cifs: use 64-bit timestamps for fscache
[linux-2.6/btrfs-unstable.git] / mm / memory.c
blobdab1511294add14ba1290ded1dcd65408e274a4c
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
81 #include "internal.h"
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101 * and ZONE_HIGHMEM.
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
107 * Randomize the address space (stacks, mmaps, brk, etc.).
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
115 #else
117 #endif
119 static int __init disable_randmaps(char *s)
121 randomize_va_space = 0;
122 return 1;
124 __setup("norandmaps", disable_randmaps);
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
129 unsigned long highest_memmap_pfn __read_mostly;
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134 static int __init init_zero_pfn(void)
136 zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 return 0;
139 core_initcall(init_zero_pfn);
142 #if defined(SPLIT_RSS_COUNTING)
144 void sync_mm_rss(struct mm_struct *mm)
146 int i;
148 for (i = 0; i < NR_MM_COUNTERS; i++) {
149 if (current->rss_stat.count[i]) {
150 add_mm_counter(mm, i, current->rss_stat.count[i]);
151 current->rss_stat.count[i] = 0;
154 current->rss_stat.events = 0;
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159 struct task_struct *task = current;
161 if (likely(task->mm == mm))
162 task->rss_stat.count[member] += val;
163 else
164 add_mm_counter(mm, member, val);
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH (64)
171 static void check_sync_rss_stat(struct task_struct *task)
173 if (unlikely(task != current))
174 return;
175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176 sync_mm_rss(task->mm);
178 #else /* SPLIT_RSS_COUNTING */
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183 static void check_sync_rss_stat(struct task_struct *task)
187 #endif /* SPLIT_RSS_COUNTING */
189 #ifdef HAVE_GENERIC_MMU_GATHER
191 static bool tlb_next_batch(struct mmu_gather *tlb)
193 struct mmu_gather_batch *batch;
195 batch = tlb->active;
196 if (batch->next) {
197 tlb->active = batch->next;
198 return true;
201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202 return false;
204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 if (!batch)
206 return false;
208 tlb->batch_count++;
209 batch->next = NULL;
210 batch->nr = 0;
211 batch->max = MAX_GATHER_BATCH;
213 tlb->active->next = batch;
214 tlb->active = batch;
216 return true;
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 unsigned long start, unsigned long end)
222 tlb->mm = mm;
224 /* Is it from 0 to ~0? */
225 tlb->fullmm = !(start | (end+1));
226 tlb->need_flush_all = 0;
227 tlb->local.next = NULL;
228 tlb->local.nr = 0;
229 tlb->local.max = ARRAY_SIZE(tlb->__pages);
230 tlb->active = &tlb->local;
231 tlb->batch_count = 0;
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb->batch = NULL;
235 #endif
236 tlb->page_size = 0;
238 __tlb_reset_range(tlb);
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
243 if (!tlb->end)
244 return;
246 tlb_flush(tlb);
247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb);
250 #endif
251 __tlb_reset_range(tlb);
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
256 struct mmu_gather_batch *batch;
258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259 free_pages_and_swap_cache(batch->pages, batch->nr);
260 batch->nr = 0;
262 tlb->active = &tlb->local;
265 void tlb_flush_mmu(struct mmu_gather *tlb)
267 tlb_flush_mmu_tlbonly(tlb);
268 tlb_flush_mmu_free(tlb);
271 /* tlb_finish_mmu
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276 unsigned long start, unsigned long end, bool force)
278 struct mmu_gather_batch *batch, *next;
280 if (force)
281 __tlb_adjust_range(tlb, start, end - start);
283 tlb_flush_mmu(tlb);
285 /* keep the page table cache within bounds */
286 check_pgt_cache();
288 for (batch = tlb->local.next; batch; batch = next) {
289 next = batch->next;
290 free_pages((unsigned long)batch, 0);
292 tlb->local.next = NULL;
295 /* __tlb_remove_page
296 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297 * handling the additional races in SMP caused by other CPUs caching valid
298 * mappings in their TLBs. Returns the number of free page slots left.
299 * When out of page slots we must call tlb_flush_mmu().
300 *returns true if the caller should flush.
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
304 struct mmu_gather_batch *batch;
306 VM_BUG_ON(!tlb->end);
307 VM_WARN_ON(tlb->page_size != page_size);
309 batch = tlb->active;
311 * Add the page and check if we are full. If so
312 * force a flush.
314 batch->pages[batch->nr++] = page;
315 if (batch->nr == batch->max) {
316 if (!tlb_next_batch(tlb))
317 return true;
318 batch = tlb->active;
320 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
322 return false;
325 #endif /* HAVE_GENERIC_MMU_GATHER */
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
330 * See the comment near struct mmu_table_batch.
333 static void tlb_remove_table_smp_sync(void *arg)
335 /* Simply deliver the interrupt */
338 static void tlb_remove_table_one(void *table)
341 * This isn't an RCU grace period and hence the page-tables cannot be
342 * assumed to be actually RCU-freed.
344 * It is however sufficient for software page-table walkers that rely on
345 * IRQ disabling. See the comment near struct mmu_table_batch.
347 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
348 __tlb_remove_table(table);
351 static void tlb_remove_table_rcu(struct rcu_head *head)
353 struct mmu_table_batch *batch;
354 int i;
356 batch = container_of(head, struct mmu_table_batch, rcu);
358 for (i = 0; i < batch->nr; i++)
359 __tlb_remove_table(batch->tables[i]);
361 free_page((unsigned long)batch);
364 void tlb_table_flush(struct mmu_gather *tlb)
366 struct mmu_table_batch **batch = &tlb->batch;
368 if (*batch) {
369 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
370 *batch = NULL;
374 void tlb_remove_table(struct mmu_gather *tlb, void *table)
376 struct mmu_table_batch **batch = &tlb->batch;
379 * When there's less then two users of this mm there cannot be a
380 * concurrent page-table walk.
382 if (atomic_read(&tlb->mm->mm_users) < 2) {
383 __tlb_remove_table(table);
384 return;
387 if (*batch == NULL) {
388 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
389 if (*batch == NULL) {
390 tlb_remove_table_one(table);
391 return;
393 (*batch)->nr = 0;
395 (*batch)->tables[(*batch)->nr++] = table;
396 if ((*batch)->nr == MAX_TABLE_BATCH)
397 tlb_table_flush(tlb);
400 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
403 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
404 * @tlb: the mmu_gather structure to initialize
405 * @mm: the mm_struct of the target address space
406 * @start: start of the region that will be removed from the page-table
407 * @end: end of the region that will be removed from the page-table
409 * Called to initialize an (on-stack) mmu_gather structure for page-table
410 * tear-down from @mm. The @start and @end are set to 0 and -1
411 * respectively when @mm is without users and we're going to destroy
412 * the full address space (exit/execve).
414 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
415 unsigned long start, unsigned long end)
417 arch_tlb_gather_mmu(tlb, mm, start, end);
418 inc_tlb_flush_pending(tlb->mm);
421 void tlb_finish_mmu(struct mmu_gather *tlb,
422 unsigned long start, unsigned long end)
425 * If there are parallel threads are doing PTE changes on same range
426 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
427 * flush by batching, a thread has stable TLB entry can fail to flush
428 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
429 * forcefully if we detect parallel PTE batching threads.
431 bool force = mm_tlb_flush_nested(tlb->mm);
433 arch_tlb_finish_mmu(tlb, start, end, force);
434 dec_tlb_flush_pending(tlb->mm);
438 * Note: this doesn't free the actual pages themselves. That
439 * has been handled earlier when unmapping all the memory regions.
441 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
442 unsigned long addr)
444 pgtable_t token = pmd_pgtable(*pmd);
445 pmd_clear(pmd);
446 pte_free_tlb(tlb, token, addr);
447 mm_dec_nr_ptes(tlb->mm);
450 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
451 unsigned long addr, unsigned long end,
452 unsigned long floor, unsigned long ceiling)
454 pmd_t *pmd;
455 unsigned long next;
456 unsigned long start;
458 start = addr;
459 pmd = pmd_offset(pud, addr);
460 do {
461 next = pmd_addr_end(addr, end);
462 if (pmd_none_or_clear_bad(pmd))
463 continue;
464 free_pte_range(tlb, pmd, addr);
465 } while (pmd++, addr = next, addr != end);
467 start &= PUD_MASK;
468 if (start < floor)
469 return;
470 if (ceiling) {
471 ceiling &= PUD_MASK;
472 if (!ceiling)
473 return;
475 if (end - 1 > ceiling - 1)
476 return;
478 pmd = pmd_offset(pud, start);
479 pud_clear(pud);
480 pmd_free_tlb(tlb, pmd, start);
481 mm_dec_nr_pmds(tlb->mm);
484 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
485 unsigned long addr, unsigned long end,
486 unsigned long floor, unsigned long ceiling)
488 pud_t *pud;
489 unsigned long next;
490 unsigned long start;
492 start = addr;
493 pud = pud_offset(p4d, addr);
494 do {
495 next = pud_addr_end(addr, end);
496 if (pud_none_or_clear_bad(pud))
497 continue;
498 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
499 } while (pud++, addr = next, addr != end);
501 start &= P4D_MASK;
502 if (start < floor)
503 return;
504 if (ceiling) {
505 ceiling &= P4D_MASK;
506 if (!ceiling)
507 return;
509 if (end - 1 > ceiling - 1)
510 return;
512 pud = pud_offset(p4d, start);
513 p4d_clear(p4d);
514 pud_free_tlb(tlb, pud, start);
515 mm_dec_nr_puds(tlb->mm);
518 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
519 unsigned long addr, unsigned long end,
520 unsigned long floor, unsigned long ceiling)
522 p4d_t *p4d;
523 unsigned long next;
524 unsigned long start;
526 start = addr;
527 p4d = p4d_offset(pgd, addr);
528 do {
529 next = p4d_addr_end(addr, end);
530 if (p4d_none_or_clear_bad(p4d))
531 continue;
532 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
533 } while (p4d++, addr = next, addr != end);
535 start &= PGDIR_MASK;
536 if (start < floor)
537 return;
538 if (ceiling) {
539 ceiling &= PGDIR_MASK;
540 if (!ceiling)
541 return;
543 if (end - 1 > ceiling - 1)
544 return;
546 p4d = p4d_offset(pgd, start);
547 pgd_clear(pgd);
548 p4d_free_tlb(tlb, p4d, start);
552 * This function frees user-level page tables of a process.
554 void free_pgd_range(struct mmu_gather *tlb,
555 unsigned long addr, unsigned long end,
556 unsigned long floor, unsigned long ceiling)
558 pgd_t *pgd;
559 unsigned long next;
562 * The next few lines have given us lots of grief...
564 * Why are we testing PMD* at this top level? Because often
565 * there will be no work to do at all, and we'd prefer not to
566 * go all the way down to the bottom just to discover that.
568 * Why all these "- 1"s? Because 0 represents both the bottom
569 * of the address space and the top of it (using -1 for the
570 * top wouldn't help much: the masks would do the wrong thing).
571 * The rule is that addr 0 and floor 0 refer to the bottom of
572 * the address space, but end 0 and ceiling 0 refer to the top
573 * Comparisons need to use "end - 1" and "ceiling - 1" (though
574 * that end 0 case should be mythical).
576 * Wherever addr is brought up or ceiling brought down, we must
577 * be careful to reject "the opposite 0" before it confuses the
578 * subsequent tests. But what about where end is brought down
579 * by PMD_SIZE below? no, end can't go down to 0 there.
581 * Whereas we round start (addr) and ceiling down, by different
582 * masks at different levels, in order to test whether a table
583 * now has no other vmas using it, so can be freed, we don't
584 * bother to round floor or end up - the tests don't need that.
587 addr &= PMD_MASK;
588 if (addr < floor) {
589 addr += PMD_SIZE;
590 if (!addr)
591 return;
593 if (ceiling) {
594 ceiling &= PMD_MASK;
595 if (!ceiling)
596 return;
598 if (end - 1 > ceiling - 1)
599 end -= PMD_SIZE;
600 if (addr > end - 1)
601 return;
603 * We add page table cache pages with PAGE_SIZE,
604 * (see pte_free_tlb()), flush the tlb if we need
606 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
607 pgd = pgd_offset(tlb->mm, addr);
608 do {
609 next = pgd_addr_end(addr, end);
610 if (pgd_none_or_clear_bad(pgd))
611 continue;
612 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
613 } while (pgd++, addr = next, addr != end);
616 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
617 unsigned long floor, unsigned long ceiling)
619 while (vma) {
620 struct vm_area_struct *next = vma->vm_next;
621 unsigned long addr = vma->vm_start;
624 * Hide vma from rmap and truncate_pagecache before freeing
625 * pgtables
627 unlink_anon_vmas(vma);
628 unlink_file_vma(vma);
630 if (is_vm_hugetlb_page(vma)) {
631 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
632 floor, next ? next->vm_start : ceiling);
633 } else {
635 * Optimization: gather nearby vmas into one call down
637 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
638 && !is_vm_hugetlb_page(next)) {
639 vma = next;
640 next = vma->vm_next;
641 unlink_anon_vmas(vma);
642 unlink_file_vma(vma);
644 free_pgd_range(tlb, addr, vma->vm_end,
645 floor, next ? next->vm_start : ceiling);
647 vma = next;
651 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
653 spinlock_t *ptl;
654 pgtable_t new = pte_alloc_one(mm, address);
655 if (!new)
656 return -ENOMEM;
659 * Ensure all pte setup (eg. pte page lock and page clearing) are
660 * visible before the pte is made visible to other CPUs by being
661 * put into page tables.
663 * The other side of the story is the pointer chasing in the page
664 * table walking code (when walking the page table without locking;
665 * ie. most of the time). Fortunately, these data accesses consist
666 * of a chain of data-dependent loads, meaning most CPUs (alpha
667 * being the notable exception) will already guarantee loads are
668 * seen in-order. See the alpha page table accessors for the
669 * smp_read_barrier_depends() barriers in page table walking code.
671 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
673 ptl = pmd_lock(mm, pmd);
674 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
675 mm_inc_nr_ptes(mm);
676 pmd_populate(mm, pmd, new);
677 new = NULL;
679 spin_unlock(ptl);
680 if (new)
681 pte_free(mm, new);
682 return 0;
685 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
687 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
688 if (!new)
689 return -ENOMEM;
691 smp_wmb(); /* See comment in __pte_alloc */
693 spin_lock(&init_mm.page_table_lock);
694 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
695 pmd_populate_kernel(&init_mm, pmd, new);
696 new = NULL;
698 spin_unlock(&init_mm.page_table_lock);
699 if (new)
700 pte_free_kernel(&init_mm, new);
701 return 0;
704 static inline void init_rss_vec(int *rss)
706 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
709 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
711 int i;
713 if (current->mm == mm)
714 sync_mm_rss(mm);
715 for (i = 0; i < NR_MM_COUNTERS; i++)
716 if (rss[i])
717 add_mm_counter(mm, i, rss[i]);
721 * This function is called to print an error when a bad pte
722 * is found. For example, we might have a PFN-mapped pte in
723 * a region that doesn't allow it.
725 * The calling function must still handle the error.
727 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
728 pte_t pte, struct page *page)
730 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
731 p4d_t *p4d = p4d_offset(pgd, addr);
732 pud_t *pud = pud_offset(p4d, addr);
733 pmd_t *pmd = pmd_offset(pud, addr);
734 struct address_space *mapping;
735 pgoff_t index;
736 static unsigned long resume;
737 static unsigned long nr_shown;
738 static unsigned long nr_unshown;
741 * Allow a burst of 60 reports, then keep quiet for that minute;
742 * or allow a steady drip of one report per second.
