timekeeping: Move TAI managment into timekeeping core from ntp
[linux-2.6/btrfs-unstable.git] / kernel / time / ntp.c
blob59e2749be0fa37c6ed4be7842fb4c267db3f91e3
1 /*
2 * NTP state machine interfaces and logic.
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/rtc.h>
20 #include "tick-internal.h"
23 * NTP timekeeping variables:
26 DEFINE_RAW_SPINLOCK(ntp_lock);
29 /* USER_HZ period (usecs): */
30 unsigned long tick_usec = TICK_USEC;
32 /* SHIFTED_HZ period (nsecs): */
33 unsigned long tick_nsec;
35 static u64 tick_length;
36 static u64 tick_length_base;
38 #define MAX_TICKADJ 500LL /* usecs */
39 #define MAX_TICKADJ_SCALED \
40 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
43 * phase-lock loop variables
47 * clock synchronization status
49 * (TIME_ERROR prevents overwriting the CMOS clock)
51 static int time_state = TIME_OK;
53 /* clock status bits: */
54 static int time_status = STA_UNSYNC;
56 /* time adjustment (nsecs): */
57 static s64 time_offset;
59 /* pll time constant: */
60 static long time_constant = 2;
62 /* maximum error (usecs): */
63 static long time_maxerror = NTP_PHASE_LIMIT;
65 /* estimated error (usecs): */
66 static long time_esterror = NTP_PHASE_LIMIT;
68 /* frequency offset (scaled nsecs/secs): */
69 static s64 time_freq;
71 /* time at last adjustment (secs): */
72 static long time_reftime;
74 static long time_adjust;
76 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
77 static s64 ntp_tick_adj;
79 #ifdef CONFIG_NTP_PPS
82 * The following variables are used when a pulse-per-second (PPS) signal
83 * is available. They establish the engineering parameters of the clock
84 * discipline loop when controlled by the PPS signal.
86 #define PPS_VALID 10 /* PPS signal watchdog max (s) */
87 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
88 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
89 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
90 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
91 increase pps_shift or consecutive bad
92 intervals to decrease it */
93 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
95 static int pps_valid; /* signal watchdog counter */
96 static long pps_tf[3]; /* phase median filter */
97 static long pps_jitter; /* current jitter (ns) */
98 static struct timespec pps_fbase; /* beginning of the last freq interval */
99 static int pps_shift; /* current interval duration (s) (shift) */
100 static int pps_intcnt; /* interval counter */
101 static s64 pps_freq; /* frequency offset (scaled ns/s) */
102 static long pps_stabil; /* current stability (scaled ns/s) */
105 * PPS signal quality monitors
107 static long pps_calcnt; /* calibration intervals */
108 static long pps_jitcnt; /* jitter limit exceeded */
109 static long pps_stbcnt; /* stability limit exceeded */
110 static long pps_errcnt; /* calibration errors */
113 /* PPS kernel consumer compensates the whole phase error immediately.
114 * Otherwise, reduce the offset by a fixed factor times the time constant.
116 static inline s64 ntp_offset_chunk(s64 offset)
118 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
119 return offset;
120 else
121 return shift_right(offset, SHIFT_PLL + time_constant);
124 static inline void pps_reset_freq_interval(void)
126 /* the PPS calibration interval may end
127 surprisingly early */
128 pps_shift = PPS_INTMIN;
129 pps_intcnt = 0;
133 * pps_clear - Clears the PPS state variables
135 * Must be called while holding a write on the ntp_lock
137 static inline void pps_clear(void)
139 pps_reset_freq_interval();
140 pps_tf[0] = 0;
141 pps_tf[1] = 0;
142 pps_tf[2] = 0;
143 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
144 pps_freq = 0;
147 /* Decrease pps_valid to indicate that another second has passed since
148 * the last PPS signal. When it reaches 0, indicate that PPS signal is
149 * missing.
