlikely(skb2 == NULL))
3737 return -ENOMEM;
3739 if (skb1->sk)
3740 skb_set_owner_w(skb2, skb1->sk);
3742 /* Looking around. Are we still alive?
3743 * OK, link new skb, drop old one */
3745 skb2->next = skb1->next;
3746 *skb_p = skb2;
3747 kfree_skb(skb1);
3748 skb1 = skb2;
3750 elt++;
3751 *trailer = skb1;
3752 skb_p = &skb1->next;
3755 return elt;
3757 EXPORT_SYMBOL_GPL(skb_cow_data);
3759 static void sock_rmem_free(struct sk_buff *skb)
3761 struct sock *sk = skb->sk;
3763 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3766 static void skb_set_err_queue(struct sk_buff *skb)
3768 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
3769 * So, it is safe to (mis)use it to mark skbs on the error queue.
3771 skb->pkt_type = PACKET_OUTGOING;
3772 BUILD_BUG_ON(PACKET_OUTGOING == 0);
3776 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3778 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3780 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3781 (unsigned int)sk->sk_rcvbuf)
3782 return -ENOMEM;
3784 skb_orphan(skb);
3785 skb->sk = sk;
3786 skb->destructor = sock_rmem_free;
3787 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3788 skb_set_err_queue(skb);
3790 /* before exiting rcu section, make sure dst is refcounted */
3791 skb_dst_force(skb);
3793 skb_queue_tail(&sk->sk_error_queue, skb);
3794 if (!sock_flag(sk, SOCK_DEAD))
3795 sk->sk_data_ready(sk);
3796 return 0;
3798 EXPORT_SYMBOL(sock_queue_err_skb);
3800 static bool is_icmp_err_skb(const struct sk_buff *skb)
3802 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
3803 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
3806 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3808 struct sk_buff_head *q = &sk->sk_error_queue;
3809 struct sk_buff *skb, *skb_next = NULL;
3810 bool icmp_next = false;
3811 unsigned long flags;
3813 spin_lock_irqsave(&q->lock, flags);
3814 skb = __skb_dequeue(q);
3815 if (skb && (skb_next = skb_peek(q))) {
3816 icmp_next = is_icmp_err_skb(skb_next);
3817 if (icmp_next)
3818 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
3820 spin_unlock_irqrestore(&q->lock, flags);
3822 if (is_icmp_err_skb(skb) && !icmp_next)
3823 sk->sk_err = 0;
3825 if (skb_next)
3826 sk->sk_error_report(sk);
3828 return skb;
3830 EXPORT_SYMBOL(sock_dequeue_err_skb);
3833 * skb_clone_sk - create clone of skb, and take reference to socket
3834 * @skb: the skb to clone
3836 * This function creates a clone of a buffer that holds a reference on
3837 * sk_refcnt. Buffers created via this function are meant to be
3838 * returned using sock_queue_err_skb, or free via kfree_skb.
3840 * When passing buffers allocated with this function to sock_queue_err_skb
3841 * it is necessary to wrap the call with sock_hold/sock_put in order to
3842 * prevent the socket from being released prior to being enqueued on
3843 * the sk_error_queue.
3845 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3847 struct sock *sk = skb->sk;
3848 struct sk_buff *clone;
3850 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
3851 return NULL;
3853 clone = skb_clone(skb, GFP_ATOMIC);
3854 if (!clone) {
3855 sock_put(sk);
3856 return NULL;
3859 clone->sk = sk;
3860 clone->destructor = sock_efree;
3862 return clone;
3864 EXPORT_SYMBOL(skb_clone_sk);
3866 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3867 struct sock *sk,
3868 int tstype,
3869 bool opt_stats)
3871 struct sock_exterr_skb *serr;
3872 int err;
3874 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
3876 serr = SKB_EXT_ERR(skb);
3877 memset(serr, 0, sizeof(*serr));
3878 serr->ee.ee_errno = ENOMSG;
3879 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3880 serr->ee.ee_info = tstype;
3881 serr->opt_stats = opt_stats;
3882 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
3883 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3884 serr->ee.ee_data = skb_shinfo(skb)->tskey;
3885 if (sk->sk_protocol == IPPROTO_TCP &&
3886 sk->sk_type == SOCK_STREAM)
3887 serr->ee.ee_data -= sk->sk_tskey;
3890 err = sock_queue_err_skb(sk, skb);
3892 if (err)
3893 kfree_skb(skb);
3896 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3898 bool ret;
3900 if (likely(sysctl_tstamp_allow_data || tsonly))
3901 return true;
3903 read_lock_bh(&sk->sk_callback_lock);
3904 ret = sk->sk_socket && sk->sk_socket->file &&
3905 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3906 read_unlock_bh(&sk->sk_callback_lock);
3907 return ret;
3910 void skb_complete_tx_timestamp(struct sk_buff *skb,
3911 struct skb_shared_hwtstamps *hwtstamps)
3913 struct sock *sk = skb->sk;
3915 if (!skb_may_tx_timestamp(sk, false))
3916 return;
3918 /* Take a reference to prevent skb_orphan() from freeing the socket,
3919 * but only if the socket refcount is not zero.
