block: fix diskstats access
[linux-2.6/btrfs-unstable.git] / drivers / md / raid10.c
blob5ec80da0a9d718278a7b7b30dd6b1b2225e63091
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
26 * RAID10 provides a combination of RAID0 and RAID1 functionality.
27 * The layout of data is defined by
28 * chunk_size
29 * raid_disks
30 * near_copies (stored in low byte of layout)
31 * far_copies (stored in second byte of layout)
32 * far_offset (stored in bit 16 of layout )
34 * The data to be stored is divided into chunks using chunksize.
35 * Each device is divided into far_copies sections.
36 * In each section, chunks are laid out in a style similar to raid0, but
37 * near_copies copies of each chunk is stored (each on a different drive).
38 * The starting device for each section is offset near_copies from the starting
39 * device of the previous section.
40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
41 * drive.
42 * near_copies and far_copies must be at least one, and their product is at most
43 * raid_disks.
45 * If far_offset is true, then the far_copies are handled a bit differently.
46 * The copies are still in different stripes, but instead of be very far apart
47 * on disk, there are adjacent stripes.
51 * Number of guaranteed r10bios in case of extreme VM load:
53 #define NR_RAID10_BIOS 256
55 static void unplug_slaves(mddev_t *mddev);
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
62 conf_t *conf = data;
63 r10bio_t *r10_bio;
64 int size = offsetof(struct r10bio_s, devs[conf->copies]);
66 /* allocate a r10bio with room for raid_disks entries in the bios array */
67 r10_bio = kzalloc(size, gfp_flags);
68 if (!r10_bio)
69 unplug_slaves(conf->mddev);
71 return r10_bio;
74 static void r10bio_pool_free(void *r10_bio, void *data)
76 kfree(r10_bio);
79 /* Maximum size of each resync request */
80 #define RESYNC_BLOCK_SIZE (64*1024)
81 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
82 /* amount of memory to reserve for resync requests */
83 #define RESYNC_WINDOW (1024*1024)
84 /* maximum number of concurrent requests, memory permitting */
85 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
88 * When performing a resync, we need to read and compare, so
89 * we need as many pages are there are copies.
90 * When performing a recovery, we need 2 bios, one for read,
91 * one for write (we recover only one drive per r10buf)
94 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
96 conf_t *conf = data;
97 struct page *page;
98 r10bio_t *r10_bio;
99 struct bio *bio;
100 int i, j;
101 int nalloc;
103 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
104 if (!r10_bio) {
105 unplug_slaves(conf->mddev);
106 return NULL;
109 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
110 nalloc = conf->copies; /* resync */
111 else
112 nalloc = 2; /* recovery */
115 * Allocate bios.
117 for (j = nalloc ; j-- ; ) {
118 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
119 if (!bio)
120 goto out_free_bio;
121 r10_bio->devs[j].bio = bio;
124 * Allocate RESYNC_PAGES data pages and attach them
125 * where needed.
127 for (j = 0 ; j < nalloc; j++) {
128 bio = r10_bio->devs[j].bio;
129 for (i = 0; i < RESYNC_PAGES; i++) {
130 page = alloc_page(gfp_flags);
131 if (unlikely(!page))
132 goto out_free_pages;
134 bio->bi_io_vec[i].bv_page = page;
138 return r10_bio;
140 out_free_pages:
141 for ( ; i > 0 ; i--)
142 safe_put_page(bio->bi_io_vec[i-1].bv_page);
143 while (j--)
144 for (i = 0; i < RESYNC_PAGES ; i++)
145 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
146 j = -1;
147 out_free_bio:
148 while ( ++j < nalloc )
149 bio_put(r10_bio->devs[j].bio);
150 r10bio_pool_free(r10_bio, conf);
151 return NULL;
154 static void r10buf_pool_free(void *__r10_bio, void *data)
156 int i;
157 conf_t *conf = data;
158 r10bio_t *r10bio = __r10_bio;
159 int j;
161 for (j=0; j < conf->copies; j++) {
162 struct bio *bio = r10bio->devs[j].bio;
163 if (bio) {
164 for (i = 0; i < RESYNC_PAGES; i++) {
165 safe_put_page(bio->bi_io_vec[i].bv_page);
166 bio->bi_io_vec[i].bv_page = NULL;
168 bio_put(bio);
171 r10bio_pool_free(r10bio, conf);
174 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
176 int i;
178 for (i = 0; i < conf->copies; i++) {
179 struct bio **bio = & r10_bio->devs[i].bio;
180 if (*bio && *bio != IO_BLOCKED)
181 bio_put(*bio);
182 *bio = NULL;
186 static void free_r10bio(r10bio_t *r10_bio)
188 conf_t *conf = mddev_to_conf(r10_bio->mddev);
191 * Wake up any possible resync thread that waits for the device
192 * to go idle.
