Merge branch 'net-next-stmmac-dwmac-sun8i-add-support-for-V3s'
[linux-2.6/btrfs-unstable.git] / virt / kvm / kvm_main.c
blobf0fe9d02f6bb2c47d909cf493ad6e19778cc666c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
90 * Ordering of locks:
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
131 static bool largepages_enabled = true;
133 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
135 if (pfn_valid(pfn))
136 return PageReserved(pfn_to_page(pfn));
138 return true;
142 * Switches to specified vcpu, until a matching vcpu_put()
144 int vcpu_load(struct kvm_vcpu *vcpu)
146 int cpu;
148 if (mutex_lock_killable(&vcpu->mutex))
149 return -EINTR;
150 cpu = get_cpu();
151 preempt_notifier_register(&vcpu->preempt_notifier);
152 kvm_arch_vcpu_load(vcpu, cpu);
153 put_cpu();
154 return 0;
156 EXPORT_SYMBOL_GPL(vcpu_load);
158 void vcpu_put(struct kvm_vcpu *vcpu)
160 preempt_disable();
161 kvm_arch_vcpu_put(vcpu);
162 preempt_notifier_unregister(&vcpu->preempt_notifier);
163 preempt_enable();
164 mutex_unlock(&vcpu->mutex);
166 EXPORT_SYMBOL_GPL(vcpu_put);
168 /* TODO: merge with kvm_arch_vcpu_should_kick */
169 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
171 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
174 * We need to wait for the VCPU to reenable interrupts and get out of
175 * READING_SHADOW_PAGE_TABLES mode.
177 if (req & KVM_REQUEST_WAIT)
178 return mode != OUTSIDE_GUEST_MODE;
181 * Need to kick a running VCPU, but otherwise there is nothing to do.
183 return mode == IN_GUEST_MODE;
186 static void ack_flush(void *_completed)
190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
192 int i, cpu, me;
193 cpumask_var_t cpus;
194 bool called = true;
195 bool wait = req & KVM_REQUEST_WAIT;
196 struct kvm_vcpu *vcpu;
198 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
200 me = get_cpu();
201 kvm_for_each_vcpu(i, vcpu, kvm) {
202 kvm_make_request(req, vcpu);
203 cpu = vcpu->cpu;
205 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
206 continue;
208 if (cpus != NULL && cpu != -1 && cpu != me &&
209 kvm_request_needs_ipi(vcpu, req))
210 cpumask_set_cpu(cpu, cpus);
212 if (unlikely(cpus == NULL))
213 smp_call_function_many(cpu_online_mask, ack_flush, NULL, wait);
214 else if (!cpumask_empty(cpus))
215 smp_call_function_many(cpus, ack_flush, NULL, wait);
216 else
217 called = false;
218 put_cpu();
219 free_cpumask_var(cpus);
220 return called;
223 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
224 void kvm_flush_remote_tlbs(struct kvm *kvm)
227 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
228 * kvm_make_all_cpus_request.
230 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
233 * We want to publish modifications to the page tables before reading
234 * mode. Pairs with a memory barrier in arch-specific code.
235 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
236 * and smp_mb in walk_shadow_page_lockless_begin/end.
237 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
239 * There is already an smp_mb__after_atomic() before
240 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
241 * barrier here.
243 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
244 ++kvm->stat.remote_tlb_flush;
245 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
247 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
248 #endif
250 void kvm_reload_remote_mmus(struct kvm *kvm)
252 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
255 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
257 struct page *page;
258 int r;
260 mutex_init(&vcpu->mutex);
261 vcpu->cpu = -1;
262 vcpu->kvm = kvm;
263 vcpu->vcpu_id = id;
264 vcpu->pid = NULL;
265 init_swait_queue_head(&vcpu->wq);
266 kvm_async_pf_vcpu_init(vcpu);
268 vcpu->pre_pcpu = -1;
269 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
271 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
272 if (!page) {
273 r = -ENOMEM;
274 goto fail;
276 vcpu->run = page_address(page);
278 kvm_vcpu_set_in_spin_loop(vcpu, false);
279 kvm_vcpu_set_dy_eligible(vcpu, false);
280 vcpu->preempted = false;
282 r = kvm_arch_vcpu_init(vcpu);
283 if (r < 0)
284 goto fail_free_run;
285 return 0;
287 fail_free_run:
288 free_page((unsigned long)vcpu->run);
289 fail:
290 return r;
292 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
294 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
296 put_pid(vcpu->pid);
297 kvm_arch_vcpu_uninit(vcpu);
298 free_page((unsigned long)vcpu->run);
300 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
302 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
303 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
305 return container_of(mn, struct kvm, mmu_notifier);
308 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
309 struct mm_struct *mm,
310 unsigned long address)
312 struct kvm *kvm = mmu_notifier_to_kvm(mn);
313 int need_tlb_flush, idx;
316 * When ->invalidate_page runs, the linux pte has been zapped
317 * already but the page is still allocated until
318 * ->invalidate_page returns. So if we increase the sequence
319 * here the kvm page fault will notice if the spte can't be
320 * established because the page is going to be freed. If
321 * instead the kvm page fault establishes the spte before
322 * ->invalidate_page runs, kvm_unmap_hva will release it
323 * before returning.
325 * The sequence increase only need to be seen at spin_unlock
326 * time, and not at spin_lock time.
328 * Increasing the sequence after the spin_unlock would be
329 * unsafe because the kvm page fault could then establish the
330 * pte after kvm_unmap_hva returned, without noticing the page
331 * is going to be freed.
333 idx = srcu_read_lock(&kvm->srcu);
334 spin_lock(&kvm->mmu_lock);
336 kvm->mmu_notifier_seq++;
337 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
338 /* we've to flush the tlb before the pages can be freed */
339 if (need_tlb_flush)
340 kvm_flush_remote_tlbs(kvm);
342 spin_unlock(&kvm->mmu_lock);
344 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
346 srcu_read_unlock(&kvm->srcu, idx);
349 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
350 struct mm_struct *mm,
351 unsigned long address,
352 pte_t pte)
354 struct kvm *kvm = mmu_notifier_to_kvm(mn);
355 int idx;
357 idx = srcu_read_lock(&kvm->srcu);
358 spin_lock(&kvm->mmu_lock);
359 kvm->mmu_notifier_seq++;
360 kvm_set_spte_hva(kvm, address, pte);
361 spin_unlock(&kvm->mmu_lock);
362 srcu_read_unlock(&kvm->srcu, idx);
365 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
366 struct mm_struct *mm,
367 unsigned long start,
368 unsigned long end)
370 struct kvm *kvm = mmu_notifier_to_kvm(mn);
371 int need_tlb_flush = 0, idx;
373 idx = srcu_read_lock(&kvm->srcu);
374 spin_lock(&kvm->mmu_lock);
376 * The count increase must become visible at unlock time as no
377 * spte can be established without taking the mmu_lock and
378 * count is also read inside the mmu_lock critical section.
380 kvm->mmu_notifier_count++;
381 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
382 need_tlb_flush |= kvm->tlbs_dirty;
383 /* we've to flush the tlb before the pages can be freed */
384 if (need_tlb_flush)
385 kvm_flush_remote_tlbs(kvm);
387 spin_unlock(&kvm->mmu_lock);
388 srcu_read_unlock(&kvm->srcu, idx);
391 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
392 struct mm_struct *mm,
393 unsigned long start,
394 unsigned long end)
396 struct kvm *kvm = mmu_notifier_to_kvm(mn);
398 spin_lock(&kvm->mmu_lock);
400 * This sequence increase will notify the kvm page fault that
401 * the page that is going to be mapped in the spte could have
402 * been freed.
404 kvm->mmu_notifier_seq++;
405 smp_wmb();
407 * The above sequence increase must be visible before the
408 * below count decrease, which is ensured by the smp_wmb above
409 * in conjunction with the smp_rmb in mmu_notifier_retry().
411 kvm->mmu_notifier_count--;
412 spin_unlock(&kvm->mmu_lock);
414 BUG_ON(kvm->mmu_notifier_count < 0);
417 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
418 struct mm_struct *mm,
419 unsigned long start,
420 unsigned long end)
422 struct kvm *kvm = mmu_notifier_to_kvm(mn);
423 int young, idx;
425 idx = srcu_read_lock(&kvm->srcu);
426 spin_lock(&kvm->mmu_lock);
428 young = kvm_age_hva(kvm, start, end);
429 if (young)
430 kvm_flush_remote_tlbs(kvm);
432 spin_unlock(&kvm->mmu_lock);
433 srcu_read_unlock(&kvm->srcu, idx);
435 return young;
438 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
439 struct mm_struct *mm,
440 unsigned long start,
441 unsigned long end)
443 struct kvm *kvm = mmu_notifier_to_kvm(mn);
444 int young, idx;
446 idx = srcu_read_lock(&kvm->srcu);
447 spin_lock(&kvm->mmu_lock);
449 * Even though we do not flush TLB, this will still adversely
450 * affect performance on pre-Haswell Intel EPT, where there is
451 * no EPT Access Bit to clear so that we have to tear down EPT
452 * tables instead. If we find this unacceptable, we can always
453 * add a parameter to kvm_age_hva so that it effectively doesn't
454 * do anything on clear_young.
456 * Also note that currently we never issue secondary TLB flushes
457 * from clear_young, leaving this job up to the regular system
458 * cadence. If we find this inaccurate, we might come up with a
459 * more sophisticated heuristic later.
461 young = kvm_age_hva(kvm, start, end);
462 spin_unlock(&kvm->mmu_lock);
463 srcu_read_unlock(&kvm->srcu, idx);
465 return young;
468 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
469 struct mm_struct *mm,
470 unsigned long address)
472 struct kvm *kvm = mmu_notifier_to_kvm(mn);
473 int young, idx;
475 idx = srcu_read_lock(&kvm->srcu);
476 spin_lock(&kvm->mmu_lock);
477 young = kvm_test_age_hva(kvm, address);
478 spin_unlock(&kvm->mmu_lock);
479 srcu_read_unlock(&kvm->srcu, idx);
481 return young;
484 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
485 struct mm_struct *mm)
487 struct kvm *kvm = mmu_notifier_to_kvm(mn);
488 int idx;
490 idx = srcu_read_lock(&kvm->srcu);
491 kvm_arch_flush_shadow_all(kvm);
492 srcu_read_unlock(&kvm->srcu, idx);
495 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
496 .invalidate_page = kvm_mmu_notifier_invalidate_page,
497 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
498 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
499 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
500 .clear_young = kvm_mmu_notifier_clear_young,
501 .test_young = kvm_mmu_notifier_test_young,
502 .change_pte = kvm_mmu_notifier_change_pte,
503 .release = kvm_mmu_notifier_release,
506 static int kvm_init_mmu_notifier(struct kvm *kvm)
508 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
509 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
512 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
514 static int kvm_init_mmu_notifier(struct kvm *kvm)
516 return 0;
519 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
521 static struct kvm_memslots *kvm_alloc_memslots(void)
523 int i;
524 struct kvm_memslots *slots;
526 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
527 if (!slots)
528 return NULL;
530 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
531 slots->id_to_index[i] = slots->memslots[i].id = i;
533 return slots;
536 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
538 if (!memslot->dirty_bitmap)
539 return;
541 kvfree(memslot->dirty_bitmap);
542 memslot->dirty_bitmap = NULL;
546 * Free any memory in @free but not in @dont.
