ext4: let ext4_group_add_blocks() return an error code
[linux-2.6/btrfs-unstable.git] / fs / ext4 / mballoc.c
blobdbe429567eb3c325b9ad16106b9f2e969affe8c9
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
24 #include "mballoc.h"
25 #include <linux/debugfs.h>
26 #include <linux/slab.h>
27 #include <trace/events/ext4.h>
30 * MUSTDO:
31 * - test ext4_ext_search_left() and ext4_ext_search_right()
32 * - search for metadata in few groups
34 * TODO v4:
35 * - normalization should take into account whether file is still open
36 * - discard preallocations if no free space left (policy?)
37 * - don't normalize tails
38 * - quota
39 * - reservation for superuser
41 * TODO v3:
42 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
43 * - track min/max extents in each group for better group selection
44 * - mb_mark_used() may allocate chunk right after splitting buddy
45 * - tree of groups sorted by number of free blocks
46 * - error handling
50 * The allocation request involve request for multiple number of blocks
51 * near to the goal(block) value specified.
53 * During initialization phase of the allocator we decide to use the
54 * group preallocation or inode preallocation depending on the size of
55 * the file. The size of the file could be the resulting file size we
56 * would have after allocation, or the current file size, which ever
57 * is larger. If the size is less than sbi->s_mb_stream_request we
58 * select to use the group preallocation. The default value of
59 * s_mb_stream_request is 16 blocks. This can also be tuned via
60 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
61 * terms of number of blocks.
63 * The main motivation for having small file use group preallocation is to
64 * ensure that we have small files closer together on the disk.
66 * First stage the allocator looks at the inode prealloc list,
67 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
68 * spaces for this particular inode. The inode prealloc space is
69 * represented as:
71 * pa_lstart -> the logical start block for this prealloc space
72 * pa_pstart -> the physical start block for this prealloc space
73 * pa_len -> length for this prealloc space
74 * pa_free -> free space available in this prealloc space
76 * The inode preallocation space is used looking at the _logical_ start
77 * block. If only the logical file block falls within the range of prealloc
78 * space we will consume the particular prealloc space. This makes sure that
79 * we have contiguous physical blocks representing the file blocks
81 * The important thing to be noted in case of inode prealloc space is that
82 * we don't modify the values associated to inode prealloc space except
83 * pa_free.
85 * If we are not able to find blocks in the inode prealloc space and if we
86 * have the group allocation flag set then we look at the locality group
87 * prealloc space. These are per CPU prealloc list represented as
89 * ext4_sb_info.s_locality_groups[smp_processor_id()]
91 * The reason for having a per cpu locality group is to reduce the contention
92 * between CPUs. It is possible to get scheduled at this point.
94 * The locality group prealloc space is used looking at whether we have
95 * enough free space (pa_free) within the prealloc space.
97 * If we can't allocate blocks via inode prealloc or/and locality group
98 * prealloc then we look at the buddy cache. The buddy cache is represented
99 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
100 * mapped to the buddy and bitmap information regarding different
101 * groups. The buddy information is attached to buddy cache inode so that
102 * we can access them through the page cache. The information regarding
103 * each group is loaded via ext4_mb_load_buddy. The information involve
104 * block bitmap and buddy information. The information are stored in the
105 * inode as:
107 * { page }
108 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
111 * one block each for bitmap and buddy information. So for each group we
112 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
113 * blocksize) blocks. So it can have information regarding groups_per_page
114 * which is blocks_per_page/2
116 * The buddy cache inode is not stored on disk. The inode is thrown
117 * away when the filesystem is unmounted.
119 * We look for count number of blocks in the buddy cache. If we were able
120 * to locate that many free blocks we return with additional information
121 * regarding rest of the contiguous physical block available
123 * Before allocating blocks via buddy cache we normalize the request
124 * blocks. This ensure we ask for more blocks that we needed. The extra
125 * blocks that we get after allocation is added to the respective prealloc
126 * list. In case of inode preallocation we follow a list of heuristics
127 * based on file size. This can be found in ext4_mb_normalize_request. If
128 * we are doing a group prealloc we try to normalize the request to
129 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
130 * 512 blocks. This can be tuned via
131 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
132 * terms of number of blocks. If we have mounted the file system with -O
133 * stripe=<value> option the group prealloc request is normalized to the
134 * the smallest multiple of the stripe value (sbi->s_stripe) which is
135 * greater than the default mb_group_prealloc.
137 * The regular allocator (using the buddy cache) supports a few tunables.
139 * /sys/fs/ext4/<partition>/mb_min_to_scan
140 * /sys/fs/ext4/<partition>/mb_max_to_scan
141 * /sys/fs/ext4/<partition>/mb_order2_req
143 * The regular allocator uses buddy scan only if the request len is power of
144 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
145 * value of s_mb_order2_reqs can be tuned via
146 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
147 * stripe size (sbi->s_stripe), we try to search for contiguous block in
148 * stripe size. This should result in better allocation on RAID setups. If
149 * not, we search in the specific group using bitmap for best extents. The
150 * tunable min_to_scan and max_to_scan control the behaviour here.
151 * min_to_scan indicate how long the mballoc __must__ look for a best
152 * extent and max_to_scan indicates how long the mballoc __can__ look for a
153 * best extent in the found extents. Searching for the blocks starts with
154 * the group specified as the goal value in allocation context via
155 * ac_g_ex. Each group is first checked based on the criteria whether it
156 * can be used for allocation. ext4_mb_good_group explains how the groups are
157 * checked.
159 * Both the prealloc space are getting populated as above. So for the first
160 * request we will hit the buddy cache which will result in this prealloc
161 * space getting filled. The prealloc space is then later used for the
162 * subsequent request.
166 * mballoc operates on the following data:
167 * - on-disk bitmap
168 * - in-core buddy (actually includes buddy and bitmap)
169 * - preallocation descriptors (PAs)
171 * there are two types of preallocations:
172 * - inode
173 * assiged to specific inode and can be used for this inode only.
174 * it describes part of inode's space preallocated to specific
175 * physical blocks. any block from that preallocated can be used
176 * independent. the descriptor just tracks number of blocks left
177 * unused. so, before taking some block from descriptor, one must
178 * make sure corresponded logical block isn't allocated yet. this
179 * also means that freeing any block within descriptor's range
180 * must discard all preallocated blocks.
181 * - locality group
182 * assigned to specific locality group which does not translate to
183 * permanent set of inodes: inode can join and leave group. space
184 * from this type of preallocation can be used for any inode. thus
185 * it's consumed from the beginning to the end.
187 * relation between them can be expressed as:
188 * in-core buddy = on-disk bitmap + preallocation descriptors
190 * this mean blocks mballoc considers used are:
191 * - allocated blocks (persistent)
192 * - preallocated blocks (non-persistent)
194 * consistency in mballoc world means that at any time a block is either
195 * free or used in ALL structures. notice: "any time" should not be read
196 * literally -- time is discrete and delimited by locks.
198 * to keep it simple, we don't use block numbers, instead we count number of
199 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
201 * all operations can be expressed as:
202 * - init buddy: buddy = on-disk + PAs
203 * - new PA: buddy += N; PA = N
204 * - use inode PA: on-disk += N; PA -= N
205 * - discard inode PA buddy -= on-disk - PA; PA = 0
206 * - use locality group PA on-disk += N; PA -= N
207 * - discard locality group PA buddy -= PA; PA = 0
208 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
209 * is used in real operation because we can't know actual used
210 * bits from PA, only from on-disk bitmap
212 * if we follow this strict logic, then all operations above should be atomic.
213 * given some of them can block, we'd have to use something like semaphores
214 * killing performance on high-end SMP hardware. let's try to relax it using
215 * the following knowledge:
216 * 1) if buddy is referenced, it's already initialized
217 * 2) while block is used in buddy and the buddy is referenced,
218 * nobody can re-allocate that block
219 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
220 * bit set and PA claims same block, it's OK. IOW, one can set bit in
221 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
222 * block
224 * so, now we're building a concurrency table:
225 * - init buddy vs.
226 * - new PA
227 * blocks for PA are allocated in the buddy, buddy must be referenced
228 * until PA is linked to allocation group to avoid concurrent buddy init
229 * - use inode PA
230 * we need to make sure that either on-disk bitmap or PA has uptodate data
231 * given (3) we care that PA-=N operation doesn't interfere with init
232 * - discard inode PA
233 * the simplest way would be to have buddy initialized by the discard
234 * - use locality group PA
235 * again PA-=N must be serialized with init
236 * - discard locality group PA
237 * the simplest way would be to have buddy initialized by the discard
238 * - new PA vs.
239 * - use inode PA
240 * i_data_sem serializes them
241 * - discard inode PA
242 * discard process must wait until PA isn't used by another process
243 * - use locality group PA
244 * some mutex should serialize them
245 * - discard locality group PA
246 * discard process must wait until PA isn't used by another process
247 * - use inode PA
248 * - use inode PA
249 * i_data_sem or another mutex should serializes them
250 * - discard inode PA
251 * discard process must wait until PA isn't used by another process
252 * - use locality group PA
253 * nothing wrong here -- they're different PAs covering different blocks
254 * - discard locality group PA
255 * discard process must wait until PA isn't used by another process
257 * now we're ready to make few consequences:
258 * - PA is referenced and while it is no discard is possible
259 * - PA is referenced until block isn't marked in on-disk bitmap
260 * - PA changes only after on-disk bitmap
261 * - discard must not compete with init. either init is done before
262 * any discard or they're serialized somehow
263 * - buddy init as sum of on-disk bitmap and PAs is done atomically
265 * a special case when we've used PA to emptiness. no need to modify buddy
266 * in this case, but we should care about concurrent init
271 * Logic in few words:
273 * - allocation:
274 * load group
275 * find blocks
276 * mark bits in on-disk bitmap
277 * release group
279 * - use preallocation:
280 * find proper PA (per-inode or group)
281 * load group
282 * mark bits in on-disk bitmap
283 * release group
284 * release PA
286 * - free:
287 * load group
288 * mark bits in on-disk bitmap
289 * release group
291 * - discard preallocations in group:
292 * mark PAs deleted
293 * move them onto local list
294 * load on-disk bitmap
295 * load group
296 * remove PA from object (inode or locality group)
297 * mark free blocks in-core
299 * - discard inode's preallocations:
303 * Locking rules
305 * Locks:
306 * - bitlock on a group (group)
307 * - object (inode/locality) (object)
308 * - per-pa lock (pa)
310 * Paths:
311 * - new pa
312 * object
313 * group
315 * - find and use pa:
316 * pa
318 * - release consumed pa:
319 * pa
320 * group
321 * object
323 * - generate in-core bitmap:
324 * group
325 * pa
327 * - discard all for given object (inode, locality group):
328 * object
329 * pa
330 * group
332 * - discard all for given group:
333 * group
334 * pa
335 * group
336 * object
339 static struct kmem_cache *ext4_pspace_cachep;
340 static struct kmem_cache *ext4_ac_cachep;
341 static struct kmem_cache *ext4_free_ext_cachep;
343 /* We create slab caches for groupinfo data structures based on the
344 * superblock block size. There will be one per mounted filesystem for
345 * each unique s_blocksize_bits */
346 #define NR_GRPINFO_CACHES 8
347 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
349 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
350 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
351 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
352 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
355 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
356 ext4_group_t group);
357 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
358 ext4_group_t group);
359 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
361 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
363 #if BITS_PER_LONG == 64
364 *bit += ((unsigned long) addr & 7UL) << 3;
365 addr = (void *) ((unsigned long) addr & ~7UL);
366 #elif BITS_PER_LONG == 32
367 *bit += ((unsigned long) addr & 3UL) << 3;
368 addr = (void *) ((unsigned long) addr & ~3UL);
369 #else
370 #error "how many bits you are?!"
371 #endif
372 return addr;
375 static inline int mb_test_bit(int bit, void *addr)
378 * ext4_test_bit on architecture like powerpc
379 * needs unsigned long aligned address
381 addr = mb_correct_addr_and_bit(&bit, addr);
382 return ext4_test_bit(bit, addr);
385 static inline void mb_set_bit(int bit, void *addr)
387 addr = mb_correct_addr_and_bit(&bit, addr);
388 ext4_set_bit(bit, addr);
391 static inline void mb_clear_bit(int bit, void *addr)
393 addr = mb_correct_addr_and_bit(&bit, addr);
394 ext4_clear_bit(bit, addr);
397 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
399 int fix = 0, ret, tmpmax;
400 addr = mb_correct_addr_and_bit(&fix, addr);
401 tmpmax = max + fix;
402 start += fix;
404 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
405 if (ret > max)
406 return max;
407 return ret;
410 static inline int mb_find_next_bit(void *addr, int max, int start)
412 int fix = 0, ret, tmpmax;
413 addr = mb_correct_addr_and_bit(&fix, addr);
414 tmpmax = max + fix;
415 start += fix;
417 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
418 if (ret > max)
419 return max;
420 return ret;
423 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
425 char *bb;
427 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
428 BUG_ON(max == NULL);
430 if (order > e4b->bd_blkbits + 1) {
431 *max = 0;
432 return NULL;
435 /* at order 0 we see each particular block */
436 if (order == 0) {
437 *max = 1 << (e4b->bd_blkbits + 3);
438 return EXT4_MB_BITMAP(e4b);
441 bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
442 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
444 return bb;
447 #ifdef DOUBLE_CHECK
448 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
449 int first, int count)
451 int i;
452 struct super_block *sb = e4b->bd_sb;
454 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
455 return;
456 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
457 for (i = 0; i < count; i++) {
458 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
459 ext4_fsblk_t blocknr;
461 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
462 blocknr += first + i;
463 ext4_grp_locked_error(sb, e4b->bd_group,
464 inode ? inode->i_ino : 0,
465 blocknr,
466 "freeing block already freed "
467 "(bit %u)",
468 first + i);
470 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
474 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
476 int i;
478 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
479 return;
480 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
481 for (i = 0; i < count; i++) {
482 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
483 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
487 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
489 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
490 unsigned char *b1, *b2;
491 int i;
492 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
493 b2 = (unsigned char *) bitmap;
494 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
495 if (b1[i] != b2[i]) {
496 printk(KERN_ERR "corruption in group %u "
497 "at byte %u(%u): %x in copy != %x "
498 "on disk/prealloc\n",
499 e4b->bd_group, i, i * 8, b1[i], b2[i]);
500 BUG();
506 #else
507 static inline void mb_free_blocks_double(struct inode *inode,
508 struct ext4_buddy *e4b, int first, int count)
510 return;
512 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
513 int first, int count)
515 return;
517 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
519 return;
521 #endif
523 #ifdef AGGRESSIVE_CHECK
525 #define MB_CHECK_ASSERT(assert) \
526 do { \
527 if (!(assert)) { \
528 printk(KERN_EMERG \
529 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
530 function, file, line, # assert); \
531 BUG(); \
533 } while (0)
535 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
536 const char *function, int line)
538 struct super_block *sb = e4b->bd_sb;
539 int order = e4b->bd_blkbits + 1;
540 int max;
541 int max2;
542 int i;
543 int j;
544 int k;
545 int count;
546 struct ext4_group_info *grp;
547 int fragments = 0;
548 int fstart;
549 struct list_head *cur;
550 void *buddy;
551 void *buddy2;
554 static int mb_check_counter;
555 if (mb_check_counter++ % 100 != 0)
556 return 0;
559 while (order > 1) {
560 buddy = mb_find_buddy(e4b, order, &max);
561 MB_CHECK_ASSERT(buddy);
562 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
563 MB_CHECK_ASSERT(buddy2);
564 MB_CHECK_ASSERT(buddy != buddy2);
565 MB_CHECK_ASSERT(max * 2 == max2);
567 count = 0;
568 for (i = 0; i < max; i++) {
570 if (mb_test_bit(i, buddy)) {
571 /* only single bit in buddy2 may be 1 */
572 if (!mb_test_bit(i << 1, buddy2)) {
573 MB_CHECK_ASSERT(
574 mb_test_bit((i<<1)+1, buddy2));
575 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
576 MB_CHECK_ASSERT(
577 mb_test_bit(i << 1, buddy2));
579 continue;
582 /* both bits in buddy2 must be 0 */
583 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
584 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
586 for (j = 0; j < (1 << order); j++) {
587 k = (i * (1 << order)) + j;
588 MB_CHECK_ASSERT(
589 !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
591 count++;
593 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
594 order--;
597 fstart = -1;
598 buddy = mb_find_buddy(e4b, 0, &max);
599 for (i = 0; i < max; i++) {
600 if (!mb_test_bit(i, buddy)) {
601 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
602 if (fstart == -1) {
603 fragments++;
604 fstart = i;
606 continue;
608 fstart = -1;
609 /* check used bits only */
610 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
611 buddy2 = mb_find_buddy(e4b, j, &max2);
612 k = i >> j;
613 MB_CHECK_ASSERT(k < max2);
614 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
617 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
618 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
620 grp = ext4_get_group_info(sb, e4b->bd_group);
621 list_for_each(cur, &grp->bb_prealloc_list) {
622 ext4_group_t groupnr;
623 struct ext4_prealloc_space *pa;
624 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
625 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
626 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
627 for (i = 0; i < pa->pa_len; i++)
628 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
630 return 0;
632 #undef MB_CHECK_ASSERT
633 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
634 __FILE__, __func__, __LINE__)
635 #else
636 #define mb_check_buddy(e4b)
637 #endif
640 * Divide blocks started from @first with length @len into
641 * smaller chunks with power of 2 blocks.