151 * Must be called while holding a write on the ntp_lock
153 static inline void pps_dec_valid(void)
155 if (pps_valid > 0)
156 pps_valid--;
157 else {
158 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
159 STA_PPSWANDER | STA_PPSERROR);
160 pps_clear();
164 static inline void pps_set_freq(s64 freq)
166 pps_freq = freq;
169 static inline int is_error_status(int status)
171 return (time_status & (STA_UNSYNC|STA_CLOCKERR))
172 /* PPS signal lost when either PPS time or
173 * PPS frequency synchronization requested
175 || ((time_status & (STA_PPSFREQ|STA_PPSTIME))
176 && !(time_status & STA_PPSSIGNAL))
177 /* PPS jitter exceeded when
178 * PPS time synchronization requested */
179 || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
180 == (STA_PPSTIME|STA_PPSJITTER))
181 /* PPS wander exceeded or calibration error when
182 * PPS frequency synchronization requested
184 || ((time_status & STA_PPSFREQ)
185 && (time_status & (STA_PPSWANDER|STA_PPSERROR)));
188 static inline void pps_fill_timex(struct timex *txc)
190 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
191 PPM_SCALE_INV, NTP_SCALE_SHIFT);
192 txc->jitter = pps_jitter;
193 if (!(time_status & STA_NANO))
194 txc->jitter /= NSEC_PER_USEC;
195 txc->shift = pps_shift;
196 txc->stabil = pps_stabil;
197 txc->jitcnt = pps_jitcnt;
198 txc->calcnt = pps_calcnt;
199 txc->errcnt = pps_errcnt;
200 txc->stbcnt = pps_stbcnt;
203 #else /* !CONFIG_NTP_PPS */
205 static inline s64 ntp_offset_chunk(s64 offset)
207 return shift_right(offset, SHIFT_PLL + time_constant);
210 static inline void pps_reset_freq_interval(void) {}
211 static inline void pps_clear(void) {}
212 static inline void pps_dec_valid(void) {}
213 static inline void pps_set_freq(s64 freq) {}
215 static inline int is_error_status(int status)
217 return status & (STA_UNSYNC|STA_CLOCKERR);
220 static inline void pps_fill_timex(struct timex *txc)
222 /* PPS is not implemented, so these are zero */
223 txc->ppsfreq = 0;
224 txc->jitter = 0;
225 txc->shift = 0;
226 txc->stabil = 0;
227 txc->jitcnt = 0;
228 txc->calcnt = 0;
229 txc->errcnt = 0;
230 txc->stbcnt = 0;
233 #endif /* CONFIG_NTP_PPS */
237 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
240 static inline int ntp_synced(void)
242 return !(time_status & STA_UNSYNC);
247 * NTP methods:
251 * Update (tick_length, tick_length_base, tick_nsec), based
252 * on (tick_usec, ntp_tick_adj, time_freq):
254 static void ntp_update_frequency(void)
256 u64 second_length;
257 u64 new_base;
259 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
260 << NTP_SCALE_SHIFT;
262 second_length += ntp_tick_adj;
263 second_length += time_freq;
265 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
266 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
269 * Don't wait for the next second_overflow, apply
270 * the change to the tick length immediately:
272 tick_length += new_base - tick_length_base;
273 tick_length_base = new_base;
276 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
278 time_status &= ~STA_MODE;
280 if (secs < MINSEC)
281 return 0;
283 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
284 return 0;
286 time_status |= STA_MODE;
288 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
291 static void ntp_update_offset(long offset)
293 s64 freq_adj;
294 s64 offset64;
295 long secs;
297 if (!(time_status & STA_PLL))
298 return;
300 if (!(time_status & STA_NANO))
301 offset *= NSEC_PER_USEC;
304 * Scale the phase adjustment and
305 * clamp to the operating range.
307 offset = min(offset, MAXPHASE);
308 offset = max(offset, -MAXPHASE);
311 * Select how the frequency is to be controlled
312 * and in which mode (PLL or FLL).
314 secs = get_seconds() - time_reftime;
315 if (unlikely(time_status & STA_FREQHOLD))
316 secs = 0;
318 time_reftime = get_seconds();
320 offset64 = offset;
321 freq_adj = ntp_update_offset_fll(offset64, secs);
324 * Clamp update interval to reduce PLL gain with low
325 * sampling rate (e.g. intermittent network connection)
326 * to avoid instability.