744 if (nr_shown == 60) {
745 if (time_before(jiffies, resume)) {
746 nr_unshown++;
747 return;
749 if (nr_unshown) {
750 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
751 nr_unshown);
752 nr_unshown = 0;
754 nr_shown = 0;
756 if (nr_shown++ == 0)
757 resume = jiffies + 60 * HZ;
759 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
760 index = linear_page_index(vma, addr);
762 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
763 current->comm,
764 (long long)pte_val(pte), (long long)pmd_val(*pmd));
765 if (page)
766 dump_page(page, "bad pte");
767 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
768 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
769 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
770 vma->vm_file,
771 vma->vm_ops ? vma->vm_ops->fault : NULL,
772 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
773 mapping ? mapping->a_ops->readpage : NULL);
774 dump_stack();
775 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
779 * vm_normal_page -- This function gets the "struct page" associated with a pte.
781 * "Special" mappings do not wish to be associated with a "struct page" (either
782 * it doesn't exist, or it exists but they don't want to touch it). In this
783 * case, NULL is returned here. "Normal" mappings do have a struct page.
785 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
786 * pte bit, in which case this function is trivial. Secondly, an architecture
787 * may not have a spare pte bit, which requires a more complicated scheme,
788 * described below.
790 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
791 * special mapping (even if there are underlying and valid "struct pages").
792 * COWed pages of a VM_PFNMAP are always normal.
794 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
795 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
796 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
797 * mapping will always honor the rule
799 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
801 * And for normal mappings this is false.
803 * This restricts such mappings to be a linear translation from virtual address
804 * to pfn. To get around this restriction, we allow arbitrary mappings so long
805 * as the vma is not a COW mapping; in that case, we know that all ptes are
806 * special (because none can have been COWed).
809 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
811 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
812 * page" backing, however the difference is that _all_ pages with a struct
813 * page (that is, those where pfn_valid is true) are refcounted and considered
814 * normal pages by the VM. The disadvantage is that pages are refcounted
815 * (which can be slower and simply not an option for some PFNMAP users). The
816 * advantage is that we don't have to follow the strict linearity rule of
817 * PFNMAP mappings in order to support COWable mappings.
820 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
821 pte_t pte, bool with_public_device)
823 unsigned long pfn = pte_pfn(pte);
825 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
826 if (likely(!pte_special(pte)))
827 goto check_pfn;
828 if (vma->vm_ops && vma->vm_ops->find_special_page)
829 return vma->vm_ops->find_special_page(vma, addr);
830 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
831 return NULL;
832 if (is_zero_pfn(pfn))
833 return NULL;
836 * Device public pages are special pages (they are ZONE_DEVICE
837 * pages but different from persistent memory). They behave
838 * allmost like normal pages. The difference is that they are
839 * not on the lru and thus should never be involve with any-
840 * thing that involve lru manipulation (mlock, numa balancing,
841 * ...).
843 * This is why we still want to return NULL for such page from
844 * vm_normal_page() so that we do not have to special case all
845 * call site of vm_normal_page().
847 if (likely(pfn <= highest_memmap_pfn)) {
848 struct page *page = pfn_to_page(pfn);
850 if (is_device_public_page(page)) {
851 if (with_public_device)
852 return page;
853 return NULL;
856 print_bad_pte(vma, addr, pte, NULL);
857 return NULL;
860 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
862 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
863 if (vma->vm_flags & VM_MIXEDMAP) {
864 if (!pfn_valid(pfn))
865 return NULL;
866 goto out;
867 } else {
868 unsigned long off;
869 off = (addr - vma->vm_start) >> PAGE_SHIFT;
870 if (pfn == vma->vm_pgoff + off)
871 return NULL;
872 if (!is_cow_mapping(vma->vm_flags))
873 return NULL;
877 if (is_zero_pfn(pfn))
878 return NULL;
880 check_pfn:
881 if (unlikely(pfn > highest_memmap_pfn)) {
882 print_bad_pte(vma, addr, pte, NULL);
883 return NULL;
887 * NOTE! We still have PageReserved() pages in the page tables.
888 * eg. VDSO mappings can cause them to exist.
890 out:
891 return pfn_to_page(pfn);
894 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
895 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
896 pmd_t pmd)
898 unsigned long pfn = pmd_pfn(pmd);
901 * There is no pmd_special() but there may be special pmds, e.g.
902 * in a direct-access (dax) mapping, so let's just replicate the
903 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
905 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
906 if (vma->vm_flags & VM_MIXEDMAP) {
907 if (!pfn_valid(pfn))
908 return NULL;
909 goto out;
910 } else {
911 unsigned long off;
912 off = (addr - vma->vm_start) >> PAGE_SHIFT;
913 if (pfn == vma->vm_pgoff + off)
914 return NULL;
915 if (!is_cow_mapping(vma->vm_flags))
916 return NULL;
920 if (is_zero_pfn(pfn))
921 return NULL;
922 if (unlikely(pfn > highest_memmap_pfn))
923 return NULL;
926 * NOTE! We still have PageReserved() pages in the page tables.
927 * eg. VDSO mappings can cause them to exist.
929 out:
930 return pfn_to_page(pfn);
932 #endif
935 * copy one vm_area from one task to the other. Assumes the page tables
936 * already present in the new task to be cleared in the whole range
937 * covered by this vma.
940 static inline unsigned long
941 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
942 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
943 unsigned long addr, int *rss)
945 unsigned long vm_flags = vma->vm_flags;
946 pte_t pte = *src_pte;
947 struct page *page;
949 /* pte contains position in swap or file, so copy. */
950 if (unlikely(!pte_present(pte))) {
951 swp_entry_t entry = pte_to_swp_entry(pte);
953 if (likely(!non_swap_entry(entry))) {
954 if (swap_duplicate(entry) < 0)
955 return entry.val;
957 /* make sure dst_mm is on swapoff's mmlist. */
958 if (unlikely(list_empty(&dst_mm->mmlist))) {
959 spin_lock(&mmlist_lock);
960 if (list_empty(&dst_mm->mmlist))
961 list_add(&dst_mm->mmlist,
962 &src_mm->mmlist);
963 spin_unlock(&mmlist_lock);
965 rss[MM_SWAPENTS]++;
966 } else if (is_migration_entry(entry)) {
967 page = migration_entry_to_page(entry);
969 rss[mm_counter(page)]++;
971 if (is_write_migration_entry(entry) &&
972 is_cow_mapping(vm_flags)) {
974 * COW mappings require pages in both
975 * parent and child to be set to read.
977 make_migration_entry_read(&entry);
978 pte = swp_entry_to_pte(entry);
979 if (pte_swp_soft_dirty(*src_pte))
980 pte = pte_swp_mksoft_dirty(pte);
981 set_pte_at(src_mm, addr, src_pte, pte);
983 } else if (is_device_private_entry(entry)) {
984 page = device_private_entry_to_page(entry);
987 * Update rss count even for unaddressable pages, as
988 * they should treated just like normal pages in this
989 * respect.
991 * We will likely want to have some new rss counters
992 * for unaddressable pages, at some point. But for now
993 * keep things as they are.
995 get_page(page);
996 rss[mm_counter(page)]++;
997 page_dup_rmap(page, false);
1000 * We do not preserve soft-dirty information, because so
1001 * far, checkpoint/restore is the only feature that
1002 * requires that. And checkpoint/restore does not work
1003 * when a device driver is involved (you cannot easily
1004 * save and restore device driver state).
1006 if (is_write_device_private_entry(entry) &&
1007 is_cow_mapping(vm_flags)) {
1008 make_device_private_entry_read(&entry);
1009 pte = swp_entry_to_pte(entry);
1010 set_pte_at(src_mm, addr, src_pte, pte);
1013 goto out_set_pte;
1017 * If it's a COW mapping, write protect it both
1018 * in the parent and the child
1020 if (is_cow_mapping(vm_flags)) {
1021 ptep_set_wrprotect(src_mm, addr, src_pte);
1022 pte = pte_wrprotect(pte);
1026 * If it's a shared mapping, mark it clean in
1027 * the child
1029 if (vm_flags & VM_SHARED)
1030 pte = pte_mkclean(pte);
1031 pte = pte_mkold(pte);
1033 page = vm_normal_page(vma, addr, pte);
1034 if (page) {
1035 get_page(page);
1036 page_dup_rmap(page, false);
1037 rss[mm_counter(page)]++;
1038 } else if (pte_devmap(pte)) {
1039 page = pte_page(pte);
1042 * Cache coherent device memory behave like regular page and
1043 * not like persistent memory page. For more informations see
1044 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1046 if (is_device_public_page(page)) {
1047 get_page(page);
1048 page_dup_rmap(page, false);
1049 rss[mm_counter(page)]++;
1053 out_set_pte:
1054 set_pte_at(dst_mm, addr, dst_pte, pte);
1055 return 0;
1058 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1059 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1060 unsigned long addr, unsigned long end)
1062 pte_t *orig_src_pte, *orig_dst_pte;
1063 pte_t *src_pte, *dst_pte;
1064 spinlock_t *src_ptl, *dst_ptl;
1065 int progress = 0;
1066 int rss[NR_MM_COUNTERS];
1067 swp_entry_t entry = (swp_entry_t){0};
1069 again:
1070 init_rss_vec(rss);
1072 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1073 if (!dst_pte)
1074 return -ENOMEM;
1075 src_pte = pte_offset_map(src_pmd, addr);
1076 src_ptl = pte_lockptr(src_mm, src_pmd);
1077 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1078 orig_src_pte = src_pte;
1079 orig_dst_pte = dst_pte;
1080 arch_enter_lazy_mmu_mode();
1082 do {
1084 * We are holding two locks at this point - either of them
1085 * could generate latencies in another task on another CPU.
1087 if (progress >= 32) {
1088 progress = 0;
1089 if (need_resched() ||
1090 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1091 break;
1093 if (pte_none(*src_pte)) {
1094 progress++;
1095 continue;
1097 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1098 vma, addr, rss);
1099 if (entry.val)
1100 break;
1101 progress += 8;
1102 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1104 arch_leave_lazy_mmu_mode();
1105 spin_unlock(src_ptl);
1106 pte_unmap(orig_src_pte);
1107 add_mm_rss_vec(dst_mm, rss);
1108 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1109 cond_resched();
1111 if (entry.val) {
1112 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1113 return -ENOMEM;
1114 progress = 0;
1116 if (addr != end)
1117 goto again;
1118 return 0;
1121 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1122 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1123 unsigned long addr, unsigned long end)
1125 pmd_t *src_pmd, *dst_pmd;
1126 unsigned long next;
1128 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1129 if (!dst_pmd)
1130 return -ENOMEM;
1131 src_pmd = pmd_offset(src_pud, addr);
1132 do {
1133 next = pmd_addr_end(addr, end);
1134 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1135 || pmd_devmap(*src_pmd)) {
1136 int err;
1137 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1138 err = copy_huge_pmd(dst_mm, src_mm,
1139 dst_pmd, src_pmd, addr, vma);
1140 if (err == -ENOMEM)
1141 return -ENOMEM;
1142 if (!err)
1143 continue;
1144 /* fall through */
1146 if (pmd_none_or_clear_bad(src_pmd))
1147 continue;
1148 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1149 vma, addr, next))
1150 return -ENOMEM;
1151 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1152 return 0;
1155 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1156 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1157 unsigned long addr, unsigned long end)
1159 pud_t *src_pud, *dst_pud;
1160 unsigned long next;
1162 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1163 if (!dst_pud)
1164 return -ENOMEM;
1165 src_pud = pud_offset(src_p4d, addr);
1166 do {
1167 next = pud_addr_end(addr, end);
1168 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1169 int err;
1171 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1172 err = copy_huge_pud(dst_mm, src_mm,
1173 dst_pud, src_pud, addr, vma);
1174 if (err == -ENOMEM)
1175 return -ENOMEM;
1176 if (!err)
1177 continue;
1178 /* fall through */
1180 if (pud_none_or_clear_bad(src_pud))
1181 continue;
1182 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1183 vma, addr, next))
1184 return -ENOMEM;
1185 } while (dst_pud++, src_pud++, addr = next, addr != end);
1186 return 0;
1189 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1190 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1191 unsigned long addr, unsigned long end)
1193 p4d_t *src_p4d, *dst_p4d;
1194 unsigned long next;
1196 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1197 if (!dst_p4d)
1198 return -ENOMEM;
1199 src_p4d = p4d_offset(src_pgd, addr);
1200 do {
1201 next = p4d_addr_end(addr, end);
1202 if (p4d_none_or_clear_bad(src_p4d))
1203 continue;
1204 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1205 vma, addr, next))
1206 return -ENOMEM;
1207 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1208 return 0;
1211 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1212 struct vm_area_struct *vma)
1214 pgd_t *src_pgd, *dst_pgd;
1215 unsigned long next;
1216 unsigned long addr = vma->vm_start;
1217 unsigned long end = vma->vm_end;
1218 unsigned long mmun_start; /* For mmu_notifiers */
1219 unsigned long mmun_end; /* For mmu_notifiers */
1220 bool is_cow;
1221 int ret;
1224 * Don't copy ptes where a page fault will fill them correctly.
1225 * Fork becomes much lighter when there are big shared or private
1226 * readonly mappings. The tradeoff is that copy_page_range is more
1227 * efficient than faulting.
1229 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1230 !vma->anon_vma)
1231 return 0;
1233 if (is_vm_hugetlb_page(vma))
1234 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1236 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1238 * We do not free on error cases below as remove_vma
1239 * gets called on error from higher level routine
1241 ret = track_pfn_copy(vma);
1242 if (ret)
1243 return ret;
1247 * We need to invalidate the secondary MMU mappings only when
1248 * there could be a permission downgrade on the ptes of the
1249 * parent mm. And a permission downgrade will only happen if
1250 * is_cow_mapping() returns true.
1252 is_cow = is_cow_mapping(vma->vm_flags);
1253 mmun_start = addr;
1254 mmun_end = end;
1255 if (is_cow)
1256 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1257 mmun_end);
1259 ret = 0;
1260 dst_pgd = pgd_offset(dst_mm, addr);
1261 src_pgd = pgd_offset(src_mm, addr);
1262 do {
1263 next = pgd_addr_end(addr, end);
1264 if (pgd_none_or_clear_bad(src_pgd))
1265 continue;
1266 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1267 vma, addr, next))) {
1268 ret = -ENOMEM;
1269 break;
1271 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1273 if (is_cow)
1274 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1275 return ret;
1278 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1279 struct vm_area_struct *vma, pmd_t *pmd,
1280 unsigned long addr, unsigned long end,
1281 struct zap_details *details)
1283 struct mm_struct *mm = tlb->mm;
1284 int force_flush = 0;
1285 int rss[NR_MM_COUNTERS];
1286 spinlock_t *ptl;
1287 pte_t *start_pte;
1288 pte_t *pte;
1289 swp_entry_t entry;
1291 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1292 again:
1293 init_rss_vec(rss);
1294 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1295 pte = start_pte;
1296 flush_tlb_batched_pending(mm);
1297 arch_enter_lazy_mmu_mode();
1298 do {
1299 pte_t ptent = *pte;
1300 if (pte_none(ptent))
1301 continue;
1303 if (pte_present(ptent)) {
1304 struct page *page;
1306 page = _vm_normal_page(vma, addr, ptent, true);
1307 if (unlikely(details) && page) {
1309 * unmap_shared_mapping_pages() wants to
1310 * invalidate cache without truncating:
1311 * unmap shared but keep private pages.