3921 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
3922 *skb_hwtstamps(skb) = *hwtstamps;
3923 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
3924 sock_put(sk);
3927 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3929 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3930 struct skb_shared_hwtstamps *hwtstamps,
3931 struct sock *sk, int tstype)
3933 struct sk_buff *skb;
3934 bool tsonly, opt_stats = false;
3936 if (!sk)
3937 return;
3939 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
3940 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
3941 return;
3943 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3944 if (!skb_may_tx_timestamp(sk, tsonly))
3945 return;
3947 if (tsonly) {
3948 #ifdef CONFIG_INET
3949 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
3950 sk->sk_protocol == IPPROTO_TCP &&
3951 sk->sk_type == SOCK_STREAM) {
3952 skb = tcp_get_timestamping_opt_stats(sk);
3953 opt_stats = true;
3954 } else
3955 #endif
3956 skb = alloc_skb(0, GFP_ATOMIC);
3957 } else {
3958 skb = skb_clone(orig_skb, GFP_ATOMIC);
3960 if (!skb)
3961 return;
3963 if (tsonly) {
3964 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
3965 SKBTX_ANY_TSTAMP;
3966 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3969 if (hwtstamps)
3970 *skb_hwtstamps(skb) = *hwtstamps;
3971 else
3972 skb->tstamp = ktime_get_real();
3974 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
3976 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3978 void skb_tstamp_tx(struct sk_buff *orig_skb,
3979 struct skb_shared_hwtstamps *hwtstamps)
3981 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3982 SCM_TSTAMP_SND);
3984 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3986 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3988 struct sock *sk = skb->sk;
3989 struct sock_exterr_skb *serr;
3990 int err = 1;
3992 skb->wifi_acked_valid = 1;
3993 skb->wifi_acked = acked;
3995 serr = SKB_EXT_ERR(skb);
3996 memset(serr, 0, sizeof(*serr));
3997 serr->ee.ee_errno = ENOMSG;
3998 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4000 /* Take a reference to prevent skb_orphan() from freeing the socket,
4001 * but only if the socket refcount is not zero.
4003 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4004 err = sock_queue_err_skb(sk, skb);
4005 sock_put(sk);
4007 if (err)
4008 kfree_skb(skb);
4010 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4013 * skb_partial_csum_set - set up and verify partial csum values for packet
4014 * @skb: the skb to set
4015 * @start: the number of bytes after skb->data to start checksumming.
4016 * @off: the offset from start to place the checksum.
4018 * For untrusted partially-checksummed packets, we need to make sure the values
4019 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4021 * This function checks and sets those values and skb->ip_summed: if this
4022 * returns false you should drop the packet.
4024 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4026 if (unlikely(start > skb_headlen(skb)) ||
4027 unlikely((int)start + off > skb_headlen(skb) - 2)) {
4028 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4029 start, off, skb_headlen(skb));
4030 return false;
4032 skb->ip_summed = CHECKSUM_PARTIAL;
4033 skb->csum_start = skb_headroom(skb) + start;
4034 skb->csum_offset = off;
4035 skb_set_transport_header(skb, start);
4036 return true;
4038 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4040 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4041 unsigned int max)
4043 if (skb_headlen(skb) >= len)
4044 return 0;
4046 /* If we need to pullup then pullup to the max, so we
4047 * won't need to do it again.