642 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
643 * then increase bb_counters[] for corresponded chunk size.
645 static void ext4_mb_mark_free_simple(struct super_block *sb,
646 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
647 struct ext4_group_info *grp)
649 struct ext4_sb_info *sbi = EXT4_SB(sb);
650 ext4_grpblk_t min;
651 ext4_grpblk_t max;
652 ext4_grpblk_t chunk;
653 unsigned short border;
655 BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
657 border = 2 << sb->s_blocksize_bits;
659 while (len > 0) {
660 /* find how many blocks can be covered since this position */
661 max = ffs(first | border) - 1;
663 /* find how many blocks of power 2 we need to mark */
664 min = fls(len) - 1;
666 if (max < min)
667 min = max;
668 chunk = 1 << min;
670 /* mark multiblock chunks only */
671 grp->bb_counters[min]++;
672 if (min > 0)
673 mb_clear_bit(first >> min,
674 buddy + sbi->s_mb_offsets[min]);
676 len -= chunk;
677 first += chunk;
682 * Cache the order of the largest free extent we have available in this block
683 * group.
685 static void
686 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
688 int i;
689 int bits;
691 grp->bb_largest_free_order = -1; /* uninit */
693 bits = sb->s_blocksize_bits + 1;
694 for (i = bits; i >= 0; i--) {
695 if (grp->bb_counters[i] > 0) {
696 grp->bb_largest_free_order = i;
697 break;
702 static noinline_for_stack
703 void ext4_mb_generate_buddy(struct super_block *sb,
704 void *buddy, void *bitmap, ext4_group_t group)
706 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
707 ext4_grpblk_t max = EXT4_BLOCKS_PER_GROUP(sb);
708 ext4_grpblk_t i = 0;
709 ext4_grpblk_t first;
710 ext4_grpblk_t len;
711 unsigned free = 0;
712 unsigned fragments = 0;
713 unsigned long long period = get_cycles();
715 /* initialize buddy from bitmap which is aggregation
716 * of on-disk bitmap and preallocations */
717 i = mb_find_next_zero_bit(bitmap, max, 0);
718 grp->bb_first_free = i;
719 while (i < max) {
720 fragments++;
721 first = i;
722 i = mb_find_next_bit(bitmap, max, i);
723 len = i - first;
724 free += len;
725 if (len > 1)
726 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
727 else
728 grp->bb_counters[0]++;
729 if (i < max)
730 i = mb_find_next_zero_bit(bitmap, max, i);
732 grp->bb_fragments = fragments;
734 if (free != grp->bb_free) {
735 ext4_grp_locked_error(sb, group, 0, 0,
736 "%u blocks in bitmap, %u in gd",
737 free, grp->bb_free);
739 * If we intent to continue, we consider group descritor
740 * corrupt and update bb_free using bitmap value
742 grp->bb_free = free;
744 mb_set_largest_free_order(sb, grp);
746 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
748 period = get_cycles() - period;
749 spin_lock(&EXT4_SB(sb)->s_bal_lock);
750 EXT4_SB(sb)->s_mb_buddies_generated++;
751 EXT4_SB(sb)->s_mb_generation_time += period;
752 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
755 /* The buddy information is attached the buddy cache inode
756 * for convenience. The information regarding each group
757 * is loaded via ext4_mb_load_buddy. The information involve
758 * block bitmap and buddy information. The information are
759 * stored in the inode as
761 * { page }
762 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
765 * one block each for bitmap and buddy information.
766 * So for each group we take up 2 blocks. A page can
767 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
768 * So it can have information regarding groups_per_page which
769 * is blocks_per_page/2
771 * Locking note: This routine takes the block group lock of all groups
772 * for this page; do not hold this lock when calling this routine!
775 static int ext4_mb_init_cache(struct page *page, char *incore)
777 ext4_group_t ngroups;
778 int blocksize;
779 int blocks_per_page;
780 int groups_per_page;
781 int err = 0;
782 int i;
783 ext4_group_t first_group;
784 int first_block;
785 struct super_block *sb;
786 struct buffer_head *bhs;
787 struct buffer_head **bh;
788 struct inode *inode;
789 char *data;
790 char *bitmap;
791 struct ext4_group_info *grinfo;
793 mb_debug(1, "init page %lu\n", page->index);
795 inode = page->mapping->host;
796 sb = inode->i_sb;
797 ngroups = ext4_get_groups_count(sb);
798 blocksize = 1 << inode->i_blkbits;
799 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
801 groups_per_page = blocks_per_page >> 1;
802 if (groups_per_page == 0)
803 groups_per_page = 1;
805 /* allocate buffer_heads to read bitmaps */
806 if (groups_per_page > 1) {
807 err = -ENOMEM;
808 i = sizeof(struct buffer_head *) * groups_per_page;
809 bh = kzalloc(i, GFP_NOFS);
810 if (bh == NULL)
811 goto out;
812 } else
813 bh = &bhs;
815 first_group = page->index * blocks_per_page / 2;
817 /* read all groups the page covers into the cache */
818 for (i = 0; i < groups_per_page; i++) {
819 struct ext4_group_desc *desc;
821 if (first_group + i >= ngroups)
822 break;
824 grinfo = ext4_get_group_info(sb, first_group + i);
826 * If page is uptodate then we came here after online resize
827 * which added some new uninitialized group info structs, so
828 * we must skip all initialized uptodate buddies on the page,
829 * which may be currently in use by an allocating task.
831 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
832 bh[i] = NULL;
833 continue;
836 err = -EIO;
837 desc = ext4_get_group_desc(sb, first_group + i, NULL);
838 if (desc == NULL)
839 goto out;
841 err = -ENOMEM;
842 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
843 if (bh[i] == NULL)
844 goto out;
846 if (bitmap_uptodate(bh[i]))
847 continue;
849 lock_buffer(bh[i]);
850 if (bitmap_uptodate(bh[i])) {
851 unlock_buffer(bh[i]);
852 continue;
854 ext4_lock_group(sb, first_group + i);
855 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
856 ext4_init_block_bitmap(sb, bh[i],
857 first_group + i, desc);
858 set_bitmap_uptodate(bh[i]);
859 set_buffer_uptodate(bh[i]);
860 ext4_unlock_group(sb, first_group + i);
861 unlock_buffer(bh[i]);
862 continue;
864 ext4_unlock_group(sb, first_group + i);
865 if (buffer_uptodate(bh[i])) {
867 * if not uninit if bh is uptodate,
868 * bitmap is also uptodate
870 set_bitmap_uptodate(bh[i]);
871 unlock_buffer(bh[i]);
872 continue;
874 get_bh(bh[i]);
876 * submit the buffer_head for read. We can
877 * safely mark the bitmap as uptodate now.
878 * We do it here so the bitmap uptodate bit
879 * get set with buffer lock held.
881 set_bitmap_uptodate(bh[i]);
882 bh[i]->b_end_io = end_buffer_read_sync;
883 submit_bh(READ, bh[i]);
884 mb_debug(1, "read bitmap for group %u\n", first_group + i);
887 /* wait for I/O completion */
888 for (i = 0; i < groups_per_page; i++)
889 if (bh[i])
890 wait_on_buffer(bh[i]);
892 err = -EIO;
893 for (i = 0; i < groups_per_page; i++)
894 if (bh[i] && !buffer_uptodate(bh[i]))
895 goto out;
897 err = 0;
898 first_block = page->index * blocks_per_page;
899 for (i = 0; i < blocks_per_page; i++) {
900 int group;
902 group = (first_block + i) >> 1;
903 if (group >= ngroups)
904 break;
906 if (!bh[group - first_group])
907 /* skip initialized uptodate buddy */
908 continue;
911 * data carry information regarding this
912 * particular group in the format specified
913 * above
916 data = page_address(page) + (i * blocksize);
917 bitmap = bh[group - first_group]->b_data;
920 * We place the buddy block and bitmap block
921 * close together
923 if ((first_block + i) & 1) {
924 /* this is block of buddy */
925 BUG_ON(incore == NULL);
926 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
927 group, page->index, i * blocksize);
928 trace_ext4_mb_buddy_bitmap_load(sb, group);
929 grinfo = ext4_get_group_info(sb, group);
930 grinfo->bb_fragments = 0;
931 memset(grinfo->bb_counters, 0,
932 sizeof(*grinfo->bb_counters) *
933 (sb->s_blocksize_bits+2));
935 * incore got set to the group block bitmap below
937 ext4_lock_group(sb, group);
938 /* init the buddy */
939 memset(data, 0xff, blocksize);
940 ext4_mb_generate_buddy(sb, data, incore, group);
941 ext4_unlock_group(sb, group);
942 incore = NULL;
943 } else {
944 /* this is block of bitmap */
945 BUG_ON(incore != NULL);
946 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
947 group, page->index, i * blocksize);
948 trace_ext4_mb_bitmap_load(sb, group);
950 /* see comments in ext4_mb_put_pa() */
951 ext4_lock_group(sb, group);
952 memcpy(data, bitmap, blocksize);
954 /* mark all preallocated blks used in in-core bitmap */
955 ext4_mb_generate_from_pa(sb, data, group);
956 ext4_mb_generate_from_freelist(sb, data, group);
957 ext4_unlock_group(sb, group);
959 /* set incore so that the buddy information can be
960 * generated using this
962 incore = data;
965 SetPageUptodate(page);
967 out:
968 if (bh) {
969 for (i = 0; i < groups_per_page; i++)
970 brelse(bh[i]);
971 if (bh != &bhs)
972 kfree(bh);
974 return err;
978 * Lock the buddy and bitmap pages. This make sure other parallel init_group
979 * on the same buddy page doesn't happen whild holding the buddy page lock.
980 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
981 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
983 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
984 ext4_group_t group, struct ext4_buddy *e4b)
986 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
987 int block, pnum, poff;
988 int blocks_per_page;
989 struct page *page;
991 e4b->bd_buddy_page = NULL;
992 e4b->bd_bitmap_page = NULL;
994 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
996 * the buddy cache inode stores the block bitmap
997 * and buddy information in consecutive blocks.
998 * So for each group we need two blocks.
1000 block = group * 2;
1001 pnum = block / blocks_per_page;
1002 poff = block % blocks_per_page;
1003 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1004 if (!page)
1005 return -EIO;
1006 BUG_ON(page->mapping != inode->i_mapping);
1007 e4b->bd_bitmap_page = page;
1008 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1010 if (blocks_per_page >= 2) {
1011 /* buddy and bitmap are on the same page */
1012 return 0;
1015 block++;
1016 pnum = block / blocks_per_page;
1017 poff = block % blocks_per_page;
1018 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1019 if (!page)
1020 return -EIO;
1021 BUG_ON(page->mapping != inode->i_mapping);
1022 e4b->bd_buddy_page = page;
1023 return 0;
1026 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1028 if (e4b->bd_bitmap_page) {
1029 unlock_page(e4b->bd_bitmap_page);
1030 page_cache_release(e4b->bd_bitmap_page);
1032 if (e4b->bd_buddy_page) {
1033 unlock_page(e4b->bd_buddy_page);
1034 page_cache_release(e4b->bd_buddy_page);
1039 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1040 * block group lock of all groups for this page; do not hold the BG lock when
1041 * calling this routine!
1043 static noinline_for_stack
1044 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1047 struct ext4_group_info *this_grp;
1048 struct ext4_buddy e4b;
1049 struct page *page;
1050 int ret = 0;
1052 mb_debug(1, "init group %u\n", group);
1053 this_grp = ext4_get_group_info(sb, group);
1055 * This ensures that we don't reinit the buddy cache
1056 * page which map to the group from which we are already
1057 * allocating. If we are looking at the buddy cache we would
1058 * have taken a reference using ext4_mb_load_buddy and that
1059 * would have pinned buddy page to page cache.
1061 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1062 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1064 * somebody initialized the group
1065 * return without doing anything
1067 goto err;
1070 page = e4b.bd_bitmap_page;
1071 ret = ext4_mb_init_cache(page, NULL);
1072 if (ret)
1073 goto err;
1074 if (!PageUptodate(page)) {
1075 ret = -EIO;
1076 goto err;
1078 mark_page_accessed(page);
1080 if (e4b.bd_buddy_page == NULL) {
1082 * If both the bitmap and buddy are in
1083 * the same page we don't need to force
1084 * init the buddy
1086 ret = 0;
1087 goto err;
1089 /* init buddy cache */
1090 page = e4b.bd_buddy_page;
1091 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1092 if (ret)
1093 goto err;
1094 if (!PageUptodate(page)) {
1095 ret = -EIO;
1096 goto err;
1098 mark_page_accessed(page);
1099 err:
1100 ext4_mb_put_buddy_page_lock(&e4b);
1101 return ret;
1105 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1106 * block group lock of all groups for this page; do not hold the BG lock when
1107 * calling this routine!
1109 static noinline_for_stack int
1110 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1111 struct ext4_buddy *e4b)
1113 int blocks_per_page;
1114 int block;
1115 int pnum;
1116 int poff;
1117 struct page *page;
1118 int ret;
1119 struct ext4_group_info *grp;
1120 struct ext4_sb_info *sbi = EXT4_SB(sb);
1121 struct inode *inode = sbi->s_buddy_cache;
1123 mb_debug(1, "load group %u\n", group);
1125 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1126 grp = ext4_get_group_info(sb, group);
1128 e4b->bd_blkbits = sb->s_blocksize_bits;
1129 e4b->bd_info = grp;
1130 e4b->bd_sb = sb;
1131 e4b->bd_group = group;
1132 e4b->bd_buddy_page = NULL;
1133 e4b->bd_bitmap_page = NULL;
1135 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1137 * we need full data about the group
1138 * to make a good selection
1140 ret = ext4_mb_init_group(sb, group);
1141 if (ret)
1142 return ret;
1146 * the buddy cache inode stores the block bitmap
1147 * and buddy information in consecutive blocks.
1148 * So for each group we need two blocks.
1150 block = group * 2;
1151 pnum = block / blocks_per_page;
1152 poff = block % blocks_per_page;
1154 /* we could use find_or_create_page(), but it locks page
1155 * what we'd like to avoid in fast path ... */
1156 page = find_get_page(inode->i_mapping, pnum);
1157 if (page == NULL || !PageUptodate(page)) {
1158 if (page)
1160 * drop the page reference and try
1161 * to get the page with lock. If we
1162 * are not uptodate that implies
1163 * somebody just created the page but
1164 * is yet to initialize the same. So
1165 * wait for it to initialize.