548 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
549 struct kvm_memory_slot *dont)
551 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
552 kvm_destroy_dirty_bitmap(free);
554 kvm_arch_free_memslot(kvm, free, dont);
556 free->npages = 0;
559 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
561 struct kvm_memory_slot *memslot;
563 if (!slots)
564 return;
566 kvm_for_each_memslot(memslot, slots)
567 kvm_free_memslot(kvm, memslot, NULL);
569 kvfree(slots);
572 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
574 int i;
576 if (!kvm->debugfs_dentry)
577 return;
579 debugfs_remove_recursive(kvm->debugfs_dentry);
581 if (kvm->debugfs_stat_data) {
582 for (i = 0; i < kvm_debugfs_num_entries; i++)
583 kfree(kvm->debugfs_stat_data[i]);
584 kfree(kvm->debugfs_stat_data);
588 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
590 char dir_name[ITOA_MAX_LEN * 2];
591 struct kvm_stat_data *stat_data;
592 struct kvm_stats_debugfs_item *p;
594 if (!debugfs_initialized())
595 return 0;
597 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
598 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
599 kvm_debugfs_dir);
600 if (!kvm->debugfs_dentry)
601 return -ENOMEM;
603 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
604 sizeof(*kvm->debugfs_stat_data),
605 GFP_KERNEL);
606 if (!kvm->debugfs_stat_data)
607 return -ENOMEM;
609 for (p = debugfs_entries; p->name; p++) {
610 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
611 if (!stat_data)
612 return -ENOMEM;
614 stat_data->kvm = kvm;
615 stat_data->offset = p->offset;
616 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
617 if (!debugfs_create_file(p->name, 0644,
618 kvm->debugfs_dentry,
619 stat_data,
620 stat_fops_per_vm[p->kind]))
621 return -ENOMEM;
623 return 0;
626 static struct kvm *kvm_create_vm(unsigned long type)
628 int r, i;
629 struct kvm *kvm = kvm_arch_alloc_vm();
631 if (!kvm)
632 return ERR_PTR(-ENOMEM);
634 spin_lock_init(&kvm->mmu_lock);
635 mmgrab(current->mm);
636 kvm->mm = current->mm;
637 kvm_eventfd_init(kvm);
638 mutex_init(&kvm->lock);
639 mutex_init(&kvm->irq_lock);
640 mutex_init(&kvm->slots_lock);
641 refcount_set(&kvm->users_count, 1);
642 INIT_LIST_HEAD(&kvm->devices);
644 r = kvm_arch_init_vm(kvm, type);
645 if (r)
646 goto out_err_no_disable;
648 r = hardware_enable_all();
649 if (r)
650 goto out_err_no_disable;
652 #ifdef CONFIG_HAVE_KVM_IRQFD
653 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
654 #endif
656 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
658 r = -ENOMEM;
659 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
660 struct kvm_memslots *slots = kvm_alloc_memslots();
661 if (!slots)
662 goto out_err_no_srcu;
664 * Generations must be different for each address space.
665 * Init kvm generation close to the maximum to easily test the
666 * code of handling generation number wrap-around.
668 slots->generation = i * 2 - 150;
669 rcu_assign_pointer(kvm->memslots[i], slots);
672 if (init_srcu_struct(&kvm->srcu))
673 goto out_err_no_srcu;
674 if (init_srcu_struct(&kvm->irq_srcu))
675 goto out_err_no_irq_srcu;
676 for (i = 0; i < KVM_NR_BUSES; i++) {
677 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
678 GFP_KERNEL);
679 if (!kvm->buses[i])
680 goto out_err;
683 r = kvm_init_mmu_notifier(kvm);
684 if (r)
685 goto out_err;
687 spin_lock(&kvm_lock);
688 list_add(&kvm->vm_list, &vm_list);
689 spin_unlock(&kvm_lock);
691 preempt_notifier_inc();
693 return kvm;
695 out_err:
696 cleanup_srcu_struct(&kvm->irq_srcu);
697 out_err_no_irq_srcu:
698 cleanup_srcu_struct(&kvm->srcu);
699 out_err_no_srcu:
700 hardware_disable_all();
701 out_err_no_disable:
702 for (i = 0; i < KVM_NR_BUSES; i++)
703 kfree(kvm->buses[i]);
704 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
705 kvm_free_memslots(kvm, kvm->memslots[i]);
706 kvm_arch_free_vm(kvm);
707 mmdrop(current->mm);
708 return ERR_PTR(r);
711 static void kvm_destroy_devices(struct kvm *kvm)
713 struct kvm_device *dev, *tmp;
716 * We do not need to take the kvm->lock here, because nobody else
717 * has a reference to the struct kvm at this point and therefore
718 * cannot access the devices list anyhow.
720 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
721 list_del(&dev->vm_node);
722 dev->ops->destroy(dev);
726 static void kvm_destroy_vm(struct kvm *kvm)
728 int i;
729 struct mm_struct *mm = kvm->mm;
731 kvm_destroy_vm_debugfs(kvm);
732 kvm_arch_sync_events(kvm);
733 spin_lock(&kvm_lock);
734 list_del(&kvm->vm_list);
735 spin_unlock(&kvm_lock);
736 kvm_free_irq_routing(kvm);
737 for (i = 0; i < KVM_NR_BUSES; i++) {
738 if (kvm->buses[i])
739 kvm_io_bus_destroy(kvm->buses[i]);
740 kvm->buses[i] = NULL;
742 kvm_coalesced_mmio_free(kvm);
743 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
744 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
745 #else
746 kvm_arch_flush_shadow_all(kvm);
747 #endif
748 kvm_arch_destroy_vm(kvm);
749 kvm_destroy_devices(kvm);
750 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
751 kvm_free_memslots(kvm, kvm->memslots[i]);
752 cleanup_srcu_struct(&kvm->irq_srcu);
753 cleanup_srcu_struct(&kvm->srcu);
754 kvm_arch_free_vm(kvm);
755 preempt_notifier_dec();
756 hardware_disable_all();
757 mmdrop(mm);
760 void kvm_get_kvm(struct kvm *kvm)
762 refcount_inc(&kvm->users_count);
764 EXPORT_SYMBOL_GPL(kvm_get_kvm);
766 void kvm_put_kvm(struct kvm *kvm)
768 if (refcount_dec_and_test(&kvm->users_count))
769 kvm_destroy_vm(kvm);
771 EXPORT_SYMBOL_GPL(kvm_put_kvm);
774 static int kvm_vm_release(struct inode *inode, struct file *filp)
776 struct kvm *kvm = filp->private_data;
778 kvm_irqfd_release(kvm);
780 kvm_put_kvm(kvm);
781 return 0;
785 * Allocation size is twice as large as the actual dirty bitmap size.
786 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
788 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
790 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
792 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
793 if (!memslot->dirty_bitmap)
794 return -ENOMEM;
796 return 0;
800 * Insert memslot and re-sort memslots based on their GFN,
801 * so binary search could be used to lookup GFN.
802 * Sorting algorithm takes advantage of having initially
803 * sorted array and known changed memslot position.
805 static void update_memslots(struct kvm_memslots *slots,
806 struct kvm_memory_slot *new)
808 int id = new->id;
809 int i = slots->id_to_index[id];
810 struct kvm_memory_slot *mslots = slots->memslots;
812 WARN_ON(mslots[i].id != id);
813 if (!new->npages) {
814 WARN_ON(!mslots[i].npages);
815 if (mslots[i].npages)
816 slots->used_slots--;
817 } else {
818 if (!mslots[i].npages)
819 slots->used_slots++;
822 while (i < KVM_MEM_SLOTS_NUM - 1 &&
823 new->base_gfn <= mslots[i + 1].base_gfn) {
824 if (!mslots[i + 1].npages)
825 break;
826 mslots[i] = mslots[i + 1];
827 slots->id_to_index[mslots[i].id] = i;
828 i++;
832 * The ">=" is needed when creating a slot with base_gfn == 0,
833 * so that it moves before all those with base_gfn == npages == 0.
835 * On the other hand, if new->npages is zero, the above loop has
836 * already left i pointing to the beginning of the empty part of
837 * mslots, and the ">=" would move the hole backwards in this
838 * case---which is wrong. So skip the loop when deleting a slot.
840 if (new->npages) {
841 while (i > 0 &&
842 new->base_gfn >= mslots[i - 1].base_gfn) {
843 mslots[i] = mslots[i - 1];
844 slots->id_to_index[mslots[i].id] = i;
845 i--;
847 } else
848 WARN_ON_ONCE(i != slots->used_slots);
850 mslots[i] = *new;
851 slots->id_to_index[mslots[i].id] = i;
854 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
856 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
858 #ifdef __KVM_HAVE_READONLY_MEM
859 valid_flags |= KVM_MEM_READONLY;
860 #endif
862 if (mem->flags & ~valid_flags)
863 return -EINVAL;
865 return 0;
868 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
869 int as_id, struct kvm_memslots *slots)
871 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
874 * Set the low bit in the generation, which disables SPTE caching
875 * until the end of synchronize_srcu_expedited.
877 WARN_ON(old_memslots->generation & 1);
878 slots->generation = old_memslots->generation + 1;
880 rcu_assign_pointer(kvm->memslots[as_id], slots);
881 synchronize_srcu_expedited(&kvm->srcu);
884 * Increment the new memslot generation a second time. This prevents
885 * vm exits that race with memslot updates from caching a memslot
886 * generation that will (potentially) be valid forever.
888 * Generations must be unique even across address spaces. We do not need
889 * a global counter for that, instead the generation space is evenly split
890 * across address spaces. For example, with two address spaces, address
891 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
892 * use generations 2, 6, 10, 14, ...
894 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
896 kvm_arch_memslots_updated(kvm, slots);
898 return old_memslots;
902 * Allocate some memory and give it an address in the guest physical address
903 * space.
905 * Discontiguous memory is allowed, mostly for framebuffers.
907 * Must be called holding kvm->slots_lock for write.
909 int __kvm_set_memory_region(struct kvm *kvm,
910 const struct kvm_userspace_memory_region *mem)
912 int r;
913 gfn_t base_gfn;
914 unsigned long npages;
915 struct kvm_memory_slot *slot;
916 struct kvm_memory_slot old, new;
917 struct kvm_memslots *slots = NULL, *old_memslots;
918 int as_id, id;
919 enum kvm_mr_change change;
921 r = check_memory_region_flags(mem);
922 if (r)
923 goto out;
925 r = -EINVAL;
926 as_id = mem->slot >> 16;
927 id = (u16)mem->slot;
929 /* General sanity checks */
930 if (mem->memory_size & (PAGE_SIZE - 1))
931 goto out;
932 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
933 goto out;
934 /* We can read the guest memory with __xxx_user() later on. */
935 if ((id < KVM_USER_MEM_SLOTS) &&
936 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
937 !access_ok(VERIFY_WRITE,
938 (void __user *)(unsigned long)mem->userspace_addr,
939 mem->memory_size)))
940 goto out;
941 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
942 goto out;
943 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
944 goto out;
946 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
947 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
948 npages = mem->memory_size >> PAGE_SHIFT;
950 if (npages > KVM_MEM_MAX_NR_PAGES)
951 goto out;
953 new = old = *slot;
955 new.id = id;
956 new.base_gfn = base_gfn;
957 new.npages = npages;
958 new.flags = mem->flags;
960 if (npages) {
961 if (!old.npages)
962 change = KVM_MR_CREATE;
963 else { /* Modify an existing slot. */
964 if ((mem->userspace_addr != old.userspace_addr) ||
965 (npages != old.npages) ||
966 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
967 goto out;
969 if (base_gfn != old.base_gfn)
970 change = KVM_MR_MOVE;
971 else if (new.flags != old.flags)
972 change = KVM_MR_FLAGS_ONLY;
973 else { /* Nothing to change. */
974 r = 0;
975 goto out;
978 } else {
979 if (!old.npages)
980 goto out;
982 change = KVM_MR_DELETE;
983 new.base_gfn = 0;
984 new.flags = 0;
987 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
988 /* Check for overlaps */
989 r = -EEXIST;
990 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
991 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
992 (slot->id == id))
993 continue;
994 if (!((base_gfn + npages <= slot->base_gfn) ||
995 (base_gfn >= slot->base_gfn + slot->npages)))
996 goto out;
1000 /* Free page dirty bitmap if unneeded */
1001 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1002 new.dirty_bitmap = NULL;
1004 r = -ENOMEM;
1005 if (change == KVM_MR_CREATE) {
1006 new.userspace_addr = mem->userspace_addr;
1008 if (kvm_arch_create_memslot(kvm, &new, npages))
1009 goto out_free;
1012 /* Allocate page dirty bitmap if needed */
1013 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1014 if (kvm_create_dirty_bitmap(&new) < 0)
1015 goto out_free;
1018 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1019 if (!slots)
1020 goto out_free;
1021 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1023 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1024 slot = id_to_memslot(slots, id);
1025 slot->flags |= KVM_MEMSLOT_INVALID;
1027 old_memslots = install_new_memslots(kvm, as_id, slots);
1029 /* From this point no new shadow pages pointing to a deleted,
1030 * or moved, memslot will be created.