4049 if (max > skb->len)
4050 max = skb->len;
4052 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4053 return -ENOMEM;
4055 if (skb_headlen(skb) < len)
4056 return -EPROTO;
4058 return 0;
4061 #define MAX_TCP_HDR_LEN (15 * 4)
4063 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4064 typeof(IPPROTO_IP) proto,
4065 unsigned int off)
4067 switch (proto) {
4068 int err;
4070 case IPPROTO_TCP:
4071 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4072 off + MAX_TCP_HDR_LEN);
4073 if (!err && !skb_partial_csum_set(skb, off,
4074 offsetof(struct tcphdr,
4075 check)))
4076 err = -EPROTO;
4077 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4079 case IPPROTO_UDP:
4080 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4081 off + sizeof(struct udphdr));
4082 if (!err && !skb_partial_csum_set(skb, off,
4083 offsetof(struct udphdr,
4084 check)))
4085 err = -EPROTO;
4086 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4089 return ERR_PTR(-EPROTO);
4092 /* This value should be large enough to cover a tagged ethernet header plus
4093 * maximally sized IP and TCP or UDP headers.
4095 #define MAX_IP_HDR_LEN 128
4097 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4099 unsigned int off;
4100 bool fragment;
4101 __sum16 *csum;
4102 int err;
4104 fragment = false;
4106 err = skb_maybe_pull_tail(skb,
4107 sizeof(struct iphdr),
4108 MAX_IP_HDR_LEN);
4109 if (err < 0)
4110 goto out;
4112 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4113 fragment = true;
4115 off = ip_hdrlen(skb);
4117 err = -EPROTO;
4119 if (fragment)
4120 goto out;
4122 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4123 if (IS_ERR(csum))
4124 return PTR_ERR(csum);
4126 if (recalculate)
4127 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4128 ip_hdr(skb)->daddr,
4129 skb->len - off,
4130 ip_hdr(skb)->protocol, 0);
4131 err = 0;
4133 out:
4134 return err;
4137 /* This value should be large enough to cover a tagged ethernet header plus
4138 * an IPv6 header, all options, and a maximal TCP or UDP header.
4140 #define MAX_IPV6_HDR_LEN 256
4142 #define OPT_HDR(type, skb, off) \
4143 (type *)(skb_network_header(skb) + (off))
4145 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4147 int err;
4148 u8 nexthdr;
4149 unsigned int off;
4150 unsigned int len;
4151 bool fragment;
4152 bool done;
4153 __sum16 *csum;
4155 fragment = false;
4156 done = false;
4158 off = sizeof(struct ipv6hdr);
4160 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4161 if (err < 0)
4162 goto out;
4164 nexthdr = ipv6_hdr(skb)->nexthdr;
4166 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4167 while (off <= len && !done) {
4168 switch (nexthdr) {
4169 case IPPROTO_DSTOPTS:
4170 case IPPROTO_HOPOPTS:
4171 case IPPROTO_ROUTING: {
4172 struct ipv6_opt_hdr *hp;
4174 err = skb_maybe_pull_tail(skb,
4175 off +
4176 sizeof(struct ipv6_opt_hdr),
4177 MAX_IPV6_HDR_LEN);
4178 if (err < 0)
4179 goto out;
4181 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4182 nexthdr = hp->nexthdr;
4183 off += ipv6_optlen(hp);
4184 break;
4186 case IPPROTO_AH: {
4187 struct ip_auth_hdr *hp;
4189 err = skb_maybe_pull_tail(skb,
4190 off +
4191 sizeof(struct ip_auth_hdr),
4192 MAX_IPV6_HDR_LEN);
4193 if (err < 0)
4194 goto out;
4196 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4197 nexthdr = hp->nexthdr;
4198 off += ipv6_authlen(hp);
4199 break;
4201 case IPPROTO_FRAGMENT: {
4202 struct frag_hdr *hp;
4204 err = skb_maybe_pull_tail(skb,
4205 off +
4206 sizeof(struct frag_hdr),
4207 MAX_IPV6_HDR_LEN);
4208 if (err < 0)
4209 goto out;
4211 hp = OPT_HDR(struct frag_hdr, skb, off);
4213 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4214 fragment = true;
4216 nexthdr = hp->nexthdr;
4217 off += sizeof(struct frag_hdr);
4218 break;
4220 default:
4221 done = true;
4222 break;
4226 err = -EPROTO;
4228 if (!done || fragment)
4229 goto out;
4231 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4232 if (IS_ERR(csum))
4233 return PTR_ERR(csum);
4235 if (recalculate)
4236 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4237 &ipv6_hdr(skb)->daddr,
4238 skb->len - off, nexthdr, 0);
4239 err = 0;
4241 out:
4242 return err;
4246 * skb_checksum_setup - set up partial checksum offset
4247 * @skb: the skb to set up
4248 * @recalculate: if true the pseudo-header checksum will be recalculated
4250 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4252 int err;
4254 switch (skb->protocol) {
4255 case htons(ETH_P_IP):
4256 err = skb_checksum_setup_ipv4(skb, recalculate);
4257 break;
4259 case htons(ETH_P_IPV6):
4260 err = skb_checksum_setup_ipv6(skb, recalculate);
4261 break;
4263 default:
4264 err = -EPROTO;
4265 break;
4268 return err;
4270 EXPORT_SYMBOL(skb_checksum_setup);
4273 * skb_checksum_maybe_trim - maybe trims the given skb
4274 * @skb: the skb to check
4275 * @transport_len: the data length beyond the network header
4277 * Checks whether the given skb has data beyond the given transport length.