1167 page_cache_release(page);
1168 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1169 if (page) {
1170 BUG_ON(page->mapping != inode->i_mapping);
1171 if (!PageUptodate(page)) {
1172 ret = ext4_mb_init_cache(page, NULL);
1173 if (ret) {
1174 unlock_page(page);
1175 goto err;
1177 mb_cmp_bitmaps(e4b, page_address(page) +
1178 (poff * sb->s_blocksize));
1180 unlock_page(page);
1183 if (page == NULL || !PageUptodate(page)) {
1184 ret = -EIO;
1185 goto err;
1187 e4b->bd_bitmap_page = page;
1188 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1189 mark_page_accessed(page);
1191 block++;
1192 pnum = block / blocks_per_page;
1193 poff = block % blocks_per_page;
1195 page = find_get_page(inode->i_mapping, pnum);
1196 if (page == NULL || !PageUptodate(page)) {
1197 if (page)
1198 page_cache_release(page);
1199 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1200 if (page) {
1201 BUG_ON(page->mapping != inode->i_mapping);
1202 if (!PageUptodate(page)) {
1203 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1204 if (ret) {
1205 unlock_page(page);
1206 goto err;
1209 unlock_page(page);
1212 if (page == NULL || !PageUptodate(page)) {
1213 ret = -EIO;
1214 goto err;
1216 e4b->bd_buddy_page = page;
1217 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1218 mark_page_accessed(page);
1220 BUG_ON(e4b->bd_bitmap_page == NULL);
1221 BUG_ON(e4b->bd_buddy_page == NULL);
1223 return 0;
1225 err:
1226 if (page)
1227 page_cache_release(page);
1228 if (e4b->bd_bitmap_page)
1229 page_cache_release(e4b->bd_bitmap_page);
1230 if (e4b->bd_buddy_page)
1231 page_cache_release(e4b->bd_buddy_page);
1232 e4b->bd_buddy = NULL;
1233 e4b->bd_bitmap = NULL;
1234 return ret;
1237 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1239 if (e4b->bd_bitmap_page)
1240 page_cache_release(e4b->bd_bitmap_page);
1241 if (e4b->bd_buddy_page)
1242 page_cache_release(e4b->bd_buddy_page);
1246 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1248 int order = 1;
1249 void *bb;
1251 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1252 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1254 bb = EXT4_MB_BUDDY(e4b);
1255 while (order <= e4b->bd_blkbits + 1) {
1256 block = block >> 1;
1257 if (!mb_test_bit(block, bb)) {
1258 /* this block is part of buddy of order 'order' */
1259 return order;
1261 bb += 1 << (e4b->bd_blkbits - order);
1262 order++;
1264 return 0;
1267 static void mb_clear_bits(void *bm, int cur, int len)
1269 __u32 *addr;
1271 len = cur + len;
1272 while (cur < len) {
1273 if ((cur & 31) == 0 && (len - cur) >= 32) {
1274 /* fast path: clear whole word at once */
1275 addr = bm + (cur >> 3);
1276 *addr = 0;
1277 cur += 32;
1278 continue;
1280 mb_clear_bit(cur, bm);
1281 cur++;
1285 static void mb_set_bits(void *bm, int cur, int len)
1287 __u32 *addr;
1289 len = cur + len;
1290 while (cur < len) {
1291 if ((cur & 31) == 0 && (len - cur) >= 32) {
1292 /* fast path: set whole word at once */
1293 addr = bm + (cur >> 3);
1294 *addr = 0xffffffff;
1295 cur += 32;
1296 continue;
1298 mb_set_bit(cur, bm);
1299 cur++;
1303 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1304 int first, int count)
1306 int block = 0;
1307 int max = 0;
1308 int order;
1309 void *buddy;
1310 void *buddy2;
1311 struct super_block *sb = e4b->bd_sb;
1313 BUG_ON(first + count > (sb->s_blocksize << 3));
1314 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1315 mb_check_buddy(e4b);
1316 mb_free_blocks_double(inode, e4b, first, count);
1318 e4b->bd_info->bb_free += count;
1319 if (first < e4b->bd_info->bb_first_free)
1320 e4b->bd_info->bb_first_free = first;
1322 /* let's maintain fragments counter */
1323 if (first != 0)
1324 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1325 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1326 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1327 if (block && max)
1328 e4b->bd_info->bb_fragments--;
1329 else if (!block && !max)
1330 e4b->bd_info->bb_fragments++;
1332 /* let's maintain buddy itself */
1333 while (count-- > 0) {
1334 block = first++;
1335 order = 0;
1337 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1338 ext4_fsblk_t blocknr;
1340 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1341 blocknr += block;
1342 ext4_grp_locked_error(sb, e4b->bd_group,
1343 inode ? inode->i_ino : 0,
1344 blocknr,
1345 "freeing already freed block "
1346 "(bit %u)", block);
1348 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1349 e4b->bd_info->bb_counters[order]++;
1351 /* start of the buddy */
1352 buddy = mb_find_buddy(e4b, order, &max);
1354 do {
1355 block &= ~1UL;
1356 if (mb_test_bit(block, buddy) ||
1357 mb_test_bit(block + 1, buddy))
1358 break;
1360 /* both the buddies are free, try to coalesce them */
1361 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1363 if (!buddy2)
1364 break;
1366 if (order > 0) {
1367 /* for special purposes, we don't set
1368 * free bits in bitmap */
1369 mb_set_bit(block, buddy);
1370 mb_set_bit(block + 1, buddy);
1372 e4b->bd_info->bb_counters[order]--;
1373 e4b->bd_info->bb_counters[order]--;
1375 block = block >> 1;
1376 order++;
1377 e4b->bd_info->bb_counters[order]++;
1379 mb_clear_bit(block, buddy2);
1380 buddy = buddy2;
1381 } while (1);
1383 mb_set_largest_free_order(sb, e4b->bd_info);
1384 mb_check_buddy(e4b);
1387 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1388 int needed, struct ext4_free_extent *ex)
1390 int next = block;
1391 int max;
1392 int ord;
1393 void *buddy;
1395 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1396 BUG_ON(ex == NULL);
1398 buddy = mb_find_buddy(e4b, order, &max);
1399 BUG_ON(buddy == NULL);
1400 BUG_ON(block >= max);
1401 if (mb_test_bit(block, buddy)) {
1402 ex->fe_len = 0;
1403 ex->fe_start = 0;
1404 ex->fe_group = 0;
1405 return 0;
1408 /* FIXME dorp order completely ? */
1409 if (likely(order == 0)) {
1410 /* find actual order */
1411 order = mb_find_order_for_block(e4b, block);
1412 block = block >> order;
1415 ex->fe_len = 1 << order;
1416 ex->fe_start = block << order;
1417 ex->fe_group = e4b->bd_group;
1419 /* calc difference from given start */
1420 next = next - ex->fe_start;
1421 ex->fe_len -= next;
1422 ex->fe_start += next;
1424 while (needed > ex->fe_len &&
1425 (buddy = mb_find_buddy(e4b, order, &max))) {
1427 if (block + 1 >= max)
1428 break;
1430 next = (block + 1) * (1 << order);
1431 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1432 break;
1434 ord = mb_find_order_for_block(e4b, next);
1436 order = ord;
1437 block = next >> order;
1438 ex->fe_len += 1 << order;
1441 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1442 return ex->fe_len;
1445 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1447 int ord;
1448 int mlen = 0;
1449 int max = 0;
1450 int cur;
1451 int start = ex->fe_start;
1452 int len = ex->fe_len;
1453 unsigned ret = 0;
1454 int len0 = len;
1455 void *buddy;
1457 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1458 BUG_ON(e4b->bd_group != ex->fe_group);
1459 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1460 mb_check_buddy(e4b);
1461 mb_mark_used_double(e4b, start, len);
1463 e4b->bd_info->bb_free -= len;
1464 if (e4b->bd_info->bb_first_free == start)
1465 e4b->bd_info->bb_first_free += len;
1467 /* let's maintain fragments counter */
1468 if (start != 0)
1469 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1470 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1471 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1472 if (mlen && max)
1473 e4b->bd_info->bb_fragments++;
1474 else if (!mlen && !max)
1475 e4b->bd_info->bb_fragments--;
1477 /* let's maintain buddy itself */
1478 while (len) {
1479 ord = mb_find_order_for_block(e4b, start);
1481 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1482 /* the whole chunk may be allocated at once! */
1483 mlen = 1 << ord;
1484 buddy = mb_find_buddy(e4b, ord, &max);
1485 BUG_ON((start >> ord) >= max);
1486 mb_set_bit(start >> ord, buddy);
1487 e4b->bd_info->bb_counters[ord]--;
1488 start += mlen;
1489 len -= mlen;
1490 BUG_ON(len < 0);
1491 continue;
1494 /* store for history */
1495 if (ret == 0)
1496 ret = len | (ord << 16);
1498 /* we have to split large buddy */
1499 BUG_ON(ord <= 0);
1500 buddy = mb_find_buddy(e4b, ord, &max);
1501 mb_set_bit(start >> ord, buddy);
1502 e4b->bd_info->bb_counters[ord]--;
1504 ord--;
1505 cur = (start >> ord) & ~1U;
1506 buddy = mb_find_buddy(e4b, ord, &max);
1507 mb_clear_bit(cur, buddy);
1508 mb_clear_bit(cur + 1, buddy);
1509 e4b->bd_info->bb_counters[ord]++;
1510 e4b->bd_info->bb_counters[ord]++;
1512 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1514 mb_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1515 mb_check_buddy(e4b);
1517 return ret;
1521 * Must be called under group lock!
1523 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1524 struct ext4_buddy *e4b)
1526 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1527 int ret;
1529 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1530 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1532 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1533 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1534 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1536 /* preallocation can change ac_b_ex, thus we store actually
1537 * allocated blocks for history */
1538 ac->ac_f_ex = ac->ac_b_ex;
1540 ac->ac_status = AC_STATUS_FOUND;
1541 ac->ac_tail = ret & 0xffff;
1542 ac->ac_buddy = ret >> 16;
1545 * take the page reference. We want the page to be pinned
1546 * so that we don't get a ext4_mb_init_cache_call for this
1547 * group until we update the bitmap. That would mean we
1548 * double allocate blocks. The reference is dropped
1549 * in ext4_mb_release_context
1551 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1552 get_page(ac->ac_bitmap_page);
1553 ac->ac_buddy_page = e4b->bd_buddy_page;
1554 get_page(ac->ac_buddy_page);
1555 /* store last allocated for subsequent stream allocation */
1556 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1557 spin_lock(&sbi->s_md_lock);
1558 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1559 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1560 spin_unlock(&sbi->s_md_lock);
1565 * regular allocator, for general purposes allocation
1568 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1569 struct ext4_buddy *e4b,
1570 int finish_group)
1572 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1573 struct ext4_free_extent *bex = &ac->ac_b_ex;
1574 struct ext4_free_extent *gex = &ac->ac_g_ex;
1575 struct ext4_free_extent ex;
1576 int max;
1578 if (ac->ac_status == AC_STATUS_FOUND)
1579 return;
1581 * We don't want to scan for a whole year
1583 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1584 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1585 ac->ac_status = AC_STATUS_BREAK;
1586 return;
1590 * Haven't found good chunk so far, let's continue
1592 if (bex->fe_len < gex->fe_len)
1593 return;
1595 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1596 && bex->fe_group == e4b->bd_group) {
1597 /* recheck chunk's availability - we don't know
1598 * when it was found (within this lock-unlock
1599 * period or not) */
1600 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1601 if (max >= gex->fe_len) {
1602 ext4_mb_use_best_found(ac, e4b);
1603 return;
1609 * The routine checks whether found extent is good enough. If it is,
1610 * then the extent gets marked used and flag is set to the context
1611 * to stop scanning. Otherwise, the extent is compared with the
1612 * previous found extent and if new one is better, then it's stored
1613 * in the context. Later, the best found extent will be used, if
1614 * mballoc can't find good enough extent.
1616 * FIXME: real allocation policy is to be designed yet!
1618 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1619 struct ext4_free_extent *ex,
1620 struct ext4_buddy *e4b)
1622 struct ext4_free_extent *bex = &ac->ac_b_ex;
1623 struct ext4_free_extent *gex = &ac->ac_g_ex;
1625 BUG_ON(ex->fe_len <= 0);
1626 BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1627 BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1628 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1630 ac->ac_found++;
1633 * The special case - take what you catch first
1635 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1636 *bex = *ex;
1637 ext4_mb_use_best_found(ac, e4b);
1638 return;
1642 * Let's check whether the chuck is good enough
1644 if (ex->fe_len == gex->fe_len) {
1645 *bex = *ex;
1646 ext4_mb_use_best_found(ac, e4b);
1647 return;
1651 * If this is first found extent, just store it in the context
1653 if (bex->fe_len == 0) {
1654 *bex = *ex;
1655 return;
1659 * If new found extent is better, store it in the context
1661 if (bex->fe_len < gex->fe_len) {
1662 /* if the request isn't satisfied, any found extent
1663 * larger than previous best one is better */
1664 if (ex->fe_len > bex->fe_len)
1665 *bex = *ex;
1666 } else if (ex->fe_len > gex->fe_len) {
1667 /* if the request is satisfied, then we try to find
1668 * an extent that still satisfy the request, but is
1669 * smaller than previous one */
1670 if (ex->fe_len < bex->fe_len)
1671 *bex = *ex;
1674 ext4_mb_check_limits(ac, e4b, 0);
1677 static noinline_for_stack
1678 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1679 struct ext4_buddy *e4b)
1681 struct ext4_free_extent ex = ac->ac_b_ex;
1682 ext4_group_t group = ex.fe_group;
1683 int max;
1684 int err;
1686 BUG_ON(ex.fe_len <= 0);
1687 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1688 if (err)
1689 return err;
1691 ext4_lock_group(ac->ac_sb, group);
1692 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1694 if (max > 0) {
1695 ac->ac_b_ex = ex;
1696 ext4_mb_use_best_found(ac, e4b);
1699 ext4_unlock_group(ac->ac_sb, group);
1700 ext4_mb_unload_buddy(e4b);
1702 return 0;
1705 static noinline_for_stack
1706 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1707 struct ext4_buddy *e4b)
1709 ext4_group_t group = ac->ac_g_ex.fe_group;
1710 int max;
1711 int err;
1712 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1713 struct ext4_free_extent ex;
1715 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1716 return 0;
1718 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1719 if (err)
1720 return err;
1722 ext4_lock_group(ac->ac_sb, group);
1723 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1724 ac->ac_g_ex.fe_len, &ex);
1726 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1727 ext4_fsblk_t start;
1729 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1730 ex.fe_start;
1731 /* use do_div to get remainder (would be 64-bit modulo) */
1732 if (do_div(start, sbi->s_stripe) == 0) {
1733 ac->ac_found++;
1734 ac->ac_b_ex = ex;
1735 ext4_mb_use_best_found(ac, e4b);
1737 } else if (max >= ac->ac_g_ex.fe_len) {
1738 BUG_ON(ex.fe_len <= 0);
1739 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1740 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1741 ac->ac_found++;
1742 ac->ac_b_ex = ex;
1743 ext4_mb_use_best_found(ac, e4b);
1744 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1745 /* Sometimes, caller may want to merge even small
1746 * number of blocks to an existing extent */
1747 BUG_ON(ex.fe_len <= 0);
1748 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1749 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1750 ac->ac_found++;
1751 ac->ac_b_ex = ex;
1752 ext4_mb_use_best_found(ac, e4b);
1754 ext4_unlock_group(ac->ac_sb, group);
1755 ext4_mb_unload_buddy(e4b);
1757 return 0;
1761 * The routine scans buddy structures (not bitmap!) from given order
1762 * to max order and tries to find big enough chunk to satisfy the req
1764 static noinline_for_stack
1765 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1766 struct ext4_buddy *e4b)
1768 struct super_block *sb = ac->ac_sb;
1769 struct ext4_group_info *grp = e4b->bd_info;
1770 void *buddy;
1771 int i;
1772 int k;
1773 int max;
1775 BUG_ON(ac->ac_2order <= 0);
1776 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1777 if (grp->bb_counters[i] == 0)
1778 continue;
1780 buddy = mb_find_buddy(e4b, i, &max);
1781 BUG_ON(buddy == NULL);
1783 k = mb_find_next_zero_bit(buddy, max, 0);
1784 BUG_ON(k >= max);
1786 ac->ac_found++;
1788 ac->ac_b_ex.fe_len = 1 << i;
1789 ac->ac_b_ex.fe_start = k << i;
1790 ac->ac_b_ex.fe_group = e4b->bd_group;
1792 ext4_mb_use_best_found(ac, e4b);
1794 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1796 if (EXT4_SB(sb)->s_mb_stats)
1797 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1799 break;
1804 * The routine scans the group and measures all found extents.
1805 * In order to optimize scanning, caller must pass number of
1806 * free blocks in the group, so the routine can know upper limit.
1808 static noinline_for_stack
1809 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1810 struct ext4_buddy *e4b)
1812 struct super_block *sb = ac->ac_sb;
1813 void *bitmap = EXT4_MB_BITMAP(e4b);
1814 struct ext4_free_extent ex;
1815 int i;
1816 int free;
1818 free = e4b->bd_info->bb_free;
1819 BUG_ON(free <= 0);
1821 i = e4b->bd_info->bb_first_free;
1823 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1824 i = mb_find_next_zero_bit(bitmap,
1825 EXT4_BLOCKS_PER_GROUP(sb), i);
1826 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1828 * IF we have corrupt bitmap, we won't find any
1829 * free blocks even though group info says we
1830 * we have free blocks
1832 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1833 "%d free blocks as per "
1834 "group info. But bitmap says 0",
1835 free);
1836 break;
1839 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1840 BUG_ON(ex.fe_len <= 0);
1841 if (free < ex.fe_len) {
1842 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1843 "%d free blocks as per "
1844 "group info. But got %d blocks",
1845 free, ex.fe_len);
1847 * The number of free blocks differs. This mostly
1848 * indicate that the bitmap is corrupt. So exit
1849 * without claiming the space.
1851 break;
1854 ext4_mb_measure_extent(ac, &ex, e4b);
1856 i += ex.fe_len;
1857 free -= ex.fe_len;
1860 ext4_mb_check_limits(ac, e4b, 1);
1864 * This is a special case for storages like raid5
1865 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1867 static noinline_for_stack
1868 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1869 struct ext4_buddy *e4b)
1871 struct super_block *sb = ac->ac_sb;
1872 struct ext4_sb_info *sbi = EXT4_SB(sb);
1873 void *bitmap = EXT4_MB_BITMAP(e4b);
1874 struct ext4_free_extent ex;
1875 ext4_fsblk_t first_group_block;
1876 ext4_fsblk_t a;
1877 ext4_grpblk_t i;
1878 int max;
1880 BUG_ON(sbi->s_stripe == 0);
1882 /* find first stripe-aligned block in group */
1883 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1885 a = first_group_block + sbi->s_stripe - 1;
1886 do_div(a, sbi->s_stripe);
1887 i = (a * sbi->s_stripe) - first_group_block;
1889 while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1890 if (!mb_test_bit(i, bitmap)) {
1891 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1892 if (max >= sbi->s_stripe) {
1893 ac->ac_found++;
1894 ac->ac_b_ex = ex;
1895 ext4_mb_use_best_found(ac, e4b);
1896 break;
1899 i += sbi->s_stripe;
1903 /* This is now called BEFORE we load the buddy bitmap. */
1904 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1905 ext4_group_t group, int cr)
1907 unsigned free, fragments;
1908 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1909 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1911 BUG_ON(cr < 0 || cr >= 4);
1913 /* We only do this if the grp has never been initialized */
1914 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1915 int ret = ext4_mb_init_group(ac->ac_sb, group);
1916 if (ret)
1917 return 0;
1920 free = grp->bb_free;
1921 fragments = grp->bb_fragments;
1922 if (free == 0)
1923 return 0;
1924 if (fragments == 0)
1925 return 0;
1927 switch (cr) {
1928 case 0:
1929 BUG_ON(ac->ac_2order == 0);
1931 if (grp->bb_largest_free_order < ac->ac_2order)
1932 return 0;
1934 /* Avoid using the first bg of a flexgroup for data files */
1935 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1936 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1937 ((group % flex_size) == 0))
1938 return 0;
1940 return 1;
1941 case 1:
1942 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1943 return 1;
1944 break;
1945 case 2:
1946 if (free >= ac->ac_g_ex.fe_len)
1947 return 1;
1948 break;
1949 case 3:
1950 return 1;
1951 default:
1952 BUG();
1955 return 0;
1958 static noinline_for_stack int
1959 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1961 ext4_group_t ngroups, group, i;
1962 int cr;
1963 int err = 0;
1964 struct ext4_sb_info *sbi;
1965 struct super_block *sb;
1966 struct ext4_buddy e4b;
1968 sb = ac->ac_sb;
1969 sbi = EXT4_SB(sb);
1970 ngroups = ext4_get_groups_count(sb);
1971 /* non-extent files are limited to low blocks/groups */
1972 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
1973 ngroups = sbi->s_blockfile_groups;
1975 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1977 /* first, try the goal */
1978 err = ext4_mb_find_by_goal(ac, &e4b);
1979 if (err || ac->ac_status == AC_STATUS_FOUND)
1980 goto out;
1982 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1983 goto out;
1986 * ac->ac2_order is set only if the fe_len is a power of 2
1987 * if ac2_order is set we also set criteria to 0 so that we
1988 * try exact allocation using buddy.