1313 if (details->check_mapping &&
1314 details->check_mapping != page_rmapping(page))
1315 continue;
1317 ptent = ptep_get_and_clear_full(mm, addr, pte,
1318 tlb->fullmm);
1319 tlb_remove_tlb_entry(tlb, pte, addr);
1320 if (unlikely(!page))
1321 continue;
1323 if (!PageAnon(page)) {
1324 if (pte_dirty(ptent)) {
1325 force_flush = 1;
1326 set_page_dirty(page);
1328 if (pte_young(ptent) &&
1329 likely(!(vma->vm_flags & VM_SEQ_READ)))
1330 mark_page_accessed(page);
1332 rss[mm_counter(page)]--;
1333 page_remove_rmap(page, false);
1334 if (unlikely(page_mapcount(page) < 0))
1335 print_bad_pte(vma, addr, ptent, page);
1336 if (unlikely(__tlb_remove_page(tlb, page))) {
1337 force_flush = 1;
1338 addr += PAGE_SIZE;
1339 break;
1341 continue;
1344 entry = pte_to_swp_entry(ptent);
1345 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1346 struct page *page = device_private_entry_to_page(entry);
1348 if (unlikely(details && details->check_mapping)) {
1350 * unmap_shared_mapping_pages() wants to
1351 * invalidate cache without truncating:
1352 * unmap shared but keep private pages.
1354 if (details->check_mapping !=
1355 page_rmapping(page))
1356 continue;
1359 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1360 rss[mm_counter(page)]--;
1361 page_remove_rmap(page, false);
1362 put_page(page);
1363 continue;
1366 /* If details->check_mapping, we leave swap entries. */
1367 if (unlikely(details))
1368 continue;
1370 entry = pte_to_swp_entry(ptent);
1371 if (!non_swap_entry(entry))
1372 rss[MM_SWAPENTS]--;
1373 else if (is_migration_entry(entry)) {
1374 struct page *page;
1376 page = migration_entry_to_page(entry);
1377 rss[mm_counter(page)]--;
1379 if (unlikely(!free_swap_and_cache(entry)))
1380 print_bad_pte(vma, addr, ptent, NULL);
1381 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1382 } while (pte++, addr += PAGE_SIZE, addr != end);
1384 add_mm_rss_vec(mm, rss);
1385 arch_leave_lazy_mmu_mode();
1387 /* Do the actual TLB flush before dropping ptl */
1388 if (force_flush)
1389 tlb_flush_mmu_tlbonly(tlb);
1390 pte_unmap_unlock(start_pte, ptl);
1393 * If we forced a TLB flush (either due to running out of
1394 * batch buffers or because we needed to flush dirty TLB
1395 * entries before releasing the ptl), free the batched
1396 * memory too. Restart if we didn't do everything.
1398 if (force_flush) {
1399 force_flush = 0;
1400 tlb_flush_mmu_free(tlb);
1401 if (addr != end)
1402 goto again;
1405 return addr;
1408 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1409 struct vm_area_struct *vma, pud_t *pud,
1410 unsigned long addr, unsigned long end,
1411 struct zap_details *details)
1413 pmd_t *pmd;
1414 unsigned long next;
1416 pmd = pmd_offset(pud, addr);
1417 do {
1418 next = pmd_addr_end(addr, end);
1419 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1420 if (next - addr != HPAGE_PMD_SIZE)
1421 __split_huge_pmd(vma, pmd, addr, false, NULL);
1422 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1423 goto next;
1424 /* fall through */
1427 * Here there can be other concurrent MADV_DONTNEED or
1428 * trans huge page faults running, and if the pmd is
1429 * none or trans huge it can change under us. This is
1430 * because MADV_DONTNEED holds the mmap_sem in read
1431 * mode.
1433 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1434 goto next;
1435 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1436 next:
1437 cond_resched();
1438 } while (pmd++, addr = next, addr != end);
1440 return addr;
1443 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1444 struct vm_area_struct *vma, p4d_t *p4d,
1445 unsigned long addr, unsigned long end,
1446 struct zap_details *details)
1448 pud_t *pud;
1449 unsigned long next;
1451 pud = pud_offset(p4d, addr);
1452 do {
1453 next = pud_addr_end(addr, end);
1454 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1455 if (next - addr != HPAGE_PUD_SIZE) {
1456 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1457 split_huge_pud(vma, pud, addr);
1458 } else if (zap_huge_pud(tlb, vma, pud, addr))
1459 goto next;
1460 /* fall through */
1462 if (pud_none_or_clear_bad(pud))
1463 continue;
1464 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1465 next:
1466 cond_resched();
1467 } while (pud++, addr = next, addr != end);
1469 return addr;
1472 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1473 struct vm_area_struct *vma, pgd_t *pgd,
1474 unsigned long addr, unsigned long end,
1475 struct zap_details *details)
1477 p4d_t *p4d;
1478 unsigned long next;
1480 p4d = p4d_offset(pgd, addr);
1481 do {
1482 next = p4d_addr_end(addr, end);
1483 if (p4d_none_or_clear_bad(p4d))
1484 continue;
1485 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1486 } while (p4d++, addr = next, addr != end);
1488 return addr;
1491 void unmap_page_range(struct mmu_gather *tlb,
1492 struct vm_area_struct *vma,
1493 unsigned long addr, unsigned long end,
1494 struct zap_details *details)
1496 pgd_t *pgd;
1497 unsigned long next;
1499 BUG_ON(addr >= end);
1500 tlb_start_vma(tlb, vma);
1501 pgd = pgd_offset(vma->vm_mm, addr);
1502 do {
1503 next = pgd_addr_end(addr, end);
1504 if (pgd_none_or_clear_bad(pgd))
1505 continue;
1506 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1507 } while (pgd++, addr = next, addr != end);
1508 tlb_end_vma(tlb, vma);
1512 static void unmap_single_vma(struct mmu_gather *tlb,
1513 struct vm_area_struct *vma, unsigned long start_addr,
1514 unsigned long end_addr,
1515 struct zap_details *details)
1517 unsigned long start = max(vma->vm_start, start_addr);
1518 unsigned long end;
1520 if (start >= vma->vm_end)
1521 return;
1522 end = min(vma->vm_end, end_addr);
1523 if (end <= vma->vm_start)
1524 return;
1526 if (vma->vm_file)
1527 uprobe_munmap(vma, start, end);
1529 if (unlikely(vma->vm_flags & VM_PFNMAP))
1530 untrack_pfn(vma, 0, 0);
1532 if (start != end) {
1533 if (unlikely(is_vm_hugetlb_page(vma))) {
1535 * It is undesirable to test vma->vm_file as it
1536 * should be non-null for valid hugetlb area.
1537 * However, vm_file will be NULL in the error
1538 * cleanup path of mmap_region. When
1539 * hugetlbfs ->mmap method fails,
1540 * mmap_region() nullifies vma->vm_file
1541 * before calling this function to clean up.
1542 * Since no pte has actually been setup, it is
1543 * safe to do nothing in this case.
1545 if (vma->vm_file) {
1546 i_mmap_lock_write(vma->vm_file->f_mapping);
1547 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1548 i_mmap_unlock_write(vma->vm_file->f_mapping);
1550 } else
1551 unmap_page_range(tlb, vma, start, end, details);
1556 * unmap_vmas - unmap a range of memory covered by a list of vma's
1557 * @tlb: address of the caller's struct mmu_gather
1558 * @vma: the starting vma
1559 * @start_addr: virtual address at which to start unmapping
1560 * @end_addr: virtual address at which to end unmapping
1562 * Unmap all pages in the vma list.
1564 * Only addresses between `start' and `end' will be unmapped.
1566 * The VMA list must be sorted in ascending virtual address order.
1568 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1569 * range after unmap_vmas() returns. So the only responsibility here is to
1570 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1571 * drops the lock and schedules.
1573 void unmap_vmas(struct mmu_gather *tlb,
1574 struct vm_area_struct *vma, unsigned long start_addr,
1575 unsigned long end_addr)
1577 struct mm_struct *mm = vma->vm_mm;
1579 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1580 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1581 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1582 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1586 * zap_page_range - remove user pages in a given range
1587 * @vma: vm_area_struct holding the applicable pages
1588 * @start: starting address of pages to zap
1589 * @size: number of bytes to zap
1591 * Caller must protect the VMA list
1593 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1594 unsigned long size)
1596 struct mm_struct *mm = vma->vm_mm;
1597 struct mmu_gather tlb;
1598 unsigned long end = start + size;
1600 lru_add_drain();
1601 tlb_gather_mmu(&tlb, mm, start, end);
1602 update_hiwater_rss(mm);
1603 mmu_notifier_invalidate_range_start(mm, start, end);
1604 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1605 unmap_single_vma(&tlb, vma, start, end, NULL);
1608 * zap_page_range does not specify whether mmap_sem should be
1609 * held for read or write. That allows parallel zap_page_range
1610 * operations to unmap a PTE and defer a flush meaning that
1611 * this call observes pte_none and fails to flush the TLB.
1612 * Rather than adding a complex API, ensure that no stale
1613 * TLB entries exist when this call returns.
1615 flush_tlb_range(vma, start, end);
1618 mmu_notifier_invalidate_range_end(mm, start, end);
1619 tlb_finish_mmu(&tlb, start, end);
1623 * zap_page_range_single - remove user pages in a given range
1624 * @vma: vm_area_struct holding the applicable pages
1625 * @address: starting address of pages to zap
1626 * @size: number of bytes to zap
1627 * @details: details of shared cache invalidation
1629 * The range must fit into one VMA.
1631 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1632 unsigned long size, struct zap_details *details)
1634 struct mm_struct *mm = vma->vm_mm;
1635 struct mmu_gather tlb;
1636 unsigned long end = address + size;
1638 lru_add_drain();
1639 tlb_gather_mmu(&tlb, mm, address, end);
1640 update_hiwater_rss(mm);
1641 mmu_notifier_invalidate_range_start(mm, address, end);
1642 unmap_single_vma(&tlb, vma, address, end, details);
1643 mmu_notifier_invalidate_range_end(mm, address, end);
1644 tlb_finish_mmu(&tlb, address, end);
1648 * zap_vma_ptes - remove ptes mapping the vma
1649 * @vma: vm_area_struct holding ptes to be zapped
1650 * @address: starting address of pages to zap
1651 * @size: number of bytes to zap
1653 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1655 * The entire address range must be fully contained within the vma.
1658 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1659 unsigned long size)
1661 if (address < vma->vm_start || address + size > vma->vm_end ||
1662 !(vma->vm_flags & VM_PFNMAP))
1663 return;
1665 zap_page_range_single(vma, address, size, NULL);
1667 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1669 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1670 spinlock_t **ptl)
1672 pgd_t *pgd;
1673 p4d_t *p4d;
1674 pud_t *pud;
1675 pmd_t *pmd;
1677 pgd = pgd_offset(mm, addr);
1678 p4d = p4d_alloc(mm, pgd, addr);
1679 if (!p4d)
1680 return NULL;
1681 pud = pud_alloc(mm, p4d, addr);
1682 if (!pud)
1683 return NULL;
1684 pmd = pmd_alloc(mm, pud, addr);
1685 if (!pmd)
1686 return NULL;
1688 VM_BUG_ON(pmd_trans_huge(*pmd));
1689 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1693 * This is the old fallback for page remapping.
1695 * For historical reasons, it only allows reserved pages. Only
1696 * old drivers should use this, and they needed to mark their
1697 * pages reserved for the old functions anyway.
1699 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1700 struct page *page, pgprot_t prot)
1702 struct mm_struct *mm = vma->vm_mm;
1703 int retval;
1704 pte_t *pte;
1705 spinlock_t *ptl;
1707 retval = -EINVAL;
1708 if (PageAnon(page))
1709 goto out;
1710 retval = -ENOMEM;
1711 flush_dcache_page(page);
1712 pte = get_locked_pte(mm, addr, &ptl);
1713 if (!pte)
1714 goto out;
1715 retval = -EBUSY;
1716 if (!pte_none(*pte))
1717 goto out_unlock;
1719 /* Ok, finally just insert the thing.. */
1720 get_page(page);
1721 inc_mm_counter_fast(mm, mm_counter_file(page));
1722 page_add_file_rmap(page, false);
1723 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1725 retval = 0;
1726 pte_unmap_unlock(pte, ptl);
1727 return retval;
1728 out_unlock:
1729 pte_unmap_unlock(pte, ptl);
1730 out:
1731 return retval;
1735 * vm_insert_page - insert single page into user vma
1736 * @vma: user vma to map to
1737 * @addr: target user address of this page
1738 * @page: source kernel page
1740 * This allows drivers to insert individual pages they've allocated
1741 * into a user vma.
1743 * The page has to be a nice clean _individual_ kernel allocation.
1744 * If you allocate a compound page, you need to have marked it as
1745 * such (__GFP_COMP), or manually just split the page up yourself
1746 * (see split_page()).
1748 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1749 * took an arbitrary page protection parameter. This doesn't allow
1750 * that. Your vma protection will have to be set up correctly, which
1751 * means that if you want a shared writable mapping, you'd better
1752 * ask for a shared writable mapping!
1754 * The page does not need to be reserved.
1756 * Usually this function is called from f_op->mmap() handler
1757 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1758 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1759 * function from other places, for example from page-fault handler.
1761 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1762 struct page *page)
1764 if (addr < vma->vm_start || addr >= vma->vm_end)
1765 return -EFAULT;
1766 if (!page_count(page))
1767 return -EINVAL;
1768 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1769 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1770 BUG_ON(vma->vm_flags & VM_PFNMAP);
1771 vma->vm_flags |= VM_MIXEDMAP;
1773 return insert_page(vma, addr, page, vma->vm_page_prot);
1775 EXPORT_SYMBOL(vm_insert_page);
1777 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1778 pfn_t pfn, pgprot_t prot, bool mkwrite)
1780 struct mm_struct *mm = vma->vm_mm;
1781 int retval;
1782 pte_t *pte, entry;
1783 spinlock_t *ptl;
1785 retval = -ENOMEM;
1786 pte = get_locked_pte(mm, addr, &ptl);
1787 if (!pte)
1788 goto out;
1789 retval = -EBUSY;
1790 if (!pte_none(*pte)) {
1791 if (mkwrite) {
1793 * For read faults on private mappings the PFN passed
1794 * in may not match the PFN we have mapped if the
1795 * mapped PFN is a writeable COW page. In the mkwrite
1796 * case we are creating a writable PTE for a shared
1797 * mapping and we expect the PFNs to match.
1799 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1800 goto out_unlock;
1801 entry = *pte;
1802 goto out_mkwrite;
1803 } else
1804 goto out_unlock;
1807 /* Ok, finally just insert the thing.. */
1808 if (pfn_t_devmap(pfn))
1809 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1810 else
1811 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1813 out_mkwrite:
1814 if (mkwrite) {
1815 entry = pte_mkyoung(entry);
1816 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1819 set_pte_at(mm, addr, pte, entry);
1820 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1822 retval = 0;
1823 out_unlock:
1824 pte_unmap_unlock(pte, ptl);
1825 out:
1826 return retval;
1830 * vm_insert_pfn - insert single pfn into user vma
1831 * @vma: user vma to map to
1832 * @addr: target user address of this page
1833 * @pfn: source kernel pfn
1835 * Similar to vm_insert_page, this allows drivers to insert individual pages
1836 * they've allocated into a user vma. Same comments apply.
1838 * This function should only be called from a vm_ops->fault handler, and
1839 * in that case the handler should return NULL.
1841 * vma cannot be a COW mapping.
1843 * As this is called only for pages that do not currently exist, we
1844 * do not need to flush old virtual caches or the TLB.
1846 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1847 unsigned long pfn)
1849 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1851 EXPORT_SYMBOL(vm_insert_pfn);
1854 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1855 * @vma: user vma to map to
1856 * @addr: target user address of this page
1857 * @pfn: source kernel pfn
1858 * @pgprot: pgprot flags for the inserted page
1860 * This is exactly like vm_insert_pfn, except that it allows drivers to
1861 * to override pgprot on a per-page basis.
1863 * This only makes sense for IO mappings, and it makes no sense for
1864 * cow mappings. In general, using multiple vmas is preferable;
1865 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1866 * impractical.
1868 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1869 unsigned long pfn, pgprot_t pgprot)
1871 int ret;
1873 * Technically, architectures with pte_special can avoid all these
1874 * restrictions (same for remap_pfn_range). However we would like
1875 * consistency in testing and feature parity among all, so we should
1876 * try to keep these invariants in place for everybody.