4278 * If so, returns a cloned skb trimmed to this transport length.
4279 * Otherwise returns the provided skb. Returns NULL in error cases
4280 * (e.g. transport_len exceeds skb length or out-of-memory).
4282 * Caller needs to set the skb transport header and free any returned skb if it
4283 * differs from the provided skb.
4285 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4286 unsigned int transport_len)
4288 struct sk_buff *skb_chk;
4289 unsigned int len = skb_transport_offset(skb) + transport_len;
4290 int ret;
4292 if (skb->len < len)
4293 return NULL;
4294 else if (skb->len == len)
4295 return skb;
4297 skb_chk = skb_clone(skb, GFP_ATOMIC);
4298 if (!skb_chk)
4299 return NULL;
4301 ret = pskb_trim_rcsum(skb_chk, len);
4302 if (ret) {
4303 kfree_skb(skb_chk);
4304 return NULL;
4307 return skb_chk;
4311 * skb_checksum_trimmed - validate checksum of an skb
4312 * @skb: the skb to check
4313 * @transport_len: the data length beyond the network header
4314 * @skb_chkf: checksum function to use
4316 * Applies the given checksum function skb_chkf to the provided skb.
4317 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4319 * If the skb has data beyond the given transport length, then a
4320 * trimmed & cloned skb is checked and returned.
4322 * Caller needs to set the skb transport header and free any returned skb if it
4323 * differs from the provided skb.
4325 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4326 unsigned int transport_len,
4327 __sum16(*skb_chkf)(struct sk_buff *skb))
4329 struct sk_buff *skb_chk;
4330 unsigned int offset = skb_transport_offset(skb);
4331 __sum16 ret;
4333 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4334 if (!skb_chk)
4335 goto err;
4337 if (!pskb_may_pull(skb_chk, offset))
4338 goto err;
4340 skb_pull_rcsum(skb_chk, offset);
4341 ret = skb_chkf(skb_chk);
4342 skb_push_rcsum(skb_chk, offset);
4344 if (ret)
4345 goto err;
4347 return skb_chk;
4349 err:
4350 if (skb_chk && skb_chk != skb)
4351 kfree_skb(skb_chk);
4353 return NULL;
4356 EXPORT_SYMBOL(skb_checksum_trimmed);
4358 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4360 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4361 skb->dev->name);
4363 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4365 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4367 if (head_stolen) {
4368 skb_release_head_state(skb);
4369 kmem_cache_free(skbuff_head_cache, skb);
4370 } else {
4371 __kfree_skb(skb);
4374 EXPORT_SYMBOL(kfree_skb_partial);
4377 * skb_try_coalesce - try to merge skb to prior one
4378 * @to: prior buffer
4379 * @from: buffer to add
4380 * @fragstolen: pointer to boolean
4381 * @delta_truesize: how much more was allocated than was requested
4383 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4384 bool *fragstolen, int *delta_truesize)
4386 int i, delta, len = from->len;
4388 *fragstolen = false;
4390 if (skb_cloned(to))
4391 return false;
4393 if (len <= skb_tailroom(to)) {
4394 if (len)
4395 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4396 *delta_truesize = 0;
4397 return true;
4400 if (skb_has_frag_list(to) || skb_has_frag_list(from))
4401 return false;
4403 if (skb_headlen(from) != 0) {
4404 struct page *page;
4405 unsigned int offset;
4407 if (skb_shinfo(to)->nr_frags +
4408 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4409 return false;
4411 if (skb_head_is_locked(from))
4412 return false;
4414 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4416 page = virt_to_head_page(from->head);
4417 offset = from->data - (unsigned char *)page_address(page);
4419 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4420 page, offset, skb_headlen(from));
4421 *fragstolen = true;
4422 } else {
4423 if (skb_shinfo(to)->nr_frags +
4424 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4425 return false;
4427 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4430 WARN_ON_ONCE(delta < len);
4432 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4433 skb_shinfo(from)->frags,
4434 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4435 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4437 if (!skb_cloned(from))
4438 skb_shinfo(from)->nr_frags = 0;
4440 /* if the skb is not cloned this does nothing
4441 * since we set nr_frags to 0.