1990 i = fls(ac->ac_g_ex.fe_len);
1991 ac->ac_2order = 0;
1993 * We search using buddy data only if the order of the request
1994 * is greater than equal to the sbi_s_mb_order2_reqs
1995 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1997 if (i >= sbi->s_mb_order2_reqs) {
1999 * This should tell if fe_len is exactly power of 2
2001 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2002 ac->ac_2order = i - 1;
2005 /* if stream allocation is enabled, use global goal */
2006 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2007 /* TBD: may be hot point */
2008 spin_lock(&sbi->s_md_lock);
2009 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2010 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2011 spin_unlock(&sbi->s_md_lock);
2014 /* Let's just scan groups to find more-less suitable blocks */
2015 cr = ac->ac_2order ? 0 : 1;
2017 * cr == 0 try to get exact allocation,
2018 * cr == 3 try to get anything
2020 repeat:
2021 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2022 ac->ac_criteria = cr;
2024 * searching for the right group start
2025 * from the goal value specified
2027 group = ac->ac_g_ex.fe_group;
2029 for (i = 0; i < ngroups; group++, i++) {
2030 if (group == ngroups)
2031 group = 0;
2033 /* This now checks without needing the buddy page */
2034 if (!ext4_mb_good_group(ac, group, cr))
2035 continue;
2037 err = ext4_mb_load_buddy(sb, group, &e4b);
2038 if (err)
2039 goto out;
2041 ext4_lock_group(sb, group);
2044 * We need to check again after locking the
2045 * block group
2047 if (!ext4_mb_good_group(ac, group, cr)) {
2048 ext4_unlock_group(sb, group);
2049 ext4_mb_unload_buddy(&e4b);
2050 continue;
2053 ac->ac_groups_scanned++;
2054 if (cr == 0)
2055 ext4_mb_simple_scan_group(ac, &e4b);
2056 else if (cr == 1 && sbi->s_stripe &&
2057 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2058 ext4_mb_scan_aligned(ac, &e4b);
2059 else
2060 ext4_mb_complex_scan_group(ac, &e4b);
2062 ext4_unlock_group(sb, group);
2063 ext4_mb_unload_buddy(&e4b);
2065 if (ac->ac_status != AC_STATUS_CONTINUE)
2066 break;
2070 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2071 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2073 * We've been searching too long. Let's try to allocate
2074 * the best chunk we've found so far
2077 ext4_mb_try_best_found(ac, &e4b);
2078 if (ac->ac_status != AC_STATUS_FOUND) {
2080 * Someone more lucky has already allocated it.
2081 * The only thing we can do is just take first
2082 * found block(s)
2083 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2085 ac->ac_b_ex.fe_group = 0;
2086 ac->ac_b_ex.fe_start = 0;
2087 ac->ac_b_ex.fe_len = 0;
2088 ac->ac_status = AC_STATUS_CONTINUE;
2089 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2090 cr = 3;
2091 atomic_inc(&sbi->s_mb_lost_chunks);
2092 goto repeat;
2095 out:
2096 return err;
2099 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2101 struct super_block *sb = seq->private;
2102 ext4_group_t group;
2104 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2105 return NULL;
2106 group = *pos + 1;
2107 return (void *) ((unsigned long) group);
2110 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2112 struct super_block *sb = seq->private;
2113 ext4_group_t group;
2115 ++*pos;
2116 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2117 return NULL;
2118 group = *pos + 1;
2119 return (void *) ((unsigned long) group);
2122 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2124 struct super_block *sb = seq->private;
2125 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2126 int i;
2127 int err;
2128 struct ext4_buddy e4b;
2129 struct sg {
2130 struct ext4_group_info info;
2131 ext4_grpblk_t counters[16];
2132 } sg;
2134 group--;
2135 if (group == 0)
2136 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2137 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2138 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2139 "group", "free", "frags", "first",
2140 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2141 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2143 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2144 sizeof(struct ext4_group_info);
2145 err = ext4_mb_load_buddy(sb, group, &e4b);
2146 if (err) {
2147 seq_printf(seq, "#%-5u: I/O error\n", group);
2148 return 0;
2150 ext4_lock_group(sb, group);
2151 memcpy(&sg, ext4_get_group_info(sb, group), i);
2152 ext4_unlock_group(sb, group);
2153 ext4_mb_unload_buddy(&e4b);
2155 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2156 sg.info.bb_fragments, sg.info.bb_first_free);
2157 for (i = 0; i <= 13; i++)
2158 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2159 sg.info.bb_counters[i] : 0);
2160 seq_printf(seq, " ]\n");
2162 return 0;
2165 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2169 static const struct seq_operations ext4_mb_seq_groups_ops = {
2170 .start = ext4_mb_seq_groups_start,
2171 .next = ext4_mb_seq_groups_next,
2172 .stop = ext4_mb_seq_groups_stop,
2173 .show = ext4_mb_seq_groups_show,
2176 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2178 struct super_block *sb = PDE(inode)->data;
2179 int rc;
2181 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2182 if (rc == 0) {
2183 struct seq_file *m = file->private_data;
2184 m->private = sb;
2186 return rc;
2190 static const struct file_operations ext4_mb_seq_groups_fops = {
2191 .owner = THIS_MODULE,
2192 .open = ext4_mb_seq_groups_open,
2193 .read = seq_read,
2194 .llseek = seq_lseek,
2195 .release = seq_release,
2198 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2200 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2201 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2203 BUG_ON(!cachep);
2204 return cachep;
2207 /* Create and initialize ext4_group_info data for the given group. */
2208 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2209 struct ext4_group_desc *desc)
2211 int i;
2212 int metalen = 0;
2213 struct ext4_sb_info *sbi = EXT4_SB(sb);
2214 struct ext4_group_info **meta_group_info;
2215 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2218 * First check if this group is the first of a reserved block.
2219 * If it's true, we have to allocate a new table of pointers
2220 * to ext4_group_info structures
2222 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2223 metalen = sizeof(*meta_group_info) <<
2224 EXT4_DESC_PER_BLOCK_BITS(sb);
2225 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2226 if (meta_group_info == NULL) {
2227 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2228 "buddy group\n");
2229 goto exit_meta_group_info;
2231 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2232 meta_group_info;
2235 meta_group_info =
2236 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2237 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2239 meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL);
2240 if (meta_group_info[i] == NULL) {
2241 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2242 goto exit_group_info;
2244 memset(meta_group_info[i], 0, kmem_cache_size(cachep));
2245 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2246 &(meta_group_info[i]->bb_state));
2249 * initialize bb_free to be able to skip
2250 * empty groups without initialization
2252 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2253 meta_group_info[i]->bb_free =
2254 ext4_free_blocks_after_init(sb, group, desc);
2255 } else {
2256 meta_group_info[i]->bb_free =
2257 ext4_free_blks_count(sb, desc);
2260 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2261 init_rwsem(&meta_group_info[i]->alloc_sem);
2262 meta_group_info[i]->bb_free_root = RB_ROOT;
2263 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2265 #ifdef DOUBLE_CHECK
2267 struct buffer_head *bh;
2268 meta_group_info[i]->bb_bitmap =
2269 kmalloc(sb->s_blocksize, GFP_KERNEL);
2270 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2271 bh = ext4_read_block_bitmap(sb, group);
2272 BUG_ON(bh == NULL);
2273 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2274 sb->s_blocksize);
2275 put_bh(bh);
2277 #endif
2279 return 0;
2281 exit_group_info:
2282 /* If a meta_group_info table has been allocated, release it now */
2283 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2284 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2285 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2287 exit_meta_group_info:
2288 return -ENOMEM;
2289 } /* ext4_mb_add_groupinfo */
2291 static int ext4_mb_init_backend(struct super_block *sb)
2293 ext4_group_t ngroups = ext4_get_groups_count(sb);
2294 ext4_group_t i;
2295 struct ext4_sb_info *sbi = EXT4_SB(sb);
2296 struct ext4_super_block *es = sbi->s_es;
2297 int num_meta_group_infos;
2298 int num_meta_group_infos_max;
2299 int array_size;
2300 struct ext4_group_desc *desc;
2301 struct kmem_cache *cachep;
2303 /* This is the number of blocks used by GDT */
2304 num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2305 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2308 * This is the total number of blocks used by GDT including
2309 * the number of reserved blocks for GDT.
2310 * The s_group_info array is allocated with this value
2311 * to allow a clean online resize without a complex
2312 * manipulation of pointer.
2313 * The drawback is the unused memory when no resize
2314 * occurs but it's very low in terms of pages
2315 * (see comments below)
2316 * Need to handle this properly when META_BG resizing is allowed
2318 num_meta_group_infos_max = num_meta_group_infos +
2319 le16_to_cpu(es->s_reserved_gdt_blocks);
2322 * array_size is the size of s_group_info array. We round it
2323 * to the next power of two because this approximation is done
2324 * internally by kmalloc so we can have some more memory
2325 * for free here (e.g. may be used for META_BG resize).
2327 array_size = 1;
2328 while (array_size < sizeof(*sbi->s_group_info) *
2329 num_meta_group_infos_max)
2330 array_size = array_size << 1;
2331 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2332 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2333 * So a two level scheme suffices for now. */
2334 sbi->s_group_info = kzalloc(array_size, GFP_KERNEL);
2335 if (sbi->s_group_info == NULL) {
2336 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2337 return -ENOMEM;
2339 sbi->s_buddy_cache = new_inode(sb);
2340 if (sbi->s_buddy_cache == NULL) {
2341 printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2342 goto err_freesgi;
2344 sbi->s_buddy_cache->i_ino = get_next_ino();
2345 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2346 for (i = 0; i < ngroups; i++) {
2347 desc = ext4_get_group_desc(sb, i, NULL);
2348 if (desc == NULL) {
2349 printk(KERN_ERR
2350 "EXT4-fs: can't read descriptor %u\n", i);
2351 goto err_freebuddy;
2353 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2354 goto err_freebuddy;
2357 return 0;
2359 err_freebuddy:
2360 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2361 while (i-- > 0)
2362 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2363 i = num_meta_group_infos;
2364 while (i-- > 0)
2365 kfree(sbi->s_group_info[i]);
2366 iput(sbi->s_buddy_cache);
2367 err_freesgi:
2368 kfree(sbi->s_group_info);
2369 return -ENOMEM;
2372 static void ext4_groupinfo_destroy_slabs(void)
2374 int i;
2376 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2377 if (ext4_groupinfo_caches[i])
2378 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2379 ext4_groupinfo_caches[i] = NULL;
2383 static int ext4_groupinfo_create_slab(size_t size)
2385 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2386 int slab_size;
2387 int blocksize_bits = order_base_2(size);
2388 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2389 struct kmem_cache *cachep;
2391 if (cache_index >= NR_GRPINFO_CACHES)
2392 return -EINVAL;
2394 if (unlikely(cache_index < 0))
2395 cache_index = 0;
2397 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2398 if (ext4_groupinfo_caches[cache_index]) {
2399 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2400 return 0; /* Already created */
2403 slab_size = offsetof(struct ext4_group_info,
2404 bb_counters[blocksize_bits + 2]);
2406 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2407 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2408 NULL);
2410 ext4_groupinfo_caches[cache_index] = cachep;
2412 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2413 if (!cachep) {
2414 printk(KERN_EMERG "EXT4: no memory for groupinfo slab cache\n");
2415 return -ENOMEM;
2418 return 0;
2421 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2423 struct ext4_sb_info *sbi = EXT4_SB(sb);
2424 unsigned i, j;
2425 unsigned offset;
2426 unsigned max;
2427 int ret;
2429 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2431 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2432 if (sbi->s_mb_offsets == NULL) {
2433 ret = -ENOMEM;
2434 goto out;
2437 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2438 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2439 if (sbi->s_mb_maxs == NULL) {
2440 ret = -ENOMEM;
2441 goto out;
2444 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2445 if (ret < 0)
2446 goto out;
2448 /* order 0 is regular bitmap */
2449 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2450 sbi->s_mb_offsets[0] = 0;
2452 i = 1;
2453 offset = 0;
2454 max = sb->s_blocksize << 2;
2455 do {
2456 sbi->s_mb_offsets[i] = offset;
2457 sbi->s_mb_maxs[i] = max;
2458 offset += 1 << (sb->s_blocksize_bits - i);
2459 max = max >> 1;
2460 i++;
2461 } while (i <= sb->s_blocksize_bits + 1);
2463 /* init file for buddy data */
2464 ret = ext4_mb_init_backend(sb);
2465 if (ret != 0) {
2466 goto out;
2469 spin_lock_init(&sbi->s_md_lock);
2470 spin_lock_init(&sbi->s_bal_lock);
2472 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2473 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2474 sbi->s_mb_stats = MB_DEFAULT_STATS;
2475 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2476 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2477 sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2479 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2480 * to the lowest multiple of s_stripe which is bigger than
2481 * the s_mb_group_prealloc as determined above. We want
2482 * the preallocation size to be an exact multiple of the
2483 * RAID stripe size so that preallocations don't fragment
2484 * the stripes.
2486 if (sbi->s_stripe > 1) {
2487 sbi->s_mb_group_prealloc = roundup(
2488 sbi->s_mb_group_prealloc, sbi->s_stripe);
2491 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2492 if (sbi->s_locality_groups == NULL) {
2493 ret = -ENOMEM;
2494 goto out;
2496 for_each_possible_cpu(i) {
2497 struct ext4_locality_group *lg;
2498 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2499 mutex_init(&lg->lg_mutex);
2500 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2501 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2502 spin_lock_init(&lg->lg_prealloc_lock);
2505 if (sbi->s_proc)
2506 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2507 &ext4_mb_seq_groups_fops, sb);
2509 if (sbi->s_journal)
2510 sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2511 out:
2512 if (ret) {
2513 kfree(sbi->s_mb_offsets);
2514 kfree(sbi->s_mb_maxs);
2516 return ret;
2519 /* need to called with the ext4 group lock held */
2520 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2522 struct ext4_prealloc_space *pa;
2523 struct list_head *cur, *tmp;
2524 int count = 0;
2526 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2527 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2528 list_del(&pa->pa_group_list);
2529 count++;
2530 kmem_cache_free(ext4_pspace_cachep, pa);
2532 if (count)
2533 mb_debug(1, "mballoc: %u PAs left\n", count);
2537 int ext4_mb_release(struct super_block *sb)
2539 ext4_group_t ngroups = ext4_get_groups_count(sb);
2540 ext4_group_t i;
2541 int num_meta_group_infos;
2542 struct ext4_group_info *grinfo;
2543 struct ext4_sb_info *sbi = EXT4_SB(sb);
2544 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2546 if (sbi->s_group_info) {
2547 for (i = 0; i < ngroups; i++) {
2548 grinfo = ext4_get_group_info(sb, i);
2549 #ifdef DOUBLE_CHECK
2550 kfree(grinfo->bb_bitmap);
2551 #endif
2552 ext4_lock_group(sb, i);
2553 ext4_mb_cleanup_pa(grinfo);
2554 ext4_unlock_group(sb, i);
2555 kmem_cache_free(cachep, grinfo);
2557 num_meta_group_infos = (ngroups +
2558 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2559 EXT4_DESC_PER_BLOCK_BITS(sb);
2560 for (i = 0; i < num_meta_group_infos; i++)
2561 kfree(sbi->s_group_info[i]);
2562 kfree(sbi->s_group_info);
2564 kfree(sbi->s_mb_offsets);
2565 kfree(sbi->s_mb_maxs);
2566 if (sbi->s_buddy_cache)
2567 iput(sbi->s_buddy_cache);
2568 if (sbi->s_mb_stats) {
2569 printk(KERN_INFO
2570 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2571 atomic_read(&sbi->s_bal_allocated),
2572 atomic_read(&sbi->s_bal_reqs),
2573 atomic_read(&sbi->s_bal_success));
2574 printk(KERN_INFO
2575 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2576 "%u 2^N hits, %u breaks, %u lost\n",
2577 atomic_read(&sbi->s_bal_ex_scanned),
2578 atomic_read(&sbi->s_bal_goals),
2579 atomic_read(&sbi->s_bal_2orders),
2580 atomic_read(&sbi->s_bal_breaks),
2581 atomic_read(&sbi->s_mb_lost_chunks));
2582 printk(KERN_INFO
2583 "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2584 sbi->s_mb_buddies_generated,
2585 sbi->s_mb_generation_time);
2586 printk(KERN_INFO
2587 "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2588 atomic_read(&sbi->s_mb_preallocated),
2589 atomic_read(&sbi->s_mb_discarded));
2592 free_percpu(sbi->s_locality_groups);
2593 if (sbi->s_proc)
2594 remove_proc_entry("mb_groups", sbi->s_proc);
2596 return 0;
2599 static inline int ext4_issue_discard(struct super_block *sb,
2600 ext4_group_t block_group, ext4_grpblk_t block, int count)
2602 ext4_fsblk_t discard_block;
2604 discard_block = block + ext4_group_first_block_no(sb, block_group);
2605 trace_ext4_discard_blocks(sb,
2606 (unsigned long long) discard_block, count);
2607 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2611 * This function is called by the jbd2 layer once the commit has finished,
2612 * so we know we can free the blocks that were released with that commit.