1032 * validation of sp->gfn happens in:
1033 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1034 * - kvm_is_visible_gfn (mmu_check_roots)
1036 kvm_arch_flush_shadow_memslot(kvm, slot);
1039 * We can re-use the old_memslots from above, the only difference
1040 * from the currently installed memslots is the invalid flag. This
1041 * will get overwritten by update_memslots anyway.
1043 slots = old_memslots;
1046 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1047 if (r)
1048 goto out_slots;
1050 /* actual memory is freed via old in kvm_free_memslot below */
1051 if (change == KVM_MR_DELETE) {
1052 new.dirty_bitmap = NULL;
1053 memset(&new.arch, 0, sizeof(new.arch));
1056 update_memslots(slots, &new);
1057 old_memslots = install_new_memslots(kvm, as_id, slots);
1059 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1061 kvm_free_memslot(kvm, &old, &new);
1062 kvfree(old_memslots);
1063 return 0;
1065 out_slots:
1066 kvfree(slots);
1067 out_free:
1068 kvm_free_memslot(kvm, &new, &old);
1069 out:
1070 return r;
1072 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1074 int kvm_set_memory_region(struct kvm *kvm,
1075 const struct kvm_userspace_memory_region *mem)
1077 int r;
1079 mutex_lock(&kvm->slots_lock);
1080 r = __kvm_set_memory_region(kvm, mem);
1081 mutex_unlock(&kvm->slots_lock);
1082 return r;
1084 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1086 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1087 struct kvm_userspace_memory_region *mem)
1089 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1090 return -EINVAL;
1092 return kvm_set_memory_region(kvm, mem);
1095 int kvm_get_dirty_log(struct kvm *kvm,
1096 struct kvm_dirty_log *log, int *is_dirty)
1098 struct kvm_memslots *slots;
1099 struct kvm_memory_slot *memslot;
1100 int i, as_id, id;
1101 unsigned long n;
1102 unsigned long any = 0;
1104 as_id = log->slot >> 16;
1105 id = (u16)log->slot;
1106 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1107 return -EINVAL;
1109 slots = __kvm_memslots(kvm, as_id);
1110 memslot = id_to_memslot(slots, id);
1111 if (!memslot->dirty_bitmap)
1112 return -ENOENT;
1114 n = kvm_dirty_bitmap_bytes(memslot);
1116 for (i = 0; !any && i < n/sizeof(long); ++i)
1117 any = memslot->dirty_bitmap[i];
1119 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1120 return -EFAULT;
1122 if (any)
1123 *is_dirty = 1;
1124 return 0;
1126 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1128 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1130 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1131 * are dirty write protect them for next write.
1132 * @kvm: pointer to kvm instance
1133 * @log: slot id and address to which we copy the log
1134 * @is_dirty: flag set if any page is dirty
1136 * We need to keep it in mind that VCPU threads can write to the bitmap
1137 * concurrently. So, to avoid losing track of dirty pages we keep the
1138 * following order:
1140 * 1. Take a snapshot of the bit and clear it if needed.
1141 * 2. Write protect the corresponding page.
1142 * 3. Copy the snapshot to the userspace.
1143 * 4. Upon return caller flushes TLB's if needed.
1145 * Between 2 and 4, the guest may write to the page using the remaining TLB
1146 * entry. This is not a problem because the page is reported dirty using
1147 * the snapshot taken before and step 4 ensures that writes done after
1148 * exiting to userspace will be logged for the next call.
1151 int kvm_get_dirty_log_protect(struct kvm *kvm,
1152 struct kvm_dirty_log *log, bool *is_dirty)
1154 struct kvm_memslots *slots;
1155 struct kvm_memory_slot *memslot;
1156 int i, as_id, id;
1157 unsigned long n;
1158 unsigned long *dirty_bitmap;
1159 unsigned long *dirty_bitmap_buffer;
1161 as_id = log->slot >> 16;
1162 id = (u16)log->slot;
1163 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1164 return -EINVAL;
1166 slots = __kvm_memslots(kvm, as_id);
1167 memslot = id_to_memslot(slots, id);
1169 dirty_bitmap = memslot->dirty_bitmap;
1170 if (!dirty_bitmap)
1171 return -ENOENT;
1173 n = kvm_dirty_bitmap_bytes(memslot);
1175 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1176 memset(dirty_bitmap_buffer, 0, n);
1178 spin_lock(&kvm->mmu_lock);
1179 *is_dirty = false;
1180 for (i = 0; i < n / sizeof(long); i++) {
1181 unsigned long mask;
1182 gfn_t offset;
1184 if (!dirty_bitmap[i])
1185 continue;
1187 *is_dirty = true;
1189 mask = xchg(&dirty_bitmap[i], 0);
1190 dirty_bitmap_buffer[i] = mask;
1192 if (mask) {
1193 offset = i * BITS_PER_LONG;
1194 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1195 offset, mask);
1199 spin_unlock(&kvm->mmu_lock);
1200 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1201 return -EFAULT;
1202 return 0;
1204 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1205 #endif
1207 bool kvm_largepages_enabled(void)
1209 return largepages_enabled;
1212 void kvm_disable_largepages(void)
1214 largepages_enabled = false;
1216 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1218 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1220 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1222 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1224 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1226 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1229 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1231 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1233 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1234 memslot->flags & KVM_MEMSLOT_INVALID)
1235 return false;
1237 return true;
1239 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1241 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1243 struct vm_area_struct *vma;
1244 unsigned long addr, size;
1246 size = PAGE_SIZE;
1248 addr = gfn_to_hva(kvm, gfn);
1249 if (kvm_is_error_hva(addr))
1250 return PAGE_SIZE;
1252 down_read(&current->mm->mmap_sem);
1253 vma = find_vma(current->mm, addr);
1254 if (!vma)
1255 goto out;
1257 size = vma_kernel_pagesize(vma);
1259 out:
1260 up_read(&current->mm->mmap_sem);
1262 return size;
1265 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1267 return slot->flags & KVM_MEM_READONLY;
1270 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1271 gfn_t *nr_pages, bool write)
1273 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1274 return KVM_HVA_ERR_BAD;
1276 if (memslot_is_readonly(slot) && write)
1277 return KVM_HVA_ERR_RO_BAD;
1279 if (nr_pages)
1280 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1282 return __gfn_to_hva_memslot(slot, gfn);
1285 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1286 gfn_t *nr_pages)
1288 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1291 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1292 gfn_t gfn)
1294 return gfn_to_hva_many(slot, gfn, NULL);
1296 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1298 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1300 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1302 EXPORT_SYMBOL_GPL(gfn_to_hva);
1304 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1306 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1308 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1311 * If writable is set to false, the hva returned by this function is only
1312 * allowed to be read.
1314 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1315 gfn_t gfn, bool *writable)
1317 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1319 if (!kvm_is_error_hva(hva) && writable)
1320 *writable = !memslot_is_readonly(slot);
1322 return hva;
1325 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1327 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1329 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1332 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1334 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1336 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1339 static int get_user_page_nowait(unsigned long start, int write,
1340 struct page **page)
1342 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1344 if (write)
1345 flags |= FOLL_WRITE;
1347 return get_user_pages(start, 1, flags, page, NULL);
1350 static inline int check_user_page_hwpoison(unsigned long addr)
1352 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1354 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1355 return rc == -EHWPOISON;
1359 * The atomic path to get the writable pfn which will be stored in @pfn,
1360 * true indicates success, otherwise false is returned.
1362 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1363 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1365 struct page *page[1];
1366 int npages;
1368 if (!(async || atomic))
1369 return false;
1372 * Fast pin a writable pfn only if it is a write fault request
1373 * or the caller allows to map a writable pfn for a read fault
1374 * request.
1376 if (!(write_fault || writable))
1377 return false;
1379 npages = __get_user_pages_fast(addr, 1, 1, page);
1380 if (npages == 1) {
1381 *pfn = page_to_pfn(page[0]);
1383 if (writable)
1384 *writable = true;
1385 return true;
1388 return false;
1392 * The slow path to get the pfn of the specified host virtual address,
1393 * 1 indicates success, -errno is returned if error is detected.
1395 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1396 bool *writable, kvm_pfn_t *pfn)
1398 struct page *page[1];
1399 int npages = 0;
1401 might_sleep();
1403 if (writable)
1404 *writable = write_fault;
1406 if (async) {
1407 down_read(&current->mm->mmap_sem);
1408 npages = get_user_page_nowait(addr, write_fault, page);
1409 up_read(&current->mm->mmap_sem);
1410 } else {
1411 unsigned int flags = FOLL_HWPOISON;
1413 if (write_fault)
1414 flags |= FOLL_WRITE;
1416 npages = get_user_pages_unlocked(addr, 1, page, flags);
1418 if (npages != 1)
1419 return npages;
1421 /* map read fault as writable if possible */
1422 if (unlikely(!write_fault) && writable) {
1423 struct page *wpage[1];
1425 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1426 if (npages == 1) {
1427 *writable = true;
1428 put_page(page[0]);
1429 page[0] = wpage[0];
1432 npages = 1;
1434 *pfn = page_to_pfn(page[0]);
1435 return npages;
1438 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1440 if (unlikely(!(vma->vm_flags & VM_READ)))
1441 return false;
1443 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1444 return false;
1446 return true;
1449 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1450 unsigned long addr, bool *async,
1451 bool write_fault, kvm_pfn_t *p_pfn)
1453 unsigned long pfn;
1454 int r;
1456 r = follow_pfn(vma, addr, &pfn);
1457 if (r) {
1459 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1460 * not call the fault handler, so do it here.
1462 bool unlocked = false;
1463 r = fixup_user_fault(current, current->mm, addr,
1464 (write_fault ? FAULT_FLAG_WRITE : 0),
1465 &unlocked);
1466 if (unlocked)
1467 return -EAGAIN;
1468 if (r)
1469 return r;
1471 r = follow_pfn(vma, addr, &pfn);
1472 if (r)
1473 return r;
1479 * Get a reference here because callers of *hva_to_pfn* and
1480 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1481 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1482 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1483 * simply do nothing for reserved pfns.
1485 * Whoever called remap_pfn_range is also going to call e.g.
1486 * unmap_mapping_range before the underlying pages are freed,
1487 * causing a call to our MMU notifier.
1489 kvm_get_pfn(pfn);
1491 *p_pfn = pfn;
1492 return 0;
1496 * Pin guest page in memory and return its pfn.
1497 * @addr: host virtual address which maps memory to the guest
1498 * @atomic: whether this function can sleep
1499 * @async: whether this function need to wait IO complete if the
1500 * host page is not in the memory
1501 * @write_fault: whether we should get a writable host page
1502 * @writable: whether it allows to map a writable host page for !@write_fault
1504 * The function will map a writable host page for these two cases:
1505 * 1): @write_fault = true
1506 * 2): @write_fault = false && @writable, @writable will tell the caller
1507 * whether the mapping is writable.