1878 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1879 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1880 (VM_PFNMAP|VM_MIXEDMAP));
1881 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1882 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1884 if (addr < vma->vm_start || addr >= vma->vm_end)
1885 return -EFAULT;
1887 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1889 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1890 false);
1892 return ret;
1894 EXPORT_SYMBOL(vm_insert_pfn_prot);
1896 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1898 /* these checks mirror the abort conditions in vm_normal_page */
1899 if (vma->vm_flags & VM_MIXEDMAP)
1900 return true;
1901 if (pfn_t_devmap(pfn))
1902 return true;
1903 if (pfn_t_special(pfn))
1904 return true;
1905 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1906 return true;
1907 return false;
1910 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1911 pfn_t pfn, bool mkwrite)
1913 pgprot_t pgprot = vma->vm_page_prot;
1915 BUG_ON(!vm_mixed_ok(vma, pfn));
1917 if (addr < vma->vm_start || addr >= vma->vm_end)
1918 return -EFAULT;
1920 track_pfn_insert(vma, &pgprot, pfn);
1923 * If we don't have pte special, then we have to use the pfn_valid()
1924 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1925 * refcount the page if pfn_valid is true (hence insert_page rather
1926 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1927 * without pte special, it would there be refcounted as a normal page.
1929 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1930 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1931 struct page *page;
1934 * At this point we are committed to insert_page()
1935 * regardless of whether the caller specified flags that
1936 * result in pfn_t_has_page() == false.
1938 page = pfn_to_page(pfn_t_to_pfn(pfn));
1939 return insert_page(vma, addr, page, pgprot);
1941 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1944 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1945 pfn_t pfn)
1947 return __vm_insert_mixed(vma, addr, pfn, false);
1950 EXPORT_SYMBOL(vm_insert_mixed);
1953 * If the insertion of PTE failed because someone else already added a
1954 * different entry in the mean time, we treat that as success as we assume
1955 * the same entry was actually inserted.
1958 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1959 unsigned long addr, pfn_t pfn)
1961 int err;
1963 err = __vm_insert_mixed(vma, addr, pfn, true);
1964 if (err == -ENOMEM)
1965 return VM_FAULT_OOM;
1966 if (err < 0 && err != -EBUSY)
1967 return VM_FAULT_SIGBUS;
1968 return VM_FAULT_NOPAGE;
1970 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1973 * maps a range of physical memory into the requested pages. the old
1974 * mappings are removed. any references to nonexistent pages results
1975 * in null mappings (currently treated as "copy-on-access")
1977 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1978 unsigned long addr, unsigned long end,
1979 unsigned long pfn, pgprot_t prot)
1981 pte_t *pte;
1982 spinlock_t *ptl;
1984 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1985 if (!pte)
1986 return -ENOMEM;
1987 arch_enter_lazy_mmu_mode();
1988 do {
1989 BUG_ON(!pte_none(*pte));
1990 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1991 pfn++;
1992 } while (pte++, addr += PAGE_SIZE, addr != end);
1993 arch_leave_lazy_mmu_mode();
1994 pte_unmap_unlock(pte - 1, ptl);
1995 return 0;
1998 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1999 unsigned long addr, unsigned long end,
2000 unsigned long pfn, pgprot_t prot)
2002 pmd_t *pmd;
2003 unsigned long next;
2005 pfn -= addr >> PAGE_SHIFT;
2006 pmd = pmd_alloc(mm, pud, addr);
2007 if (!pmd)
2008 return -ENOMEM;
2009 VM_BUG_ON(pmd_trans_huge(*pmd));
2010 do {
2011 next = pmd_addr_end(addr, end);
2012 if (remap_pte_range(mm, pmd, addr, next,
2013 pfn + (addr >> PAGE_SHIFT), prot))
2014 return -ENOMEM;
2015 } while (pmd++, addr = next, addr != end);
2016 return 0;
2019 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2020 unsigned long addr, unsigned long end,
2021 unsigned long pfn, pgprot_t prot)
2023 pud_t *pud;
2024 unsigned long next;
2026 pfn -= addr >> PAGE_SHIFT;
2027 pud = pud_alloc(mm, p4d, addr);
2028 if (!pud)
2029 return -ENOMEM;
2030 do {
2031 next = pud_addr_end(addr, end);
2032 if (remap_pmd_range(mm, pud, addr, next,
2033 pfn + (addr >> PAGE_SHIFT), prot))
2034 return -ENOMEM;
2035 } while (pud++, addr = next, addr != end);
2036 return 0;
2039 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2040 unsigned long addr, unsigned long end,
2041 unsigned long pfn, pgprot_t prot)
2043 p4d_t *p4d;
2044 unsigned long next;
2046 pfn -= addr >> PAGE_SHIFT;
2047 p4d = p4d_alloc(mm, pgd, addr);
2048 if (!p4d)
2049 return -ENOMEM;
2050 do {
2051 next = p4d_addr_end(addr, end);
2052 if (remap_pud_range(mm, p4d, addr, next,
2053 pfn + (addr >> PAGE_SHIFT), prot))
2054 return -ENOMEM;
2055 } while (p4d++, addr = next, addr != end);
2056 return 0;
2060 * remap_pfn_range - remap kernel memory to userspace
2061 * @vma: user vma to map to
2062 * @addr: target user address to start at
2063 * @pfn: physical address of kernel memory
2064 * @size: size of map area
2065 * @prot: page protection flags for this mapping
2067 * Note: this is only safe if the mm semaphore is held when called.
2069 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2070 unsigned long pfn, unsigned long size, pgprot_t prot)
2072 pgd_t *pgd;
2073 unsigned long next;
2074 unsigned long end = addr + PAGE_ALIGN(size);
2075 struct mm_struct *mm = vma->vm_mm;
2076 unsigned long remap_pfn = pfn;
2077 int err;
2080 * Physically remapped pages are special. Tell the
2081 * rest of the world about it:
2082 * VM_IO tells people not to look at these pages
2083 * (accesses can have side effects).
2084 * VM_PFNMAP tells the core MM that the base pages are just
2085 * raw PFN mappings, and do not have a "struct page" associated
2086 * with them.
2087 * VM_DONTEXPAND
2088 * Disable vma merging and expanding with mremap().
2089 * VM_DONTDUMP
2090 * Omit vma from core dump, even when VM_IO turned off.
2092 * There's a horrible special case to handle copy-on-write
2093 * behaviour that some programs depend on. We mark the "original"
2094 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2095 * See vm_normal_page() for details.
2097 if (is_cow_mapping(vma->vm_flags)) {
2098 if (addr != vma->vm_start || end != vma->vm_end)
2099 return -EINVAL;
2100 vma->vm_pgoff = pfn;
2103 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2104 if (err)
2105 return -EINVAL;
2107 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2109 BUG_ON(addr >= end);
2110 pfn -= addr >> PAGE_SHIFT;
2111 pgd = pgd_offset(mm, addr);
2112 flush_cache_range(vma, addr, end);
2113 do {
2114 next = pgd_addr_end(addr, end);
2115 err = remap_p4d_range(mm, pgd, addr, next,
2116 pfn + (addr >> PAGE_SHIFT), prot);
2117 if (err)
2118 break;
2119 } while (pgd++, addr = next, addr != end);
2121 if (err)
2122 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2124 return err;
2126 EXPORT_SYMBOL(remap_pfn_range);
2129 * vm_iomap_memory - remap memory to userspace
2130 * @vma: user vma to map to
2131 * @start: start of area
2132 * @len: size of area
2134 * This is a simplified io_remap_pfn_range() for common driver use. The
2135 * driver just needs to give us the physical memory range to be mapped,
2136 * we'll figure out the rest from the vma information.
2138 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2139 * whatever write-combining details or similar.
2141 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2143 unsigned long vm_len, pfn, pages;
2145 /* Check that the physical memory area passed in looks valid */
2146 if (start + len < start)
2147 return -EINVAL;
2149 * You *really* shouldn't map things that aren't page-aligned,
2150 * but we've historically allowed it because IO memory might
2151 * just have smaller alignment.
2153 len += start & ~PAGE_MASK;
2154 pfn = start >> PAGE_SHIFT;
2155 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2156 if (pfn + pages < pfn)
2157 return -EINVAL;
2159 /* We start the mapping 'vm_pgoff' pages into the area */
2160 if (vma->vm_pgoff > pages)
2161 return -EINVAL;
2162 pfn += vma->vm_pgoff;
2163 pages -= vma->vm_pgoff;
2165 /* Can we fit all of the mapping? */
2166 vm_len = vma->vm_end - vma->vm_start;
2167 if (vm_len >> PAGE_SHIFT > pages)
2168 return -EINVAL;
2170 /* Ok, let it rip */
2171 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2173 EXPORT_SYMBOL(vm_iomap_memory);
2175 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2176 unsigned long addr, unsigned long end,
2177 pte_fn_t fn, void *data)
2179 pte_t *pte;
2180 int err;
2181 pgtable_t token;
2182 spinlock_t *uninitialized_var(ptl);
2184 pte = (mm == &init_mm) ?
2185 pte_alloc_kernel(pmd, addr) :
2186 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2187 if (!pte)
2188 return -ENOMEM;
2190 BUG_ON(pmd_huge(*pmd));
2192 arch_enter_lazy_mmu_mode();
2194 token = pmd_pgtable(*pmd);
2196 do {
2197 err = fn(pte++, token, addr, data);
2198 if (err)
2199 break;
2200 } while (addr += PAGE_SIZE, addr != end);
2202 arch_leave_lazy_mmu_mode();
2204 if (mm != &init_mm)
2205 pte_unmap_unlock(pte-1, ptl);
2206 return err;
2209 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2210 unsigned long addr, unsigned long end,
2211 pte_fn_t fn, void *data)
2213 pmd_t *pmd;
2214 unsigned long next;
2215 int err;
2217 BUG_ON(pud_huge(*pud));
2219 pmd = pmd_alloc(mm, pud, addr);
2220 if (!pmd)
2221 return -ENOMEM;
2222 do {
2223 next = pmd_addr_end(addr, end);
2224 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2225 if (err)
2226 break;
2227 } while (pmd++, addr = next, addr != end);
2228 return err;
2231 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2232 unsigned long addr, unsigned long end,
2233 pte_fn_t fn, void *data)
2235 pud_t *pud;
2236 unsigned long next;
2237 int err;
2239 pud = pud_alloc(mm, p4d, addr);
2240 if (!pud)
2241 return -ENOMEM;
2242 do {
2243 next = pud_addr_end(addr, end);
2244 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2245 if (err)
2246 break;
2247 } while (pud++, addr = next, addr != end);
2248 return err;
2251 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2252 unsigned long addr, unsigned long end,
2253 pte_fn_t fn, void *data)
2255 p4d_t *p4d;
2256 unsigned long next;
2257 int err;
2259 p4d = p4d_alloc(mm, pgd, addr);
2260 if (!p4d)
2261 return -ENOMEM;
2262 do {
2263 next = p4d_addr_end(addr, end);
2264 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2265 if (err)
2266 break;
2267 } while (p4d++, addr = next, addr != end);
2268 return err;
2272 * Scan a region of virtual memory, filling in page tables as necessary
2273 * and calling a provided function on each leaf page table.
2275 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2276 unsigned long size, pte_fn_t fn, void *data)
2278 pgd_t *pgd;
2279 unsigned long next;
2280 unsigned long end = addr + size;
2281 int err;
2283 if (WARN_ON(addr >= end))
2284 return -EINVAL;
2286 pgd = pgd_offset(mm, addr);
2287 do {
2288 next = pgd_addr_end(addr, end);
2289 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2290 if (err)
2291 break;
2292 } while (pgd++, addr = next, addr != end);
2294 return err;
2296 EXPORT_SYMBOL_GPL(apply_to_page_range);
2299 * handle_pte_fault chooses page fault handler according to an entry which was
2300 * read non-atomically. Before making any commitment, on those architectures
2301 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2302 * parts, do_swap_page must check under lock before unmapping the pte and
2303 * proceeding (but do_wp_page is only called after already making such a check;
2304 * and do_anonymous_page can safely check later on).
2306 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2307 pte_t *page_table, pte_t orig_pte)
2309 int same = 1;
2310 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2311 if (sizeof(pte_t) > sizeof(unsigned long)) {
2312 spinlock_t *ptl = pte_lockptr(mm, pmd);
2313 spin_lock(ptl);
2314 same = pte_same(*page_table, orig_pte);
2315 spin_unlock(ptl);
2317 #endif
2318 pte_unmap(page_table);
2319 return same;
2322 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2324 debug_dma_assert_idle(src);
2327 * If the source page was a PFN mapping, we don't have
2328 * a "struct page" for it. We do a best-effort copy by
2329 * just copying from the original user address. If that
2330 * fails, we just zero-fill it. Live with it.
2332 if (unlikely(!src)) {
2333 void *kaddr = kmap_atomic(dst);
2334 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2337 * This really shouldn't fail, because the page is there
2338 * in the page tables. But it might just be unreadable,
2339 * in which case we just give up and fill the result with
2340 * zeroes.
2342 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2343 clear_page(kaddr);
2344 kunmap_atomic(kaddr);
2345 flush_dcache_page(dst);
2346 } else
2347 copy_user_highpage(dst, src, va, vma);
2350 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2352 struct file *vm_file = vma->vm_file;
2354 if (vm_file)
2355 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2358 * Special mappings (e.g. VDSO) do not have any file so fake
2359 * a default GFP_KERNEL for them.
2361 return GFP_KERNEL;
2365 * Notify the address space that the page is about to become writable so that
2366 * it can prohibit this or wait for the page to get into an appropriate state.
2368 * We do this without the lock held, so that it can sleep if it needs to.
2370 static int do_page_mkwrite(struct vm_fault *vmf)
2372 int ret;
2373 struct page *page = vmf->page;
2374 unsigned int old_flags = vmf->flags;
2376 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2378 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2379 /* Restore original flags so that caller is not surprised */
2380 vmf->flags = old_flags;
2381 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2382 return ret;
2383 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2384 lock_page(page);
2385 if (!page->mapping) {
2386 unlock_page(page);
2387 return 0; /* retry */
2389 ret |= VM_FAULT_LOCKED;
2390 } else
2391 VM_BUG_ON_PAGE(!PageLocked(page), page);
2392 return ret;
2396 * Handle dirtying of a page in shared file mapping on a write fault.
2398 * The function expects the page to be locked and unlocks it.
2400 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2401 struct page *page)
2403 struct address_space *mapping;
2404 bool dirtied;
2405 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2407 dirtied = set_page_dirty(page);
2408 VM_BUG_ON_PAGE(PageAnon(page), page);
2410 * Take a local copy of the address_space - page.mapping may be zeroed
2411 * by truncate after unlock_page(). The address_space itself remains
2412 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2413 * release semantics to prevent the compiler from undoing this copying.
2415 mapping = page_rmapping(page);
2416 unlock_page(page);
2418 if ((dirtied || page_mkwrite) && mapping) {
2420 * Some device drivers do not set page.mapping
2421 * but still dirty their pages
2423 balance_dirty_pages_ratelimited(mapping);
2426 if (!page_mkwrite)
2427 file_update_time(vma->vm_file);
2431 * Handle write page faults for pages that can be reused in the current vma
2433 * This can happen either due to the mapping being with the VM_SHARED flag,
2434 * or due to us being the last reference standing to the page. In either
2435 * case, all we need to do here is to mark the page as writable and update
2436 * any related book-keeping.
2438 static inline void wp_page_reuse(struct vm_fault *vmf)
2439 __releases(vmf->ptl)
2441 struct vm_area_struct *vma = vmf->vma;
2442 struct page *page = vmf->page;
2443 pte_t entry;
2445 * Clear the pages cpupid information as the existing
2446 * information potentially belongs to a now completely
2447 * unrelated process.