2614 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2616 struct super_block *sb = journal->j_private;
2617 struct ext4_buddy e4b;
2618 struct ext4_group_info *db;
2619 int err, count = 0, count2 = 0;
2620 struct ext4_free_data *entry;
2621 struct list_head *l, *ltmp;
2623 list_for_each_safe(l, ltmp, &txn->t_private_list) {
2624 entry = list_entry(l, struct ext4_free_data, list);
2626 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2627 entry->count, entry->group, entry);
2629 if (test_opt(sb, DISCARD))
2630 ext4_issue_discard(sb, entry->group,
2631 entry->start_blk, entry->count);
2633 err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2634 /* we expect to find existing buddy because it's pinned */
2635 BUG_ON(err != 0);
2637 db = e4b.bd_info;
2638 /* there are blocks to put in buddy to make them really free */
2639 count += entry->count;
2640 count2++;
2641 ext4_lock_group(sb, entry->group);
2642 /* Take it out of per group rb tree */
2643 rb_erase(&entry->node, &(db->bb_free_root));
2644 mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2647 * Clear the trimmed flag for the group so that the next
2648 * ext4_trim_fs can trim it.
2649 * If the volume is mounted with -o discard, online discard
2650 * is supported and the free blocks will be trimmed online.
2652 if (!test_opt(sb, DISCARD))
2653 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2655 if (!db->bb_free_root.rb_node) {
2656 /* No more items in the per group rb tree
2657 * balance refcounts from ext4_mb_free_metadata()
2659 page_cache_release(e4b.bd_buddy_page);
2660 page_cache_release(e4b.bd_bitmap_page);
2662 ext4_unlock_group(sb, entry->group);
2663 kmem_cache_free(ext4_free_ext_cachep, entry);
2664 ext4_mb_unload_buddy(&e4b);
2667 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2670 #ifdef CONFIG_EXT4_DEBUG
2671 u8 mb_enable_debug __read_mostly;
2673 static struct dentry *debugfs_dir;
2674 static struct dentry *debugfs_debug;
2676 static void __init ext4_create_debugfs_entry(void)
2678 debugfs_dir = debugfs_create_dir("ext4", NULL);
2679 if (debugfs_dir)
2680 debugfs_debug = debugfs_create_u8("mballoc-debug",
2681 S_IRUGO | S_IWUSR,
2682 debugfs_dir,
2683 &mb_enable_debug);
2686 static void ext4_remove_debugfs_entry(void)
2688 debugfs_remove(debugfs_debug);
2689 debugfs_remove(debugfs_dir);
2692 #else
2694 static void __init ext4_create_debugfs_entry(void)
2698 static void ext4_remove_debugfs_entry(void)
2702 #endif
2704 int __init ext4_init_mballoc(void)
2706 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2707 SLAB_RECLAIM_ACCOUNT);
2708 if (ext4_pspace_cachep == NULL)
2709 return -ENOMEM;
2711 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2712 SLAB_RECLAIM_ACCOUNT);
2713 if (ext4_ac_cachep == NULL) {
2714 kmem_cache_destroy(ext4_pspace_cachep);
2715 return -ENOMEM;
2718 ext4_free_ext_cachep = KMEM_CACHE(ext4_free_data,
2719 SLAB_RECLAIM_ACCOUNT);
2720 if (ext4_free_ext_cachep == NULL) {
2721 kmem_cache_destroy(ext4_pspace_cachep);
2722 kmem_cache_destroy(ext4_ac_cachep);
2723 return -ENOMEM;
2725 ext4_create_debugfs_entry();
2726 return 0;
2729 void ext4_exit_mballoc(void)
2732 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2733 * before destroying the slab cache.
2735 rcu_barrier();
2736 kmem_cache_destroy(ext4_pspace_cachep);
2737 kmem_cache_destroy(ext4_ac_cachep);
2738 kmem_cache_destroy(ext4_free_ext_cachep);
2739 ext4_groupinfo_destroy_slabs();
2740 ext4_remove_debugfs_entry();
2745 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2746 * Returns 0 if success or error code
2748 static noinline_for_stack int
2749 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2750 handle_t *handle, unsigned int reserv_blks)
2752 struct buffer_head *bitmap_bh = NULL;
2753 struct ext4_group_desc *gdp;
2754 struct buffer_head *gdp_bh;
2755 struct ext4_sb_info *sbi;
2756 struct super_block *sb;
2757 ext4_fsblk_t block;
2758 int err, len;
2760 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2761 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2763 sb = ac->ac_sb;
2764 sbi = EXT4_SB(sb);
2766 err = -EIO;
2767 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2768 if (!bitmap_bh)
2769 goto out_err;
2771 err = ext4_journal_get_write_access(handle, bitmap_bh);
2772 if (err)
2773 goto out_err;
2775 err = -EIO;
2776 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2777 if (!gdp)
2778 goto out_err;
2780 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2781 ext4_free_blks_count(sb, gdp));
2783 err = ext4_journal_get_write_access(handle, gdp_bh);
2784 if (err)
2785 goto out_err;
2787 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2789 len = ac->ac_b_ex.fe_len;
2790 if (!ext4_data_block_valid(sbi, block, len)) {
2791 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2792 "fs metadata\n", block, block+len);
2793 /* File system mounted not to panic on error
2794 * Fix the bitmap and repeat the block allocation
2795 * We leak some of the blocks here.
2797 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2798 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2799 ac->ac_b_ex.fe_len);
2800 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2801 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2802 if (!err)
2803 err = -EAGAIN;
2804 goto out_err;
2807 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2808 #ifdef AGGRESSIVE_CHECK
2810 int i;
2811 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2812 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2813 bitmap_bh->b_data));
2816 #endif
2817 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,ac->ac_b_ex.fe_len);
2818 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2819 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2820 ext4_free_blks_set(sb, gdp,
2821 ext4_free_blocks_after_init(sb,
2822 ac->ac_b_ex.fe_group, gdp));
2824 len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
2825 ext4_free_blks_set(sb, gdp, len);
2826 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2828 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2829 percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
2831 * Now reduce the dirty block count also. Should not go negative
2833 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2834 /* release all the reserved blocks if non delalloc */
2835 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
2837 if (sbi->s_log_groups_per_flex) {
2838 ext4_group_t flex_group = ext4_flex_group(sbi,
2839 ac->ac_b_ex.fe_group);
2840 atomic_sub(ac->ac_b_ex.fe_len,
2841 &sbi->s_flex_groups[flex_group].free_blocks);
2844 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2845 if (err)
2846 goto out_err;
2847 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2849 out_err:
2850 ext4_mark_super_dirty(sb);
2851 brelse(bitmap_bh);
2852 return err;
2856 * here we normalize request for locality group
2857 * Group request are normalized to s_mb_group_prealloc, which goes to
2858 * s_strip if we set the same via mount option.
2859 * s_mb_group_prealloc can be configured via
2860 * /sys/fs/ext4/<partition>/mb_group_prealloc
2862 * XXX: should we try to preallocate more than the group has now?
2864 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2866 struct super_block *sb = ac->ac_sb;
2867 struct ext4_locality_group *lg = ac->ac_lg;
2869 BUG_ON(lg == NULL);
2870 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2871 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2872 current->pid, ac->ac_g_ex.fe_len);
2876 * Normalization means making request better in terms of
2877 * size and alignment
2879 static noinline_for_stack void
2880 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2881 struct ext4_allocation_request *ar)
2883 int bsbits, max;
2884 ext4_lblk_t end;
2885 loff_t size, orig_size, start_off;
2886 ext4_lblk_t start;
2887 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2888 struct ext4_prealloc_space *pa;
2890 /* do normalize only data requests, metadata requests
2891 do not need preallocation */
2892 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2893 return;
2895 /* sometime caller may want exact blocks */
2896 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2897 return;
2899 /* caller may indicate that preallocation isn't
2900 * required (it's a tail, for example) */
2901 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2902 return;
2904 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2905 ext4_mb_normalize_group_request(ac);
2906 return ;
2909 bsbits = ac->ac_sb->s_blocksize_bits;
2911 /* first, let's learn actual file size
2912 * given current request is allocated */
2913 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
2914 size = size << bsbits;
2915 if (size < i_size_read(ac->ac_inode))
2916 size = i_size_read(ac->ac_inode);
2917 orig_size = size;
2919 /* max size of free chunks */
2920 max = 2 << bsbits;
2922 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
2923 (req <= (size) || max <= (chunk_size))
2925 /* first, try to predict filesize */
2926 /* XXX: should this table be tunable? */
2927 start_off = 0;
2928 if (size <= 16 * 1024) {
2929 size = 16 * 1024;
2930 } else if (size <= 32 * 1024) {
2931 size = 32 * 1024;
2932 } else if (size <= 64 * 1024) {
2933 size = 64 * 1024;
2934 } else if (size <= 128 * 1024) {
2935 size = 128 * 1024;
2936 } else if (size <= 256 * 1024) {
2937 size = 256 * 1024;
2938 } else if (size <= 512 * 1024) {
2939 size = 512 * 1024;
2940 } else if (size <= 1024 * 1024) {
2941 size = 1024 * 1024;
2942 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2943 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2944 (21 - bsbits)) << 21;
2945 size = 2 * 1024 * 1024;
2946 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2947 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2948 (22 - bsbits)) << 22;
2949 size = 4 * 1024 * 1024;
2950 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2951 (8<<20)>>bsbits, max, 8 * 1024)) {
2952 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2953 (23 - bsbits)) << 23;
2954 size = 8 * 1024 * 1024;
2955 } else {
2956 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
2957 size = ac->ac_o_ex.fe_len << bsbits;
2959 size = size >> bsbits;
2960 start = start_off >> bsbits;
2962 /* don't cover already allocated blocks in selected range */
2963 if (ar->pleft && start <= ar->lleft) {
2964 size -= ar->lleft + 1 - start;
2965 start = ar->lleft + 1;
2967 if (ar->pright && start + size - 1 >= ar->lright)
2968 size -= start + size - ar->lright;
2970 end = start + size;
2972 /* check we don't cross already preallocated blocks */
2973 rcu_read_lock();
2974 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2975 ext4_lblk_t pa_end;
2977 if (pa->pa_deleted)
2978 continue;
2979 spin_lock(&pa->pa_lock);
2980 if (pa->pa_deleted) {
2981 spin_unlock(&pa->pa_lock);
2982 continue;
2985 pa_end = pa->pa_lstart + pa->pa_len;
2987 /* PA must not overlap original request */
2988 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
2989 ac->ac_o_ex.fe_logical < pa->pa_lstart));
2991 /* skip PAs this normalized request doesn't overlap with */
2992 if (pa->pa_lstart >= end || pa_end <= start) {
2993 spin_unlock(&pa->pa_lock);
2994 continue;
2996 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
2998 /* adjust start or end to be adjacent to this pa */
2999 if (pa_end <= ac->ac_o_ex.fe_logical) {
3000 BUG_ON(pa_end < start);
3001 start = pa_end;
3002 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3003 BUG_ON(pa->pa_lstart > end);
3004 end = pa->pa_lstart;
3006 spin_unlock(&pa->pa_lock);
3008 rcu_read_unlock();
3009 size = end - start;
3011 /* XXX: extra loop to check we really don't overlap preallocations */
3012 rcu_read_lock();
3013 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3014 ext4_lblk_t pa_end;
3015 spin_lock(&pa->pa_lock);
3016 if (pa->pa_deleted == 0) {
3017 pa_end = pa->pa_lstart + pa->pa_len;
3018 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3020 spin_unlock(&pa->pa_lock);
3022 rcu_read_unlock();
3024 if (start + size <= ac->ac_o_ex.fe_logical &&
3025 start > ac->ac_o_ex.fe_logical) {
3026 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3027 (unsigned long) start, (unsigned long) size,
3028 (unsigned long) ac->ac_o_ex.fe_logical);
3030 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3031 start > ac->ac_o_ex.fe_logical);
3032 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3034 /* now prepare goal request */
3036 /* XXX: is it better to align blocks WRT to logical
3037 * placement or satisfy big request as is */
3038 ac->ac_g_ex.fe_logical = start;
3039 ac->ac_g_ex.fe_len = size;
3041 /* define goal start in order to merge */
3042 if (ar->pright && (ar->lright == (start + size))) {
3043 /* merge to the right */
3044 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3045 &ac->ac_f_ex.fe_group,
3046 &ac->ac_f_ex.fe_start);
3047 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3049 if (ar->pleft && (ar->lleft + 1 == start)) {
3050 /* merge to the left */
3051 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3052 &ac->ac_f_ex.fe_group,
3053 &ac->ac_f_ex.fe_start);
3054 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3057 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3058 (unsigned) orig_size, (unsigned) start);
3061 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3063 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3065 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3066 atomic_inc(&sbi->s_bal_reqs);
3067 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3068 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3069 atomic_inc(&sbi->s_bal_success);
3070 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3071 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3072 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3073 atomic_inc(&sbi->s_bal_goals);
3074 if (ac->ac_found > sbi->s_mb_max_to_scan)
3075 atomic_inc(&sbi->s_bal_breaks);
3078 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3079 trace_ext4_mballoc_alloc(ac);
3080 else
3081 trace_ext4_mballoc_prealloc(ac);
3085 * Called on failure; free up any blocks from the inode PA for this
3086 * context. We don't need this for MB_GROUP_PA because we only change
3087 * pa_free in ext4_mb_release_context(), but on failure, we've already
3088 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3090 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3092 struct ext4_prealloc_space *pa = ac->ac_pa;
3093 int len;
3095 if (pa && pa->pa_type == MB_INODE_PA) {
3096 len = ac->ac_b_ex.fe_len;
3097 pa->pa_free += len;
3103 * use blocks preallocated to inode
3105 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3106 struct ext4_prealloc_space *pa)
3108 ext4_fsblk_t start;
3109 ext4_fsblk_t end;
3110 int len;
3112 /* found preallocated blocks, use them */
3113 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3114 end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3115 len = end - start;
3116 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3117 &ac->ac_b_ex.fe_start);
3118 ac->ac_b_ex.fe_len = len;
3119 ac->ac_status = AC_STATUS_FOUND;
3120 ac->ac_pa = pa;
3122 BUG_ON(start < pa->pa_pstart);
3123 BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3124 BUG_ON(pa->pa_free < len);
3125 pa->pa_free -= len;
3127 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3131 * use blocks preallocated to locality group
3133 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3134 struct ext4_prealloc_space *pa)
3136 unsigned int len = ac->ac_o_ex.fe_len;
3138 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3139 &ac->ac_b_ex.fe_group,
3140 &ac->ac_b_ex.fe_start);
3141 ac->ac_b_ex.fe_len = len;
3142 ac->ac_status = AC_STATUS_FOUND;
3143 ac->ac_pa = pa;
3145 /* we don't correct pa_pstart or pa_plen here to avoid
3146 * possible race when the group is being loaded concurrently
3147 * instead we correct pa later, after blocks are marked
3148 * in on-disk bitmap -- see ext4_mb_release_context()
3149 * Other CPUs are prevented from allocating from this pa by lg_mutex
3151 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3155 * Return the prealloc space that have minimal distance
3156 * from the goal block. @cpa is the prealloc
3157 * space that is having currently known minimal distance
3158 * from the goal block.
3160 static struct ext4_prealloc_space *
3161 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3162 struct ext4_prealloc_space *pa,
3163 struct ext4_prealloc_space *cpa)
3165 ext4_fsblk_t cur_distance, new_distance;
3167 if (cpa == NULL) {
3168 atomic_inc(&pa->pa_count);
3169 return pa;
3171 cur_distance = abs(goal_block - cpa->pa_pstart);
3172 new_distance = abs(goal_block - pa->pa_pstart);
3174 if (cur_distance <= new_distance)
3175 return cpa;
3177 /* drop the previous reference */
3178 atomic_dec(&cpa->pa_count);
3179 atomic_inc(&pa->pa_count);
3180 return pa;
3184 * search goal blocks in preallocated space
3186 static noinline_for_stack int
3187 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3189 int order, i;
3190 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3191 struct ext4_locality_group *lg;
3192 struct ext4_prealloc_space *pa, *cpa = NULL;
3193 ext4_fsblk_t goal_block;
3195 /* only data can be preallocated */
3196 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3197 return 0;
3199 /* first, try per-file preallocation */
3200 rcu_read_lock();
3201 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3203 /* all fields in this condition don't change,
3204 * so we can skip locking for them */
3205 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3206 ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3207 continue;
3209 /* non-extent files can't have physical blocks past 2^32 */
3210 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3211 pa->pa_pstart + pa->pa_len > EXT4_MAX_BLOCK_FILE_PHYS)
3212 continue;
3214 /* found preallocated blocks, use them */
3215 spin_lock(&pa->pa_lock);
3216 if (pa->pa_deleted == 0 && pa->pa_free) {
3217 atomic_inc(&pa->pa_count);
3218 ext4_mb_use_inode_pa(ac, pa);
3219 spin_unlock(&pa->pa_lock);
3220 ac->ac_criteria = 10;
3221 rcu_read_unlock();
3222 return 1;
3224 spin_unlock(&pa->pa_lock);
3226 rcu_read_unlock();
3228 /* can we use group allocation? */
3229 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3230 return 0;
3232 /* inode may have no locality group for some reason */
3233 lg = ac->ac_lg;
3234 if (lg == NULL)
3235 return 0;
3236 order = fls(ac->ac_o_ex.fe_len) - 1;
3237 if (order > PREALLOC_TB_SIZE - 1)
3238 /* The max size of hash table is PREALLOC_TB_SIZE */
3239 order = PREALLOC_TB_SIZE - 1;
3241 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3243 * search for the prealloc space that is having
3244 * minimal distance from the goal block.