1509 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1510 bool write_fault, bool *writable)
1512 struct vm_area_struct *vma;
1513 kvm_pfn_t pfn = 0;
1514 int npages, r;
1516 /* we can do it either atomically or asynchronously, not both */
1517 BUG_ON(atomic && async);
1519 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1520 return pfn;
1522 if (atomic)
1523 return KVM_PFN_ERR_FAULT;
1525 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1526 if (npages == 1)
1527 return pfn;
1529 down_read(&current->mm->mmap_sem);
1530 if (npages == -EHWPOISON ||
1531 (!async && check_user_page_hwpoison(addr))) {
1532 pfn = KVM_PFN_ERR_HWPOISON;
1533 goto exit;
1536 retry:
1537 vma = find_vma_intersection(current->mm, addr, addr + 1);
1539 if (vma == NULL)
1540 pfn = KVM_PFN_ERR_FAULT;
1541 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1542 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1543 if (r == -EAGAIN)
1544 goto retry;
1545 if (r < 0)
1546 pfn = KVM_PFN_ERR_FAULT;
1547 } else {
1548 if (async && vma_is_valid(vma, write_fault))
1549 *async = true;
1550 pfn = KVM_PFN_ERR_FAULT;
1552 exit:
1553 up_read(&current->mm->mmap_sem);
1554 return pfn;
1557 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1558 bool atomic, bool *async, bool write_fault,
1559 bool *writable)
1561 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1563 if (addr == KVM_HVA_ERR_RO_BAD) {
1564 if (writable)
1565 *writable = false;
1566 return KVM_PFN_ERR_RO_FAULT;
1569 if (kvm_is_error_hva(addr)) {
1570 if (writable)
1571 *writable = false;
1572 return KVM_PFN_NOSLOT;
1575 /* Do not map writable pfn in the readonly memslot. */
1576 if (writable && memslot_is_readonly(slot)) {
1577 *writable = false;
1578 writable = NULL;
1581 return hva_to_pfn(addr, atomic, async, write_fault,
1582 writable);
1584 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1586 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1587 bool *writable)
1589 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1590 write_fault, writable);
1592 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1594 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1596 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1598 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1600 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1602 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1604 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1606 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1608 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1610 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1612 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1614 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1616 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1618 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1620 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1622 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1624 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1626 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1628 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1630 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1631 struct page **pages, int nr_pages)
1633 unsigned long addr;
1634 gfn_t entry;
1636 addr = gfn_to_hva_many(slot, gfn, &entry);
1637 if (kvm_is_error_hva(addr))
1638 return -1;
1640 if (entry < nr_pages)
1641 return 0;
1643 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1645 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1647 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1649 if (is_error_noslot_pfn(pfn))
1650 return KVM_ERR_PTR_BAD_PAGE;
1652 if (kvm_is_reserved_pfn(pfn)) {
1653 WARN_ON(1);
1654 return KVM_ERR_PTR_BAD_PAGE;
1657 return pfn_to_page(pfn);
1660 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1662 kvm_pfn_t pfn;
1664 pfn = gfn_to_pfn(kvm, gfn);
1666 return kvm_pfn_to_page(pfn);
1668 EXPORT_SYMBOL_GPL(gfn_to_page);
1670 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1672 kvm_pfn_t pfn;
1674 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1676 return kvm_pfn_to_page(pfn);
1678 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1680 void kvm_release_page_clean(struct page *page)
1682 WARN_ON(is_error_page(page));
1684 kvm_release_pfn_clean(page_to_pfn(page));
1686 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1688 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1690 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1691 put_page(pfn_to_page(pfn));
1693 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1695 void kvm_release_page_dirty(struct page *page)
1697 WARN_ON(is_error_page(page));
1699 kvm_release_pfn_dirty(page_to_pfn(page));
1701 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1703 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1705 kvm_set_pfn_dirty(pfn);
1706 kvm_release_pfn_clean(pfn);
1709 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1711 if (!kvm_is_reserved_pfn(pfn)) {
1712 struct page *page = pfn_to_page(pfn);
1714 if (!PageReserved(page))
1715 SetPageDirty(page);
1718 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1720 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1722 if (!kvm_is_reserved_pfn(pfn))
1723 mark_page_accessed(pfn_to_page(pfn));
1725 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1727 void kvm_get_pfn(kvm_pfn_t pfn)
1729 if (!kvm_is_reserved_pfn(pfn))
1730 get_page(pfn_to_page(pfn));
1732 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1734 static int next_segment(unsigned long len, int offset)
1736 if (len > PAGE_SIZE - offset)
1737 return PAGE_SIZE - offset;
1738 else
1739 return len;
1742 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1743 void *data, int offset, int len)
1745 int r;
1746 unsigned long addr;
1748 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1749 if (kvm_is_error_hva(addr))
1750 return -EFAULT;
1751 r = __copy_from_user(data, (void __user *)addr + offset, len);
1752 if (r)
1753 return -EFAULT;
1754 return 0;
1757 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1758 int len)
1760 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1762 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1764 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1766 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1767 int offset, int len)
1769 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1771 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1773 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1775 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1777 gfn_t gfn = gpa >> PAGE_SHIFT;
1778 int seg;
1779 int offset = offset_in_page(gpa);
1780 int ret;
1782 while ((seg = next_segment(len, offset)) != 0) {
1783 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1784 if (ret < 0)
1785 return ret;
1786 offset = 0;
1787 len -= seg;
1788 data += seg;
1789 ++gfn;
1791 return 0;
1793 EXPORT_SYMBOL_GPL(kvm_read_guest);
1795 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1797 gfn_t gfn = gpa >> PAGE_SHIFT;
1798 int seg;
1799 int offset = offset_in_page(gpa);
1800 int ret;
1802 while ((seg = next_segment(len, offset)) != 0) {
1803 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1804 if (ret < 0)
1805 return ret;
1806 offset = 0;
1807 len -= seg;
1808 data += seg;
1809 ++gfn;
1811 return 0;
1813 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1815 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1816 void *data, int offset, unsigned long len)
1818 int r;
1819 unsigned long addr;
1821 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1822 if (kvm_is_error_hva(addr))
1823 return -EFAULT;
1824 pagefault_disable();
1825 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1826 pagefault_enable();
1827 if (r)
1828 return -EFAULT;
1829 return 0;
1832 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1833 unsigned long len)
1835 gfn_t gfn = gpa >> PAGE_SHIFT;
1836 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1837 int offset = offset_in_page(gpa);
1839 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1841 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1843 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1844 void *data, unsigned long len)
1846 gfn_t gfn = gpa >> PAGE_SHIFT;
1847 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1848 int offset = offset_in_page(gpa);
1850 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1852 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1854 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1855 const void *data, int offset, int len)
1857 int r;
1858 unsigned long addr;
1860 addr = gfn_to_hva_memslot(memslot, gfn);
1861 if (kvm_is_error_hva(addr))
1862 return -EFAULT;
1863 r = __copy_to_user((void __user *)addr + offset, data, len);
1864 if (r)
1865 return -EFAULT;
1866 mark_page_dirty_in_slot(memslot, gfn);
1867 return 0;
1870 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1871 const void *data, int offset, int len)
1873 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1875 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1877 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1879 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1880 const void *data, int offset, int len)
1882 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1884 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1886 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1888 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1889 unsigned long len)
1891 gfn_t gfn = gpa >> PAGE_SHIFT;
1892 int seg;
1893 int offset = offset_in_page(gpa);
1894 int ret;
1896 while ((seg = next_segment(len, offset)) != 0) {
1897 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1898 if (ret < 0)
1899 return ret;
1900 offset = 0;
1901 len -= seg;
1902 data += seg;
1903 ++gfn;
1905 return 0;
1907 EXPORT_SYMBOL_GPL(kvm_write_guest);
1909 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1910 unsigned long len)
1912 gfn_t gfn = gpa >> PAGE_SHIFT;
1913 int seg;
1914 int offset = offset_in_page(gpa);
1915 int ret;
1917 while ((seg = next_segment(len, offset)) != 0) {
1918 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1919 if (ret < 0)
1920 return ret;
1921 offset = 0;
1922 len -= seg;
1923 data += seg;
1924 ++gfn;
1926 return 0;
1928 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1930 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1931 struct gfn_to_hva_cache *ghc,
1932 gpa_t gpa, unsigned long len)
1934 int offset = offset_in_page(gpa);
1935 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1936 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1937 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1938 gfn_t nr_pages_avail;
1940 ghc->gpa = gpa;
1941 ghc->generation = slots->generation;
1942 ghc->len = len;
1943 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1944 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1945 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1946 ghc->hva += offset;
1947 } else {
1949 * If the requested region crosses two memslots, we still
1950 * verify that the entire region is valid here.
1952 while (start_gfn <= end_gfn) {
1953 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1954 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1955 &nr_pages_avail);
1956 if (kvm_is_error_hva(ghc->hva))
1957 return -EFAULT;
1958 start_gfn += nr_pages_avail;
1960 /* Use the slow path for cross page reads and writes. */
1961 ghc->memslot = NULL;
1963 return 0;
1966 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1967 gpa_t gpa, unsigned long len)
1969 struct kvm_memslots *slots = kvm_memslots(kvm);
1970 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1972 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1974 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1975 void *data, int offset, unsigned long len)
1977 struct kvm_memslots *slots = kvm_memslots(kvm);
1978 int r;
1979 gpa_t gpa = ghc->gpa + offset;
1981 BUG_ON(len + offset > ghc->len);
1983 if (slots->generation != ghc->generation)
1984 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1986 if (unlikely(!ghc->memslot))
1987 return kvm_write_guest(kvm, gpa, data, len);
1989 if (kvm_is_error_hva(ghc->hva))
1990 return -EFAULT;
1992 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1993 if (r)
1994 return -EFAULT;
1995 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1997 return 0;
1999 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2001 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2002 void *data, unsigned long len)
2004 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2006 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2008 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2009 void *data, unsigned long len)
2011 struct kvm_memslots *slots = kvm_memslots(kvm);
2012 int r;
2014 BUG_ON(len > ghc->len);
2016 if (slots->generation != ghc->generation)
2017 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2019 if (unlikely(!ghc->memslot))
2020 return kvm_read_guest(kvm, ghc->gpa, data, len);
2022 if (kvm_is_error_hva(ghc->hva))
2023 return -EFAULT;
2025 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2026 if (r)
2027 return -EFAULT;
2029 return 0;
2031 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2033 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2035 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2037 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2039 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2041 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2043 gfn_t gfn = gpa >> PAGE_SHIFT;
2044 int seg;
2045 int offset = offset_in_page(gpa);
2046 int ret;
2048 while ((seg = next_segment(len, offset)) != 0) {
2049 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2050 if (ret < 0)
2051 return ret;
2052 offset = 0;
2053 len -= seg;
2054 ++gfn;
2056 return 0;
2058 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2060 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2061 gfn_t gfn)
2063 if (memslot && memslot->dirty_bitmap) {
2064 unsigned long rel_gfn = gfn - memslot->base_gfn;
2066 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2070 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2072 struct kvm_memory_slot *memslot;
2074 memslot = gfn_to_memslot(kvm, gfn);
2075 mark_page_dirty_in_slot(memslot, gfn);
2077 EXPORT_SYMBOL_GPL(mark_page_dirty);
2079 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2081 struct kvm_memory_slot *memslot;
2083 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2084 mark_page_dirty_in_slot(memslot, gfn);
2086 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2088 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2090 unsigned int old, val, grow;
2092 old = val = vcpu->halt_poll_ns;
2093 grow = READ_ONCE(halt_poll_ns_grow);
2094 /* 10us base */
2095 if (val == 0 && grow)
2096 val = 10000;
2097 else
2098 val *= grow;
2100 if (val > halt_poll_ns)
2101 val = halt_poll_ns;
2103 vcpu->halt_poll_ns = val;
2104 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2107 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2109 unsigned int old, val, shrink;
2111 old = val = vcpu->halt_poll_ns;
2112 shrink = READ_ONCE(halt_poll_ns_shrink);
2113 if (shrink == 0)
2114 val = 0;
2115 else
2116 val /= shrink;
2118 vcpu->halt_poll_ns = val;
2119 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2122 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2124 if (kvm_arch_vcpu_runnable(vcpu)) {
2125 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2126 return -EINTR;
2128 if (kvm_cpu_has_pending_timer(vcpu))
2129 return -EINTR;
2130 if (signal_pending(current))
2131 return -EINTR;
2133 return 0;
2137 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2139 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2141 ktime_t start, cur;
2142 DECLARE_SWAITQUEUE(wait);
2143 bool waited = false;
2144 u64 block_ns;
2146 start = cur = ktime_get();
2147 if (vcpu->halt_poll_ns) {
2148 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2150 ++vcpu->stat.halt_attempted_poll;
2151 do {
2153 * This sets KVM_REQ_UNHALT if an interrupt
2154 * arrives.