2449 if (page)
2450 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2452 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2453 entry = pte_mkyoung(vmf->orig_pte);
2454 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2455 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2456 update_mmu_cache(vma, vmf->address, vmf->pte);
2457 pte_unmap_unlock(vmf->pte, vmf->ptl);
2461 * Handle the case of a page which we actually need to copy to a new page.
2463 * Called with mmap_sem locked and the old page referenced, but
2464 * without the ptl held.
2466 * High level logic flow:
2468 * - Allocate a page, copy the content of the old page to the new one.
2469 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2470 * - Take the PTL. If the pte changed, bail out and release the allocated page
2471 * - If the pte is still the way we remember it, update the page table and all
2472 * relevant references. This includes dropping the reference the page-table
2473 * held to the old page, as well as updating the rmap.
2474 * - In any case, unlock the PTL and drop the reference we took to the old page.
2476 static int wp_page_copy(struct vm_fault *vmf)
2478 struct vm_area_struct *vma = vmf->vma;
2479 struct mm_struct *mm = vma->vm_mm;
2480 struct page *old_page = vmf->page;
2481 struct page *new_page = NULL;
2482 pte_t entry;
2483 int page_copied = 0;
2484 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2485 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2486 struct mem_cgroup *memcg;
2488 if (unlikely(anon_vma_prepare(vma)))
2489 goto oom;
2491 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2492 new_page = alloc_zeroed_user_highpage_movable(vma,
2493 vmf->address);
2494 if (!new_page)
2495 goto oom;
2496 } else {
2497 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2498 vmf->address);
2499 if (!new_page)
2500 goto oom;
2501 cow_user_page(new_page, old_page, vmf->address, vma);
2504 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2505 goto oom_free_new;
2507 __SetPageUptodate(new_page);
2509 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2512 * Re-check the pte - we dropped the lock
2514 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2515 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2516 if (old_page) {
2517 if (!PageAnon(old_page)) {
2518 dec_mm_counter_fast(mm,
2519 mm_counter_file(old_page));
2520 inc_mm_counter_fast(mm, MM_ANONPAGES);
2522 } else {
2523 inc_mm_counter_fast(mm, MM_ANONPAGES);
2525 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2526 entry = mk_pte(new_page, vma->vm_page_prot);
2527 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2529 * Clear the pte entry and flush it first, before updating the
2530 * pte with the new entry. This will avoid a race condition
2531 * seen in the presence of one thread doing SMC and another
2532 * thread doing COW.
2534 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2535 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2536 mem_cgroup_commit_charge(new_page, memcg, false, false);
2537 lru_cache_add_active_or_unevictable(new_page, vma);
2539 * We call the notify macro here because, when using secondary
2540 * mmu page tables (such as kvm shadow page tables), we want the
2541 * new page to be mapped directly into the secondary page table.
2543 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2544 update_mmu_cache(vma, vmf->address, vmf->pte);
2545 if (old_page) {
2547 * Only after switching the pte to the new page may
2548 * we remove the mapcount here. Otherwise another
2549 * process may come and find the rmap count decremented
2550 * before the pte is switched to the new page, and
2551 * "reuse" the old page writing into it while our pte
2552 * here still points into it and can be read by other
2553 * threads.
2555 * The critical issue is to order this
2556 * page_remove_rmap with the ptp_clear_flush above.
2557 * Those stores are ordered by (if nothing else,)
2558 * the barrier present in the atomic_add_negative
2559 * in page_remove_rmap.
2561 * Then the TLB flush in ptep_clear_flush ensures that
2562 * no process can access the old page before the
2563 * decremented mapcount is visible. And the old page
2564 * cannot be reused until after the decremented
2565 * mapcount is visible. So transitively, TLBs to
2566 * old page will be flushed before it can be reused.
2568 page_remove_rmap(old_page, false);
2571 /* Free the old page.. */
2572 new_page = old_page;
2573 page_copied = 1;
2574 } else {
2575 mem_cgroup_cancel_charge(new_page, memcg, false);
2578 if (new_page)
2579 put_page(new_page);
2581 pte_unmap_unlock(vmf->pte, vmf->ptl);
2583 * No need to double call mmu_notifier->invalidate_range() callback as
2584 * the above ptep_clear_flush_notify() did already call it.
2586 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2587 if (old_page) {
2589 * Don't let another task, with possibly unlocked vma,
2590 * keep the mlocked page.
2592 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2593 lock_page(old_page); /* LRU manipulation */
2594 if (PageMlocked(old_page))
2595 munlock_vma_page(old_page);
2596 unlock_page(old_page);
2598 put_page(old_page);
2600 return page_copied ? VM_FAULT_WRITE : 0;
2601 oom_free_new:
2602 put_page(new_page);
2603 oom:
2604 if (old_page)
2605 put_page(old_page);
2606 return VM_FAULT_OOM;
2610 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2611 * writeable once the page is prepared
2613 * @vmf: structure describing the fault
2615 * This function handles all that is needed to finish a write page fault in a
2616 * shared mapping due to PTE being read-only once the mapped page is prepared.
2617 * It handles locking of PTE and modifying it. The function returns
2618 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2619 * lock.
2621 * The function expects the page to be locked or other protection against
2622 * concurrent faults / writeback (such as DAX radix tree locks).
2624 int finish_mkwrite_fault(struct vm_fault *vmf)
2626 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2627 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2628 &vmf->ptl);
2630 * We might have raced with another page fault while we released the
2631 * pte_offset_map_lock.
2633 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2634 pte_unmap_unlock(vmf->pte, vmf->ptl);
2635 return VM_FAULT_NOPAGE;
2637 wp_page_reuse(vmf);
2638 return 0;
2642 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2643 * mapping
2645 static int wp_pfn_shared(struct vm_fault *vmf)
2647 struct vm_area_struct *vma = vmf->vma;
2649 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2650 int ret;
2652 pte_unmap_unlock(vmf->pte, vmf->ptl);
2653 vmf->flags |= FAULT_FLAG_MKWRITE;
2654 ret = vma->vm_ops->pfn_mkwrite(vmf);
2655 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2656 return ret;
2657 return finish_mkwrite_fault(vmf);
2659 wp_page_reuse(vmf);
2660 return VM_FAULT_WRITE;
2663 static int wp_page_shared(struct vm_fault *vmf)
2664 __releases(vmf->ptl)
2666 struct vm_area_struct *vma = vmf->vma;
2668 get_page(vmf->page);
2670 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2671 int tmp;
2673 pte_unmap_unlock(vmf->pte, vmf->ptl);
2674 tmp = do_page_mkwrite(vmf);
2675 if (unlikely(!tmp || (tmp &
2676 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2677 put_page(vmf->page);
2678 return tmp;
2680 tmp = finish_mkwrite_fault(vmf);
2681 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2682 unlock_page(vmf->page);
2683 put_page(vmf->page);
2684 return tmp;
2686 } else {
2687 wp_page_reuse(vmf);
2688 lock_page(vmf->page);
2690 fault_dirty_shared_page(vma, vmf->page);
2691 put_page(vmf->page);
2693 return VM_FAULT_WRITE;
2697 * This routine handles present pages, when users try to write
2698 * to a shared page. It is done by copying the page to a new address
2699 * and decrementing the shared-page counter for the old page.
2701 * Note that this routine assumes that the protection checks have been
2702 * done by the caller (the low-level page fault routine in most cases).
2703 * Thus we can safely just mark it writable once we've done any necessary
2704 * COW.
2706 * We also mark the page dirty at this point even though the page will
2707 * change only once the write actually happens. This avoids a few races,
2708 * and potentially makes it more efficient.
2710 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2711 * but allow concurrent faults), with pte both mapped and locked.
2712 * We return with mmap_sem still held, but pte unmapped and unlocked.
2714 static int do_wp_page(struct vm_fault *vmf)
2715 __releases(vmf->ptl)
2717 struct vm_area_struct *vma = vmf->vma;
2719 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2720 if (!vmf->page) {
2722 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2723 * VM_PFNMAP VMA.
2725 * We should not cow pages in a shared writeable mapping.
2726 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2728 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2729 (VM_WRITE|VM_SHARED))
2730 return wp_pfn_shared(vmf);
2732 pte_unmap_unlock(vmf->pte, vmf->ptl);
2733 return wp_page_copy(vmf);
2737 * Take out anonymous pages first, anonymous shared vmas are
2738 * not dirty accountable.
2740 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2741 int total_map_swapcount;
2742 if (!trylock_page(vmf->page)) {
2743 get_page(vmf->page);
2744 pte_unmap_unlock(vmf->pte, vmf->ptl);
2745 lock_page(vmf->page);
2746 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2747 vmf->address, &vmf->ptl);
2748 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2749 unlock_page(vmf->page);
2750 pte_unmap_unlock(vmf->pte, vmf->ptl);
2751 put_page(vmf->page);
2752 return 0;
2754 put_page(vmf->page);
2756 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2757 if (total_map_swapcount == 1) {
2759 * The page is all ours. Move it to
2760 * our anon_vma so the rmap code will
2761 * not search our parent or siblings.
2762 * Protected against the rmap code by
2763 * the page lock.
2765 page_move_anon_rmap(vmf->page, vma);
2767 unlock_page(vmf->page);
2768 wp_page_reuse(vmf);
2769 return VM_FAULT_WRITE;
2771 unlock_page(vmf->page);
2772 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2773 (VM_WRITE|VM_SHARED))) {
2774 return wp_page_shared(vmf);
2778 * Ok, we need to copy. Oh, well..
2780 get_page(vmf->page);
2782 pte_unmap_unlock(vmf->pte, vmf->ptl);
2783 return wp_page_copy(vmf);
2786 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2787 unsigned long start_addr, unsigned long end_addr,
2788 struct zap_details *details)
2790 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2793 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2794 struct zap_details *details)
2796 struct vm_area_struct *vma;
2797 pgoff_t vba, vea, zba, zea;
2799 vma_interval_tree_foreach(vma, root,
2800 details->first_index, details->last_index) {
2802 vba = vma->vm_pgoff;
2803 vea = vba + vma_pages(vma) - 1;
2804 zba = details->first_index;
2805 if (zba < vba)
2806 zba = vba;
2807 zea = details->last_index;
2808 if (zea > vea)
2809 zea = vea;
2811 unmap_mapping_range_vma(vma,
2812 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2813 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2814 details);
2819 * unmap_mapping_pages() - Unmap pages from processes.
2820 * @mapping: The address space containing pages to be unmapped.
2821 * @start: Index of first page to be unmapped.
2822 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2823 * @even_cows: Whether to unmap even private COWed pages.
2825 * Unmap the pages in this address space from any userspace process which
2826 * has them mmaped. Generally, you want to remove COWed pages as well when
2827 * a file is being truncated, but not when invalidating pages from the page
2828 * cache.
2830 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2831 pgoff_t nr, bool even_cows)
2833 struct zap_details details = { };
2835 details.check_mapping = even_cows ? NULL : mapping;
2836 details.first_index = start;
2837 details.last_index = start + nr - 1;
2838 if (details.last_index < details.first_index)
2839 details.last_index = ULONG_MAX;
2841 i_mmap_lock_write(mapping);
2842 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2843 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2844 i_mmap_unlock_write(mapping);
2848 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2849 * address_space corresponding to the specified byte range in the underlying
2850 * file.
2852 * @mapping: the address space containing mmaps to be unmapped.
2853 * @holebegin: byte in first page to unmap, relative to the start of
2854 * the underlying file. This will be rounded down to a PAGE_SIZE
2855 * boundary. Note that this is different from truncate_pagecache(), which
2856 * must keep the partial page. In contrast, we must get rid of
2857 * partial pages.
2858 * @holelen: size of prospective hole in bytes. This will be rounded
2859 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2860 * end of the file.
2861 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2862 * but 0 when invalidating pagecache, don't throw away private data.
2864 void unmap_mapping_range(struct address_space *mapping,
2865 loff_t const holebegin, loff_t const holelen, int even_cows)
2867 pgoff_t hba = holebegin >> PAGE_SHIFT;
2868 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2870 /* Check for overflow. */
2871 if (sizeof(holelen) > sizeof(hlen)) {
2872 long long holeend =
2873 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2874 if (holeend & ~(long long)ULONG_MAX)
2875 hlen = ULONG_MAX - hba + 1;
2878 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2880 EXPORT_SYMBOL(unmap_mapping_range);
2883 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2884 * but allow concurrent faults), and pte mapped but not yet locked.
2885 * We return with pte unmapped and unlocked.
2887 * We return with the mmap_sem locked or unlocked in the same cases
2888 * as does filemap_fault().
2890 int do_swap_page(struct vm_fault *vmf)
2892 struct vm_area_struct *vma = vmf->vma;
2893 struct page *page = NULL, *swapcache;
2894 struct mem_cgroup *memcg;
2895 swp_entry_t entry;
2896 pte_t pte;
2897 int locked;
2898 int exclusive = 0;
2899 int ret = 0;
2901 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2902 goto out;
2904 entry = pte_to_swp_entry(vmf->orig_pte);
2905 if (unlikely(non_swap_entry(entry))) {
2906 if (is_migration_entry(entry)) {
2907 migration_entry_wait(vma->vm_mm, vmf->pmd,
2908 vmf->address);
2909 } else if (is_device_private_entry(entry)) {
2911 * For un-addressable device memory we call the pgmap
2912 * fault handler callback. The callback must migrate
2913 * the page back to some CPU accessible page.
2915 ret = device_private_entry_fault(vma, vmf->address, entry,
2916 vmf->flags, vmf->pmd);
2917 } else if (is_hwpoison_entry(entry)) {
2918 ret = VM_FAULT_HWPOISON;
2919 } else {
2920 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2921 ret = VM_FAULT_SIGBUS;
2923 goto out;
2927 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2928 page = lookup_swap_cache(entry, vma, vmf->address);
2929 swapcache = page;
2931 if (!page) {
2932 struct swap_info_struct *si = swp_swap_info(entry);
2934 if (si->flags & SWP_SYNCHRONOUS_IO &&
2935 __swap_count(si, entry) == 1) {
2936 /* skip swapcache */
2937 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2938 vmf->address);
2939 if (page) {
2940 __SetPageLocked(page);
2941 __SetPageSwapBacked(page);
2942 set_page_private(page, entry.val);
2943 lru_cache_add_anon(page);
2944 swap_readpage(page, true);
2946 } else {
2947 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2948 vmf);
2949 swapcache = page;
2952 if (!page) {
2954 * Back out if somebody else faulted in this pte
2955 * while we released the pte lock.
2957 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2958 vmf->address, &vmf->ptl);
2959 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2960 ret = VM_FAULT_OOM;
2961 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2962 goto unlock;
2965 /* Had to read the page from swap area: Major fault */
2966 ret = VM_FAULT_MAJOR;
2967 count_vm_event(PGMAJFAULT);
2968 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2969 } else if (PageHWPoison(page)) {
2971 * hwpoisoned dirty swapcache pages are kept for killing
2972 * owner processes (which may be unknown at hwpoison time)
2974 ret = VM_FAULT_HWPOISON;
2975 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2976 goto out_release;
2979 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2981 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2982 if (!locked) {
2983 ret |= VM_FAULT_RETRY;
2984 goto out_release;
2988 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2989 * release the swapcache from under us. The page pin, and pte_same
2990 * test below, are not enough to exclude that. Even if it is still
2991 * swapcache, we need to check that the page's swap has not changed.
2993 if (unlikely((!PageSwapCache(page) ||
2994 page_private(page) != entry.val)) && swapcache)
2995 goto out_page;
2997 page = ksm_might_need_to_copy(page, vma, vmf->address);
2998 if (unlikely(!page)) {
2999 ret = VM_FAULT_OOM;
3000 page = swapcache;
3001 goto out_page;
3004 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
3005 &memcg, false)) {
3006 ret = VM_FAULT_OOM;
3007 goto out_page;
3011 * Back out if somebody else already faulted in this pte.