3246 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3247 rcu_read_lock();
3248 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3249 pa_inode_list) {
3250 spin_lock(&pa->pa_lock);
3251 if (pa->pa_deleted == 0 &&
3252 pa->pa_free >= ac->ac_o_ex.fe_len) {
3254 cpa = ext4_mb_check_group_pa(goal_block,
3255 pa, cpa);
3257 spin_unlock(&pa->pa_lock);
3259 rcu_read_unlock();
3261 if (cpa) {
3262 ext4_mb_use_group_pa(ac, cpa);
3263 ac->ac_criteria = 20;
3264 return 1;
3266 return 0;
3270 * the function goes through all block freed in the group
3271 * but not yet committed and marks them used in in-core bitmap.
3272 * buddy must be generated from this bitmap
3273 * Need to be called with the ext4 group lock held
3275 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3276 ext4_group_t group)
3278 struct rb_node *n;
3279 struct ext4_group_info *grp;
3280 struct ext4_free_data *entry;
3282 grp = ext4_get_group_info(sb, group);
3283 n = rb_first(&(grp->bb_free_root));
3285 while (n) {
3286 entry = rb_entry(n, struct ext4_free_data, node);
3287 mb_set_bits(bitmap, entry->start_blk, entry->count);
3288 n = rb_next(n);
3290 return;
3294 * the function goes through all preallocation in this group and marks them
3295 * used in in-core bitmap. buddy must be generated from this bitmap
3296 * Need to be called with ext4 group lock held
3298 static noinline_for_stack
3299 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3300 ext4_group_t group)
3302 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3303 struct ext4_prealloc_space *pa;
3304 struct list_head *cur;
3305 ext4_group_t groupnr;
3306 ext4_grpblk_t start;
3307 int preallocated = 0;
3308 int count = 0;
3309 int len;
3311 /* all form of preallocation discards first load group,
3312 * so the only competing code is preallocation use.
3313 * we don't need any locking here
3314 * notice we do NOT ignore preallocations with pa_deleted
3315 * otherwise we could leave used blocks available for
3316 * allocation in buddy when concurrent ext4_mb_put_pa()
3317 * is dropping preallocation
3319 list_for_each(cur, &grp->bb_prealloc_list) {
3320 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3321 spin_lock(&pa->pa_lock);
3322 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3323 &groupnr, &start);
3324 len = pa->pa_len;
3325 spin_unlock(&pa->pa_lock);
3326 if (unlikely(len == 0))
3327 continue;
3328 BUG_ON(groupnr != group);
3329 mb_set_bits(bitmap, start, len);
3330 preallocated += len;
3331 count++;
3333 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3336 static void ext4_mb_pa_callback(struct rcu_head *head)
3338 struct ext4_prealloc_space *pa;
3339 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3340 kmem_cache_free(ext4_pspace_cachep, pa);
3344 * drops a reference to preallocated space descriptor
3345 * if this was the last reference and the space is consumed
3347 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3348 struct super_block *sb, struct ext4_prealloc_space *pa)
3350 ext4_group_t grp;
3351 ext4_fsblk_t grp_blk;
3353 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3354 return;
3356 /* in this short window concurrent discard can set pa_deleted */
3357 spin_lock(&pa->pa_lock);
3358 if (pa->pa_deleted == 1) {
3359 spin_unlock(&pa->pa_lock);
3360 return;
3363 pa->pa_deleted = 1;
3364 spin_unlock(&pa->pa_lock);
3366 grp_blk = pa->pa_pstart;
3368 * If doing group-based preallocation, pa_pstart may be in the
3369 * next group when pa is used up
3371 if (pa->pa_type == MB_GROUP_PA)
3372 grp_blk--;
3374 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3377 * possible race:
3379 * P1 (buddy init) P2 (regular allocation)
3380 * find block B in PA
3381 * copy on-disk bitmap to buddy
3382 * mark B in on-disk bitmap
3383 * drop PA from group
3384 * mark all PAs in buddy
3386 * thus, P1 initializes buddy with B available. to prevent this
3387 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3388 * against that pair
3390 ext4_lock_group(sb, grp);
3391 list_del(&pa->pa_group_list);
3392 ext4_unlock_group(sb, grp);
3394 spin_lock(pa->pa_obj_lock);
3395 list_del_rcu(&pa->pa_inode_list);
3396 spin_unlock(pa->pa_obj_lock);
3398 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3402 * creates new preallocated space for given inode
3404 static noinline_for_stack int
3405 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3407 struct super_block *sb = ac->ac_sb;
3408 struct ext4_prealloc_space *pa;
3409 struct ext4_group_info *grp;
3410 struct ext4_inode_info *ei;
3412 /* preallocate only when found space is larger then requested */
3413 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3414 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3415 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3417 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3418 if (pa == NULL)
3419 return -ENOMEM;
3421 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3422 int winl;
3423 int wins;
3424 int win;
3425 int offs;
3427 /* we can't allocate as much as normalizer wants.
3428 * so, found space must get proper lstart
3429 * to cover original request */
3430 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3431 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3433 /* we're limited by original request in that
3434 * logical block must be covered any way
3435 * winl is window we can move our chunk within */
3436 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3438 /* also, we should cover whole original request */
3439 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3441 /* the smallest one defines real window */
3442 win = min(winl, wins);
3444 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3445 if (offs && offs < win)
3446 win = offs;
3448 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3449 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3450 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3453 /* preallocation can change ac_b_ex, thus we store actually
3454 * allocated blocks for history */
3455 ac->ac_f_ex = ac->ac_b_ex;
3457 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3458 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3459 pa->pa_len = ac->ac_b_ex.fe_len;
3460 pa->pa_free = pa->pa_len;
3461 atomic_set(&pa->pa_count, 1);
3462 spin_lock_init(&pa->pa_lock);
3463 INIT_LIST_HEAD(&pa->pa_inode_list);
3464 INIT_LIST_HEAD(&pa->pa_group_list);
3465 pa->pa_deleted = 0;
3466 pa->pa_type = MB_INODE_PA;
3468 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3469 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3470 trace_ext4_mb_new_inode_pa(ac, pa);
3472 ext4_mb_use_inode_pa(ac, pa);
3473 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3475 ei = EXT4_I(ac->ac_inode);
3476 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3478 pa->pa_obj_lock = &ei->i_prealloc_lock;
3479 pa->pa_inode = ac->ac_inode;
3481 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3482 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3483 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3485 spin_lock(pa->pa_obj_lock);
3486 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3487 spin_unlock(pa->pa_obj_lock);
3489 return 0;
3493 * creates new preallocated space for locality group inodes belongs to
3495 static noinline_for_stack int
3496 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3498 struct super_block *sb = ac->ac_sb;
3499 struct ext4_locality_group *lg;
3500 struct ext4_prealloc_space *pa;
3501 struct ext4_group_info *grp;
3503 /* preallocate only when found space is larger then requested */
3504 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3505 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3506 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3508 BUG_ON(ext4_pspace_cachep == NULL);
3509 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3510 if (pa == NULL)
3511 return -ENOMEM;
3513 /* preallocation can change ac_b_ex, thus we store actually
3514 * allocated blocks for history */
3515 ac->ac_f_ex = ac->ac_b_ex;
3517 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3518 pa->pa_lstart = pa->pa_pstart;
3519 pa->pa_len = ac->ac_b_ex.fe_len;
3520 pa->pa_free = pa->pa_len;
3521 atomic_set(&pa->pa_count, 1);
3522 spin_lock_init(&pa->pa_lock);
3523 INIT_LIST_HEAD(&pa->pa_inode_list);
3524 INIT_LIST_HEAD(&pa->pa_group_list);
3525 pa->pa_deleted = 0;
3526 pa->pa_type = MB_GROUP_PA;
3528 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3529 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3530 trace_ext4_mb_new_group_pa(ac, pa);
3532 ext4_mb_use_group_pa(ac, pa);
3533 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3535 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3536 lg = ac->ac_lg;
3537 BUG_ON(lg == NULL);
3539 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3540 pa->pa_inode = NULL;
3542 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3543 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3544 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3547 * We will later add the new pa to the right bucket
3548 * after updating the pa_free in ext4_mb_release_context
3550 return 0;
3553 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3555 int err;
3557 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3558 err = ext4_mb_new_group_pa(ac);
3559 else
3560 err = ext4_mb_new_inode_pa(ac);
3561 return err;
3565 * finds all unused blocks in on-disk bitmap, frees them in
3566 * in-core bitmap and buddy.
3567 * @pa must be unlinked from inode and group lists, so that
3568 * nobody else can find/use it.
3569 * the caller MUST hold group/inode locks.
3570 * TODO: optimize the case when there are no in-core structures yet
3572 static noinline_for_stack int
3573 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3574 struct ext4_prealloc_space *pa)
3576 struct super_block *sb = e4b->bd_sb;
3577 struct ext4_sb_info *sbi = EXT4_SB(sb);
3578 unsigned int end;
3579 unsigned int next;
3580 ext4_group_t group;
3581 ext4_grpblk_t bit;
3582 unsigned long long grp_blk_start;
3583 int err = 0;
3584 int free = 0;
3586 BUG_ON(pa->pa_deleted == 0);
3587 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3588 grp_blk_start = pa->pa_pstart - bit;
3589 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3590 end = bit + pa->pa_len;
3592 while (bit < end) {
3593 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3594 if (bit >= end)
3595 break;
3596 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3597 mb_debug(1, " free preallocated %u/%u in group %u\n",
3598 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3599 (unsigned) next - bit, (unsigned) group);
3600 free += next - bit;
3602 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3603 trace_ext4_mb_release_inode_pa(pa, grp_blk_start + bit,
3604 next - bit);
3605 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3606 bit = next + 1;
3608 if (free != pa->pa_free) {
3609 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3610 pa, (unsigned long) pa->pa_lstart,
3611 (unsigned long) pa->pa_pstart,
3612 (unsigned long) pa->pa_len);
3613 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3614 free, pa->pa_free);
3616 * pa is already deleted so we use the value obtained
3617 * from the bitmap and continue.
3620 atomic_add(free, &sbi->s_mb_discarded);
3622 return err;
3625 static noinline_for_stack int
3626 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3627 struct ext4_prealloc_space *pa)
3629 struct super_block *sb = e4b->bd_sb;
3630 ext4_group_t group;
3631 ext4_grpblk_t bit;
3633 trace_ext4_mb_release_group_pa(pa);
3634 BUG_ON(pa->pa_deleted == 0);
3635 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3636 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3637 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3638 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3639 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3641 return 0;
3645 * releases all preallocations in given group
3647 * first, we need to decide discard policy:
3648 * - when do we discard
3649 * 1) ENOSPC
3650 * - how many do we discard
3651 * 1) how many requested
3653 static noinline_for_stack int
3654 ext4_mb_discard_group_preallocations(struct super_block *sb,
3655 ext4_group_t group, int needed)
3657 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3658 struct buffer_head *bitmap_bh = NULL;
3659 struct ext4_prealloc_space *pa, *tmp;
3660 struct list_head list;
3661 struct ext4_buddy e4b;
3662 int err;
3663 int busy = 0;
3664 int free = 0;
3666 mb_debug(1, "discard preallocation for group %u\n", group);
3668 if (list_empty(&grp->bb_prealloc_list))
3669 return 0;
3671 bitmap_bh = ext4_read_block_bitmap(sb, group);
3672 if (bitmap_bh == NULL) {
3673 ext4_error(sb, "Error reading block bitmap for %u", group);
3674 return 0;
3677 err = ext4_mb_load_buddy(sb, group, &e4b);
3678 if (err) {
3679 ext4_error(sb, "Error loading buddy information for %u", group);
3680 put_bh(bitmap_bh);
3681 return 0;
3684 if (needed == 0)
3685 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3687 INIT_LIST_HEAD(&list);
3688 repeat:
3689 ext4_lock_group(sb, group);
3690 list_for_each_entry_safe(pa, tmp,
3691 &grp->bb_prealloc_list, pa_group_list) {
3692 spin_lock(&pa->pa_lock);
3693 if (atomic_read(&pa->pa_count)) {
3694 spin_unlock(&pa->pa_lock);
3695 busy = 1;
3696 continue;
3698 if (pa->pa_deleted) {
3699 spin_unlock(&pa->pa_lock);
3700 continue;
3703 /* seems this one can be freed ... */
3704 pa->pa_deleted = 1;
3706 /* we can trust pa_free ... */
3707 free += pa->pa_free;
3709 spin_unlock(&pa->pa_lock);
3711 list_del(&pa->pa_group_list);
3712 list_add(&pa->u.pa_tmp_list, &list);
3715 /* if we still need more blocks and some PAs were used, try again */
3716 if (free < needed && busy) {
3717 busy = 0;
3718 ext4_unlock_group(sb, group);
3720 * Yield the CPU here so that we don't get soft lockup
3721 * in non preempt case.
3723 yield();
3724 goto repeat;
3727 /* found anything to free? */
3728 if (list_empty(&list)) {
3729 BUG_ON(free != 0);
3730 goto out;
3733 /* now free all selected PAs */
3734 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3736 /* remove from object (inode or locality group) */
3737 spin_lock(pa->pa_obj_lock);
3738 list_del_rcu(&pa->pa_inode_list);
3739 spin_unlock(pa->pa_obj_lock);
3741 if (pa->pa_type == MB_GROUP_PA)
3742 ext4_mb_release_group_pa(&e4b, pa);
3743 else
3744 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3746 list_del(&pa->u.pa_tmp_list);
3747 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3750 out:
3751 ext4_unlock_group(sb, group);
3752 ext4_mb_unload_buddy(&e4b);
3753 put_bh(bitmap_bh);
3754 return free;
3758 * releases all non-used preallocated blocks for given inode
3760 * It's important to discard preallocations under i_data_sem
3761 * We don't want another block to be served from the prealloc
3762 * space when we are discarding the inode prealloc space.