194 allow_barrier(conf);
196 put_all_bios(conf, r10_bio);
197 mempool_free(r10_bio, conf->r10bio_pool);
200 static void put_buf(r10bio_t *r10_bio)
202 conf_t *conf = mddev_to_conf(r10_bio->mddev);
204 mempool_free(r10_bio, conf->r10buf_pool);
206 lower_barrier(conf);
209 static void reschedule_retry(r10bio_t *r10_bio)
211 unsigned long flags;
212 mddev_t *mddev = r10_bio->mddev;
213 conf_t *conf = mddev_to_conf(mddev);
215 spin_lock_irqsave(&conf->device_lock, flags);
216 list_add(&r10_bio->retry_list, &conf->retry_list);
217 conf->nr_queued ++;
218 spin_unlock_irqrestore(&conf->device_lock, flags);
220 /* wake up frozen array... */
221 wake_up(&conf->wait_barrier);
223 md_wakeup_thread(mddev->thread);
227 * raid_end_bio_io() is called when we have finished servicing a mirrored
228 * operation and are ready to return a success/failure code to the buffer
229 * cache layer.
231 static void raid_end_bio_io(r10bio_t *r10_bio)
233 struct bio *bio = r10_bio->master_bio;
235 bio_endio(bio,
236 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
237 free_r10bio(r10_bio);
241 * Update disk head position estimator based on IRQ completion info.
243 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
245 conf_t *conf = mddev_to_conf(r10_bio->mddev);
247 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
248 r10_bio->devs[slot].addr + (r10_bio->sectors);
251 static void raid10_end_read_request(struct bio *bio, int error)
253 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
254 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
255 int slot, dev;
256 conf_t *conf = mddev_to_conf(r10_bio->mddev);
259 slot = r10_bio->read_slot;
260 dev = r10_bio->devs[slot].devnum;
262 * this branch is our 'one mirror IO has finished' event handler:
264 update_head_pos(slot, r10_bio);
266 if (uptodate) {
268 * Set R10BIO_Uptodate in our master bio, so that
269 * we will return a good error code to the higher
270 * levels even if IO on some other mirrored buffer fails.
272 * The 'master' represents the composite IO operation to
273 * user-side. So if something waits for IO, then it will
274 * wait for the 'master' bio.
276 set_bit(R10BIO_Uptodate, &r10_bio->state);
277 raid_end_bio_io(r10_bio);
278 } else {
280 * oops, read error:
282 char b[BDEVNAME_SIZE];
283 if (printk_ratelimit())
284 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
285 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
286 reschedule_retry(r10_bio);
289 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
292 static void raid10_end_write_request(struct bio *bio, int error)
294 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
295 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
296 int slot, dev;
297 conf_t *conf = mddev_to_conf(r10_bio->mddev);
299 for (slot = 0; slot < conf->copies; slot++)
300 if (r10_bio->devs[slot].bio == bio)
301 break;
302 dev = r10_bio->devs[slot].devnum;
305 * this branch is our 'one mirror IO has finished' event handler:
307 if (!uptodate) {
308 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
309 /* an I/O failed, we can't clear the bitmap */
310 set_bit(R10BIO_Degraded, &r10_bio->state);
311 } else
313 * Set R10BIO_Uptodate in our master bio, so that
314 * we will return a good error code for to the higher
315 * levels even if IO on some other mirrored buffer fails.
317 * The 'master' represents the composite IO operation to
318 * user-side. So if something waits for IO, then it will
319 * wait for the 'master' bio.
321 set_bit(R10BIO_Uptodate, &r10_bio->state);
323 update_head_pos(slot, r10_bio);
327 * Let's see if all mirrored write operations have finished
328 * already.
330 if (atomic_dec_and_test(&r10_bio->remaining)) {
331 /* clear the bitmap if all writes complete successfully */
332 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
333 r10_bio->sectors,
334 !test_bit(R10BIO_Degraded, &r10_bio->state),
336 md_write_end(r10_bio->mddev);
337 raid_end_bio_io(r10_bio);
340 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
345 * RAID10 layout manager
346 * Aswell as the chunksize and raid_disks count, there are two
347 * parameters: near_copies and far_copies.
348 * near_copies * far_copies must be <= raid_disks.
349 * Normally one of these will be 1.
350 * If both are 1, we get raid0.
351 * If near_copies == raid_disks, we get raid1.
353 * Chunks are layed out in raid0 style with near_copies copies of the
354 * first chunk, followed by near_copies copies of the next chunk and
355 * so on.
356 * If far_copies > 1, then after 1/far_copies of the array has been assigned
357 * as described above, we start again with a device offset of near_copies.
358 * So we effectively have another copy of the whole array further down all
359 * the drives, but with blocks on different drives.
360 * With this layout, and block is never stored twice on the one device.
362 * raid10_find_phys finds the sector offset of a given virtual sector
363 * on each device that it is on.