4443 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4444 skb_frag_ref(from, i);
4446 to->truesize += delta;
4447 to->len += len;
4448 to->data_len += len;
4450 *delta_truesize = delta;
4451 return true;
4453 EXPORT_SYMBOL(skb_try_coalesce);
4456 * skb_scrub_packet - scrub an skb
4458 * @skb: buffer to clean
4459 * @xnet: packet is crossing netns
4461 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4462 * into/from a tunnel. Some information have to be cleared during these
4463 * operations.
4464 * skb_scrub_packet can also be used to clean a skb before injecting it in
4465 * another namespace (@xnet == true). We have to clear all information in the
4466 * skb that could impact namespace isolation.
4468 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4470 skb->tstamp = 0;
4471 skb->pkt_type = PACKET_HOST;
4472 skb->skb_iif = 0;
4473 skb->ignore_df = 0;
4474 skb_dst_drop(skb);
4475 secpath_reset(skb);
4476 nf_reset(skb);
4477 nf_reset_trace(skb);
4479 if (!xnet)
4480 return;
4482 skb_orphan(skb);
4483 skb->mark = 0;
4485 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4488 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4490 * @skb: GSO skb
4492 * skb_gso_transport_seglen is used to determine the real size of the
4493 * individual segments, including Layer4 headers (TCP/UDP).
4495 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4497 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4499 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4500 unsigned int thlen = 0;
4502 if (skb->encapsulation) {
4503 thlen = skb_inner_transport_header(skb) -
4504 skb_transport_header(skb);
4506 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4507 thlen += inner_tcp_hdrlen(skb);
4508 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4509 thlen = tcp_hdrlen(skb);
4510 } else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4511 thlen = sizeof(struct sctphdr);
4513 /* UFO sets gso_size to the size of the fragmentation
4514 * payload, i.e. the size of the L4 (UDP) header is already
4515 * accounted for.
4517 return thlen + shinfo->gso_size;
4519 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4522 * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4524 * @skb: GSO skb
4525 * @mtu: MTU to validate against
4527 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4528 * once split.
4530 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4532 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4533 const struct sk_buff *iter;
4534 unsigned int hlen;
4536 hlen = skb_gso_network_seglen(skb);
4538 if (shinfo->gso_size != GSO_BY_FRAGS)
4539 return hlen <= mtu;
4541 /* Undo this so we can re-use header sizes */
4542 hlen -= GSO_BY_FRAGS;
4544 skb_walk_frags(skb, iter) {
4545 if (hlen + skb_headlen(iter) > mtu)
4546 return false;
4549 return true;
4551 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4553 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4555 if (skb_cow(skb, skb_headroom(skb)) < 0) {
4556 kfree_skb(skb);
4557 return NULL;
4560 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4561 2 * ETH_ALEN);
4562 skb->mac_header += VLAN_HLEN;
4563 return skb;
4566 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4568 struct vlan_hdr *vhdr;
4569 u16 vlan_tci;
4571 if (unlikely(skb_vlan_tag_present(skb))) {
4572 /* vlan_tci is already set-up so leave this for another time */
4573 return skb;
4576 skb = skb_share_check(skb, GFP_ATOMIC);
4577 if (unlikely(!skb))
4578 goto err_free;
4580 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4581 goto err_free;
4583 vhdr = (struct vlan_hdr *)skb->data;
4584 vlan_tci = ntohs(vhdr->h_vlan_TCI);
4585 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4587 skb_pull_rcsum(skb, VLAN_HLEN);
4588 vlan_set_encap_proto(skb, vhdr);
4590 skb = skb_reorder_vlan_header(skb);
4591 if (unlikely(!skb))
4592 goto err_free;
4594 skb_reset_network_header(skb);
4595 skb_reset_transport_header(skb);
4596 skb_reset_mac_len(skb);
4598 return skb;
4600 err_free:
4601 kfree_skb(skb);
4602 return NULL;
4604 EXPORT_SYMBOL(skb_vlan_untag);
4606 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4608 if (!pskb_may_pull(skb, write_len))
4609 return -ENOMEM;
4611 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4612 return 0;
4614 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4616 EXPORT_SYMBOL(skb_ensure_writable);
4618 /* remove VLAN header from packet and update csum accordingly.