328 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
329 secs = 1 << (SHIFT_PLL + 1 + time_constant);
331 freq_adj += (offset64 * secs) <<
332 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
334 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
336 time_freq = max(freq_adj, -MAXFREQ_SCALED);
338 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
342 * ntp_clear - Clears the NTP state variables
344 void ntp_clear(void)
346 unsigned long flags;
348 raw_spin_lock_irqsave(&ntp_lock, flags);
350 time_adjust = 0; /* stop active adjtime() */
351 time_status |= STA_UNSYNC;
352 time_maxerror = NTP_PHASE_LIMIT;
353 time_esterror = NTP_PHASE_LIMIT;
355 ntp_update_frequency();
357 tick_length = tick_length_base;
358 time_offset = 0;
360 /* Clear PPS state variables */
361 pps_clear();
362 raw_spin_unlock_irqrestore(&ntp_lock, flags);
367 u64 ntp_tick_length(void)
369 unsigned long flags;
370 s64 ret;
372 raw_spin_lock_irqsave(&ntp_lock, flags);
373 ret = tick_length;
374 raw_spin_unlock_irqrestore(&ntp_lock, flags);
375 return ret;
380 * this routine handles the overflow of the microsecond field
382 * The tricky bits of code to handle the accurate clock support
383 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
384 * They were originally developed for SUN and DEC kernels.
385 * All the kudos should go to Dave for this stuff.
387 * Also handles leap second processing, and returns leap offset
389 int second_overflow(unsigned long secs)
391 s64 delta;
392 int leap = 0;
393 unsigned long flags;
395 raw_spin_lock_irqsave(&ntp_lock, flags);
398 * Leap second processing. If in leap-insert state at the end of the
399 * day, the system clock is set back one second; if in leap-delete
400 * state, the system clock is set ahead one second.
402 switch (time_state) {
403 case TIME_OK:
404 if (time_status & STA_INS)
405 time_state = TIME_INS;
406 else if (time_status & STA_DEL)
407 time_state = TIME_DEL;
408 break;
409 case TIME_INS:
410 if (!(time_status & STA_INS))
411 time_state = TIME_OK;
412 else if (secs % 86400 == 0) {
413 leap = -1;
414 time_state = TIME_OOP;
415 printk(KERN_NOTICE
416 "Clock: inserting leap second 23:59:60 UTC\n");
418 break;
419 case TIME_DEL:
420 if (!(time_status & STA_DEL))
421 time_state = TIME_OK;
422 else if ((secs + 1) % 86400 == 0) {
423 leap = 1;
424 time_state = TIME_WAIT;
425 printk(KERN_NOTICE
426 "Clock: deleting leap second 23:59:59 UTC\n");
428 break;
429 case TIME_OOP:
430 time_state = TIME_WAIT;
431 break;
433 case TIME_WAIT:
434 if (!(time_status & (STA_INS | STA_DEL)))
435 time_state = TIME_OK;
436 break;
440 /* Bump the maxerror field */
441 time_maxerror += MAXFREQ / NSEC_PER_USEC;
442 if (time_maxerror > NTP_PHASE_LIMIT) {
443 time_maxerror = NTP_PHASE_LIMIT;
444 time_status |= STA_UNSYNC;
447 /* Compute the phase adjustment for the next second */
448 tick_length = tick_length_base;
450 delta = ntp_offset_chunk(time_offset);
451 time_offset -= delta;
452 tick_length += delta;
454 /* Check PPS signal */
455 pps_dec_valid();
457 if (!time_adjust)
458 goto out;
460 if (time_adjust > MAX_TICKADJ) {
461 time_adjust -= MAX_TICKADJ;
462 tick_length += MAX_TICKADJ_SCALED;
463 goto out;
466 if (time_adjust < -MAX_TICKADJ) {
467 time_adjust += MAX_TICKADJ;
468 tick_length -= MAX_TICKADJ_SCALED;
469 goto out;
472 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
473 << NTP_SCALE_SHIFT;
474 time_adjust = 0;
476 out:
477 raw_spin_unlock_irqrestore(&ntp_lock, flags);
479 return leap;
482 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
483 static void sync_cmos_clock(struct work_struct *work);
485 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
487 static void sync_cmos_clock(struct work_struct *work)
489 struct timespec now, next;
490 int fail = 1;
493 * If we have an externally synchronized Linux clock, then update
494 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
495 * called as close as possible to 500 ms before the new second starts.
496 * This code is run on a timer. If the clock is set, that timer
497 * may not expire at the correct time. Thus, we adjust...
499 if (!ntp_synced()) {
501 * Not synced, exit, do not restart a timer (if one is
502 * running, let it run out).