365 * raid10_find_virt does the reverse mapping, from a device and a
366 * sector offset to a virtual address
369 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
371 int n,f;
372 sector_t sector;
373 sector_t chunk;
374 sector_t stripe;
375 int dev;
377 int slot = 0;
379 /* now calculate first sector/dev */
380 chunk = r10bio->sector >> conf->chunk_shift;
381 sector = r10bio->sector & conf->chunk_mask;
383 chunk *= conf->near_copies;
384 stripe = chunk;
385 dev = sector_div(stripe, conf->raid_disks);
386 if (conf->far_offset)
387 stripe *= conf->far_copies;
389 sector += stripe << conf->chunk_shift;
391 /* and calculate all the others */
392 for (n=0; n < conf->near_copies; n++) {
393 int d = dev;
394 sector_t s = sector;
395 r10bio->devs[slot].addr = sector;
396 r10bio->devs[slot].devnum = d;
397 slot++;
399 for (f = 1; f < conf->far_copies; f++) {
400 d += conf->near_copies;
401 if (d >= conf->raid_disks)
402 d -= conf->raid_disks;
403 s += conf->stride;
404 r10bio->devs[slot].devnum = d;
405 r10bio->devs[slot].addr = s;
406 slot++;
408 dev++;
409 if (dev >= conf->raid_disks) {
410 dev = 0;
411 sector += (conf->chunk_mask + 1);
414 BUG_ON(slot != conf->copies);
417 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
419 sector_t offset, chunk, vchunk;
421 offset = sector & conf->chunk_mask;
422 if (conf->far_offset) {
423 int fc;
424 chunk = sector >> conf->chunk_shift;
425 fc = sector_div(chunk, conf->far_copies);
426 dev -= fc * conf->near_copies;
427 if (dev < 0)
428 dev += conf->raid_disks;
429 } else {
430 while (sector >= conf->stride) {
431 sector -= conf->stride;
432 if (dev < conf->near_copies)
433 dev += conf->raid_disks - conf->near_copies;
434 else
435 dev -= conf->near_copies;
437 chunk = sector >> conf->chunk_shift;
439 vchunk = chunk * conf->raid_disks + dev;
440 sector_div(vchunk, conf->near_copies);
441 return (vchunk << conf->chunk_shift) + offset;
445 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
446 * @q: request queue
447 * @bvm: properties of new bio
448 * @biovec: the request that could be merged to it.
450 * Return amount of bytes we can accept at this offset
451 * If near_copies == raid_disk, there are no striping issues,
452 * but in that case, the function isn't called at all.
454 static int raid10_mergeable_bvec(struct request_queue *q,
455 struct bvec_merge_data *bvm,
456 struct bio_vec *biovec)
458 mddev_t *mddev = q->queuedata;
459 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
460 int max;
461 unsigned int chunk_sectors = mddev->chunk_size >> 9;
462 unsigned int bio_sectors = bvm->bi_size >> 9;
464 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
465 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
466 if (max <= biovec->bv_len && bio_sectors == 0)
467 return biovec->bv_len;
468 else
469 return max;
473 * This routine returns the disk from which the requested read should
474 * be done. There is a per-array 'next expected sequential IO' sector
475 * number - if this matches on the next IO then we use the last disk.
476 * There is also a per-disk 'last know head position' sector that is
477 * maintained from IRQ contexts, both the normal and the resync IO
478 * completion handlers update this position correctly. If there is no
479 * perfect sequential match then we pick the disk whose head is closest.
481 * If there are 2 mirrors in the same 2 devices, performance degrades
482 * because position is mirror, not device based.
484 * The rdev for the device selected will have nr_pending incremented.
488 * FIXME: possibly should rethink readbalancing and do it differently
489 * depending on near_copies / far_copies geometry.
491 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
493 const unsigned long this_sector = r10_bio->sector;
494 int disk, slot, nslot;
495 const int sectors = r10_bio->sectors;
496 sector_t new_distance, current_distance;
497 mdk_rdev_t *rdev;
499 raid10_find_phys(conf, r10_bio);
500 rcu_read_lock();
502 * Check if we can balance. We can balance on the whole
503 * device if no resync is going on (recovery is ok), or below
504 * the resync window. We take the first readable disk when
505 * above the resync window.
507 if (conf->mddev->recovery_cp < MaxSector
508 && (this_sector + sectors >= conf->next_resync)) {
509 /* make sure that disk is operational */
510 slot = 0;
511 disk = r10_bio->devs[slot].devnum;
513 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
514 r10_bio->devs[slot].bio == IO_BLOCKED ||
515 !test_bit(In_sync, &rdev->flags)) {
516 slot++;
517 if (slot == conf->copies) {
518 slot = 0;
519 disk = -1;
520 break;
522 disk = r10_bio->devs[slot].devnum;
524 goto rb_out;
528 /* make sure the disk is operational */
529 slot = 0;
530 disk = r10_bio->devs[slot].devnum;
531 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
532 r10_bio->devs[slot].bio == IO_BLOCKED ||
533 !test_bit(In_sync, &rdev->flags)) {
534 slot ++;
535 if (slot == conf->copies) {
536 disk = -1;
537 goto rb_out;
539 disk = r10_bio->devs[slot].devnum;
543 current_distance = abs(r10_bio->devs[slot].addr -
544 conf->mirrors[disk].head_position);
546 /* Find the disk whose head is closest,
547 * or - for far > 1 - find the closest to partition beginning */
549 for (nslot = slot; nslot < conf->copies; nslot++) {
550 int ndisk = r10_bio->devs[nslot].devnum;
553 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
554 r10_bio->devs[nslot].bio == IO_BLOCKED ||
555 !test_bit(In_sync, &rdev->flags))
556 continue;
558 /* This optimisation is debatable, and completely destroys
559 * sequential read speed for 'far copies' arrays. So only
560 * keep it for 'near' arrays, and review those later.