4619 * expects a non skb_vlan_tag_present skb with a vlan tag payload
4621 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4623 struct vlan_hdr *vhdr;
4624 int offset = skb->data - skb_mac_header(skb);
4625 int err;
4627 if (WARN_ONCE(offset,
4628 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
4629 offset)) {
4630 return -EINVAL;
4633 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4634 if (unlikely(err))
4635 return err;
4637 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4639 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4640 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
4642 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4643 __skb_pull(skb, VLAN_HLEN);
4645 vlan_set_encap_proto(skb, vhdr);
4646 skb->mac_header += VLAN_HLEN;
4648 if (skb_network_offset(skb) < ETH_HLEN)
4649 skb_set_network_header(skb, ETH_HLEN);
4651 skb_reset_mac_len(skb);
4653 return err;
4655 EXPORT_SYMBOL(__skb_vlan_pop);
4657 /* Pop a vlan tag either from hwaccel or from payload.
4658 * Expects skb->data at mac header.
4660 int skb_vlan_pop(struct sk_buff *skb)
4662 u16 vlan_tci;
4663 __be16 vlan_proto;
4664 int err;
4666 if (likely(skb_vlan_tag_present(skb))) {
4667 skb->vlan_tci = 0;
4668 } else {
4669 if (unlikely(!eth_type_vlan(skb->protocol)))
4670 return 0;
4672 err = __skb_vlan_pop(skb, &vlan_tci);
4673 if (err)
4674 return err;
4676 /* move next vlan tag to hw accel tag */
4677 if (likely(!eth_type_vlan(skb->protocol)))
4678 return 0;
4680 vlan_proto = skb->protocol;
4681 err = __skb_vlan_pop(skb, &vlan_tci);
4682 if (unlikely(err))
4683 return err;
4685 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4686 return 0;
4688 EXPORT_SYMBOL(skb_vlan_pop);
4690 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
4691 * Expects skb->data at mac header.
4693 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4695 if (skb_vlan_tag_present(skb)) {
4696 int offset = skb->data - skb_mac_header(skb);
4697 int err;
4699 if (WARN_ONCE(offset,
4700 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
4701 offset)) {
4702 return -EINVAL;
4705 err = __vlan_insert_tag(skb, skb->vlan_proto,
4706 skb_vlan_tag_get(skb));
4707 if (err)
4708 return err;
4710 skb->protocol = skb->vlan_proto;
4711 skb->mac_len += VLAN_HLEN;
4713 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4715 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4716 return 0;
4718 EXPORT_SYMBOL(skb_vlan_push);
4721 * alloc_skb_with_frags - allocate skb with page frags
4723 * @header_len: size of linear part
4724 * @data_len: needed length in frags
4725 * @max_page_order: max page order desired.
4726 * @errcode: pointer to error code if any
4727 * @gfp_mask: allocation mask
4729 * This can be used to allocate a paged skb, given a maximal order for frags.
4731 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4732 unsigned long data_len,
4733 int max_page_order,
4734 int *errcode,
4735 gfp_t gfp_mask)
4737 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4738 unsigned long chunk;
4739 struct sk_buff *skb;
4740 struct page *page;
4741 gfp_t gfp_head;
4742 int i;
4744 *errcode = -EMSGSIZE;
4745 /* Note this test could be relaxed, if we succeed to allocate
4746 * high order pages...