3013 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3014 &vmf->ptl);
3015 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3016 goto out_nomap;
3018 if (unlikely(!PageUptodate(page))) {
3019 ret = VM_FAULT_SIGBUS;
3020 goto out_nomap;
3024 * The page isn't present yet, go ahead with the fault.
3026 * Be careful about the sequence of operations here.
3027 * To get its accounting right, reuse_swap_page() must be called
3028 * while the page is counted on swap but not yet in mapcount i.e.
3029 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3030 * must be called after the swap_free(), or it will never succeed.
3033 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3034 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3035 pte = mk_pte(page, vma->vm_page_prot);
3036 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3037 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3038 vmf->flags &= ~FAULT_FLAG_WRITE;
3039 ret |= VM_FAULT_WRITE;
3040 exclusive = RMAP_EXCLUSIVE;
3042 flush_icache_page(vma, page);
3043 if (pte_swp_soft_dirty(vmf->orig_pte))
3044 pte = pte_mksoft_dirty(pte);
3045 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3046 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3047 vmf->orig_pte = pte;
3049 /* ksm created a completely new copy */
3050 if (unlikely(page != swapcache && swapcache)) {
3051 page_add_new_anon_rmap(page, vma, vmf->address, false);
3052 mem_cgroup_commit_charge(page, memcg, false, false);
3053 lru_cache_add_active_or_unevictable(page, vma);
3054 } else {
3055 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3056 mem_cgroup_commit_charge(page, memcg, true, false);
3057 activate_page(page);
3060 swap_free(entry);
3061 if (mem_cgroup_swap_full(page) ||
3062 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3063 try_to_free_swap(page);
3064 unlock_page(page);
3065 if (page != swapcache && swapcache) {
3067 * Hold the lock to avoid the swap entry to be reused
3068 * until we take the PT lock for the pte_same() check
3069 * (to avoid false positives from pte_same). For
3070 * further safety release the lock after the swap_free
3071 * so that the swap count won't change under a
3072 * parallel locked swapcache.
3074 unlock_page(swapcache);
3075 put_page(swapcache);
3078 if (vmf->flags & FAULT_FLAG_WRITE) {
3079 ret |= do_wp_page(vmf);
3080 if (ret & VM_FAULT_ERROR)
3081 ret &= VM_FAULT_ERROR;
3082 goto out;
3085 /* No need to invalidate - it was non-present before */
3086 update_mmu_cache(vma, vmf->address, vmf->pte);
3087 unlock:
3088 pte_unmap_unlock(vmf->pte, vmf->ptl);
3089 out:
3090 return ret;
3091 out_nomap:
3092 mem_cgroup_cancel_charge(page, memcg, false);
3093 pte_unmap_unlock(vmf->pte, vmf->ptl);
3094 out_page:
3095 unlock_page(page);
3096 out_release:
3097 put_page(page);
3098 if (page != swapcache && swapcache) {
3099 unlock_page(swapcache);
3100 put_page(swapcache);
3102 return ret;
3106 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3107 * but allow concurrent faults), and pte mapped but not yet locked.
3108 * We return with mmap_sem still held, but pte unmapped and unlocked.
3110 static int do_anonymous_page(struct vm_fault *vmf)
3112 struct vm_area_struct *vma = vmf->vma;
3113 struct mem_cgroup *memcg;
3114 struct page *page;
3115 int ret = 0;
3116 pte_t entry;
3118 /* File mapping without ->vm_ops ? */
3119 if (vma->vm_flags & VM_SHARED)
3120 return VM_FAULT_SIGBUS;
3123 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3124 * pte_offset_map() on pmds where a huge pmd might be created
3125 * from a different thread.
3127 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3128 * parallel threads are excluded by other means.
3130 * Here we only have down_read(mmap_sem).
3132 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3133 return VM_FAULT_OOM;
3135 /* See the comment in pte_alloc_one_map() */
3136 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3137 return 0;
3139 /* Use the zero-page for reads */
3140 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3141 !mm_forbids_zeropage(vma->vm_mm)) {
3142 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3143 vma->vm_page_prot));
3144 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3145 vmf->address, &vmf->ptl);
3146 if (!pte_none(*vmf->pte))
3147 goto unlock;
3148 ret = check_stable_address_space(vma->vm_mm);
3149 if (ret)
3150 goto unlock;
3151 /* Deliver the page fault to userland, check inside PT lock */
3152 if (userfaultfd_missing(vma)) {
3153 pte_unmap_unlock(vmf->pte, vmf->ptl);
3154 return handle_userfault(vmf, VM_UFFD_MISSING);
3156 goto setpte;
3159 /* Allocate our own private page. */
3160 if (unlikely(anon_vma_prepare(vma)))
3161 goto oom;
3162 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3163 if (!page)
3164 goto oom;
3166 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3167 goto oom_free_page;
3170 * The memory barrier inside __SetPageUptodate makes sure that
3171 * preceeding stores to the page contents become visible before
3172 * the set_pte_at() write.
3174 __SetPageUptodate(page);
3176 entry = mk_pte(page, vma->vm_page_prot);
3177 if (vma->vm_flags & VM_WRITE)
3178 entry = pte_mkwrite(pte_mkdirty(entry));
3180 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3181 &vmf->ptl);
3182 if (!pte_none(*vmf->pte))
3183 goto release;
3185 ret = check_stable_address_space(vma->vm_mm);
3186 if (ret)
3187 goto release;
3189 /* Deliver the page fault to userland, check inside PT lock */
3190 if (userfaultfd_missing(vma)) {
3191 pte_unmap_unlock(vmf->pte, vmf->ptl);
3192 mem_cgroup_cancel_charge(page, memcg, false);
3193 put_page(page);
3194 return handle_userfault(vmf, VM_UFFD_MISSING);
3197 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3198 page_add_new_anon_rmap(page, vma, vmf->address, false);
3199 mem_cgroup_commit_charge(page, memcg, false, false);
3200 lru_cache_add_active_or_unevictable(page, vma);
3201 setpte:
3202 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3204 /* No need to invalidate - it was non-present before */
3205 update_mmu_cache(vma, vmf->address, vmf->pte);
3206 unlock:
3207 pte_unmap_unlock(vmf->pte, vmf->ptl);
3208 return ret;
3209 release:
3210 mem_cgroup_cancel_charge(page, memcg, false);
3211 put_page(page);
3212 goto unlock;
3213 oom_free_page:
3214 put_page(page);
3215 oom:
3216 return VM_FAULT_OOM;
3220 * The mmap_sem must have been held on entry, and may have been
3221 * released depending on flags and vma->vm_ops->fault() return value.
3222 * See filemap_fault() and __lock_page_retry().
3224 static int __do_fault(struct vm_fault *vmf)
3226 struct vm_area_struct *vma = vmf->vma;
3227 int ret;
3229 ret = vma->vm_ops->fault(vmf);
3230 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3231 VM_FAULT_DONE_COW)))
3232 return ret;
3234 if (unlikely(PageHWPoison(vmf->page))) {
3235 if (ret & VM_FAULT_LOCKED)
3236 unlock_page(vmf->page);
3237 put_page(vmf->page);
3238 vmf->page = NULL;
3239 return VM_FAULT_HWPOISON;
3242 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3243 lock_page(vmf->page);
3244 else
3245 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3247 return ret;
3251 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3252 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3253 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3254 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3256 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3258 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3261 static int pte_alloc_one_map(struct vm_fault *vmf)
3263 struct vm_area_struct *vma = vmf->vma;
3265 if (!pmd_none(*vmf->pmd))
3266 goto map_pte;
3267 if (vmf->prealloc_pte) {
3268 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3269 if (unlikely(!pmd_none(*vmf->pmd))) {
3270 spin_unlock(vmf->ptl);
3271 goto map_pte;
3274 mm_inc_nr_ptes(vma->vm_mm);
3275 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3276 spin_unlock(vmf->ptl);
3277 vmf->prealloc_pte = NULL;
3278 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3279 return VM_FAULT_OOM;
3281 map_pte:
3283 * If a huge pmd materialized under us just retry later. Use
3284 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3285 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3286 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3287 * running immediately after a huge pmd fault in a different thread of
3288 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3289 * All we have to ensure is that it is a regular pmd that we can walk
3290 * with pte_offset_map() and we can do that through an atomic read in
3291 * C, which is what pmd_trans_unstable() provides.
3293 if (pmd_devmap_trans_unstable(vmf->pmd))
3294 return VM_FAULT_NOPAGE;
3297 * At this point we know that our vmf->pmd points to a page of ptes
3298 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3299 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3300 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3301 * be valid and we will re-check to make sure the vmf->pte isn't
3302 * pte_none() under vmf->ptl protection when we return to
3303 * alloc_set_pte().
3305 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3306 &vmf->ptl);
3307 return 0;
3310 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3312 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3313 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3314 unsigned long haddr)
3316 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3317 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3318 return false;
3319 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3320 return false;
3321 return true;
3324 static void deposit_prealloc_pte(struct vm_fault *vmf)
3326 struct vm_area_struct *vma = vmf->vma;
3328 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3330 * We are going to consume the prealloc table,
3331 * count that as nr_ptes.
3333 mm_inc_nr_ptes(vma->vm_mm);
3334 vmf->prealloc_pte = NULL;
3337 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3339 struct vm_area_struct *vma = vmf->vma;
3340 bool write = vmf->flags & FAULT_FLAG_WRITE;
3341 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3342 pmd_t entry;
3343 int i, ret;
3345 if (!transhuge_vma_suitable(vma, haddr))
3346 return VM_FAULT_FALLBACK;
3348 ret = VM_FAULT_FALLBACK;
3349 page = compound_head(page);
3352 * Archs like ppc64 need additonal space to store information
3353 * related to pte entry. Use the preallocated table for that.
3355 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3356 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3357 if (!vmf->prealloc_pte)
3358 return VM_FAULT_OOM;
3359 smp_wmb(); /* See comment in __pte_alloc() */
3362 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3363 if (unlikely(!pmd_none(*vmf->pmd)))
3364 goto out;
3366 for (i = 0; i < HPAGE_PMD_NR; i++)
3367 flush_icache_page(vma, page + i);
3369 entry = mk_huge_pmd(page, vma->vm_page_prot);
3370 if (write)
3371 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3373 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3374 page_add_file_rmap(page, true);
3376 * deposit and withdraw with pmd lock held
3378 if (arch_needs_pgtable_deposit())
3379 deposit_prealloc_pte(vmf);
3381 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3383 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3385 /* fault is handled */
3386 ret = 0;
3387 count_vm_event(THP_FILE_MAPPED);
3388 out:
3389 spin_unlock(vmf->ptl);
3390 return ret;
3392 #else
3393 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3395 BUILD_BUG();
3396 return 0;
3398 #endif
3401 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3402 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3404 * @vmf: fault environment
3405 * @memcg: memcg to charge page (only for private mappings)
3406 * @page: page to map
3408 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3409 * return.
3411 * Target users are page handler itself and implementations of
3412 * vm_ops->map_pages.
3414 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3415 struct page *page)
3417 struct vm_area_struct *vma = vmf->vma;
3418 bool write = vmf->flags & FAULT_FLAG_WRITE;
3419 pte_t entry;
3420 int ret;
3422 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3423 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3424 /* THP on COW? */
3425 VM_BUG_ON_PAGE(memcg, page);
3427 ret = do_set_pmd(vmf, page);
3428 if (ret != VM_FAULT_FALLBACK)
3429 return ret;
3432 if (!vmf->pte) {
3433 ret = pte_alloc_one_map(vmf);
3434 if (ret)
3435 return ret;
3438 /* Re-check under ptl */
3439 if (unlikely(!pte_none(*vmf->pte)))
3440 return VM_FAULT_NOPAGE;
3442 flush_icache_page(vma, page);
3443 entry = mk_pte(page, vma->vm_page_prot);
3444 if (write)
3445 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3446 /* copy-on-write page */
3447 if (write && !(vma->vm_flags & VM_SHARED)) {
3448 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3449 page_add_new_anon_rmap(page, vma, vmf->address, false);
3450 mem_cgroup_commit_charge(page, memcg, false, false);
3451 lru_cache_add_active_or_unevictable(page, vma);
3452 } else {
3453 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3454 page_add_file_rmap(page, false);
3456 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3458 /* no need to invalidate: a not-present page won't be cached */
3459 update_mmu_cache(vma, vmf->address, vmf->pte);
3461 return 0;
3466 * finish_fault - finish page fault once we have prepared the page to fault
3468 * @vmf: structure describing the fault
3470 * This function handles all that is needed to finish a page fault once the
3471 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3472 * given page, adds reverse page mapping, handles memcg charges and LRU
3473 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3474 * error.
3476 * The function expects the page to be locked and on success it consumes a
3477 * reference of a page being mapped (for the PTE which maps it).
3479 int finish_fault(struct vm_fault *vmf)
3481 struct page *page;
3482 int ret = 0;
3484 /* Did we COW the page? */
3485 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3486 !(vmf->vma->vm_flags & VM_SHARED))
3487 page = vmf->cow_page;
3488 else
3489 page = vmf->page;
3492 * check even for read faults because we might have lost our CoWed
3493 * page
3495 if (!(vmf->vma->vm_flags & VM_SHARED))
3496 ret = check_stable_address_space(vmf->vma->vm_mm);
3497 if (!ret)
3498 ret = alloc_set_pte(vmf, vmf->memcg, page);
3499 if (vmf->pte)
3500 pte_unmap_unlock(vmf->pte, vmf->ptl);
3501 return ret;
3504 static unsigned long fault_around_bytes __read_mostly =
3505 rounddown_pow_of_two(65536);
3507 #ifdef CONFIG_DEBUG_FS
3508 static int fault_around_bytes_get(void *data, u64 *val)
3510 *val = fault_around_bytes;
3511 return 0;
3515 * fault_around_bytes must be rounded down to the nearest page order as it's
3516 * what do_fault_around() expects to see.
3518 static int fault_around_bytes_set(void *data, u64 val)
3520 if (val / PAGE_SIZE > PTRS_PER_PTE)
3521 return -EINVAL;
3522 if (val > PAGE_SIZE)
3523 fault_around_bytes = rounddown_pow_of_two(val);
3524 else
3525 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3526 return 0;
3528 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3529 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3531 static int __init fault_around_debugfs(void)
3533 void *ret;
3535 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3536 &fault_around_bytes_fops);
3537 if (!ret)
3538 pr_warn("Failed to create fault_around_bytes in debugfs");
3539 return 0;
3541 late_initcall(fault_around_debugfs);
3542 #endif
3545 * do_fault_around() tries to map few pages around the fault address. The hope
3546 * is that the pages will be needed soon and this will lower the number of
3547 * faults to handle.
3549 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3550 * not ready to be mapped: not up-to-date, locked, etc.
3552 * This function is called with the page table lock taken. In the split ptlock
3553 * case the page table lock only protects only those entries which belong to
3554 * the page table corresponding to the fault address.
3556 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3557 * only once.
3559 * fault_around_bytes defines how many bytes we'll try to map.
3560 * do_fault_around() expects it to be set to a power of two less than or equal
3561 * to PTRS_PER_PTE.
3563 * The virtual address of the area that we map is naturally aligned to
3564 * fault_around_bytes rounded down to the machine page size
3565 * (and therefore to page order). This way it's easier to guarantee
3566 * that we don't cross page table boundaries.
3568 static int do_fault_around(struct vm_fault *vmf)
3570 unsigned long address = vmf->address, nr_pages, mask;
3571 pgoff_t start_pgoff = vmf->pgoff;
3572 pgoff_t end_pgoff;
3573 int off, ret = 0;
3575 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3576 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3578 vmf->address = max(address & mask, vmf->vma->vm_start);
3579 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3580 start_pgoff -= off;
3583 * end_pgoff is either the end of the page table, the end of
3584 * the vma or nr_pages from start_pgoff, depending what is nearest.