562 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
563 disk = ndisk;
564 slot = nslot;
565 break;
568 /* for far > 1 always use the lowest address */
569 if (conf->far_copies > 1)
570 new_distance = r10_bio->devs[nslot].addr;
571 else
572 new_distance = abs(r10_bio->devs[nslot].addr -
573 conf->mirrors[ndisk].head_position);
574 if (new_distance < current_distance) {
575 current_distance = new_distance;
576 disk = ndisk;
577 slot = nslot;
581 rb_out:
582 r10_bio->read_slot = slot;
583 /* conf->next_seq_sect = this_sector + sectors;*/
585 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
586 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
587 else
588 disk = -1;
589 rcu_read_unlock();
591 return disk;
594 static void unplug_slaves(mddev_t *mddev)
596 conf_t *conf = mddev_to_conf(mddev);
597 int i;
599 rcu_read_lock();
600 for (i=0; i<mddev->raid_disks; i++) {
601 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
602 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
603 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
605 atomic_inc(&rdev->nr_pending);
606 rcu_read_unlock();
608 blk_unplug(r_queue);
610 rdev_dec_pending(rdev, mddev);
611 rcu_read_lock();
614 rcu_read_unlock();
617 static void raid10_unplug(struct request_queue *q)
619 mddev_t *mddev = q->queuedata;
621 unplug_slaves(q->queuedata);
622 md_wakeup_thread(mddev->thread);
625 static int raid10_congested(void *data, int bits)
627 mddev_t *mddev = data;
628 conf_t *conf = mddev_to_conf(mddev);
629 int i, ret = 0;
631 rcu_read_lock();
632 for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
633 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
634 if (rdev && !test_bit(Faulty, &rdev->flags)) {
635 struct request_queue *q = bdev_get_queue(rdev->bdev);
637 ret |= bdi_congested(&q->backing_dev_info, bits);
640 rcu_read_unlock();
641 return ret;
644 static int flush_pending_writes(conf_t *conf)
646 /* Any writes that have been queued but are awaiting
647 * bitmap updates get flushed here.
648 * We return 1 if any requests were actually submitted.
650 int rv = 0;
652 spin_lock_irq(&conf->device_lock);
654 if (conf->pending_bio_list.head) {
655 struct bio *bio;
656 bio = bio_list_get(&conf->pending_bio_list);
657 blk_remove_plug(conf->mddev->queue);
658 spin_unlock_irq(&conf->device_lock);
659 /* flush any pending bitmap writes to disk
660 * before proceeding w/ I/O */
661 bitmap_unplug(conf->mddev->bitmap);
663 while (bio) { /* submit pending writes */
664 struct bio *next = bio->bi_next;
665 bio->bi_next = NULL;
666 generic_make_request(bio);
667 bio = next;
669 rv = 1;
670 } else
671 spin_unlock_irq(&conf->device_lock);
672 return rv;
674 /* Barriers....
675 * Sometimes we need to suspend IO while we do something else,
676 * either some resync/recovery, or reconfigure the array.
677 * To do this we raise a 'barrier'.
678 * The 'barrier' is a counter that can be raised multiple times
679 * to count how many activities are happening which preclude
680 * normal IO.
681 * We can only raise the barrier if there is no pending IO.
682 * i.e. if nr_pending == 0.
683 * We choose only to raise the barrier if no-one is waiting for the
684 * barrier to go down. This means that as soon as an IO request
685 * is ready, no other operations which require a barrier will start
686 * until the IO request has had a chance.
688 * So: regular IO calls 'wait_barrier'. When that returns there
689 * is no backgroup IO happening, It must arrange to call
690 * allow_barrier when it has finished its IO.
691 * backgroup IO calls must call raise_barrier. Once that returns
692 * there is no normal IO happeing. It must arrange to call
693 * lower_barrier when the particular background IO completes.