4748 if (npages > MAX_SKB_FRAGS)
4749 return NULL;
4751 gfp_head = gfp_mask;
4752 if (gfp_head & __GFP_DIRECT_RECLAIM)
4753 gfp_head |= __GFP_RETRY_MAYFAIL;
4755 *errcode = -ENOBUFS;
4756 skb = alloc_skb(header_len, gfp_head);
4757 if (!skb)
4758 return NULL;
4760 skb->truesize += npages << PAGE_SHIFT;
4762 for (i = 0; npages > 0; i++) {
4763 int order = max_page_order;
4765 while (order) {
4766 if (npages >= 1 << order) {
4767 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4768 __GFP_COMP |
4769 __GFP_NOWARN |
4770 __GFP_NORETRY,
4771 order);
4772 if (page)
4773 goto fill_page;
4774 /* Do not retry other high order allocations */
4775 order = 1;
4776 max_page_order = 0;
4778 order--;
4780 page = alloc_page(gfp_mask);
4781 if (!page)
4782 goto failure;
4783 fill_page:
4784 chunk = min_t(unsigned long, data_len,
4785 PAGE_SIZE << order);
4786 skb_fill_page_desc(skb, i, page, 0, chunk);
4787 data_len -= chunk;
4788 npages -= 1 << order;
4790 return skb;
4792 failure:
4793 kfree_skb(skb);
4794 return NULL;
4796 EXPORT_SYMBOL(alloc_skb_with_frags);
4798 /* carve out the first off bytes from skb when off < headlen */
4799 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
4800 const int headlen, gfp_t gfp_mask)
4802 int i;
4803 int size = skb_end_offset(skb);
4804 int new_hlen = headlen - off;
4805 u8 *data;
4807 size = SKB_DATA_ALIGN(size);
4809 if (skb_pfmemalloc(skb))
4810 gfp_mask |= __GFP_MEMALLOC;
4811 data = kmalloc_reserve(size +
4812 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4813 gfp_mask, NUMA_NO_NODE, NULL);
4814 if (!data)
4815 return -ENOMEM;
4817 size = SKB_WITH_OVERHEAD(ksize(data));
4819 /* Copy real data, and all frags */
4820 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
4821 skb->len -= off;
4823 memcpy((struct skb_shared_info *)(data + size),
4824 skb_shinfo(skb),
4825 offsetof(struct skb_shared_info,
4826 frags[skb_shinfo(skb)->nr_frags]));
4827 if (skb_cloned(skb)) {
4828 /* drop the old head gracefully */
4829 if (skb_orphan_frags(skb, gfp_mask)) {
4830 kfree(data);
4831 return -ENOMEM;
4833 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4834 skb_frag_ref(skb, i);
4835 if (skb_has_frag_list(skb))
4836 skb_clone_fraglist(skb);
4837 skb_release_data(skb);
4838 } else {
4839 /* we can reuse existing recount- all we did was
4840 * relocate values
4842 skb_free_head(skb);
4845 skb->head = data;
4846 skb->data = data;
4847 skb->head_frag = 0;
4848 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4849 skb->end = size;
4850 #else
4851 skb->end = skb->head + size;
4852 #endif
4853 skb_set_tail_pointer(skb, skb_headlen(skb));
4854 skb_headers_offset_update(skb, 0);
4855 skb->cloned = 0;
4856 skb->hdr_len = 0;
4857 skb->nohdr = 0;
4858 atomic_set(&skb_shinfo(skb)->dataref, 1);
4860 return 0;
4863 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
4865 /* carve out the first eat bytes from skb's frag_list. May recurse into
4866 * pskb_carve()
4868 static int pskb_carve_frag_list(struct sk_buff *skb,
4869 struct skb_shared_info *shinfo, int eat,
4870 gfp_t gfp_mask)
4872 struct sk_buff *list = shinfo->frag_list;
4873 struct sk_buff *clone = NULL;
4874 struct sk_buff *insp = NULL;
4876 do {
4877 if (!list) {
4878 pr_err("Not enough bytes to eat. Want %d\n", eat);
4879 return -EFAULT;
4881 if (list->len <= eat) {
4882 /* Eaten as whole. */
4883 eat -= list->len;
4884 list = list->next;
4885 insp = list;
4886 } else {
4887 /* Eaten partially. */
4888 if (skb_shared(list)) {
4889 clone = skb_clone(list, gfp_mask);
4890 if (!clone)
4891 return -ENOMEM;
4892 insp = list->next;
4893 list = clone;
4894 } else {
4895 /* This may be pulled without problems. */
4896 insp = list;
4898 if (pskb_carve(list, eat, gfp_mask) < 0) {
4899 kfree_skb(clone);
4900 return -ENOMEM;
4902 break;
4904 } while (eat);
4906 /* Free pulled out fragments. */
4907 while ((list = shinfo->frag_list) != insp) {
4908 shinfo->frag_list = list->next;
4909 kfree_skb(list);
4911 /* And insert new clone at head. */
4912 if (clone) {
4913 clone->next = list;
4914 shinfo->frag_list = clone;
4916 return 0;
4919 /* carve off first len bytes from skb. Split line (off) is in the
4920 * non-linear part of skb
4922 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
4923 int pos, gfp_t gfp_mask)
4925 int i, k = 0;
4926 int size = skb_end_offset(skb);
4927 u8 *data;
4928 const int nfrags = skb_shinfo(skb)->nr_frags;
4929 struct skb_shared_info *shinfo;
4931 size = SKB_DATA_ALIGN(size);
4933 if (skb_pfmemalloc(skb))
4934 gfp_mask |= __GFP_MEMALLOC;
4935 data = kmalloc_reserve(size +
4936 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4937 gfp_mask, NUMA_NO_NODE, NULL);
4938 if (!data)
4939 return -ENOMEM;
4941 size = SKB_WITH_OVERHEAD(ksize(data));
4943 memcpy((struct skb_shared_info *)(data + size),
4944 skb_shinfo(skb), offsetof(struct skb_shared_info,
4945 frags[skb_shinfo(skb)->nr_frags]));
4946 if (skb_orphan_frags(skb, gfp_mask)) {
4947 kfree(data);
4948 return -ENOMEM;
4950 shinfo = (struct skb_shared_info *)(data + size);
4951 for (i = 0; i < nfrags; i++) {
4952 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4954 if (pos + fsize > off) {
4955 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
4957 if (pos < off) {
4958 /* Split frag.