2156 if (kvm_vcpu_check_block(vcpu) < 0) {
2157 ++vcpu->stat.halt_successful_poll;
2158 if (!vcpu_valid_wakeup(vcpu))
2159 ++vcpu->stat.halt_poll_invalid;
2160 goto out;
2162 cur = ktime_get();
2163 } while (single_task_running() && ktime_before(cur, stop));
2166 kvm_arch_vcpu_blocking(vcpu);
2168 for (;;) {
2169 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2171 if (kvm_vcpu_check_block(vcpu) < 0)
2172 break;
2174 waited = true;
2175 schedule();
2178 finish_swait(&vcpu->wq, &wait);
2179 cur = ktime_get();
2181 kvm_arch_vcpu_unblocking(vcpu);
2182 out:
2183 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2185 if (!vcpu_valid_wakeup(vcpu))
2186 shrink_halt_poll_ns(vcpu);
2187 else if (halt_poll_ns) {
2188 if (block_ns <= vcpu->halt_poll_ns)
2190 /* we had a long block, shrink polling */
2191 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2192 shrink_halt_poll_ns(vcpu);
2193 /* we had a short halt and our poll time is too small */
2194 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2195 block_ns < halt_poll_ns)
2196 grow_halt_poll_ns(vcpu);
2197 } else
2198 vcpu->halt_poll_ns = 0;
2200 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2201 kvm_arch_vcpu_block_finish(vcpu);
2203 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2205 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2207 struct swait_queue_head *wqp;
2209 wqp = kvm_arch_vcpu_wq(vcpu);
2210 if (swait_active(wqp)) {
2211 swake_up(wqp);
2212 ++vcpu->stat.halt_wakeup;
2213 return true;
2216 return false;
2218 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2220 #ifndef CONFIG_S390
2222 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2224 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2226 int me;
2227 int cpu = vcpu->cpu;
2229 if (kvm_vcpu_wake_up(vcpu))
2230 return;
2232 me = get_cpu();
2233 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2234 if (kvm_arch_vcpu_should_kick(vcpu))
2235 smp_send_reschedule(cpu);
2236 put_cpu();
2238 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2239 #endif /* !CONFIG_S390 */
2241 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2243 struct pid *pid;
2244 struct task_struct *task = NULL;
2245 int ret = 0;
2247 rcu_read_lock();
2248 pid = rcu_dereference(target->pid);
2249 if (pid)
2250 task = get_pid_task(pid, PIDTYPE_PID);
2251 rcu_read_unlock();
2252 if (!task)
2253 return ret;
2254 ret = yield_to(task, 1);
2255 put_task_struct(task);
2257 return ret;
2259 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2262 * Helper that checks whether a VCPU is eligible for directed yield.
2263 * Most eligible candidate to yield is decided by following heuristics:
2265 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2266 * (preempted lock holder), indicated by @in_spin_loop.
2267 * Set at the beiginning and cleared at the end of interception/PLE handler.
2269 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2270 * chance last time (mostly it has become eligible now since we have probably
2271 * yielded to lockholder in last iteration. This is done by toggling
2272 * @dy_eligible each time a VCPU checked for eligibility.)
2274 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2275 * to preempted lock-holder could result in wrong VCPU selection and CPU
2276 * burning. Giving priority for a potential lock-holder increases lock
2277 * progress.
2279 * Since algorithm is based on heuristics, accessing another VCPU data without
2280 * locking does not harm. It may result in trying to yield to same VCPU, fail
2281 * and continue with next VCPU and so on.
2283 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2285 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2286 bool eligible;
2288 eligible = !vcpu->spin_loop.in_spin_loop ||
2289 vcpu->spin_loop.dy_eligible;
2291 if (vcpu->spin_loop.in_spin_loop)
2292 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2294 return eligible;
2295 #else
2296 return true;
2297 #endif
2300 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2302 struct kvm *kvm = me->kvm;
2303 struct kvm_vcpu *vcpu;
2304 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2305 int yielded = 0;
2306 int try = 3;
2307 int pass;
2308 int i;
2310 kvm_vcpu_set_in_spin_loop(me, true);
2312 * We boost the priority of a VCPU that is runnable but not
2313 * currently running, because it got preempted by something
2314 * else and called schedule in __vcpu_run. Hopefully that
2315 * VCPU is holding the lock that we need and will release it.
2316 * We approximate round-robin by starting at the last boosted VCPU.
2318 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2319 kvm_for_each_vcpu(i, vcpu, kvm) {
2320 if (!pass && i <= last_boosted_vcpu) {
2321 i = last_boosted_vcpu;
2322 continue;
2323 } else if (pass && i > last_boosted_vcpu)
2324 break;
2325 if (!ACCESS_ONCE(vcpu->preempted))
2326 continue;
2327 if (vcpu == me)
2328 continue;
2329 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2330 continue;
2331 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2332 continue;
2334 yielded = kvm_vcpu_yield_to(vcpu);
2335 if (yielded > 0) {
2336 kvm->last_boosted_vcpu = i;
2337 break;
2338 } else if (yielded < 0) {
2339 try--;
2340 if (!try)
2341 break;
2345 kvm_vcpu_set_in_spin_loop(me, false);
2347 /* Ensure vcpu is not eligible during next spinloop */
2348 kvm_vcpu_set_dy_eligible(me, false);
2350 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2352 static int kvm_vcpu_fault(struct vm_fault *vmf)
2354 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2355 struct page *page;
2357 if (vmf->pgoff == 0)
2358 page = virt_to_page(vcpu->run);
2359 #ifdef CONFIG_X86
2360 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2361 page = virt_to_page(vcpu->arch.pio_data);
2362 #endif
2363 #ifdef CONFIG_KVM_MMIO
2364 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2365 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2366 #endif
2367 else
2368 return kvm_arch_vcpu_fault(vcpu, vmf);
2369 get_page(page);
2370 vmf->page = page;
2371 return 0;
2374 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2375 .fault = kvm_vcpu_fault,
2378 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2380 vma->vm_ops = &kvm_vcpu_vm_ops;
2381 return 0;
2384 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2386 struct kvm_vcpu *vcpu = filp->private_data;
2388 debugfs_remove_recursive(vcpu->debugfs_dentry);
2389 kvm_put_kvm(vcpu->kvm);
2390 return 0;
2393 static struct file_operations kvm_vcpu_fops = {
2394 .release = kvm_vcpu_release,
2395 .unlocked_ioctl = kvm_vcpu_ioctl,
2396 #ifdef CONFIG_KVM_COMPAT
2397 .compat_ioctl = kvm_vcpu_compat_ioctl,
2398 #endif
2399 .mmap = kvm_vcpu_mmap,
2400 .llseek = noop_llseek,
2404 * Allocates an inode for the vcpu.
2406 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2408 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2411 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2413 char dir_name[ITOA_MAX_LEN * 2];
2414 int ret;
2416 if (!kvm_arch_has_vcpu_debugfs())
2417 return 0;
2419 if (!debugfs_initialized())
2420 return 0;
2422 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2423 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2424 vcpu->kvm->debugfs_dentry);
2425 if (!vcpu->debugfs_dentry)
2426 return -ENOMEM;
2428 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2429 if (ret < 0) {
2430 debugfs_remove_recursive(vcpu->debugfs_dentry);
2431 return ret;
2434 return 0;
2438 * Creates some virtual cpus. Good luck creating more than one.
2440 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2442 int r;
2443 struct kvm_vcpu *vcpu;
2445 if (id >= KVM_MAX_VCPU_ID)
2446 return -EINVAL;
2448 mutex_lock(&kvm->lock);
2449 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2450 mutex_unlock(&kvm->lock);
2451 return -EINVAL;
2454 kvm->created_vcpus++;
2455 mutex_unlock(&kvm->lock);
2457 vcpu = kvm_arch_vcpu_create(kvm, id);
2458 if (IS_ERR(vcpu)) {
2459 r = PTR_ERR(vcpu);
2460 goto vcpu_decrement;
2463 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2465 r = kvm_arch_vcpu_setup(vcpu);
2466 if (r)
2467 goto vcpu_destroy;
2469 r = kvm_create_vcpu_debugfs(vcpu);
2470 if (r)
2471 goto vcpu_destroy;
2473 mutex_lock(&kvm->lock);
2474 if (kvm_get_vcpu_by_id(kvm, id)) {
2475 r = -EEXIST;
2476 goto unlock_vcpu_destroy;
2479 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2481 /* Now it's all set up, let userspace reach it */
2482 kvm_get_kvm(kvm);
2483 r = create_vcpu_fd(vcpu);
2484 if (r < 0) {
2485 kvm_put_kvm(kvm);
2486 goto unlock_vcpu_destroy;
2489 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2492 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2493 * before kvm->online_vcpu's incremented value.
2495 smp_wmb();
2496 atomic_inc(&kvm->online_vcpus);
2498 mutex_unlock(&kvm->lock);
2499 kvm_arch_vcpu_postcreate(vcpu);
2500 return r;
2502 unlock_vcpu_destroy:
2503 mutex_unlock(&kvm->lock);
2504 debugfs_remove_recursive(vcpu->debugfs_dentry);
2505 vcpu_destroy:
2506 kvm_arch_vcpu_destroy(vcpu);
2507 vcpu_decrement:
2508 mutex_lock(&kvm->lock);
2509 kvm->created_vcpus--;
2510 mutex_unlock(&kvm->lock);
2511 return r;
2514 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2516 if (sigset) {
2517 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2518 vcpu->sigset_active = 1;
2519 vcpu->sigset = *sigset;
2520 } else
2521 vcpu->sigset_active = 0;
2522 return 0;
2525 static long kvm_vcpu_ioctl(struct file *filp,
2526 unsigned int ioctl, unsigned long arg)
2528 struct kvm_vcpu *vcpu = filp->private_data;
2529 void __user *argp = (void __user *)arg;
2530 int r;
2531 struct kvm_fpu *fpu = NULL;
2532 struct kvm_sregs *kvm_sregs = NULL;
2534 if (vcpu->kvm->mm != current->mm)
2535 return -EIO;
2537 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2538 return -EINVAL;
2540 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2542 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2543 * so vcpu_load() would break it.