696 static void raise_barrier(conf_t *conf, int force)
698 BUG_ON(force && !conf->barrier);
699 spin_lock_irq(&conf->resync_lock);
701 /* Wait until no block IO is waiting (unless 'force') */
702 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
703 conf->resync_lock,
704 raid10_unplug(conf->mddev->queue));
706 /* block any new IO from starting */
707 conf->barrier++;
709 /* No wait for all pending IO to complete */
710 wait_event_lock_irq(conf->wait_barrier,
711 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
712 conf->resync_lock,
713 raid10_unplug(conf->mddev->queue));
715 spin_unlock_irq(&conf->resync_lock);
718 static void lower_barrier(conf_t *conf)
720 unsigned long flags;
721 spin_lock_irqsave(&conf->resync_lock, flags);
722 conf->barrier--;
723 spin_unlock_irqrestore(&conf->resync_lock, flags);
724 wake_up(&conf->wait_barrier);
727 static void wait_barrier(conf_t *conf)
729 spin_lock_irq(&conf->resync_lock);
730 if (conf->barrier) {
731 conf->nr_waiting++;
732 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
733 conf->resync_lock,
734 raid10_unplug(conf->mddev->queue));
735 conf->nr_waiting--;
737 conf->nr_pending++;
738 spin_unlock_irq(&conf->resync_lock);
741 static void allow_barrier(conf_t *conf)
743 unsigned long flags;
744 spin_lock_irqsave(&conf->resync_lock, flags);
745 conf->nr_pending--;
746 spin_unlock_irqrestore(&conf->resync_lock, flags);
747 wake_up(&conf->wait_barrier);
750 static void freeze_array(conf_t *conf)
752 /* stop syncio and normal IO and wait for everything to
753 * go quiet.
754 * We increment barrier and nr_waiting, and then
755 * wait until nr_pending match nr_queued+1
756 * This is called in the context of one normal IO request
757 * that has failed. Thus any sync request that might be pending
758 * will be blocked by nr_pending, and we need to wait for
759 * pending IO requests to complete or be queued for re-try.
760 * Thus the number queued (nr_queued) plus this request (1)
761 * must match the number of pending IOs (nr_pending) before
762 * we continue.
764 spin_lock_irq(&conf->resync_lock);
765 conf->barrier++;
766 conf->nr_waiting++;
767 wait_event_lock_irq(conf->wait_barrier,
768 conf->nr_pending == conf->nr_queued+1,
769 conf->resync_lock,
770 ({ flush_pending_writes(conf);
771 raid10_unplug(conf->mddev->queue); }));
772 spin_unlock_irq(&conf->resync_lock);
775 static void unfreeze_array(conf_t *conf)
777 /* reverse the effect of the freeze */
778 spin_lock_irq(&conf->resync_lock);
779 conf->barrier--;
780 conf->nr_waiting--;
781 wake_up(&conf->wait_barrier);
782 spin_unlock_irq(&conf->resync_lock);
785 static int make_request(struct request_queue *q, struct bio * bio)
787 mddev_t *mddev = q->queuedata;
788 conf_t *conf = mddev_to_conf(mddev);
789 mirror_info_t *mirror;
790 r10bio_t *r10_bio;
791 struct bio *read_bio;
792 int cpu;
793 int i;
794 int chunk_sects = conf->chunk_mask + 1;
795 const int rw = bio_data_dir(bio);
796 const int do_sync = bio_sync(bio);
797 struct bio_list bl;
798 unsigned long flags;
799 mdk_rdev_t *blocked_rdev;
801 if (unlikely(bio_barrier(bio))) {
802 bio_endio(bio, -EOPNOTSUPP);
803 return 0;
806 /* If this request crosses a chunk boundary, we need to
807 * split it. This will only happen for 1 PAGE (or less) requests.
809 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
810 > chunk_sects &&
811 conf->near_copies < conf->raid_disks)) {
812 struct bio_pair *bp;
813 /* Sanity check -- queue functions should prevent this happening */
814 if (bio->bi_vcnt != 1 ||
815 bio->bi_idx != 0)
816 goto bad_map;
817 /* This is a one page bio that upper layers
818 * refuse to split for us, so we need to split it.
820 bp = bio_split(bio, bio_split_pool,
821 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
822 if (make_request(q, &bp->bio1))
823 generic_make_request(&bp->bio1);
824 if (make_request(q, &bp->bio2))
825 generic_make_request(&bp->bio2);
827 bio_pair_release(bp);
828 return 0;
829 bad_map:
830 printk("raid10_make_request bug: can't convert block across chunks"
831 " or bigger than %dk %llu %d\n", chunk_sects/2,
832 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
834 bio_io_error(bio);
835 return 0;
838 md_write_start(mddev, bio);
841 * Register the new request and wait if the reconstruction
842 * thread has put up a bar for new requests.
843 * Continue immediately if no resync is active currently.