4959 * We have two variants in this case:
4960 * 1. Move all the frag to the second
4961 * part, if it is possible. F.e.
4962 * this approach is mandatory for TUX,
4963 * where splitting is expensive.
4964 * 2. Split is accurately. We make this.
4966 shinfo->frags[0].page_offset += off - pos;
4967 skb_frag_size_sub(&shinfo->frags[0], off - pos);
4969 skb_frag_ref(skb, i);
4970 k++;
4972 pos += fsize;
4974 shinfo->nr_frags = k;
4975 if (skb_has_frag_list(skb))
4976 skb_clone_fraglist(skb);
4978 if (k == 0) {
4979 /* split line is in frag list */
4980 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
4982 skb_release_data(skb);
4984 skb->head = data;
4985 skb->head_frag = 0;
4986 skb->data = data;
4987 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4988 skb->end = size;
4989 #else
4990 skb->end = skb->head + size;
4991 #endif
4992 skb_reset_tail_pointer(skb);
4993 skb_headers_offset_update(skb, 0);
4994 skb->cloned = 0;
4995 skb->hdr_len = 0;
4996 skb->nohdr = 0;
4997 skb->len -= off;
4998 skb->data_len = skb->len;
4999 atomic_set(&skb_shinfo(skb)->dataref, 1);
5000 return 0;
5003 /* remove len bytes from the beginning of the skb */
5004 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5006 int headlen = skb_headlen(skb);
5008 if (len < headlen)
5009 return pskb_carve_inside_header(skb, len, headlen, gfp);
5010 else
5011 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5014 /* Extract to_copy bytes starting at off from skb, and return this in
5015 * a new skb
5017 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5018 int to_copy, gfp_t gfp)
5020 struct sk_buff *clone = skb_clone(skb, gfp);
5022 if (!clone)
5023 return NULL;
5025 if (pskb_carve(clone, off, gfp) < 0 ||
5026 pskb_trim(clone, to_copy)) {
5027 kfree_skb(clone);
5028 return NULL;
5030 return clone;
5032 EXPORT_SYMBOL(pskb_extract);
5035 * skb_condense - try to get rid of fragments/frag_list if possible
5036 * @skb: buffer
5038 * Can be used to save memory before skb is added to a busy queue.
5039 * If packet has bytes in frags and enough tail room in skb->head,
5040 * pull all of them, so that we can free the frags right now and adjust
5041 * truesize.
5042 * Notes:
5043 * We do not reallocate skb->head thus can not fail.
5044 * Caller must re-evaluate skb->truesize if needed.
5046 void skb_condense(struct sk_buff *skb)
5048 if (skb->data_len) {
5049 if (skb->data_len > skb->end - skb->tail ||
5050 skb_cloned(skb))
5051 return;
5053 /* Nice, we can free page frag(s) right now */
5054 __pskb_pull_tail(skb, skb->data_len);
5056 /* At this point, skb->truesize might be over estimated,
5057 * because skb had a fragment, and fragments do not tell
5058 * their truesize.
5059 * When we pulled its content into skb->head, fragment
5060 * was freed, but __pskb_pull_tail() could not possibly
5061 * adjust skb->truesize, not knowing the frag truesize.
5063 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));