2545 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2546 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2547 #endif
2550 r = vcpu_load(vcpu);
2551 if (r)
2552 return r;
2553 switch (ioctl) {
2554 case KVM_RUN:
2555 r = -EINVAL;
2556 if (arg)
2557 goto out;
2558 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2559 /* The thread running this VCPU changed. */
2560 struct pid *oldpid = vcpu->pid;
2561 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2563 rcu_assign_pointer(vcpu->pid, newpid);
2564 if (oldpid)
2565 synchronize_rcu();
2566 put_pid(oldpid);
2568 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2569 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2570 break;
2571 case KVM_GET_REGS: {
2572 struct kvm_regs *kvm_regs;
2574 r = -ENOMEM;
2575 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2576 if (!kvm_regs)
2577 goto out;
2578 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2579 if (r)
2580 goto out_free1;
2581 r = -EFAULT;
2582 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2583 goto out_free1;
2584 r = 0;
2585 out_free1:
2586 kfree(kvm_regs);
2587 break;
2589 case KVM_SET_REGS: {
2590 struct kvm_regs *kvm_regs;
2592 r = -ENOMEM;
2593 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2594 if (IS_ERR(kvm_regs)) {
2595 r = PTR_ERR(kvm_regs);
2596 goto out;
2598 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2599 kfree(kvm_regs);
2600 break;
2602 case KVM_GET_SREGS: {
2603 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2604 r = -ENOMEM;
2605 if (!kvm_sregs)
2606 goto out;
2607 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2608 if (r)
2609 goto out;
2610 r = -EFAULT;
2611 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2612 goto out;
2613 r = 0;
2614 break;
2616 case KVM_SET_SREGS: {
2617 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2618 if (IS_ERR(kvm_sregs)) {
2619 r = PTR_ERR(kvm_sregs);
2620 kvm_sregs = NULL;
2621 goto out;
2623 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2624 break;
2626 case KVM_GET_MP_STATE: {
2627 struct kvm_mp_state mp_state;
2629 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2630 if (r)
2631 goto out;
2632 r = -EFAULT;
2633 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2634 goto out;
2635 r = 0;
2636 break;
2638 case KVM_SET_MP_STATE: {
2639 struct kvm_mp_state mp_state;
2641 r = -EFAULT;
2642 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2643 goto out;
2644 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2645 break;
2647 case KVM_TRANSLATE: {
2648 struct kvm_translation tr;
2650 r = -EFAULT;
2651 if (copy_from_user(&tr, argp, sizeof(tr)))
2652 goto out;
2653 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2654 if (r)
2655 goto out;
2656 r = -EFAULT;
2657 if (copy_to_user(argp, &tr, sizeof(tr)))
2658 goto out;
2659 r = 0;
2660 break;
2662 case KVM_SET_GUEST_DEBUG: {
2663 struct kvm_guest_debug dbg;
2665 r = -EFAULT;
2666 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2667 goto out;
2668 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2669 break;
2671 case KVM_SET_SIGNAL_MASK: {
2672 struct kvm_signal_mask __user *sigmask_arg = argp;
2673 struct kvm_signal_mask kvm_sigmask;
2674 sigset_t sigset, *p;
2676 p = NULL;
2677 if (argp) {
2678 r = -EFAULT;
2679 if (copy_from_user(&kvm_sigmask, argp,
2680 sizeof(kvm_sigmask)))
2681 goto out;
2682 r = -EINVAL;
2683 if (kvm_sigmask.len != sizeof(sigset))
2684 goto out;
2685 r = -EFAULT;
2686 if (copy_from_user(&sigset, sigmask_arg->sigset,
2687 sizeof(sigset)))
2688 goto out;
2689 p = &sigset;
2691 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2692 break;
2694 case KVM_GET_FPU: {
2695 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2696 r = -ENOMEM;
2697 if (!fpu)
2698 goto out;
2699 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2700 if (r)
2701 goto out;
2702 r = -EFAULT;
2703 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2704 goto out;
2705 r = 0;
2706 break;
2708 case KVM_SET_FPU: {
2709 fpu = memdup_user(argp, sizeof(*fpu));
2710 if (IS_ERR(fpu)) {
2711 r = PTR_ERR(fpu);
2712 fpu = NULL;
2713 goto out;
2715 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2716 break;
2718 default:
2719 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2721 out:
2722 vcpu_put(vcpu);
2723 kfree(fpu);
2724 kfree(kvm_sregs);
2725 return r;
2728 #ifdef CONFIG_KVM_COMPAT
2729 static long kvm_vcpu_compat_ioctl(struct file *filp,
2730 unsigned int ioctl, unsigned long arg)
2732 struct kvm_vcpu *vcpu = filp->private_data;
2733 void __user *argp = compat_ptr(arg);
2734 int r;
2736 if (vcpu->kvm->mm != current->mm)
2737 return -EIO;
2739 switch (ioctl) {
2740 case KVM_SET_SIGNAL_MASK: {
2741 struct kvm_signal_mask __user *sigmask_arg = argp;
2742 struct kvm_signal_mask kvm_sigmask;
2743 compat_sigset_t csigset;
2744 sigset_t sigset;
2746 if (argp) {
2747 r = -EFAULT;
2748 if (copy_from_user(&kvm_sigmask, argp,
2749 sizeof(kvm_sigmask)))
2750 goto out;
2751 r = -EINVAL;
2752 if (kvm_sigmask.len != sizeof(csigset))
2753 goto out;
2754 r = -EFAULT;
2755 if (copy_from_user(&csigset, sigmask_arg->sigset,
2756 sizeof(csigset)))
2757 goto out;
2758 sigset_from_compat(&sigset, &csigset);
2759 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2760 } else
2761 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2762 break;
2764 default:
2765 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2768 out:
2769 return r;
2771 #endif
2773 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2774 int (*accessor)(struct kvm_device *dev,
2775 struct kvm_device_attr *attr),
2776 unsigned long arg)
2778 struct kvm_device_attr attr;
2780 if (!accessor)
2781 return -EPERM;
2783 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2784 return -EFAULT;
2786 return accessor(dev, &attr);
2789 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2790 unsigned long arg)
2792 struct kvm_device *dev = filp->private_data;
2794 switch (ioctl) {
2795 case KVM_SET_DEVICE_ATTR:
2796 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2797 case KVM_GET_DEVICE_ATTR:
2798 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2799 case KVM_HAS_DEVICE_ATTR:
2800 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2801 default:
2802 if (dev->ops->ioctl)
2803 return dev->ops->ioctl(dev, ioctl, arg);
2805 return -ENOTTY;
2809 static int kvm_device_release(struct inode *inode, struct file *filp)
2811 struct kvm_device *dev = filp->private_data;
2812 struct kvm *kvm = dev->kvm;
2814 kvm_put_kvm(kvm);
2815 return 0;
2818 static const struct file_operations kvm_device_fops = {
2819 .unlocked_ioctl = kvm_device_ioctl,
2820 #ifdef CONFIG_KVM_COMPAT
2821 .compat_ioctl = kvm_device_ioctl,
2822 #endif
2823 .release = kvm_device_release,
2826 struct kvm_device *kvm_device_from_filp(struct file *filp)
2828 if (filp->f_op != &kvm_device_fops)
2829 return NULL;
2831 return filp->private_data;
2834 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2835 #ifdef CONFIG_KVM_MPIC
2836 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2837 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2838 #endif
2841 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2843 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2844 return -ENOSPC;
2846 if (kvm_device_ops_table[type] != NULL)
2847 return -EEXIST;
2849 kvm_device_ops_table[type] = ops;
2850 return 0;
2853 void kvm_unregister_device_ops(u32 type)
2855 if (kvm_device_ops_table[type] != NULL)
2856 kvm_device_ops_table[type] = NULL;
2859 static int kvm_ioctl_create_device(struct kvm *kvm,
2860 struct kvm_create_device *cd)
2862 struct kvm_device_ops *ops = NULL;
2863 struct kvm_device *dev;
2864 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2865 int ret;
2867 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2868 return -ENODEV;
2870 ops = kvm_device_ops_table[cd->type];
2871 if (ops == NULL)
2872 return -ENODEV;
2874 if (test)
2875 return 0;
2877 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2878 if (!dev)
2879 return -ENOMEM;
2881 dev->ops = ops;
2882 dev->kvm = kvm;
2884 mutex_lock(&kvm->lock);
2885 ret = ops->create(dev, cd->type);
2886 if (ret < 0) {
2887 mutex_unlock(&kvm->lock);
2888 kfree(dev);
2889 return ret;
2891 list_add(&dev->vm_node, &kvm->devices);
2892 mutex_unlock(&kvm->lock);
2894 if (ops->init)
2895 ops->init(dev);
2897 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2898 if (ret < 0) {
2899 mutex_lock(&kvm->lock);
2900 list_del(&dev->vm_node);
2901 mutex_unlock(&kvm->lock);
2902 ops->destroy(dev);
2903 return ret;
2906 kvm_get_kvm(kvm);
2907 cd->fd = ret;
2908 return 0;
2911 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2913 switch (arg) {
2914 case KVM_CAP_USER_MEMORY:
2915 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2916 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2917 case KVM_CAP_INTERNAL_ERROR_DATA:
2918 #ifdef CONFIG_HAVE_KVM_MSI
2919 case KVM_CAP_SIGNAL_MSI:
2920 #endif
2921 #ifdef CONFIG_HAVE_KVM_IRQFD
2922 case KVM_CAP_IRQFD:
2923 case KVM_CAP_IRQFD_RESAMPLE:
2924 #endif
2925 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2926 case KVM_CAP_CHECK_EXTENSION_VM:
2927 return 1;
2928 #ifdef CONFIG_KVM_MMIO
2929 case KVM_CAP_COALESCED_MMIO:
2930 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2931 #endif
2932 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2933 case KVM_CAP_IRQ_ROUTING:
2934 return KVM_MAX_IRQ_ROUTES;
2935 #endif
2936 #if KVM_ADDRESS_SPACE_NUM > 1
2937 case KVM_CAP_MULTI_ADDRESS_SPACE:
2938 return KVM_ADDRESS_SPACE_NUM;
2939 #endif
2940 case KVM_CAP_MAX_VCPU_ID:
2941 return KVM_MAX_VCPU_ID;
2942 default:
2943 break;
2945 return kvm_vm_ioctl_check_extension(kvm, arg);
2948 static long kvm_vm_ioctl(struct file *filp,
2949 unsigned int ioctl, unsigned long arg)
2951 struct kvm *kvm = filp->private_data;
2952 void __user *argp = (void __user *)arg;
2953 int r;
2955 if (kvm->mm != current->mm)
2956 return -EIO;
2957 switch (ioctl) {
2958 case KVM_CREATE_VCPU:
2959 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2960 break;
2961 case KVM_SET_USER_MEMORY_REGION: {
2962 struct kvm_userspace_memory_region kvm_userspace_mem;
2964 r = -EFAULT;
2965 if (copy_from_user(&kvm_userspace_mem, argp,
2966 sizeof(kvm_userspace_mem)))
2967 goto out;
2969 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2970 break;
2972 case KVM_GET_DIRTY_LOG: {
2973 struct kvm_dirty_log log;
2975 r = -EFAULT;
2976 if (copy_from_user(&log, argp, sizeof(log)))
2977 goto out;
2978 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2979 break;
2981 #ifdef CONFIG_KVM_MMIO
2982 case KVM_REGISTER_COALESCED_MMIO: {
2983 struct kvm_coalesced_mmio_zone zone;
2985 r = -EFAULT;
2986 if (copy_from_user(&zone, argp, sizeof(zone)))
2987 goto out;
2988 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2989 break;
2991 case KVM_UNREGISTER_COALESCED_MMIO: {
2992 struct kvm_coalesced_mmio_zone zone;
2994 r = -EFAULT;
2995 if (copy_from_user(&zone, argp, sizeof(zone)))
2996 goto out;
2997 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2998 break;
3000 #endif
3001 case KVM_IRQFD: {
3002 struct kvm_irqfd data;
3004 r = -EFAULT;
3005 if (copy_from_user(&data, argp, sizeof(data)))
3006 goto out;
3007 r = kvm_irqfd(kvm, &data);