3764 * FIXME!! Make sure it is valid at all the call sites
3766 void ext4_discard_preallocations(struct inode *inode)
3768 struct ext4_inode_info *ei = EXT4_I(inode);
3769 struct super_block *sb = inode->i_sb;
3770 struct buffer_head *bitmap_bh = NULL;
3771 struct ext4_prealloc_space *pa, *tmp;
3772 ext4_group_t group = 0;
3773 struct list_head list;
3774 struct ext4_buddy e4b;
3775 int err;
3777 if (!S_ISREG(inode->i_mode)) {
3778 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3779 return;
3782 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3783 trace_ext4_discard_preallocations(inode);
3785 INIT_LIST_HEAD(&list);
3787 repeat:
3788 /* first, collect all pa's in the inode */
3789 spin_lock(&ei->i_prealloc_lock);
3790 while (!list_empty(&ei->i_prealloc_list)) {
3791 pa = list_entry(ei->i_prealloc_list.next,
3792 struct ext4_prealloc_space, pa_inode_list);
3793 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3794 spin_lock(&pa->pa_lock);
3795 if (atomic_read(&pa->pa_count)) {
3796 /* this shouldn't happen often - nobody should
3797 * use preallocation while we're discarding it */
3798 spin_unlock(&pa->pa_lock);
3799 spin_unlock(&ei->i_prealloc_lock);
3800 printk(KERN_ERR "uh-oh! used pa while discarding\n");
3801 WARN_ON(1);
3802 schedule_timeout_uninterruptible(HZ);
3803 goto repeat;
3806 if (pa->pa_deleted == 0) {
3807 pa->pa_deleted = 1;
3808 spin_unlock(&pa->pa_lock);
3809 list_del_rcu(&pa->pa_inode_list);
3810 list_add(&pa->u.pa_tmp_list, &list);
3811 continue;
3814 /* someone is deleting pa right now */
3815 spin_unlock(&pa->pa_lock);
3816 spin_unlock(&ei->i_prealloc_lock);
3818 /* we have to wait here because pa_deleted
3819 * doesn't mean pa is already unlinked from
3820 * the list. as we might be called from
3821 * ->clear_inode() the inode will get freed
3822 * and concurrent thread which is unlinking
3823 * pa from inode's list may access already
3824 * freed memory, bad-bad-bad */
3826 /* XXX: if this happens too often, we can
3827 * add a flag to force wait only in case
3828 * of ->clear_inode(), but not in case of
3829 * regular truncate */
3830 schedule_timeout_uninterruptible(HZ);
3831 goto repeat;
3833 spin_unlock(&ei->i_prealloc_lock);
3835 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3836 BUG_ON(pa->pa_type != MB_INODE_PA);
3837 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3839 err = ext4_mb_load_buddy(sb, group, &e4b);
3840 if (err) {
3841 ext4_error(sb, "Error loading buddy information for %u",
3842 group);
3843 continue;
3846 bitmap_bh = ext4_read_block_bitmap(sb, group);
3847 if (bitmap_bh == NULL) {
3848 ext4_error(sb, "Error reading block bitmap for %u",
3849 group);
3850 ext4_mb_unload_buddy(&e4b);
3851 continue;
3854 ext4_lock_group(sb, group);
3855 list_del(&pa->pa_group_list);
3856 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3857 ext4_unlock_group(sb, group);
3859 ext4_mb_unload_buddy(&e4b);
3860 put_bh(bitmap_bh);
3862 list_del(&pa->u.pa_tmp_list);
3863 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3867 #ifdef CONFIG_EXT4_DEBUG
3868 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3870 struct super_block *sb = ac->ac_sb;
3871 ext4_group_t ngroups, i;
3873 if (!mb_enable_debug ||
3874 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3875 return;
3877 printk(KERN_ERR "EXT4-fs: Can't allocate:"
3878 " Allocation context details:\n");
3879 printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
3880 ac->ac_status, ac->ac_flags);
3881 printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
3882 "best %lu/%lu/%lu@%lu cr %d\n",
3883 (unsigned long)ac->ac_o_ex.fe_group,
3884 (unsigned long)ac->ac_o_ex.fe_start,
3885 (unsigned long)ac->ac_o_ex.fe_len,
3886 (unsigned long)ac->ac_o_ex.fe_logical,
3887 (unsigned long)ac->ac_g_ex.fe_group,
3888 (unsigned long)ac->ac_g_ex.fe_start,
3889 (unsigned long)ac->ac_g_ex.fe_len,
3890 (unsigned long)ac->ac_g_ex.fe_logical,
3891 (unsigned long)ac->ac_b_ex.fe_group,
3892 (unsigned long)ac->ac_b_ex.fe_start,
3893 (unsigned long)ac->ac_b_ex.fe_len,
3894 (unsigned long)ac->ac_b_ex.fe_logical,
3895 (int)ac->ac_criteria);
3896 printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
3897 ac->ac_found);
3898 printk(KERN_ERR "EXT4-fs: groups: \n");
3899 ngroups = ext4_get_groups_count(sb);
3900 for (i = 0; i < ngroups; i++) {
3901 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3902 struct ext4_prealloc_space *pa;
3903 ext4_grpblk_t start;
3904 struct list_head *cur;
3905 ext4_lock_group(sb, i);
3906 list_for_each(cur, &grp->bb_prealloc_list) {
3907 pa = list_entry(cur, struct ext4_prealloc_space,
3908 pa_group_list);
3909 spin_lock(&pa->pa_lock);
3910 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3911 NULL, &start);
3912 spin_unlock(&pa->pa_lock);
3913 printk(KERN_ERR "PA:%u:%d:%u \n", i,
3914 start, pa->pa_len);
3916 ext4_unlock_group(sb, i);
3918 if (grp->bb_free == 0)
3919 continue;
3920 printk(KERN_ERR "%u: %d/%d \n",
3921 i, grp->bb_free, grp->bb_fragments);
3923 printk(KERN_ERR "\n");
3925 #else
3926 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3928 return;
3930 #endif
3933 * We use locality group preallocation for small size file. The size of the
3934 * file is determined by the current size or the resulting size after
3935 * allocation which ever is larger
3937 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3939 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
3941 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3942 int bsbits = ac->ac_sb->s_blocksize_bits;
3943 loff_t size, isize;
3945 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3946 return;
3948 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3949 return;
3951 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3952 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
3953 >> bsbits;
3955 if ((size == isize) &&
3956 !ext4_fs_is_busy(sbi) &&
3957 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
3958 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
3959 return;
3962 /* don't use group allocation for large files */
3963 size = max(size, isize);
3964 if (size > sbi->s_mb_stream_request) {
3965 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3966 return;
3969 BUG_ON(ac->ac_lg != NULL);
3971 * locality group prealloc space are per cpu. The reason for having
3972 * per cpu locality group is to reduce the contention between block
3973 * request from multiple CPUs.
3975 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
3977 /* we're going to use group allocation */
3978 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
3980 /* serialize all allocations in the group */
3981 mutex_lock(&ac->ac_lg->lg_mutex);
3984 static noinline_for_stack int
3985 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
3986 struct ext4_allocation_request *ar)
3988 struct super_block *sb = ar->inode->i_sb;
3989 struct ext4_sb_info *sbi = EXT4_SB(sb);
3990 struct ext4_super_block *es = sbi->s_es;
3991 ext4_group_t group;
3992 unsigned int len;
3993 ext4_fsblk_t goal;
3994 ext4_grpblk_t block;
3996 /* we can't allocate > group size */
3997 len = ar->len;
3999 /* just a dirty hack to filter too big requests */
4000 if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4001 len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4003 /* start searching from the goal */
4004 goal = ar->goal;
4005 if (goal < le32_to_cpu(es->s_first_data_block) ||
4006 goal >= ext4_blocks_count(es))
4007 goal = le32_to_cpu(es->s_first_data_block);
4008 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4010 /* set up allocation goals */
4011 memset(ac, 0, sizeof(struct ext4_allocation_context));
4012 ac->ac_b_ex.fe_logical = ar->logical;
4013 ac->ac_status = AC_STATUS_CONTINUE;
4014 ac->ac_sb = sb;
4015 ac->ac_inode = ar->inode;
4016 ac->ac_o_ex.fe_logical = ar->logical;
4017 ac->ac_o_ex.fe_group = group;
4018 ac->ac_o_ex.fe_start = block;
4019 ac->ac_o_ex.fe_len = len;
4020 ac->ac_g_ex.fe_logical = ar->logical;
4021 ac->ac_g_ex.fe_group = group;
4022 ac->ac_g_ex.fe_start = block;
4023 ac->ac_g_ex.fe_len = len;
4024 ac->ac_flags = ar->flags;
4026 /* we have to define context: we'll we work with a file or
4027 * locality group. this is a policy, actually */
4028 ext4_mb_group_or_file(ac);
4030 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4031 "left: %u/%u, right %u/%u to %swritable\n",
4032 (unsigned) ar->len, (unsigned) ar->logical,
4033 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4034 (unsigned) ar->lleft, (unsigned) ar->pleft,
4035 (unsigned) ar->lright, (unsigned) ar->pright,
4036 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4037 return 0;
4041 static noinline_for_stack void
4042 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4043 struct ext4_locality_group *lg,
4044 int order, int total_entries)
4046 ext4_group_t group = 0;
4047 struct ext4_buddy e4b;
4048 struct list_head discard_list;
4049 struct ext4_prealloc_space *pa, *tmp;
4051 mb_debug(1, "discard locality group preallocation\n");
4053 INIT_LIST_HEAD(&discard_list);
4055 spin_lock(&lg->lg_prealloc_lock);
4056 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4057 pa_inode_list) {
4058 spin_lock(&pa->pa_lock);
4059 if (atomic_read(&pa->pa_count)) {
4061 * This is the pa that we just used
4062 * for block allocation. So don't
4063 * free that
4065 spin_unlock(&pa->pa_lock);
4066 continue;
4068 if (pa->pa_deleted) {
4069 spin_unlock(&pa->pa_lock);
4070 continue;
4072 /* only lg prealloc space */
4073 BUG_ON(pa->pa_type != MB_GROUP_PA);
4075 /* seems this one can be freed ... */
4076 pa->pa_deleted = 1;
4077 spin_unlock(&pa->pa_lock);
4079 list_del_rcu(&pa->pa_inode_list);
4080 list_add(&pa->u.pa_tmp_list, &discard_list);
4082 total_entries--;
4083 if (total_entries <= 5) {
4085 * we want to keep only 5 entries
4086 * allowing it to grow to 8. This
4087 * mak sure we don't call discard
4088 * soon for this list.
4090 break;
4093 spin_unlock(&lg->lg_prealloc_lock);
4095 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4097 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4098 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4099 ext4_error(sb, "Error loading buddy information for %u",
4100 group);
4101 continue;
4103 ext4_lock_group(sb, group);
4104 list_del(&pa->pa_group_list);
4105 ext4_mb_release_group_pa(&e4b, pa);
4106 ext4_unlock_group(sb, group);
4108 ext4_mb_unload_buddy(&e4b);
4109 list_del(&pa->u.pa_tmp_list);
4110 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4115 * We have incremented pa_count. So it cannot be freed at this
4116 * point. Also we hold lg_mutex. So no parallel allocation is
4117 * possible from this lg. That means pa_free cannot be updated.
4119 * A parallel ext4_mb_discard_group_preallocations is possible.
4120 * which can cause the lg_prealloc_list to be updated.
4123 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4125 int order, added = 0, lg_prealloc_count = 1;
4126 struct super_block *sb = ac->ac_sb;
4127 struct ext4_locality_group *lg = ac->ac_lg;
4128 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4130 order = fls(pa->pa_free) - 1;
4131 if (order > PREALLOC_TB_SIZE - 1)
4132 /* The max size of hash table is PREALLOC_TB_SIZE */
4133 order = PREALLOC_TB_SIZE - 1;
4134 /* Add the prealloc space to lg */
4135 rcu_read_lock();
4136 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4137 pa_inode_list) {
4138 spin_lock(&tmp_pa->pa_lock);
4139 if (tmp_pa->pa_deleted) {
4140 spin_unlock(&tmp_pa->pa_lock);
4141 continue;
4143 if (!added && pa->pa_free < tmp_pa->pa_free) {
4144 /* Add to the tail of the previous entry */
4145 list_add_tail_rcu(&pa->pa_inode_list,
4146 &tmp_pa->pa_inode_list);
4147 added = 1;
4149 * we want to count the total
4150 * number of entries in the list
4153 spin_unlock(&tmp_pa->pa_lock);
4154 lg_prealloc_count++;
4156 if (!added)
4157 list_add_tail_rcu(&pa->pa_inode_list,
4158 &lg->lg_prealloc_list[order]);
4159 rcu_read_unlock();
4161 /* Now trim the list to be not more than 8 elements */
4162 if (lg_prealloc_count > 8) {
4163 ext4_mb_discard_lg_preallocations(sb, lg,
4164 order, lg_prealloc_count);
4165 return;
4167 return ;
4171 * release all resource we used in allocation
4173 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4175 struct ext4_prealloc_space *pa = ac->ac_pa;
4176 if (pa) {
4177 if (pa->pa_type == MB_GROUP_PA) {
4178 /* see comment in ext4_mb_use_group_pa() */
4179 spin_lock(&pa->pa_lock);
4180 pa->pa_pstart += ac->ac_b_ex.fe_len;
4181 pa->pa_lstart += ac->ac_b_ex.fe_len;
4182 pa->pa_free -= ac->ac_b_ex.fe_len;
4183 pa->pa_len -= ac->ac_b_ex.fe_len;
4184 spin_unlock(&pa->pa_lock);
4187 if (pa) {
4189 * We want to add the pa to the right bucket.
4190 * Remove it from the list and while adding
4191 * make sure the list to which we are adding
4192 * doesn't grow big.
4194 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4195 spin_lock(pa->pa_obj_lock);
4196 list_del_rcu(&pa->pa_inode_list);
4197 spin_unlock(pa->pa_obj_lock);
4198 ext4_mb_add_n_trim(ac);
4200 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4202 if (ac->ac_bitmap_page)
4203 page_cache_release(ac->ac_bitmap_page);
4204 if (ac->ac_buddy_page)
4205 page_cache_release(ac->ac_buddy_page);
4206 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4207 mutex_unlock(&ac->ac_lg->lg_mutex);
4208 ext4_mb_collect_stats(ac);
4209 return 0;
4212 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4214 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4215 int ret;
4216 int freed = 0;
4218 trace_ext4_mb_discard_preallocations(sb, needed);
4219 for (i = 0; i < ngroups && needed > 0; i++) {
4220 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4221 freed += ret;
4222 needed -= ret;
4225 return freed;
4229 * Main entry point into mballoc to allocate blocks
4230 * it tries to use preallocation first, then falls back
4231 * to usual allocation
4233 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4234 struct ext4_allocation_request *ar, int *errp)
4236 int freed;
4237 struct ext4_allocation_context *ac = NULL;
4238 struct ext4_sb_info *sbi;
4239 struct super_block *sb;
4240 ext4_fsblk_t block = 0;
4241 unsigned int inquota = 0;
4242 unsigned int reserv_blks = 0;
4244 sb = ar->inode->i_sb;
4245 sbi = EXT4_SB(sb);
4247 trace_ext4_request_blocks(ar);
4250 * For delayed allocation, we could skip the ENOSPC and
4251 * EDQUOT check, as blocks and quotas have been already
4252 * reserved when data being copied into pagecache.
4254 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4255 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4256 else {
4257 /* Without delayed allocation we need to verify
4258 * there is enough free blocks to do block allocation
4259 * and verify allocation doesn't exceed the quota limits.
4261 while (ar->len &&
4262 ext4_claim_free_blocks(sbi, ar->len, ar->flags)) {
4264 /* let others to free the space */
4265 yield();
4266 ar->len = ar->len >> 1;
4268 if (!ar->len) {
4269 *errp = -ENOSPC;
4270 return 0;
4272 reserv_blks = ar->len;
4273 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4274 dquot_alloc_block_nofail(ar->inode, ar->len);
4275 } else {
4276 while (ar->len &&
4277 dquot_alloc_block(ar->inode, ar->len)) {
4279 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4280 ar->len--;
4283 inquota = ar->len;
4284 if (ar->len == 0) {
4285 *errp = -EDQUOT;
4286 goto out;
4290 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4291 if (!ac) {
4292 ar->len = 0;
4293 *errp = -ENOMEM;
4294 goto out;
4297 *errp = ext4_mb_initialize_context(ac, ar);
4298 if (*errp) {
4299 ar->len = 0;
4300 goto out;
4303 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4304 if (!ext4_mb_use_preallocated(ac)) {
4305 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4306 ext4_mb_normalize_request(ac, ar);
4307 repeat:
4308 /* allocate space in core */
4309 *errp = ext4_mb_regular_allocator(ac);
4310 if (*errp)
4311 goto errout;
4313 /* as we've just preallocated more space than
4314 * user requested orinally, we store allocated
4315 * space in a special descriptor */
4316 if (ac->ac_status == AC_STATUS_FOUND &&
4317 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4318 ext4_mb_new_preallocation(ac);
4320 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4321 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4322 if (*errp == -EAGAIN) {
4324 * drop the reference that we took
4325 * in ext4_mb_use_best_found
4327 ext4_mb_release_context(ac);
4328 ac->ac_b_ex.fe_group = 0;
4329 ac->ac_b_ex.fe_start = 0;
4330 ac->ac_b_ex.fe_len = 0;
4331 ac->ac_status = AC_STATUS_CONTINUE;
4332 goto repeat;
4333 } else if (*errp)
4334 errout:
4335 ext4_discard_allocated_blocks(ac);
4336 else {
4337 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4338 ar->len = ac->ac_b_ex.fe_len;
4340 } else {
4341 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4342 if (freed)
4343 goto repeat;
4344 *errp = -ENOSPC;
4347 if (*errp) {
4348 ac->ac_b_ex.fe_len = 0;
4349 ar->len = 0;
4350 ext4_mb_show_ac(ac);
4352 ext4_mb_release_context(ac);
4353 out:
4354 if (ac)
4355 kmem_cache_free(ext4_ac_cachep, ac);
4356 if (inquota && ar->len < inquota)
4357 dquot_free_block(ar->inode, inquota - ar->len);
4358 if (!ar->len) {
4359 if (!ext4_test_inode_state(ar->inode,
4360 EXT4_STATE_DELALLOC_RESERVED))
4361 /* release all the reserved blocks if non delalloc */
4362 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4363 reserv_blks);
4366 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4368 return block;
4372 * We can merge two free data extents only if the physical blocks
4373 * are contiguous, AND the extents were freed by the same transaction,
4374 * AND the blocks are associated with the same group.