845 wait_barrier(conf);
847 cpu = disk_stat_lock();
848 disk_stat_inc(cpu, mddev->gendisk, ios[rw]);
849 disk_stat_add(cpu, mddev->gendisk, sectors[rw], bio_sectors(bio));
850 disk_stat_unlock();
852 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
854 r10_bio->master_bio = bio;
855 r10_bio->sectors = bio->bi_size >> 9;
857 r10_bio->mddev = mddev;
858 r10_bio->sector = bio->bi_sector;
859 r10_bio->state = 0;
861 if (rw == READ) {
863 * read balancing logic:
865 int disk = read_balance(conf, r10_bio);
866 int slot = r10_bio->read_slot;
867 if (disk < 0) {
868 raid_end_bio_io(r10_bio);
869 return 0;
871 mirror = conf->mirrors + disk;
873 read_bio = bio_clone(bio, GFP_NOIO);
875 r10_bio->devs[slot].bio = read_bio;
877 read_bio->bi_sector = r10_bio->devs[slot].addr +
878 mirror->rdev->data_offset;
879 read_bio->bi_bdev = mirror->rdev->bdev;
880 read_bio->bi_end_io = raid10_end_read_request;
881 read_bio->bi_rw = READ | do_sync;
882 read_bio->bi_private = r10_bio;
884 generic_make_request(read_bio);
885 return 0;
889 * WRITE:
891 /* first select target devices under rcu_lock and
892 * inc refcount on their rdev. Record them by setting
893 * bios[x] to bio
895 raid10_find_phys(conf, r10_bio);
896 retry_write:
897 blocked_rdev = NULL;
898 rcu_read_lock();
899 for (i = 0; i < conf->copies; i++) {
900 int d = r10_bio->devs[i].devnum;
901 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
902 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
903 atomic_inc(&rdev->nr_pending);
904 blocked_rdev = rdev;
905 break;
907 if (rdev && !test_bit(Faulty, &rdev->flags)) {
908 atomic_inc(&rdev->nr_pending);
909 r10_bio->devs[i].bio = bio;
910 } else {
911 r10_bio->devs[i].bio = NULL;
912 set_bit(R10BIO_Degraded, &r10_bio->state);
915 rcu_read_unlock();
917 if (unlikely(blocked_rdev)) {
918 /* Have to wait for this device to get unblocked, then retry */
919 int j;
920 int d;
922 for (j = 0; j < i; j++)
923 if (r10_bio->devs[j].bio) {
924 d = r10_bio->devs[j].devnum;
925 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
927 allow_barrier(conf);
928 md_wait_for_blocked_rdev(blocked_rdev, mddev);
929 wait_barrier(conf);
930 goto retry_write;
933 atomic_set(&r10_bio->remaining, 0);
935 bio_list_init(&bl);
936 for (i = 0; i < conf->copies; i++) {
937 struct bio *mbio;
938 int d = r10_bio->devs[i].devnum;
939 if (!r10_bio->devs[i].bio)
940 continue;
942 mbio = bio_clone(bio, GFP_NOIO);
943 r10_bio->devs[i].bio = mbio;
945 mbio->bi_sector = r10_bio->devs[i].addr+
946 conf->mirrors[d].rdev->data_offset;
947 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
948 mbio->bi_end_io = raid10_end_write_request;
949 mbio->bi_rw = WRITE | do_sync;
950 mbio->bi_private = r10_bio;
952 atomic_inc(&r10_bio->remaining);
953 bio_list_add(&bl, mbio);
956 if (unlikely(!atomic_read(&r10_bio->remaining))) {
957 /* the array is dead */
958 md_write_end(mddev);
959 raid_end_bio_io(r10_bio);
960 return 0;
963 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
964 spin_lock_irqsave(&conf->device_lock, flags);
965 bio_list_merge(&conf->pending_bio_list, &bl);
966 blk_plug_device(mddev->queue);
967 spin_unlock_irqrestore(&conf->device_lock, flags);
969 /* In case raid10d snuck in to freeze_array */
970 wake_up(&conf->wait_barrier);
972 if (do_sync)
973 md_wakeup_thread(mddev->thread);
975 return 0;
978 static void status(struct seq_file *seq, mddev_t *mddev)
980 conf_t *conf = mddev_to_conf(mddev);
981 int i;
983 if (conf->near_copies < conf->raid_disks)
984 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
985 if (conf->near_copies > 1)
986 seq_printf(seq, " %d near-copies", conf->near_copies);
987 if (conf->far_copies > 1) {
988 if (conf->far_offset)
989 seq_printf(seq, " %d offset-copies", conf->far_copies);
990 else
991 seq_printf(seq, " %d far-copies", conf->far_copies);
993 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
994 conf->raid_disks - mddev->degraded);
995 for (i = 0; i < conf->raid_disks; i++)
996 seq_printf(seq, "%s",
997 conf->mirrors[i].rdev &&
998 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
999 seq_printf(seq, "]");
1002 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1004 char b[BDEVNAME_SIZE];
1005 conf_t *conf = mddev_to_conf(mddev);
1008 * If it is not operational, then we have already marked it as dead
1009 * else if it is the last working disks, ignore the error, let the
1010 * next level up know.
1011 * else mark the drive as failed
1013 if (test_bit(In_sync, &rdev->flags)
1014 && conf->raid_disks-mddev->degraded == 1)
1016 * Don't fail the drive, just return an IO error.