504 return;
507 getnstimeofday(&now);
508 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) {
509 struct timespec adjust = now;
511 fail = -ENODEV;
512 if (persistent_clock_is_local)
513 adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
514 #ifdef CONFIG_GENERIC_CMOS_UPDATE
515 fail = update_persistent_clock(adjust);
516 #endif
517 #ifdef CONFIG_RTC_SYSTOHC
518 if (fail == -ENODEV)
519 fail = rtc_set_ntp_time(adjust);
520 #endif
523 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
524 if (next.tv_nsec <= 0)
525 next.tv_nsec += NSEC_PER_SEC;
527 if (!fail || fail == -ENODEV)
528 next.tv_sec = 659;
529 else
530 next.tv_sec = 0;
532 if (next.tv_nsec >= NSEC_PER_SEC) {
533 next.tv_sec++;
534 next.tv_nsec -= NSEC_PER_SEC;
536 schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
539 static void notify_cmos_timer(void)
541 schedule_delayed_work(&sync_cmos_work, 0);
544 #else
545 static inline void notify_cmos_timer(void) { }
546 #endif
550 * Propagate a new txc->status value into the NTP state:
552 static inline void process_adj_status(struct timex *txc, struct timespec *ts)
554 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
555 time_state = TIME_OK;
556 time_status = STA_UNSYNC;
557 /* restart PPS frequency calibration */
558 pps_reset_freq_interval();
562 * If we turn on PLL adjustments then reset the
563 * reference time to current time.
565 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
566 time_reftime = get_seconds();
568 /* only set allowed bits */
569 time_status &= STA_RONLY;
570 time_status |= txc->status & ~STA_RONLY;
574 * Called with ntp_lock held, so we can access and modify
575 * all the global NTP state:
577 static inline void process_adjtimex_modes(struct timex *txc,
578 struct timespec *ts,
579 s32 *time_tai)
581 if (txc->modes & ADJ_STATUS)
582 process_adj_status(txc, ts);
584 if (txc->modes & ADJ_NANO)
585 time_status |= STA_NANO;
587 if (txc->modes & ADJ_MICRO)
588 time_status &= ~STA_NANO;
590 if (txc->modes & ADJ_FREQUENCY) {
591 time_freq = txc->freq * PPM_SCALE;
592 time_freq = min(time_freq, MAXFREQ_SCALED);
593 time_freq = max(time_freq, -MAXFREQ_SCALED);
594 /* update pps_freq */
595 pps_set_freq(time_freq);
598 if (txc->modes & ADJ_MAXERROR)
599 time_maxerror = txc->maxerror;
601 if (txc->modes & ADJ_ESTERROR)
602 time_esterror = txc->esterror;
604 if (txc->modes & ADJ_TIMECONST) {
605 time_constant = txc->constant;
606 if (!(time_status & STA_NANO))
607 time_constant += 4;
608 time_constant = min(time_constant, (long)MAXTC);
609 time_constant = max(time_constant, 0l);
612 if (txc->modes & ADJ_TAI && txc->constant > 0)
613 *time_tai = txc->constant;
615 if (txc->modes & ADJ_OFFSET)
616 ntp_update_offset(txc->offset);
618 if (txc->modes & ADJ_TICK)
619 tick_usec = txc->tick;
621 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
622 ntp_update_frequency();
626 * adjtimex mainly allows reading (and writing, if superuser) of
627 * kernel time-keeping variables. used by xntpd.
629 int do_adjtimex(struct timex *txc)
631 struct timespec ts;
632 u32 time_tai, orig_tai;
633 int result;
635 /* Validate the data before disabling interrupts */
636 if (txc->modes & ADJ_ADJTIME) {
637 /* singleshot must not be used with any other mode bits */
638 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
639 return -EINVAL;
640 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
641 !capable(CAP_SYS_TIME))
642 return -EPERM;
643 } else {
644 /* In order to modify anything, you gotta be super-user! */
645 if (txc->modes && !capable(CAP_SYS_TIME))
646 return -EPERM;
649 * if the quartz is off by more than 10% then
650 * something is VERY wrong!