3008 break;
3010 case KVM_IOEVENTFD: {
3011 struct kvm_ioeventfd data;
3013 r = -EFAULT;
3014 if (copy_from_user(&data, argp, sizeof(data)))
3015 goto out;
3016 r = kvm_ioeventfd(kvm, &data);
3017 break;
3019 #ifdef CONFIG_HAVE_KVM_MSI
3020 case KVM_SIGNAL_MSI: {
3021 struct kvm_msi msi;
3023 r = -EFAULT;
3024 if (copy_from_user(&msi, argp, sizeof(msi)))
3025 goto out;
3026 r = kvm_send_userspace_msi(kvm, &msi);
3027 break;
3029 #endif
3030 #ifdef __KVM_HAVE_IRQ_LINE
3031 case KVM_IRQ_LINE_STATUS:
3032 case KVM_IRQ_LINE: {
3033 struct kvm_irq_level irq_event;
3035 r = -EFAULT;
3036 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3037 goto out;
3039 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3040 ioctl == KVM_IRQ_LINE_STATUS);
3041 if (r)
3042 goto out;
3044 r = -EFAULT;
3045 if (ioctl == KVM_IRQ_LINE_STATUS) {
3046 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3047 goto out;
3050 r = 0;
3051 break;
3053 #endif
3054 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3055 case KVM_SET_GSI_ROUTING: {
3056 struct kvm_irq_routing routing;
3057 struct kvm_irq_routing __user *urouting;
3058 struct kvm_irq_routing_entry *entries = NULL;
3060 r = -EFAULT;
3061 if (copy_from_user(&routing, argp, sizeof(routing)))
3062 goto out;
3063 r = -EINVAL;
3064 if (!kvm_arch_can_set_irq_routing(kvm))
3065 goto out;
3066 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3067 goto out;
3068 if (routing.flags)
3069 goto out;
3070 if (routing.nr) {
3071 r = -ENOMEM;
3072 entries = vmalloc(routing.nr * sizeof(*entries));
3073 if (!entries)
3074 goto out;
3075 r = -EFAULT;
3076 urouting = argp;
3077 if (copy_from_user(entries, urouting->entries,
3078 routing.nr * sizeof(*entries)))
3079 goto out_free_irq_routing;
3081 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3082 routing.flags);
3083 out_free_irq_routing:
3084 vfree(entries);
3085 break;
3087 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3088 case KVM_CREATE_DEVICE: {
3089 struct kvm_create_device cd;
3091 r = -EFAULT;
3092 if (copy_from_user(&cd, argp, sizeof(cd)))
3093 goto out;
3095 r = kvm_ioctl_create_device(kvm, &cd);
3096 if (r)
3097 goto out;
3099 r = -EFAULT;
3100 if (copy_to_user(argp, &cd, sizeof(cd)))
3101 goto out;
3103 r = 0;
3104 break;
3106 case KVM_CHECK_EXTENSION:
3107 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3108 break;
3109 default:
3110 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3112 out:
3113 return r;
3116 #ifdef CONFIG_KVM_COMPAT
3117 struct compat_kvm_dirty_log {
3118 __u32 slot;
3119 __u32 padding1;
3120 union {
3121 compat_uptr_t dirty_bitmap; /* one bit per page */
3122 __u64 padding2;
3126 static long kvm_vm_compat_ioctl(struct file *filp,
3127 unsigned int ioctl, unsigned long arg)
3129 struct kvm *kvm = filp->private_data;
3130 int r;
3132 if (kvm->mm != current->mm)
3133 return -EIO;
3134 switch (ioctl) {
3135 case KVM_GET_DIRTY_LOG: {
3136 struct compat_kvm_dirty_log compat_log;
3137 struct kvm_dirty_log log;
3139 if (copy_from_user(&compat_log, (void __user *)arg,
3140 sizeof(compat_log)))
3141 return -EFAULT;
3142 log.slot = compat_log.slot;
3143 log.padding1 = compat_log.padding1;
3144 log.padding2 = compat_log.padding2;
3145 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3147 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3148 break;
3150 default:
3151 r = kvm_vm_ioctl(filp, ioctl, arg);
3153 return r;
3155 #endif
3157 static struct file_operations kvm_vm_fops = {
3158 .release = kvm_vm_release,
3159 .unlocked_ioctl = kvm_vm_ioctl,
3160 #ifdef CONFIG_KVM_COMPAT
3161 .compat_ioctl = kvm_vm_compat_ioctl,
3162 #endif
3163 .llseek = noop_llseek,
3166 static int kvm_dev_ioctl_create_vm(unsigned long type)
3168 int r;
3169 struct kvm *kvm;
3170 struct file *file;
3172 kvm = kvm_create_vm(type);
3173 if (IS_ERR(kvm))
3174 return PTR_ERR(kvm);
3175 #ifdef CONFIG_KVM_MMIO
3176 r = kvm_coalesced_mmio_init(kvm);
3177 if (r < 0) {
3178 kvm_put_kvm(kvm);
3179 return r;
3181 #endif
3182 r = get_unused_fd_flags(O_CLOEXEC);
3183 if (r < 0) {
3184 kvm_put_kvm(kvm);
3185 return r;
3187 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3188 if (IS_ERR(file)) {
3189 put_unused_fd(r);
3190 kvm_put_kvm(kvm);
3191 return PTR_ERR(file);
3194 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3195 put_unused_fd(r);
3196 fput(file);
3197 return -ENOMEM;
3200 fd_install(r, file);
3201 return r;
3204 static long kvm_dev_ioctl(struct file *filp,
3205 unsigned int ioctl, unsigned long arg)
3207 long r = -EINVAL;
3209 switch (ioctl) {
3210 case KVM_GET_API_VERSION:
3211 if (arg)
3212 goto out;
3213 r = KVM_API_VERSION;
3214 break;
3215 case KVM_CREATE_VM:
3216 r = kvm_dev_ioctl_create_vm(arg);
3217 break;
3218 case KVM_CHECK_EXTENSION:
3219 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3220 break;
3221 case KVM_GET_VCPU_MMAP_SIZE:
3222 if (arg)
3223 goto out;
3224 r = PAGE_SIZE; /* struct kvm_run */
3225 #ifdef CONFIG_X86
3226 r += PAGE_SIZE; /* pio data page */
3227 #endif
3228 #ifdef CONFIG_KVM_MMIO
3229 r += PAGE_SIZE; /* coalesced mmio ring page */
3230 #endif
3231 break;
3232 case KVM_TRACE_ENABLE:
3233 case KVM_TRACE_PAUSE:
3234 case KVM_TRACE_DISABLE:
3235 r = -EOPNOTSUPP;
3236 break;
3237 default:
3238 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3240 out:
3241 return r;
3244 static struct file_operations kvm_chardev_ops = {
3245 .unlocked_ioctl = kvm_dev_ioctl,
3246 .compat_ioctl = kvm_dev_ioctl,
3247 .llseek = noop_llseek,
3250 static struct miscdevice kvm_dev = {
3251 KVM_MINOR,
3252 "kvm",
3253 &kvm_chardev_ops,
3256 static void hardware_enable_nolock(void *junk)
3258 int cpu = raw_smp_processor_id();
3259 int r;
3261 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3262 return;
3264 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3266 r = kvm_arch_hardware_enable();
3268 if (r) {
3269 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3270 atomic_inc(&hardware_enable_failed);
3271 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3275 static int kvm_starting_cpu(unsigned int cpu)
3277 raw_spin_lock(&kvm_count_lock);
3278 if (kvm_usage_count)
3279 hardware_enable_nolock(NULL);
3280 raw_spin_unlock(&kvm_count_lock);
3281 return 0;
3284 static void hardware_disable_nolock(void *junk)
3286 int cpu = raw_smp_processor_id();
3288 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3289 return;
3290 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3291 kvm_arch_hardware_disable();
3294 static int kvm_dying_cpu(unsigned int cpu)
3296 raw_spin_lock(&kvm_count_lock);
3297 if (kvm_usage_count)
3298 hardware_disable_nolock(NULL);
3299 raw_spin_unlock(&kvm_count_lock);
3300 return 0;
3303 static void hardware_disable_all_nolock(void)
3305 BUG_ON(!kvm_usage_count);
3307 kvm_usage_count--;
3308 if (!kvm_usage_count)
3309 on_each_cpu(hardware_disable_nolock, NULL, 1);
3312 static void hardware_disable_all(void)
3314 raw_spin_lock(&kvm_count_lock);
3315 hardware_disable_all_nolock();
3316 raw_spin_unlock(&kvm_count_lock);
3319 static int hardware_enable_all(void)
3321 int r = 0;
3323 raw_spin_lock(&kvm_count_lock);
3325 kvm_usage_count++;
3326 if (kvm_usage_count == 1) {
3327 atomic_set(&hardware_enable_failed, 0);
3328 on_each_cpu(hardware_enable_nolock, NULL, 1);
3330 if (atomic_read(&hardware_enable_failed)) {
3331 hardware_disable_all_nolock();
3332 r = -EBUSY;
3336 raw_spin_unlock(&kvm_count_lock);
3338 return r;
3341 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3342 void *v)
3345 * Some (well, at least mine) BIOSes hang on reboot if
3346 * in vmx root mode.
3348 * And Intel TXT required VMX off for all cpu when system shutdown.
3350 pr_info("kvm: exiting hardware virtualization\n");
3351 kvm_rebooting = true;
3352 on_each_cpu(hardware_disable_nolock, NULL, 1);
3353 return NOTIFY_OK;
3356 static struct notifier_block kvm_reboot_notifier = {
3357 .notifier_call = kvm_reboot,
3358 .priority = 0,
3361 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3363 int i;
3365 for (i = 0; i < bus->dev_count; i++) {
3366 struct kvm_io_device *pos = bus->range[i].dev;
3368 kvm_iodevice_destructor(pos);
3370 kfree(bus);
3373 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3374 const struct kvm_io_range *r2)
3376 gpa_t addr1 = r1->addr;
3377 gpa_t addr2 = r2->addr;
3379 if (addr1 < addr2)
3380 return -1;
3382 /* If r2->len == 0, match the exact address. If r2->len != 0,
3383 * accept any overlapping write. Any order is acceptable for
3384 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3385 * we process all of them.
3387 if (r2->len) {
3388 addr1 += r1->len;
3389 addr2 += r2->len;
3392 if (addr1 > addr2)
3393 return 1;
3395 return 0;
3398 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3400 return kvm_io_bus_cmp(p1, p2);
3403 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3404 gpa_t addr, int len)
3406 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3407 .addr = addr,
3408 .len = len,
3409 .dev = dev,
3412 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3413 kvm_io_bus_sort_cmp, NULL);
3415 return 0;
3418 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3419 gpa_t addr, int len)
3421 struct kvm_io_range *range, key;
3422 int off;
3424 key = (struct kvm_io_range) {
3425 .addr = addr,
3426 .len = len,
3429 range = bsearch(&key, bus->range, bus->dev_count,
3430 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3431 if (range == NULL)
3432 return -ENOENT;
3434 off = range - bus->range;
3436 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3437 off--;
3439 return off;
3442 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3443 struct kvm_io_range *range, const void *val)
3445 int idx;
3447 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3448 if (idx < 0)
3449 return -EOPNOTSUPP;
3451 while (idx < bus->dev_count &&
3452 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3453 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3454 range->len, val))
3455 return idx;
3456 idx++;
3459 return -EOPNOTSUPP;
3462 /* kvm_io_bus_write - called under kvm->slots_lock */
3463 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3464 int len, const void *val)
3466 struct kvm_io_bus *bus;
3467 struct kvm_io_range range;
3468 int r;
3470 range = (struct kvm_io_range) {
3471 .addr = addr,
3472 .len = len,
3475 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3476 if (!bus)
3477 return -ENOMEM;
3478 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3479 return r < 0 ? r : 0;
3482 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3483 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3484 gpa_t addr, int len, const void *val, long cookie)
3486 struct kvm_io_bus *bus;
3487 struct kvm_io_range range;
3489 range = (struct kvm_io_range) {
3490 .addr = addr,
3491 .len = len,
3494 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3495 if (!bus)
3496 return -ENOMEM;
3498 /* First try the device referenced by cookie. */
3499 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3500 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3501 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3502 val))
3503 return cookie;
3506 * cookie contained garbage; fall back to search and return the
3507 * correct cookie value.