1017 * The test should really be more sophisticated than
1018 * "working_disks == 1", but it isn't critical, and
1019 * can wait until we do more sophisticated "is the drive
1020 * really dead" tests...
1022 return;
1023 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1024 unsigned long flags;
1025 spin_lock_irqsave(&conf->device_lock, flags);
1026 mddev->degraded++;
1027 spin_unlock_irqrestore(&conf->device_lock, flags);
1029 * if recovery is running, make sure it aborts.
1031 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1033 set_bit(Faulty, &rdev->flags);
1034 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1035 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
1036 "raid10: Operation continuing on %d devices.\n",
1037 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1040 static void print_conf(conf_t *conf)
1042 int i;
1043 mirror_info_t *tmp;
1045 printk("RAID10 conf printout:\n");
1046 if (!conf) {
1047 printk("(!conf)\n");
1048 return;
1050 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1051 conf->raid_disks);
1053 for (i = 0; i < conf->raid_disks; i++) {
1054 char b[BDEVNAME_SIZE];
1055 tmp = conf->mirrors + i;
1056 if (tmp->rdev)
1057 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1058 i, !test_bit(In_sync, &tmp->rdev->flags),
1059 !test_bit(Faulty, &tmp->rdev->flags),
1060 bdevname(tmp->rdev->bdev,b));
1064 static void close_sync(conf_t *conf)
1066 wait_barrier(conf);
1067 allow_barrier(conf);
1069 mempool_destroy(conf->r10buf_pool);
1070 conf->r10buf_pool = NULL;
1073 /* check if there are enough drives for
1074 * every block to appear on atleast one
1076 static int enough(conf_t *conf)
1078 int first = 0;
1080 do {
1081 int n = conf->copies;
1082 int cnt = 0;
1083 while (n--) {
1084 if (conf->mirrors[first].rdev)
1085 cnt++;
1086 first = (first+1) % conf->raid_disks;
1088 if (cnt == 0)
1089 return 0;
1090 } while (first != 0);
1091 return 1;
1094 static int raid10_spare_active(mddev_t *mddev)
1096 int i;
1097 conf_t *conf = mddev->private;
1098 mirror_info_t *tmp;
1101 * Find all non-in_sync disks within the RAID10 configuration
1102 * and mark them in_sync
1104 for (i = 0; i < conf->raid_disks; i++) {
1105 tmp = conf->mirrors + i;
1106 if (tmp->rdev
1107 && !test_bit(Faulty, &tmp->rdev->flags)
1108 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1109 unsigned long flags;
1110 spin_lock_irqsave(&conf->device_lock, flags);
1111 mddev->degraded--;
1112 spin_unlock_irqrestore(&conf->device_lock, flags);
1116 print_conf(conf);
1117 return 0;
1121 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1123 conf_t *conf = mddev->private;
1124 int err = -EEXIST;
1125 int mirror;
1126 mirror_info_t *p;
1127 int first = 0;
1128 int last = mddev->raid_disks - 1;
1130 if (mddev->recovery_cp < MaxSector)
1131 /* only hot-add to in-sync arrays, as recovery is
1132 * very different from resync
1134 return -EBUSY;
1135 if (!enough(conf))
1136 return -EINVAL;
1138 if (rdev->raid_disk)
1139 first = last = rdev->raid_disk;
1141 if (rdev->saved_raid_disk >= 0 &&
1142 rdev->saved_raid_disk >= first &&
1143 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1144 mirror = rdev->saved_raid_disk;
1145 else
1146 mirror = first;
1147 for ( ; mirror <= last ; mirror++)
1148 if ( !(p=conf->mirrors+mirror)->rdev) {
1150 blk_queue_stack_limits(mddev->queue,
1151 rdev->bdev->bd_disk->queue);
1152 /* as we don't honour merge_bvec_fn, we must never risk
1153 * violating it, so limit ->max_sector to one PAGE, as
1154 * a one page request is never in violation.
1156 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1157 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1158 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1160 p->head_position = 0;
1161 rdev->raid_disk = mirror;
1162 err = 0;
1163 if (rdev->saved_raid_disk != mirror)
1164 conf->fullsync = 1;
1165 rcu_assign_pointer(p->rdev, rdev);
1166 break;
1169 print_conf(conf);
1170 return err;
1173 static int raid10_remove_disk(mddev_t *mddev, int number)
1175 conf_t *conf = mddev->private;
1176 int err = 0;
1177 mdk_rdev_t *rdev;
1178 mirror_info_t *p = conf->mirrors+ number;
1180 print_conf(conf);
1181 rdev = p->rdev;
1182 if (rdev) {
1183 if (test_bit(In_sync, &rdev->flags) ||
1184 atomic_read(&rdev->nr_pending)) {
1185 err = -EBUSY;
1186 goto abort;
1188 /* Only remove faulty devices in recovery
1189 * is not possible.