4376 static int can_merge(struct ext4_free_data *entry1,
4377 struct ext4_free_data *entry2)
4379 if ((entry1->t_tid == entry2->t_tid) &&
4380 (entry1->group == entry2->group) &&
4381 ((entry1->start_blk + entry1->count) == entry2->start_blk))
4382 return 1;
4383 return 0;
4386 static noinline_for_stack int
4387 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4388 struct ext4_free_data *new_entry)
4390 ext4_group_t group = e4b->bd_group;
4391 ext4_grpblk_t block;
4392 struct ext4_free_data *entry;
4393 struct ext4_group_info *db = e4b->bd_info;
4394 struct super_block *sb = e4b->bd_sb;
4395 struct ext4_sb_info *sbi = EXT4_SB(sb);
4396 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4397 struct rb_node *parent = NULL, *new_node;
4399 BUG_ON(!ext4_handle_valid(handle));
4400 BUG_ON(e4b->bd_bitmap_page == NULL);
4401 BUG_ON(e4b->bd_buddy_page == NULL);
4403 new_node = &new_entry->node;
4404 block = new_entry->start_blk;
4406 if (!*n) {
4407 /* first free block exent. We need to
4408 protect buddy cache from being freed,
4409 * otherwise we'll refresh it from
4410 * on-disk bitmap and lose not-yet-available
4411 * blocks */
4412 page_cache_get(e4b->bd_buddy_page);
4413 page_cache_get(e4b->bd_bitmap_page);
4415 while (*n) {
4416 parent = *n;
4417 entry = rb_entry(parent, struct ext4_free_data, node);
4418 if (block < entry->start_blk)
4419 n = &(*n)->rb_left;
4420 else if (block >= (entry->start_blk + entry->count))
4421 n = &(*n)->rb_right;
4422 else {
4423 ext4_grp_locked_error(sb, group, 0,
4424 ext4_group_first_block_no(sb, group) + block,
4425 "Block already on to-be-freed list");
4426 return 0;
4430 rb_link_node(new_node, parent, n);
4431 rb_insert_color(new_node, &db->bb_free_root);
4433 /* Now try to see the extent can be merged to left and right */
4434 node = rb_prev(new_node);
4435 if (node) {
4436 entry = rb_entry(node, struct ext4_free_data, node);
4437 if (can_merge(entry, new_entry)) {
4438 new_entry->start_blk = entry->start_blk;
4439 new_entry->count += entry->count;
4440 rb_erase(node, &(db->bb_free_root));
4441 spin_lock(&sbi->s_md_lock);
4442 list_del(&entry->list);
4443 spin_unlock(&sbi->s_md_lock);
4444 kmem_cache_free(ext4_free_ext_cachep, entry);
4448 node = rb_next(new_node);
4449 if (node) {
4450 entry = rb_entry(node, struct ext4_free_data, node);
4451 if (can_merge(new_entry, entry)) {
4452 new_entry->count += entry->count;
4453 rb_erase(node, &(db->bb_free_root));
4454 spin_lock(&sbi->s_md_lock);
4455 list_del(&entry->list);
4456 spin_unlock(&sbi->s_md_lock);
4457 kmem_cache_free(ext4_free_ext_cachep, entry);
4460 /* Add the extent to transaction's private list */
4461 spin_lock(&sbi->s_md_lock);
4462 list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4463 spin_unlock(&sbi->s_md_lock);
4464 return 0;
4468 * ext4_free_blocks() -- Free given blocks and update quota
4469 * @handle: handle for this transaction
4470 * @inode: inode
4471 * @block: start physical block to free
4472 * @count: number of blocks to count
4473 * @flags: flags used by ext4_free_blocks
4475 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4476 struct buffer_head *bh, ext4_fsblk_t block,
4477 unsigned long count, int flags)
4479 struct buffer_head *bitmap_bh = NULL;
4480 struct super_block *sb = inode->i_sb;
4481 struct ext4_group_desc *gdp;
4482 unsigned long freed = 0;
4483 unsigned int overflow;
4484 ext4_grpblk_t bit;
4485 struct buffer_head *gd_bh;
4486 ext4_group_t block_group;
4487 struct ext4_sb_info *sbi;
4488 struct ext4_buddy e4b;
4489 int err = 0;
4490 int ret;
4492 if (bh) {
4493 if (block)
4494 BUG_ON(block != bh->b_blocknr);
4495 else
4496 block = bh->b_blocknr;
4499 sbi = EXT4_SB(sb);
4500 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4501 !ext4_data_block_valid(sbi, block, count)) {
4502 ext4_error(sb, "Freeing blocks not in datazone - "
4503 "block = %llu, count = %lu", block, count);
4504 goto error_return;
4507 ext4_debug("freeing block %llu\n", block);
4508 trace_ext4_free_blocks(inode, block, count, flags);
4510 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4511 struct buffer_head *tbh = bh;
4512 int i;
4514 BUG_ON(bh && (count > 1));
4516 for (i = 0; i < count; i++) {
4517 if (!bh)
4518 tbh = sb_find_get_block(inode->i_sb,
4519 block + i);
4520 if (unlikely(!tbh))
4521 continue;
4522 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4523 inode, tbh, block + i);
4528 * We need to make sure we don't reuse the freed block until
4529 * after the transaction is committed, which we can do by
4530 * treating the block as metadata, below. We make an
4531 * exception if the inode is to be written in writeback mode
4532 * since writeback mode has weak data consistency guarantees.
4534 if (!ext4_should_writeback_data(inode))
4535 flags |= EXT4_FREE_BLOCKS_METADATA;
4537 do_more:
4538 overflow = 0;
4539 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4542 * Check to see if we are freeing blocks across a group
4543 * boundary.
4545 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4546 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4547 count -= overflow;
4549 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4550 if (!bitmap_bh) {
4551 err = -EIO;
4552 goto error_return;
4554 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4555 if (!gdp) {
4556 err = -EIO;
4557 goto error_return;
4560 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4561 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4562 in_range(block, ext4_inode_table(sb, gdp),
4563 EXT4_SB(sb)->s_itb_per_group) ||
4564 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4565 EXT4_SB(sb)->s_itb_per_group)) {
4567 ext4_error(sb, "Freeing blocks in system zone - "
4568 "Block = %llu, count = %lu", block, count);
4569 /* err = 0. ext4_std_error should be a no op */
4570 goto error_return;
4573 BUFFER_TRACE(bitmap_bh, "getting write access");
4574 err = ext4_journal_get_write_access(handle, bitmap_bh);
4575 if (err)
4576 goto error_return;
4579 * We are about to modify some metadata. Call the journal APIs
4580 * to unshare ->b_data if a currently-committing transaction is
4581 * using it
4583 BUFFER_TRACE(gd_bh, "get_write_access");
4584 err = ext4_journal_get_write_access(handle, gd_bh);
4585 if (err)
4586 goto error_return;
4587 #ifdef AGGRESSIVE_CHECK
4589 int i;
4590 for (i = 0; i < count; i++)
4591 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4593 #endif
4594 trace_ext4_mballoc_free(sb, inode, block_group, bit, count);
4596 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4597 if (err)
4598 goto error_return;
4600 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4601 struct ext4_free_data *new_entry;
4603 * blocks being freed are metadata. these blocks shouldn't
4604 * be used until this transaction is committed
4606 new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4607 if (!new_entry) {
4608 err = -ENOMEM;
4609 goto error_return;
4611 new_entry->start_blk = bit;
4612 new_entry->group = block_group;
4613 new_entry->count = count;
4614 new_entry->t_tid = handle->h_transaction->t_tid;
4616 ext4_lock_group(sb, block_group);
4617 mb_clear_bits(bitmap_bh->b_data, bit, count);
4618 ext4_mb_free_metadata(handle, &e4b, new_entry);
4619 } else {
4620 /* need to update group_info->bb_free and bitmap
4621 * with group lock held. generate_buddy look at
4622 * them with group lock_held
4624 ext4_lock_group(sb, block_group);
4625 mb_clear_bits(bitmap_bh->b_data, bit, count);
4626 mb_free_blocks(inode, &e4b, bit, count);
4629 ret = ext4_free_blks_count(sb, gdp) + count;
4630 ext4_free_blks_set(sb, gdp, ret);
4631 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4632 ext4_unlock_group(sb, block_group);
4633 percpu_counter_add(&sbi->s_freeblocks_counter, count);
4635 if (sbi->s_log_groups_per_flex) {
4636 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4637 atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks);
4640 ext4_mb_unload_buddy(&e4b);
4642 freed += count;
4644 /* We dirtied the bitmap block */
4645 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4646 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4648 /* And the group descriptor block */
4649 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4650 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4651 if (!err)
4652 err = ret;
4654 if (overflow && !err) {
4655 block += count;
4656 count = overflow;
4657 put_bh(bitmap_bh);
4658 goto do_more;
4660 ext4_mark_super_dirty(sb);
4661 error_return:
4662 if (freed && !(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4663 dquot_free_block(inode, freed);
4664 brelse(bitmap_bh);
4665 ext4_std_error(sb, err);
4666 return;
4670 * ext4_group_add_blocks() -- Add given blocks to an existing group
4671 * @handle: handle to this transaction
4672 * @sb: super block
4673 * @block: start physcial block to add to the block group
4674 * @count: number of blocks to free
4676 * This marks the blocks as free in the bitmap and buddy.
4678 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4679 ext4_fsblk_t block, unsigned long count)
4681 struct buffer_head *bitmap_bh = NULL;
4682 struct buffer_head *gd_bh;
4683 ext4_group_t block_group;
4684 ext4_grpblk_t bit;
4685 unsigned int i;
4686 struct ext4_group_desc *desc;
4687 struct ext4_sb_info *sbi = EXT4_SB(sb);
4688 struct ext4_buddy e4b;
4689 int err = 0, ret, blk_free_count;
4690 ext4_grpblk_t blocks_freed;
4692 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4694 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4696 * Check to see if we are freeing blocks across a group
4697 * boundary.
4699 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4700 ext4_warning(sb, "too much blocks added to group %u\n",
4701 block_group);
4702 err = -EINVAL;
4703 goto error_return;
4706 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4707 if (!bitmap_bh) {
4708 err = -EIO;
4709 goto error_return;
4712 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4713 if (!desc) {
4714 err = -EIO;
4715 goto error_return;
4718 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4719 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4720 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4721 in_range(block + count - 1, ext4_inode_table(sb, desc),
4722 sbi->s_itb_per_group)) {
4723 ext4_error(sb, "Adding blocks in system zones - "
4724 "Block = %llu, count = %lu",
4725 block, count);
4726 err = -EINVAL;
4727 goto error_return;
4730 BUFFER_TRACE(bitmap_bh, "getting write access");
4731 err = ext4_journal_get_write_access(handle, bitmap_bh);
4732 if (err)
4733 goto error_return;
4736 * We are about to modify some metadata. Call the journal APIs
4737 * to unshare ->b_data if a currently-committing transaction is
4738 * using it
4740 BUFFER_TRACE(gd_bh, "get_write_access");
4741 err = ext4_journal_get_write_access(handle, gd_bh);
4742 if (err)
4743 goto error_return;
4745 for (i = 0, blocks_freed = 0; i < count; i++) {
4746 BUFFER_TRACE(bitmap_bh, "clear bit");
4747 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4748 ext4_error(sb, "bit already cleared for block %llu",
4749 (ext4_fsblk_t)(block + i));
4750 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4751 } else {
4752 blocks_freed++;
4756 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4757 if (err)
4758 goto error_return;
4761 * need to update group_info->bb_free and bitmap
4762 * with group lock held. generate_buddy look at
4763 * them with group lock_held
4765 ext4_lock_group(sb, block_group);
4766 mb_clear_bits(bitmap_bh->b_data, bit, count);
4767 mb_free_blocks(NULL, &e4b, bit, count);
4768 blk_free_count = blocks_freed + ext4_free_blks_count(sb, desc);
4769 ext4_free_blks_set(sb, desc, blk_free_count);
4770 desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
4771 ext4_unlock_group(sb, block_group);
4772 percpu_counter_add(&sbi->s_freeblocks_counter, blocks_freed);
4774 if (sbi->s_log_groups_per_flex) {
4775 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4776 atomic_add(blocks_freed,
4777 &sbi->s_flex_groups[flex_group].free_blocks);
4780 ext4_mb_unload_buddy(&e4b);
4782 /* We dirtied the bitmap block */
4783 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4784 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4786 /* And the group descriptor block */
4787 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4788 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4789 if (!err)
4790 err = ret;
4792 error_return:
4793 brelse(bitmap_bh);
4794 ext4_std_error(sb, err);
4795 return err;
4799 * ext4_trim_extent -- function to TRIM one single free extent in the group
4800 * @sb: super block for the file system
4801 * @start: starting block of the free extent in the alloc. group
4802 * @count: number of blocks to TRIM
4803 * @group: alloc. group we are working with
4804 * @e4b: ext4 buddy for the group
4806 * Trim "count" blocks starting at "start" in the "group". To assure that no
4807 * one will allocate those blocks, mark it as used in buddy bitmap. This must
4808 * be called with under the group lock.
4810 static void ext4_trim_extent(struct super_block *sb, int start, int count,
4811 ext4_group_t group, struct ext4_buddy *e4b)
4813 struct ext4_free_extent ex;
4815 trace_ext4_trim_extent(sb, group, start, count);
4817 assert_spin_locked(ext4_group_lock_ptr(sb, group));
4819 ex.fe_start = start;
4820 ex.fe_group = group;
4821 ex.fe_len = count;
4824 * Mark blocks used, so no one can reuse them while
4825 * being trimmed.
4827 mb_mark_used(e4b, &ex);
4828 ext4_unlock_group(sb, group);
4829 ext4_issue_discard(sb, group, start, count);
4830 ext4_lock_group(sb, group);
4831 mb_free_blocks(NULL, e4b, start, ex.fe_len);
4835 * ext4_trim_all_free -- function to trim all free space in alloc. group
4836 * @sb: super block for file system
4837 * @group: group to be trimmed
4838 * @start: first group block to examine
4839 * @max: last group block to examine
4840 * @minblocks: minimum extent block count
4842 * ext4_trim_all_free walks through group's buddy bitmap searching for free
4843 * extents. When the free block is found, ext4_trim_extent is called to TRIM
4844 * the extent.
4847 * ext4_trim_all_free walks through group's block bitmap searching for free
4848 * extents. When the free extent is found, mark it as used in group buddy
4849 * bitmap. Then issue a TRIM command on this extent and free the extent in
4850 * the group buddy bitmap. This is done until whole group is scanned.
4852 static ext4_grpblk_t
4853 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
4854 ext4_grpblk_t start, ext4_grpblk_t max,
4855 ext4_grpblk_t minblocks)
4857 void *bitmap;
4858 ext4_grpblk_t next, count = 0, free_count = 0;
4859 struct ext4_buddy e4b;
4860 int ret;
4862 trace_ext4_trim_all_free(sb, group, start, max);
4864 ret = ext4_mb_load_buddy(sb, group, &e4b);
4865 if (ret) {
4866 ext4_error(sb, "Error in loading buddy "
4867 "information for %u", group);
4868 return ret;
4870 bitmap = e4b.bd_bitmap;
4872 ext4_lock_group(sb, group);
4873 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
4874 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
4875 goto out;
4877 start = (e4b.bd_info->bb_first_free > start) ?
4878 e4b.bd_info->bb_first_free : start;
4880 while (start < max) {
4881 start = mb_find_next_zero_bit(bitmap, max, start);
4882 if (start >= max)
4883 break;
4884 next = mb_find_next_bit(bitmap, max, start);
4886 if ((next - start) >= minblocks) {
4887 ext4_trim_extent(sb, start,
4888 next - start, group, &e4b);
4889 count += next - start;
4891 free_count += next - start;
4892 start = next + 1;
4894 if (fatal_signal_pending(current)) {
4895 count = -ERESTARTSYS;
4896 break;
4899 if (need_resched()) {
4900 ext4_unlock_group(sb, group);
4901 cond_resched();
4902 ext4_lock_group(sb, group);
4905 if ((e4b.bd_info->bb_free - free_count) < minblocks)
4906 break;
4909 if (!ret)
4910 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
4911 out:
4912 ext4_unlock_group(sb, group);
4913 ext4_mb_unload_buddy(&e4b);
4915 ext4_debug("trimmed %d blocks in the group %d\n",
4916 count, group);
4918 return count;
4922 * ext4_trim_fs() -- trim ioctl handle function
4923 * @sb: superblock for filesystem
4924 * @range: fstrim_range structure
4926 * start: First Byte to trim
4927 * len: number of Bytes to trim from start
4928 * minlen: minimum extent length in Bytes
4929 * ext4_trim_fs goes through all allocation groups containing Bytes from
4930 * start to start+len. For each such a group ext4_trim_all_free function
4931 * is invoked to trim all free space.
4933 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
4935 struct ext4_group_info *grp;
4936 ext4_group_t first_group, last_group;
4937 ext4_group_t group, ngroups = ext4_get_groups_count(sb);
4938 ext4_grpblk_t cnt = 0, first_block, last_block;
4939 uint64_t start, len, minlen, trimmed = 0;
4940 ext4_fsblk_t first_data_blk =
4941 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
4942 int ret = 0;
4944 start = range->start >> sb->s_blocksize_bits;
4945 len = range->len >> sb->s_blocksize_bits;
4946 minlen = range->minlen >> sb->s_blocksize_bits;
4948 if (unlikely(minlen > EXT4_BLOCKS_PER_GROUP(sb)))
4949 return -EINVAL;
4950 if (start + len <= first_data_blk)
4951 goto out;
4952 if (start < first_data_blk) {
4953 len -= first_data_blk - start;
4954 start = first_data_blk;
4957 /* Determine first and last group to examine based on start and len */
4958 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
4959 &first_group, &first_block);
4960 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) (start + len),
4961 &last_group, &last_block);
4962 last_group = (last_group > ngroups - 1) ? ngroups - 1 : last_group;
4963 last_block = EXT4_BLOCKS_PER_GROUP(sb);
4965 if (first_group > last_group)
4966 return -EINVAL;
4968 for (group = first_group; group <= last_group; group++) {
4969 grp = ext4_get_group_info(sb, group);
4970 /* We only do this if the grp has never been initialized */
4971 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
4972 ret = ext4_mb_init_group(sb, group);
4973 if (ret)
4974 break;
4978 * For all the groups except the last one, last block will
4979 * always be EXT4_BLOCKS_PER_GROUP(sb), so we only need to
4980 * change it for the last group in which case start +
4981 * len < EXT4_BLOCKS_PER_GROUP(sb).
4983 if (first_block + len < EXT4_BLOCKS_PER_GROUP(sb))
4984 last_block = first_block + len;
4985 len -= last_block - first_block;
4987 if (grp->bb_free >= minlen) {
4988 cnt = ext4_trim_all_free(sb, group, first_block,
4989 last_block, minlen);
4990 if (cnt < 0) {
4991 ret = cnt;
4992 break;
4995 trimmed += cnt;
4996 first_block = 0;
4998 range->len = trimmed * sb->s_blocksize;
5000 if (!ret)
5001 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5003 out:
5004 return ret;