652 if (txc->modes & ADJ_TICK &&
653 (txc->tick < 900000/USER_HZ ||
654 txc->tick > 1100000/USER_HZ))
655 return -EINVAL;
658 if (txc->modes & ADJ_SETOFFSET) {
659 struct timespec delta;
660 delta.tv_sec = txc->time.tv_sec;
661 delta.tv_nsec = txc->time.tv_usec;
662 if (!capable(CAP_SYS_TIME))
663 return -EPERM;
664 if (!(txc->modes & ADJ_NANO))
665 delta.tv_nsec *= 1000;
666 result = timekeeping_inject_offset(&delta);
667 if (result)
668 return result;
671 getnstimeofday(&ts);
672 orig_tai = time_tai = timekeeping_get_tai_offset();
674 raw_spin_lock_irq(&ntp_lock);
676 if (txc->modes & ADJ_ADJTIME) {
677 long save_adjust = time_adjust;
679 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
680 /* adjtime() is independent from ntp_adjtime() */
681 time_adjust = txc->offset;
682 ntp_update_frequency();
684 txc->offset = save_adjust;
685 } else {
687 /* If there are input parameters, then process them: */
688 if (txc->modes)
689 process_adjtimex_modes(txc, &ts, &time_tai);
691 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
692 NTP_SCALE_SHIFT);
693 if (!(time_status & STA_NANO))
694 txc->offset /= NSEC_PER_USEC;
697 result = time_state; /* mostly `TIME_OK' */
698 /* check for errors */
699 if (is_error_status(time_status))
700 result = TIME_ERROR;
702 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
703 PPM_SCALE_INV, NTP_SCALE_SHIFT);
704 txc->maxerror = time_maxerror;
705 txc->esterror = time_esterror;
706 txc->status = time_status;
707 txc->constant = time_constant;
708 txc->precision = 1;
709 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
710 txc->tick = tick_usec;
711 txc->tai = time_tai;
713 /* fill PPS status fields */
714 pps_fill_timex(txc);
716 raw_spin_unlock_irq(&ntp_lock);
718 if (time_tai != orig_tai)
719 timekeeping_set_tai_offset(time_tai);
721 txc->time.tv_sec = ts.tv_sec;
722 txc->time.tv_usec = ts.tv_nsec;
723 if (!(time_status & STA_NANO))
724 txc->time.tv_usec /= NSEC_PER_USEC;
726 notify_cmos_timer();
728 return result;
731 #ifdef CONFIG_NTP_PPS
733 /* actually struct pps_normtime is good old struct timespec, but it is
734 * semantically different (and it is the reason why it was invented):
735 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
736 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
737 struct pps_normtime {
738 __kernel_time_t sec; /* seconds */
739 long nsec; /* nanoseconds */
742 /* normalize the timestamp so that nsec is in the
743 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
744 static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
746 struct pps_normtime norm = {
747 .sec = ts.tv_sec,
748 .nsec = ts.tv_nsec
751 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
752 norm.nsec -= NSEC_PER_SEC;
753 norm.sec++;
756 return norm;
759 /* get current phase correction and jitter */
760 static inline long pps_phase_filter_get(long *jitter)
762 *jitter = pps_tf[0] - pps_tf[1];
763 if (*jitter < 0)
764 *jitter = -*jitter;
766 /* TODO: test various filters */
767 return pps_tf[0];
770 /* add the sample to the phase filter */
771 static inline void pps_phase_filter_add(long err)
773 pps_tf[2] = pps_tf[1];
774 pps_tf[1] = pps_tf[0];
775 pps_tf[0] = err;
778 /* decrease frequency calibration interval length.
779 * It is halved after four consecutive unstable intervals.
781 static inline void pps_dec_freq_interval(void)
783 if (--pps_intcnt <= -PPS_INTCOUNT) {
784 pps_intcnt = -PPS_INTCOUNT;
785 if (pps_shift > PPS_INTMIN) {
786 pps_shift--;
787 pps_intcnt = 0;
792 /* increase frequency calibration interval length.
793 * It is doubled after four consecutive stable intervals.
795 static inline void pps_inc_freq_interval(void)
797 if (++pps_intcnt >= PPS_INTCOUNT) {
798 pps_intcnt = PPS_INTCOUNT;
799 if (pps_shift < PPS_INTMAX) {
800 pps_shift++;
801 pps_intcnt = 0;
806 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
807 * timestamps
809 * At the end of the calibration interval the difference between the
810 * first and last MONOTONIC_RAW clock timestamps divided by the length
811 * of the interval becomes the frequency update. If the interval was
812 * too long, the data are discarded.
813 * Returns the difference between old and new frequency values.
815 static long hardpps_update_freq(struct pps_normtime freq_norm)
817 long delta, delta_mod;
818 s64 ftemp;
820 /* check if the frequency interval was too long */
821 if (freq_norm.sec > (2 << pps_shift)) {
822 time_status |= STA_PPSERROR;
823 pps_errcnt++;
824 pps_dec_freq_interval();
825 pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
826 freq_norm.sec);
827 return 0;
830 /* here the raw frequency offset and wander (stability) is
831 * calculated. If the wander is less than the wander threshold
832 * the interval is increased; otherwise it is decreased.