3586 end_pgoff = start_pgoff -
3587 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3588 PTRS_PER_PTE - 1;
3589 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3590 start_pgoff + nr_pages - 1);
3592 if (pmd_none(*vmf->pmd)) {
3593 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3594 vmf->address);
3595 if (!vmf->prealloc_pte)
3596 goto out;
3597 smp_wmb(); /* See comment in __pte_alloc() */
3600 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3602 /* Huge page is mapped? Page fault is solved */
3603 if (pmd_trans_huge(*vmf->pmd)) {
3604 ret = VM_FAULT_NOPAGE;
3605 goto out;
3608 /* ->map_pages() haven't done anything useful. Cold page cache? */
3609 if (!vmf->pte)
3610 goto out;
3612 /* check if the page fault is solved */
3613 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3614 if (!pte_none(*vmf->pte))
3615 ret = VM_FAULT_NOPAGE;
3616 pte_unmap_unlock(vmf->pte, vmf->ptl);
3617 out:
3618 vmf->address = address;
3619 vmf->pte = NULL;
3620 return ret;
3623 static int do_read_fault(struct vm_fault *vmf)
3625 struct vm_area_struct *vma = vmf->vma;
3626 int ret = 0;
3629 * Let's call ->map_pages() first and use ->fault() as fallback
3630 * if page by the offset is not ready to be mapped (cold cache or
3631 * something).
3633 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3634 ret = do_fault_around(vmf);
3635 if (ret)
3636 return ret;
3639 ret = __do_fault(vmf);
3640 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3641 return ret;
3643 ret |= finish_fault(vmf);
3644 unlock_page(vmf->page);
3645 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3646 put_page(vmf->page);
3647 return ret;
3650 static int do_cow_fault(struct vm_fault *vmf)
3652 struct vm_area_struct *vma = vmf->vma;
3653 int ret;
3655 if (unlikely(anon_vma_prepare(vma)))
3656 return VM_FAULT_OOM;
3658 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3659 if (!vmf->cow_page)
3660 return VM_FAULT_OOM;
3662 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3663 &vmf->memcg, false)) {
3664 put_page(vmf->cow_page);
3665 return VM_FAULT_OOM;
3668 ret = __do_fault(vmf);
3669 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3670 goto uncharge_out;
3671 if (ret & VM_FAULT_DONE_COW)
3672 return ret;
3674 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3675 __SetPageUptodate(vmf->cow_page);
3677 ret |= finish_fault(vmf);
3678 unlock_page(vmf->page);
3679 put_page(vmf->page);
3680 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3681 goto uncharge_out;
3682 return ret;
3683 uncharge_out:
3684 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3685 put_page(vmf->cow_page);
3686 return ret;
3689 static int do_shared_fault(struct vm_fault *vmf)
3691 struct vm_area_struct *vma = vmf->vma;
3692 int ret, tmp;
3694 ret = __do_fault(vmf);
3695 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3696 return ret;
3699 * Check if the backing address space wants to know that the page is
3700 * about to become writable
3702 if (vma->vm_ops->page_mkwrite) {
3703 unlock_page(vmf->page);
3704 tmp = do_page_mkwrite(vmf);
3705 if (unlikely(!tmp ||
3706 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3707 put_page(vmf->page);
3708 return tmp;
3712 ret |= finish_fault(vmf);
3713 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3714 VM_FAULT_RETRY))) {
3715 unlock_page(vmf->page);
3716 put_page(vmf->page);
3717 return ret;
3720 fault_dirty_shared_page(vma, vmf->page);
3721 return ret;
3725 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3726 * but allow concurrent faults).
3727 * The mmap_sem may have been released depending on flags and our
3728 * return value. See filemap_fault() and __lock_page_or_retry().
3730 static int do_fault(struct vm_fault *vmf)
3732 struct vm_area_struct *vma = vmf->vma;
3733 int ret;
3735 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3736 if (!vma->vm_ops->fault)
3737 ret = VM_FAULT_SIGBUS;
3738 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3739 ret = do_read_fault(vmf);
3740 else if (!(vma->vm_flags & VM_SHARED))
3741 ret = do_cow_fault(vmf);
3742 else
3743 ret = do_shared_fault(vmf);
3745 /* preallocated pagetable is unused: free it */
3746 if (vmf->prealloc_pte) {
3747 pte_free(vma->vm_mm, vmf->prealloc_pte);
3748 vmf->prealloc_pte = NULL;
3750 return ret;
3753 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3754 unsigned long addr, int page_nid,
3755 int *flags)
3757 get_page(page);
3759 count_vm_numa_event(NUMA_HINT_FAULTS);
3760 if (page_nid == numa_node_id()) {
3761 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3762 *flags |= TNF_FAULT_LOCAL;
3765 return mpol_misplaced(page, vma, addr);
3768 static int do_numa_page(struct vm_fault *vmf)
3770 struct vm_area_struct *vma = vmf->vma;
3771 struct page *page = NULL;
3772 int page_nid = -1;
3773 int last_cpupid;
3774 int target_nid;
3775 bool migrated = false;
3776 pte_t pte;
3777 bool was_writable = pte_savedwrite(vmf->orig_pte);
3778 int flags = 0;
3781 * The "pte" at this point cannot be used safely without
3782 * validation through pte_unmap_same(). It's of NUMA type but
3783 * the pfn may be screwed if the read is non atomic.
3785 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3786 spin_lock(vmf->ptl);
3787 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3788 pte_unmap_unlock(vmf->pte, vmf->ptl);
3789 goto out;
3793 * Make it present again, Depending on how arch implementes non
3794 * accessible ptes, some can allow access by kernel mode.
3796 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3797 pte = pte_modify(pte, vma->vm_page_prot);
3798 pte = pte_mkyoung(pte);
3799 if (was_writable)
3800 pte = pte_mkwrite(pte);
3801 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3802 update_mmu_cache(vma, vmf->address, vmf->pte);
3804 page = vm_normal_page(vma, vmf->address, pte);
3805 if (!page) {
3806 pte_unmap_unlock(vmf->pte, vmf->ptl);
3807 return 0;
3810 /* TODO: handle PTE-mapped THP */
3811 if (PageCompound(page)) {
3812 pte_unmap_unlock(vmf->pte, vmf->ptl);
3813 return 0;
3817 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3818 * much anyway since they can be in shared cache state. This misses
3819 * the case where a mapping is writable but the process never writes
3820 * to it but pte_write gets cleared during protection updates and
3821 * pte_dirty has unpredictable behaviour between PTE scan updates,
3822 * background writeback, dirty balancing and application behaviour.
3824 if (!pte_write(pte))
3825 flags |= TNF_NO_GROUP;
3828 * Flag if the page is shared between multiple address spaces. This
3829 * is later used when determining whether to group tasks together
3831 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3832 flags |= TNF_SHARED;
3834 last_cpupid = page_cpupid_last(page);
3835 page_nid = page_to_nid(page);
3836 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3837 &flags);
3838 pte_unmap_unlock(vmf->pte, vmf->ptl);
3839 if (target_nid == -1) {
3840 put_page(page);
3841 goto out;
3844 /* Migrate to the requested node */
3845 migrated = migrate_misplaced_page(page, vma, target_nid);
3846 if (migrated) {
3847 page_nid = target_nid;
3848 flags |= TNF_MIGRATED;
3849 } else
3850 flags |= TNF_MIGRATE_FAIL;
3852 out:
3853 if (page_nid != -1)
3854 task_numa_fault(last_cpupid, page_nid, 1, flags);
3855 return 0;
3858 static inline int create_huge_pmd(struct vm_fault *vmf)
3860 if (vma_is_anonymous(vmf->vma))
3861 return do_huge_pmd_anonymous_page(vmf);
3862 if (vmf->vma->vm_ops->huge_fault)
3863 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3864 return VM_FAULT_FALLBACK;
3867 /* `inline' is required to avoid gcc 4.1.2 build error */
3868 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3870 if (vma_is_anonymous(vmf->vma))
3871 return do_huge_pmd_wp_page(vmf, orig_pmd);
3872 if (vmf->vma->vm_ops->huge_fault)
3873 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3875 /* COW handled on pte level: split pmd */
3876 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3877 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3879 return VM_FAULT_FALLBACK;
3882 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3884 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3887 static int create_huge_pud(struct vm_fault *vmf)
3889 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3890 /* No support for anonymous transparent PUD pages yet */
3891 if (vma_is_anonymous(vmf->vma))
3892 return VM_FAULT_FALLBACK;
3893 if (vmf->vma->vm_ops->huge_fault)
3894 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3895 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3896 return VM_FAULT_FALLBACK;
3899 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3901 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3902 /* No support for anonymous transparent PUD pages yet */
3903 if (vma_is_anonymous(vmf->vma))
3904 return VM_FAULT_FALLBACK;
3905 if (vmf->vma->vm_ops->huge_fault)
3906 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3907 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3908 return VM_FAULT_FALLBACK;
3912 * These routines also need to handle stuff like marking pages dirty
3913 * and/or accessed for architectures that don't do it in hardware (most
3914 * RISC architectures). The early dirtying is also good on the i386.
3916 * There is also a hook called "update_mmu_cache()" that architectures
3917 * with external mmu caches can use to update those (ie the Sparc or
3918 * PowerPC hashed page tables that act as extended TLBs).
3920 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3921 * concurrent faults).
3923 * The mmap_sem may have been released depending on flags and our return value.
3924 * See filemap_fault() and __lock_page_or_retry().
3926 static int handle_pte_fault(struct vm_fault *vmf)
3928 pte_t entry;
3930 if (unlikely(pmd_none(*vmf->pmd))) {
3932 * Leave __pte_alloc() until later: because vm_ops->fault may
3933 * want to allocate huge page, and if we expose page table
3934 * for an instant, it will be difficult to retract from
3935 * concurrent faults and from rmap lookups.
3937 vmf->pte = NULL;
3938 } else {
3939 /* See comment in pte_alloc_one_map() */
3940 if (pmd_devmap_trans_unstable(vmf->pmd))
3941 return 0;
3943 * A regular pmd is established and it can't morph into a huge
3944 * pmd from under us anymore at this point because we hold the
3945 * mmap_sem read mode and khugepaged takes it in write mode.
3946 * So now it's safe to run pte_offset_map().
3948 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3949 vmf->orig_pte = *vmf->pte;
3952 * some architectures can have larger ptes than wordsize,
3953 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3954 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3955 * accesses. The code below just needs a consistent view
3956 * for the ifs and we later double check anyway with the
3957 * ptl lock held. So here a barrier will do.
3959 barrier();
3960 if (pte_none(vmf->orig_pte)) {
3961 pte_unmap(vmf->pte);
3962 vmf->pte = NULL;
3966 if (!vmf->pte) {
3967 if (vma_is_anonymous(vmf->vma))
3968 return do_anonymous_page(vmf);
3969 else
3970 return do_fault(vmf);
3973 if (!pte_present(vmf->orig_pte))
3974 return do_swap_page(vmf);
3976 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3977 return do_numa_page(vmf);
3979 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3980 spin_lock(vmf->ptl);
3981 entry = vmf->orig_pte;
3982 if (unlikely(!pte_same(*vmf->pte, entry)))
3983 goto unlock;
3984 if (vmf->flags & FAULT_FLAG_WRITE) {
3985 if (!pte_write(entry))
3986 return do_wp_page(vmf);
3987 entry = pte_mkdirty(entry);
3989 entry = pte_mkyoung(entry);
3990 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3991 vmf->flags & FAULT_FLAG_WRITE)) {
3992 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3993 } else {
3995 * This is needed only for protection faults but the arch code
3996 * is not yet telling us if this is a protection fault or not.
3997 * This still avoids useless tlb flushes for .text page faults
3998 * with threads.
4000 if (vmf->flags & FAULT_FLAG_WRITE)
4001 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4003 unlock:
4004 pte_unmap_unlock(vmf->pte, vmf->ptl);
4005 return 0;
4009 * By the time we get here, we already hold the mm semaphore
4011 * The mmap_sem may have been released depending on flags and our
4012 * return value. See filemap_fault() and __lock_page_or_retry().
4014 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4015 unsigned int flags)
4017 struct vm_fault vmf = {
4018 .vma = vma,
4019 .address = address & PAGE_MASK,
4020 .flags = flags,
4021 .pgoff = linear_page_index(vma, address),
4022 .gfp_mask = __get_fault_gfp_mask(vma),
4024 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4025 struct mm_struct *mm = vma->vm_mm;
4026 pgd_t *pgd;
4027 p4d_t *p4d;
4028 int ret;
4030 pgd = pgd_offset(mm, address);
4031 p4d = p4d_alloc(mm, pgd, address);
4032 if (!p4d)
4033 return VM_FAULT_OOM;
4035 vmf.pud = pud_alloc(mm, p4d, address);
4036 if (!vmf.pud)
4037 return VM_FAULT_OOM;
4038 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4039 ret = create_huge_pud(&vmf);
4040 if (!(ret & VM_FAULT_FALLBACK))
4041 return ret;
4042 } else {
4043 pud_t orig_pud = *vmf.pud;
4045 barrier();
4046 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4048 /* NUMA case for anonymous PUDs would go here */
4050 if (dirty && !pud_write(orig_pud)) {
4051 ret = wp_huge_pud(&vmf, orig_pud);
4052 if (!(ret & VM_FAULT_FALLBACK))
4053 return ret;
4054 } else {
4055 huge_pud_set_accessed(&vmf, orig_pud);
4056 return 0;
4061 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4062 if (!vmf.pmd)
4063 return VM_FAULT_OOM;
4064 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4065 ret = create_huge_pmd(&vmf);
4066 if (!(ret & VM_FAULT_FALLBACK))
4067 return ret;
4068 } else {
4069 pmd_t orig_pmd = *vmf.pmd;
4071 barrier();
4072 if (unlikely(is_swap_pmd(orig_pmd))) {
4073 VM_BUG_ON(thp_migration_supported() &&
4074 !is_pmd_migration_entry(orig_pmd));
4075 if (is_pmd_migration_entry(orig_pmd))
4076 pmd_migration_entry_wait(mm, vmf.pmd);
4077 return 0;
4079 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4080 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4081 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4083 if (dirty && !pmd_write(orig_pmd)) {
4084 ret = wp_huge_pmd(&vmf, orig_pmd);
4085 if (!(ret & VM_FAULT_FALLBACK))
4086 return ret;
4087 } else {
4088 huge_pmd_set_accessed(&vmf, orig_pmd);
4089 return 0;
4094 return handle_pte_fault(&vmf);
4098 * By the time we get here, we already hold the mm semaphore
4100 * The mmap_sem may have been released depending on flags and our
4101 * return value. See filemap_fault() and __lock_page_or_retry().
4103 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4104 unsigned int flags)
4106 int ret;
4108 __set_current_state(TASK_RUNNING);
4110 count_vm_event(PGFAULT);
4111 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4113 /* do counter updates before entering really critical section. */
4114 check_sync_rss_stat(current);
4116 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4117 flags & FAULT_FLAG_INSTRUCTION,
4118 flags & FAULT_FLAG_REMOTE))
4119 return VM_FAULT_SIGSEGV;
4122 * Enable the memcg OOM handling for faults triggered in user
4123 * space. Kernel faults are handled more gracefully.
4125 if (flags & FAULT_FLAG_USER)
4126 mem_cgroup_oom_enable();
4128 if (unlikely(is_vm_hugetlb_page(vma)))
4129 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4130 else
4131 ret = __handle_mm_fault(vma, address, flags);
4133 if (flags & FAULT_FLAG_USER) {
4134 mem_cgroup_oom_disable();
4136 * The task may have entered a memcg OOM situation but
4137 * if the allocation error was handled gracefully (no
4138 * VM_FAULT_OOM), there is no need to kill anything.