3509 return __kvm_io_bus_write(vcpu, bus, &range, val);
3512 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3513 struct kvm_io_range *range, void *val)
3515 int idx;
3517 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3518 if (idx < 0)
3519 return -EOPNOTSUPP;
3521 while (idx < bus->dev_count &&
3522 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3523 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3524 range->len, val))
3525 return idx;
3526 idx++;
3529 return -EOPNOTSUPP;
3531 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3533 /* kvm_io_bus_read - called under kvm->slots_lock */
3534 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3535 int len, void *val)
3537 struct kvm_io_bus *bus;
3538 struct kvm_io_range range;
3539 int r;
3541 range = (struct kvm_io_range) {
3542 .addr = addr,
3543 .len = len,
3546 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3547 if (!bus)
3548 return -ENOMEM;
3549 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3550 return r < 0 ? r : 0;
3554 /* Caller must hold slots_lock. */
3555 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3556 int len, struct kvm_io_device *dev)
3558 struct kvm_io_bus *new_bus, *bus;
3560 bus = kvm->buses[bus_idx];
3561 if (!bus)
3562 return -ENOMEM;
3564 /* exclude ioeventfd which is limited by maximum fd */
3565 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3566 return -ENOSPC;
3568 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3569 sizeof(struct kvm_io_range)), GFP_KERNEL);
3570 if (!new_bus)
3571 return -ENOMEM;
3572 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3573 sizeof(struct kvm_io_range)));
3574 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3575 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3576 synchronize_srcu_expedited(&kvm->srcu);
3577 kfree(bus);
3579 return 0;
3582 /* Caller must hold slots_lock. */
3583 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3584 struct kvm_io_device *dev)
3586 int i;
3587 struct kvm_io_bus *new_bus, *bus;
3589 bus = kvm->buses[bus_idx];
3590 if (!bus)
3591 return;
3593 for (i = 0; i < bus->dev_count; i++)
3594 if (bus->range[i].dev == dev) {
3595 break;
3598 if (i == bus->dev_count)
3599 return;
3601 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3602 sizeof(struct kvm_io_range)), GFP_KERNEL);
3603 if (!new_bus) {
3604 pr_err("kvm: failed to shrink bus, removing it completely\n");
3605 goto broken;
3608 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3609 new_bus->dev_count--;
3610 memcpy(new_bus->range + i, bus->range + i + 1,
3611 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3613 broken:
3614 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3615 synchronize_srcu_expedited(&kvm->srcu);
3616 kfree(bus);
3617 return;
3620 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3621 gpa_t addr)
3623 struct kvm_io_bus *bus;
3624 int dev_idx, srcu_idx;
3625 struct kvm_io_device *iodev = NULL;
3627 srcu_idx = srcu_read_lock(&kvm->srcu);
3629 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3630 if (!bus)
3631 goto out_unlock;
3633 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3634 if (dev_idx < 0)
3635 goto out_unlock;
3637 iodev = bus->range[dev_idx].dev;
3639 out_unlock:
3640 srcu_read_unlock(&kvm->srcu, srcu_idx);
3642 return iodev;
3644 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3646 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3647 int (*get)(void *, u64 *), int (*set)(void *, u64),
3648 const char *fmt)
3650 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3651 inode->i_private;
3653 /* The debugfs files are a reference to the kvm struct which
3654 * is still valid when kvm_destroy_vm is called.
3655 * To avoid the race between open and the removal of the debugfs
3656 * directory we test against the users count.
3658 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3659 return -ENOENT;
3661 if (simple_attr_open(inode, file, get, set, fmt)) {
3662 kvm_put_kvm(stat_data->kvm);
3663 return -ENOMEM;
3666 return 0;
3669 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3671 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3672 inode->i_private;
3674 simple_attr_release(inode, file);
3675 kvm_put_kvm(stat_data->kvm);
3677 return 0;
3680 static int vm_stat_get_per_vm(void *data, u64 *val)
3682 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3684 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3686 return 0;
3689 static int vm_stat_clear_per_vm(void *data, u64 val)
3691 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3693 if (val)
3694 return -EINVAL;
3696 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3698 return 0;
3701 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3703 __simple_attr_check_format("%llu\n", 0ull);
3704 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3705 vm_stat_clear_per_vm, "%llu\n");
3708 static const struct file_operations vm_stat_get_per_vm_fops = {
3709 .owner = THIS_MODULE,
3710 .open = vm_stat_get_per_vm_open,
3711 .release = kvm_debugfs_release,
3712 .read = simple_attr_read,
3713 .write = simple_attr_write,
3714 .llseek = no_llseek,
3717 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3719 int i;
3720 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3721 struct kvm_vcpu *vcpu;
3723 *val = 0;
3725 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3726 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3728 return 0;
3731 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3733 int i;
3734 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3735 struct kvm_vcpu *vcpu;
3737 if (val)
3738 return -EINVAL;
3740 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3741 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3743 return 0;
3746 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3748 __simple_attr_check_format("%llu\n", 0ull);
3749 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3750 vcpu_stat_clear_per_vm, "%llu\n");
3753 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3754 .owner = THIS_MODULE,
3755 .open = vcpu_stat_get_per_vm_open,
3756 .release = kvm_debugfs_release,
3757 .read = simple_attr_read,
3758 .write = simple_attr_write,
3759 .llseek = no_llseek,
3762 static const struct file_operations *stat_fops_per_vm[] = {
3763 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3764 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3767 static int vm_stat_get(void *_offset, u64 *val)
3769 unsigned offset = (long)_offset;
3770 struct kvm *kvm;
3771 struct kvm_stat_data stat_tmp = {.offset = offset};
3772 u64 tmp_val;
3774 *val = 0;
3775 spin_lock(&kvm_lock);
3776 list_for_each_entry(kvm, &vm_list, vm_list) {
3777 stat_tmp.kvm = kvm;
3778 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3779 *val += tmp_val;
3781 spin_unlock(&kvm_lock);
3782 return 0;
3785 static int vm_stat_clear(void *_offset, u64 val)
3787 unsigned offset = (long)_offset;
3788 struct kvm *kvm;
3789 struct kvm_stat_data stat_tmp = {.offset = offset};
3791 if (val)
3792 return -EINVAL;
3794 spin_lock(&kvm_lock);
3795 list_for_each_entry(kvm, &vm_list, vm_list) {
3796 stat_tmp.kvm = kvm;
3797 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3799 spin_unlock(&kvm_lock);
3801 return 0;
3804 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3806 static int vcpu_stat_get(void *_offset, u64 *val)
3808 unsigned offset = (long)_offset;
3809 struct kvm *kvm;
3810 struct kvm_stat_data stat_tmp = {.offset = offset};
3811 u64 tmp_val;
3813 *val = 0;
3814 spin_lock(&kvm_lock);
3815 list_for_each_entry(kvm, &vm_list, vm_list) {
3816 stat_tmp.kvm = kvm;
3817 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3818 *val += tmp_val;
3820 spin_unlock(&kvm_lock);
3821 return 0;
3824 static int vcpu_stat_clear(void *_offset, u64 val)
3826 unsigned offset = (long)_offset;
3827 struct kvm *kvm;
3828 struct kvm_stat_data stat_tmp = {.offset = offset};
3830 if (val)
3831 return -EINVAL;
3833 spin_lock(&kvm_lock);
3834 list_for_each_entry(kvm, &vm_list, vm_list) {
3835 stat_tmp.kvm = kvm;
3836 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3838 spin_unlock(&kvm_lock);
3840 return 0;
3843 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3844 "%llu\n");
3846 static const struct file_operations *stat_fops[] = {
3847 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3848 [KVM_STAT_VM] = &vm_stat_fops,
3851 static int kvm_init_debug(void)
3853 int r = -EEXIST;
3854 struct kvm_stats_debugfs_item *p;
3856 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3857 if (kvm_debugfs_dir == NULL)
3858 goto out;
3860 kvm_debugfs_num_entries = 0;
3861 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3862 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3863 (void *)(long)p->offset,
3864 stat_fops[p->kind]))
3865 goto out_dir;
3868 return 0;
3870 out_dir:
3871 debugfs_remove_recursive(kvm_debugfs_dir);
3872 out:
3873 return r;
3876 static int kvm_suspend(void)
3878 if (kvm_usage_count)
3879 hardware_disable_nolock(NULL);
3880 return 0;
3883 static void kvm_resume(void)
3885 if (kvm_usage_count) {
3886 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3887 hardware_enable_nolock(NULL);
3891 static struct syscore_ops kvm_syscore_ops = {
3892 .suspend = kvm_suspend,
3893 .resume = kvm_resume,
3896 static inline
3897 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3899 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3902 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3904 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3906 if (vcpu->preempted)
3907 vcpu->preempted = false;
3909 kvm_arch_sched_in(vcpu, cpu);
3911 kvm_arch_vcpu_load(vcpu, cpu);
3914 static void kvm_sched_out(struct preempt_notifier *pn,
3915 struct task_struct *next)
3917 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3919 if (current->state == TASK_RUNNING)
3920 vcpu->preempted = true;
3921 kvm_arch_vcpu_put(vcpu);
3924 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3925 struct module *module)
3927 int r;
3928 int cpu;
3930 r = kvm_arch_init(opaque);
3931 if (r)
3932 goto out_fail;
3935 * kvm_arch_init makes sure there's at most one caller
3936 * for architectures that support multiple implementations,
3937 * like intel and amd on x86.
3938 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3939 * conflicts in case kvm is already setup for another implementation.
3941 r = kvm_irqfd_init();
3942 if (r)
3943 goto out_irqfd;
3945 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3946 r = -ENOMEM;
3947 goto out_free_0;
3950 r = kvm_arch_hardware_setup();
3951 if (r < 0)
3952 goto out_free_0a;
3954 for_each_online_cpu(cpu) {
3955 smp_call_function_single(cpu,
3956 kvm_arch_check_processor_compat,
3957 &r, 1);
3958 if (r < 0)
3959 goto out_free_1;
3962 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
3963 kvm_starting_cpu, kvm_dying_cpu);
3964 if (r)
3965 goto out_free_2;
3966 register_reboot_notifier(&kvm_reboot_notifier);
3968 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3969 if (!vcpu_align)
3970 vcpu_align = __alignof__(struct kvm_vcpu);
3971 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3972 0, NULL);
3973 if (!kvm_vcpu_cache) {
3974 r = -ENOMEM;
3975 goto out_free_3;
3978 r = kvm_async_pf_init();
3979 if (r)
3980 goto out_free;
3982 kvm_chardev_ops.owner = module;
3983 kvm_vm_fops.owner = module;
3984 kvm_vcpu_fops.owner = module;
3986 r = misc_register(&kvm_dev);
3987 if (r) {
3988 pr_err("kvm: misc device register failed\n");
3989 goto out_unreg;
3992 register_syscore_ops(&kvm_syscore_ops);
3994 kvm_preempt_ops.sched_in = kvm_sched_in;
3995 kvm_preempt_ops.sched_out = kvm_sched_out;
3997 r = kvm_init_debug();
3998 if (r) {
3999 pr_err("kvm: create debugfs files failed\n");
4000 goto out_undebugfs;
4003 r = kvm_vfio_ops_init();
4004 WARN_ON(r);
4006 return 0;
4008 out_undebugfs:
4009 unregister_syscore_ops(&kvm_syscore_ops);
4010 misc_deregister(&kvm_dev);
4011 out_unreg:
4012 kvm_async_pf_deinit();
4013 out_free:
4014 kmem_cache_destroy(kvm_vcpu_cache);
4015 out_free_3:
4016 unregister_reboot_notifier(&kvm_reboot_notifier);
4017 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4018 out_free_2:
4019 out_free_1:
4020 kvm_arch_hardware_unsetup();
4021 out_free_0a:
4022 free_cpumask_var(cpus_hardware_enabled);
4023 out_free_0:
4024 kvm_irqfd_exit();
4025 out_irqfd:
4026 kvm_arch_exit();
4027 out_fail:
4028 return r;
4030 EXPORT_SYMBOL_GPL(kvm_init);
4032 void kvm_exit(void)
4034 debugfs_remove_recursive(kvm_debugfs_dir);
4035 misc_deregister(&kvm_dev);
4036 kmem_cache_destroy(kvm_vcpu_cache);
4037 kvm_async_pf_deinit();
4038 unregister_syscore_ops(&kvm_syscore_ops);
4039 unregister_reboot_notifier(&kvm_reboot_notifier);
4040 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4041 on_each_cpu(hardware_disable_nolock, NULL, 1);
4042 kvm_arch_hardware_unsetup();
4043 kvm_arch_exit();
4044 kvm_irqfd_exit();
4045 free_cpumask_var(cpus_hardware_enabled);
4046 kvm_vfio_ops_exit();
4048 EXPORT_SYMBOL_GPL(kvm_exit);