834 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
835 freq_norm.sec);
836 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
837 pps_freq = ftemp;
838 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
839 pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
840 time_status |= STA_PPSWANDER;
841 pps_stbcnt++;
842 pps_dec_freq_interval();
843 } else { /* good sample */
844 pps_inc_freq_interval();
847 /* the stability metric is calculated as the average of recent
848 * frequency changes, but is used only for performance
849 * monitoring
851 delta_mod = delta;
852 if (delta_mod < 0)
853 delta_mod = -delta_mod;
854 pps_stabil += (div_s64(((s64)delta_mod) <<
855 (NTP_SCALE_SHIFT - SHIFT_USEC),
856 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
858 /* if enabled, the system clock frequency is updated */
859 if ((time_status & STA_PPSFREQ) != 0 &&
860 (time_status & STA_FREQHOLD) == 0) {
861 time_freq = pps_freq;
862 ntp_update_frequency();
865 return delta;
868 /* correct REALTIME clock phase error against PPS signal */
869 static void hardpps_update_phase(long error)
871 long correction = -error;
872 long jitter;
874 /* add the sample to the median filter */
875 pps_phase_filter_add(correction);
876 correction = pps_phase_filter_get(&jitter);
878 /* Nominal jitter is due to PPS signal noise. If it exceeds the
879 * threshold, the sample is discarded; otherwise, if so enabled,
880 * the time offset is updated.
882 if (jitter > (pps_jitter << PPS_POPCORN)) {
883 pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
884 jitter, (pps_jitter << PPS_POPCORN));
885 time_status |= STA_PPSJITTER;
886 pps_jitcnt++;
887 } else if (time_status & STA_PPSTIME) {
888 /* correct the time using the phase offset */
889 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
890 NTP_INTERVAL_FREQ);
891 /* cancel running adjtime() */
892 time_adjust = 0;
894 /* update jitter */
895 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
899 * hardpps() - discipline CPU clock oscillator to external PPS signal
901 * This routine is called at each PPS signal arrival in order to
902 * discipline the CPU clock oscillator to the PPS signal. It takes two
903 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
904 * is used to correct clock phase error and the latter is used to
905 * correct the frequency.
907 * This code is based on David Mills's reference nanokernel
908 * implementation. It was mostly rewritten but keeps the same idea.
910 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
912 struct pps_normtime pts_norm, freq_norm;
913 unsigned long flags;
915 pts_norm = pps_normalize_ts(*phase_ts);
917 raw_spin_lock_irqsave(&ntp_lock, flags);
919 /* clear the error bits, they will be set again if needed */
920 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
922 /* indicate signal presence */
923 time_status |= STA_PPSSIGNAL;
924 pps_valid = PPS_VALID;
926 /* when called for the first time,
927 * just start the frequency interval */
928 if (unlikely(pps_fbase.tv_sec == 0)) {
929 pps_fbase = *raw_ts;
930 raw_spin_unlock_irqrestore(&ntp_lock, flags);
931 return;
934 /* ok, now we have a base for frequency calculation */
935 freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
937 /* check that the signal is in the range
938 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
939 if ((freq_norm.sec == 0) ||
940 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
941 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
942 time_status |= STA_PPSJITTER;
943 /* restart the frequency calibration interval */
944 pps_fbase = *raw_ts;
945 raw_spin_unlock_irqrestore(&ntp_lock, flags);
946 pr_err("hardpps: PPSJITTER: bad pulse\n");
947 return;
950 /* signal is ok */
952 /* check if the current frequency interval is finished */
953 if (freq_norm.sec >= (1 << pps_shift)) {
954 pps_calcnt++;
955 /* restart the frequency calibration interval */
956 pps_fbase = *raw_ts;
957 hardpps_update_freq(freq_norm);
960 hardpps_update_phase(pts_norm.nsec);
962 raw_spin_unlock_irqrestore(&ntp_lock, flags);
964 EXPORT_SYMBOL(hardpps);
966 #endif /* CONFIG_NTP_PPS */
968 static int __init ntp_tick_adj_setup(char *str)
970 ntp_tick_adj = simple_strtol(str, NULL, 0);
971 ntp_tick_adj <<= NTP_SCALE_SHIFT;
973 return 1;
976 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
978 void __init ntp_init(void)
980 ntp_clear();