4139 * Just clean up the OOM state peacefully.
4141 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4142 mem_cgroup_oom_synchronize(false);
4145 return ret;
4147 EXPORT_SYMBOL_GPL(handle_mm_fault);
4149 #ifndef __PAGETABLE_P4D_FOLDED
4151 * Allocate p4d page table.
4152 * We've already handled the fast-path in-line.
4154 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4156 p4d_t *new = p4d_alloc_one(mm, address);
4157 if (!new)
4158 return -ENOMEM;
4160 smp_wmb(); /* See comment in __pte_alloc */
4162 spin_lock(&mm->page_table_lock);
4163 if (pgd_present(*pgd)) /* Another has populated it */
4164 p4d_free(mm, new);
4165 else
4166 pgd_populate(mm, pgd, new);
4167 spin_unlock(&mm->page_table_lock);
4168 return 0;
4170 #endif /* __PAGETABLE_P4D_FOLDED */
4172 #ifndef __PAGETABLE_PUD_FOLDED
4174 * Allocate page upper directory.
4175 * We've already handled the fast-path in-line.
4177 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4179 pud_t *new = pud_alloc_one(mm, address);
4180 if (!new)
4181 return -ENOMEM;
4183 smp_wmb(); /* See comment in __pte_alloc */
4185 spin_lock(&mm->page_table_lock);
4186 #ifndef __ARCH_HAS_5LEVEL_HACK
4187 if (!p4d_present(*p4d)) {
4188 mm_inc_nr_puds(mm);
4189 p4d_populate(mm, p4d, new);
4190 } else /* Another has populated it */
4191 pud_free(mm, new);
4192 #else
4193 if (!pgd_present(*p4d)) {
4194 mm_inc_nr_puds(mm);
4195 pgd_populate(mm, p4d, new);
4196 } else /* Another has populated it */
4197 pud_free(mm, new);
4198 #endif /* __ARCH_HAS_5LEVEL_HACK */
4199 spin_unlock(&mm->page_table_lock);
4200 return 0;
4202 #endif /* __PAGETABLE_PUD_FOLDED */
4204 #ifndef __PAGETABLE_PMD_FOLDED
4206 * Allocate page middle directory.
4207 * We've already handled the fast-path in-line.
4209 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4211 spinlock_t *ptl;
4212 pmd_t *new = pmd_alloc_one(mm, address);
4213 if (!new)
4214 return -ENOMEM;
4216 smp_wmb(); /* See comment in __pte_alloc */
4218 ptl = pud_lock(mm, pud);
4219 #ifndef __ARCH_HAS_4LEVEL_HACK
4220 if (!pud_present(*pud)) {
4221 mm_inc_nr_pmds(mm);
4222 pud_populate(mm, pud, new);
4223 } else /* Another has populated it */
4224 pmd_free(mm, new);
4225 #else
4226 if (!pgd_present(*pud)) {
4227 mm_inc_nr_pmds(mm);
4228 pgd_populate(mm, pud, new);
4229 } else /* Another has populated it */
4230 pmd_free(mm, new);
4231 #endif /* __ARCH_HAS_4LEVEL_HACK */
4232 spin_unlock(ptl);
4233 return 0;
4235 #endif /* __PAGETABLE_PMD_FOLDED */
4237 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4238 unsigned long *start, unsigned long *end,
4239 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4241 pgd_t *pgd;
4242 p4d_t *p4d;
4243 pud_t *pud;
4244 pmd_t *pmd;
4245 pte_t *ptep;
4247 pgd = pgd_offset(mm, address);
4248 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4249 goto out;
4251 p4d = p4d_offset(pgd, address);
4252 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4253 goto out;
4255 pud = pud_offset(p4d, address);
4256 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4257 goto out;
4259 pmd = pmd_offset(pud, address);
4260 VM_BUG_ON(pmd_trans_huge(*pmd));
4262 if (pmd_huge(*pmd)) {
4263 if (!pmdpp)
4264 goto out;
4266 if (start && end) {
4267 *start = address & PMD_MASK;
4268 *end = *start + PMD_SIZE;
4269 mmu_notifier_invalidate_range_start(mm, *start, *end);
4271 *ptlp = pmd_lock(mm, pmd);
4272 if (pmd_huge(*pmd)) {
4273 *pmdpp = pmd;
4274 return 0;
4276 spin_unlock(*ptlp);
4277 if (start && end)
4278 mmu_notifier_invalidate_range_end(mm, *start, *end);
4281 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4282 goto out;
4284 if (start && end) {
4285 *start = address & PAGE_MASK;
4286 *end = *start + PAGE_SIZE;
4287 mmu_notifier_invalidate_range_start(mm, *start, *end);
4289 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4290 if (!pte_present(*ptep))
4291 goto unlock;
4292 *ptepp = ptep;
4293 return 0;
4294 unlock:
4295 pte_unmap_unlock(ptep, *ptlp);
4296 if (start && end)
4297 mmu_notifier_invalidate_range_end(mm, *start, *end);
4298 out:
4299 return -EINVAL;
4302 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4303 pte_t **ptepp, spinlock_t **ptlp)
4305 int res;
4307 /* (void) is needed to make gcc happy */
4308 (void) __cond_lock(*ptlp,
4309 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4310 ptepp, NULL, ptlp)));
4311 return res;
4314 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4315 unsigned long *start, unsigned long *end,
4316 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4318 int res;
4320 /* (void) is needed to make gcc happy */
4321 (void) __cond_lock(*ptlp,
4322 !(res = __follow_pte_pmd(mm, address, start, end,
4323 ptepp, pmdpp, ptlp)));
4324 return res;
4326 EXPORT_SYMBOL(follow_pte_pmd);
4329 * follow_pfn - look up PFN at a user virtual address
4330 * @vma: memory mapping
4331 * @address: user virtual address
4332 * @pfn: location to store found PFN
4334 * Only IO mappings and raw PFN mappings are allowed.
4336 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4338 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4339 unsigned long *pfn)
4341 int ret = -EINVAL;
4342 spinlock_t *ptl;
4343 pte_t *ptep;
4345 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4346 return ret;
4348 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4349 if (ret)
4350 return ret;
4351 *pfn = pte_pfn(*ptep);
4352 pte_unmap_unlock(ptep, ptl);
4353 return 0;
4355 EXPORT_SYMBOL(follow_pfn);
4357 #ifdef CONFIG_HAVE_IOREMAP_PROT
4358 int follow_phys(struct vm_area_struct *vma,
4359 unsigned long address, unsigned int flags,
4360 unsigned long *prot, resource_size_t *phys)
4362 int ret = -EINVAL;
4363 pte_t *ptep, pte;
4364 spinlock_t *ptl;
4366 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4367 goto out;
4369 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4370 goto out;
4371 pte = *ptep;
4373 if ((flags & FOLL_WRITE) && !pte_write(pte))
4374 goto unlock;
4376 *prot = pgprot_val(pte_pgprot(pte));
4377 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4379 ret = 0;
4380 unlock:
4381 pte_unmap_unlock(ptep, ptl);
4382 out:
4383 return ret;
4386 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4387 void *buf, int len, int write)
4389 resource_size_t phys_addr;
4390 unsigned long prot = 0;
4391 void __iomem *maddr;
4392 int offset = addr & (PAGE_SIZE-1);
4394 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4395 return -EINVAL;
4397 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4398 if (write)
4399 memcpy_toio(maddr + offset, buf, len);
4400 else
4401 memcpy_fromio(buf, maddr + offset, len);
4402 iounmap(maddr);
4404 return len;
4406 EXPORT_SYMBOL_GPL(generic_access_phys);
4407 #endif
4410 * Access another process' address space as given in mm. If non-NULL, use the
4411 * given task for page fault accounting.
4413 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4414 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4416 struct vm_area_struct *vma;
4417 void *old_buf = buf;
4418 int write = gup_flags & FOLL_WRITE;
4420 down_read(&mm->mmap_sem);
4421 /* ignore errors, just check how much was successfully transferred */
4422 while (len) {
4423 int bytes, ret, offset;
4424 void *maddr;
4425 struct page *page = NULL;
4427 ret = get_user_pages_remote(tsk, mm, addr, 1,
4428 gup_flags, &page, &vma, NULL);
4429 if (ret <= 0) {
4430 #ifndef CONFIG_HAVE_IOREMAP_PROT
4431 break;
4432 #else
4434 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4435 * we can access using slightly different code.
4437 vma = find_vma(mm, addr);
4438 if (!vma || vma->vm_start > addr)
4439 break;
4440 if (vma->vm_ops && vma->vm_ops->access)
4441 ret = vma->vm_ops->access(vma, addr, buf,
4442 len, write);
4443 if (ret <= 0)
4444 break;
4445 bytes = ret;
4446 #endif
4447 } else {
4448 bytes = len;
4449 offset = addr & (PAGE_SIZE-1);
4450 if (bytes > PAGE_SIZE-offset)
4451 bytes = PAGE_SIZE-offset;
4453 maddr = kmap(page);
4454 if (write) {
4455 copy_to_user_page(vma, page, addr,
4456 maddr + offset, buf, bytes);
4457 set_page_dirty_lock(page);
4458 } else {
4459 copy_from_user_page(vma, page, addr,
4460 buf, maddr + offset, bytes);
4462 kunmap(page);
4463 put_page(page);
4465 len -= bytes;
4466 buf += bytes;
4467 addr += bytes;
4469 up_read(&mm->mmap_sem);
4471 return buf - old_buf;
4475 * access_remote_vm - access another process' address space
4476 * @mm: the mm_struct of the target address space
4477 * @addr: start address to access
4478 * @buf: source or destination buffer
4479 * @len: number of bytes to transfer
4480 * @gup_flags: flags modifying lookup behaviour
4482 * The caller must hold a reference on @mm.
4484 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4485 void *buf, int len, unsigned int gup_flags)
4487 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4491 * Access another process' address space.
4492 * Source/target buffer must be kernel space,
4493 * Do not walk the page table directly, use get_user_pages
4495 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4496 void *buf, int len, unsigned int gup_flags)
4498 struct mm_struct *mm;
4499 int ret;
4501 mm = get_task_mm(tsk);
4502 if (!mm)
4503 return 0;
4505 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4507 mmput(mm);
4509 return ret;
4511 EXPORT_SYMBOL_GPL(access_process_vm);
4514 * Print the name of a VMA.
4516 void print_vma_addr(char *prefix, unsigned long ip)
4518 struct mm_struct *mm = current->mm;
4519 struct vm_area_struct *vma;
4522 * we might be running from an atomic context so we cannot sleep
4524 if (!down_read_trylock(&mm->mmap_sem))
4525 return;
4527 vma = find_vma(mm, ip);
4528 if (vma && vma->vm_file) {
4529 struct file *f = vma->vm_file;
4530 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4531 if (buf) {
4532 char *p;
4534 p = file_path(f, buf, PAGE_SIZE);
4535 if (IS_ERR(p))
4536 p = "?";
4537 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4538 vma->vm_start,
4539 vma->vm_end - vma->vm_start);
4540 free_page((unsigned long)buf);
4543 up_read(&mm->mmap_sem);
4546 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4547 void __might_fault(const char *file, int line)
4550 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4551 * holding the mmap_sem, this is safe because kernel memory doesn't
4552 * get paged out, therefore we'll never actually fault, and the
4553 * below annotations will generate false positives.
4555 if (uaccess_kernel())
4556 return;
4557 if (pagefault_disabled())
4558 return;
4559 __might_sleep(file, line, 0);
4560 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4561 if (current->mm)
4562 might_lock_read(&current->mm->mmap_sem);
4563 #endif
4565 EXPORT_SYMBOL(__might_fault);
4566 #endif
4568 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4569 static void clear_gigantic_page(struct page *page,
4570 unsigned long addr,
4571 unsigned int pages_per_huge_page)
4573 int i;
4574 struct page *p = page;
4576 might_sleep();
4577 for (i = 0; i < pages_per_huge_page;
4578 i++, p = mem_map_next(p, page, i)) {
4579 cond_resched();
4580 clear_user_highpage(p, addr + i * PAGE_SIZE);
4583 void clear_huge_page(struct page *page,
4584 unsigned long addr_hint, unsigned int pages_per_huge_page)
4586 int i, n, base, l;
4587 unsigned long addr = addr_hint &
4588 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4590 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4591 clear_gigantic_page(page, addr, pages_per_huge_page);
4592 return;
4595 /* Clear sub-page to access last to keep its cache lines hot */
4596 might_sleep();
4597 n = (addr_hint - addr) / PAGE_SIZE;
4598 if (2 * n <= pages_per_huge_page) {
4599 /* If sub-page to access in first half of huge page */
4600 base = 0;
4601 l = n;
4602 /* Clear sub-pages at the end of huge page */
4603 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4604 cond_resched();
4605 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4607 } else {
4608 /* If sub-page to access in second half of huge page */
4609 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4610 l = pages_per_huge_page - n;
4611 /* Clear sub-pages at the begin of huge page */
4612 for (i = 0; i < base; i++) {
4613 cond_resched();
4614 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4618 * Clear remaining sub-pages in left-right-left-right pattern
4619 * towards the sub-page to access
4621 for (i = 0; i < l; i++) {
4622 int left_idx = base + i;
4623 int right_idx = base + 2 * l - 1 - i;
4625 cond_resched();
4626 clear_user_highpage(page + left_idx,
4627 addr + left_idx * PAGE_SIZE);
4628 cond_resched();
4629 clear_user_highpage(page + right_idx,
4630 addr + right_idx * PAGE_SIZE);
4634 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4635 unsigned long addr,
4636 struct vm_area_struct *vma,
4637 unsigned int pages_per_huge_page)
4639 int i;
4640 struct page *dst_base = dst;
4641 struct page *src_base = src;
4643 for (i = 0; i < pages_per_huge_page; ) {
4644 cond_resched();
4645 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4647 i++;
4648 dst = mem_map_next(dst, dst_base, i);
4649 src = mem_map_next(src, src_base, i);
4653 void copy_user_huge_page(struct page *dst, struct page *src,
4654 unsigned long addr, struct vm_area_struct *vma,
4655 unsigned int pages_per_huge_page)
4657 int i;
4659 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4660 copy_user_gigantic_page(dst, src, addr, vma,
4661 pages_per_huge_page);
4662 return;
4665 might_sleep();
4666 for (i = 0; i < pages_per_huge_page; i++) {
4667 cond_resched();
4668 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4672 long copy_huge_page_from_user(struct page *dst_page,
4673 const void __user *usr_src,
4674 unsigned int pages_per_huge_page,
4675 bool allow_pagefault)
4677 void *src = (void *)usr_src;
4678 void *page_kaddr;
4679 unsigned long i, rc = 0;
4680 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4682 for (i = 0; i < pages_per_huge_page; i++) {
4683 if (allow_pagefault)
4684 page_kaddr = kmap(dst_page + i);
4685 else
4686 page_kaddr = kmap_atomic(dst_page + i);
4687 rc = copy_from_user(page_kaddr,
4688 (const void __user *)(src + i * PAGE_SIZE),
4689 PAGE_SIZE);
4690 if (allow_pagefault)
4691 kunmap(dst_page + i);
4692 else
4693 kunmap_atomic(page_kaddr);
4695 ret_val -= (PAGE_SIZE - rc);
4696 if (rc)
4697 break;
4699 cond_resched();
4701 return ret_val;
4703 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4705 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4707 static struct kmem_cache *page_ptl_cachep;
4709 void __init ptlock_cache_init(void)
4711 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4712 SLAB_PANIC, NULL);
4715 bool ptlock_alloc(struct page *page)
4717 spinlock_t *ptl;
4719 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4720 if (!ptl)
4721 return false;
4722 page->ptl = ptl;
4723 return true;
4726 void ptlock_free(struct page *page)
4728 kmem_cache_free(page_ptl_cachep, page->ptl);
4730 #endif