1191 if (!test_bit(Faulty, &rdev->flags) &&
1192 enough(conf)) {
1193 err = -EBUSY;
1194 goto abort;
1196 p->rdev = NULL;
1197 synchronize_rcu();
1198 if (atomic_read(&rdev->nr_pending)) {
1199 /* lost the race, try later */
1200 err = -EBUSY;
1201 p->rdev = rdev;
1204 abort:
1206 print_conf(conf);
1207 return err;
1211 static void end_sync_read(struct bio *bio, int error)
1213 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1214 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1215 int i,d;
1217 for (i=0; i<conf->copies; i++)
1218 if (r10_bio->devs[i].bio == bio)
1219 break;
1220 BUG_ON(i == conf->copies);
1221 update_head_pos(i, r10_bio);
1222 d = r10_bio->devs[i].devnum;
1224 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1225 set_bit(R10BIO_Uptodate, &r10_bio->state);
1226 else {
1227 atomic_add(r10_bio->sectors,
1228 &conf->mirrors[d].rdev->corrected_errors);
1229 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1230 md_error(r10_bio->mddev,
1231 conf->mirrors[d].rdev);
1234 /* for reconstruct, we always reschedule after a read.
1235 * for resync, only after all reads
1237 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1238 atomic_dec_and_test(&r10_bio->remaining)) {
1239 /* we have read all the blocks,
1240 * do the comparison in process context in raid10d
1242 reschedule_retry(r10_bio);
1244 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1247 static void end_sync_write(struct bio *bio, int error)
1249 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1250 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1251 mddev_t *mddev = r10_bio->mddev;
1252 conf_t *conf = mddev_to_conf(mddev);
1253 int i,d;
1255 for (i = 0; i < conf->copies; i++)
1256 if (r10_bio->devs[i].bio == bio)
1257 break;
1258 d = r10_bio->devs[i].devnum;
1260 if (!uptodate)
1261 md_error(mddev, conf->mirrors[d].rdev);
1263 update_head_pos(i, r10_bio);
1265 while (atomic_dec_and_test(&r10_bio->remaining)) {
1266 if (r10_bio->master_bio == NULL) {
1267 /* the primary of several recovery bios */
1268 md_done_sync(mddev, r10_bio->sectors, 1);
1269 put_buf(r10_bio);
1270 break;
1271 } else {
1272 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1273 put_buf(r10_bio);
1274 r10_bio = r10_bio2;
1277 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1281 * Note: sync and recover and handled very differently for raid10
1282 * This code is for resync.
1283 * For resync, we read through virtual addresses and read all blocks.
1284 * If there is any error, we schedule a write. The lowest numbered
1285 * drive is authoritative.
1286 * However requests come for physical address, so we need to map.
1287 * For every physical address there are raid_disks/copies virtual addresses,
1288 * which is always are least one, but is not necessarly an integer.
1289 * This means that a physical address can span multiple chunks, so we may
1290 * have to submit multiple io requests for a single sync request.
1293 * We check if all blocks are in-sync and only write to blocks that
1294 * aren't in sync
1296 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1298 conf_t *conf = mddev_to_conf(mddev);
1299 int i, first;
1300 struct bio *tbio, *fbio;
1302 atomic_set(&r10_bio->remaining, 1);
1304 /* find the first device with a block */
1305 for (i=0; i<conf->copies; i++)
1306 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1307 break;
1309 if (i == conf->copies)
1310 goto done;
1312 first = i;
1313 fbio = r10_bio->devs[i].bio;
1315 /* now find blocks with errors */
1316 for (i=0 ; i < conf->copies ; i++) {
1317 int j, d;
1318 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1320 tbio = r10_bio->devs[i].bio;
1322 if (tbio->bi_end_io != end_sync_read)
1323 continue;
1324 if (i == first)
1325 continue;
1326 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1327 /* We know that the bi_io_vec layout is the same for
1328 * both 'first' and 'i', so we just compare them.
1329 * All vec entries are PAGE_SIZE;
1331 for (j = 0; j < vcnt; j++)
1332 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1333 page_address(tbio->bi_io_vec[j].bv_page),
1334 PAGE_SIZE))
1335 break;
1336 if (j == vcnt)
1337 continue;
1338 mddev->resync_mismatches += r10_bio->sectors;
1340 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1341 /* Don't fix anything. */
1342 continue;
1343 /* Ok, we need to write this bio
1344 * First we need to fixup bv_offset, bv_len and
1345 * bi_vecs, as the read request might have corrupted these
1347 tbio->bi_vcnt = vcnt;
1348 tbio->bi_size = r10_bio->sectors << 9;
1349 tbio->bi_idx = 0;
1350 tbio->bi_phys_segments = 0;
1351 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1352 tbio->bi_flags |= 1 << BIO_UPTODATE;
1353 tbio->bi_next = NULL;
1354 tbio->bi_rw = WRITE;
1355 tbio->bi_private = r10_bio;
1356 tbio->bi_sector = r10_bio->devs[i].addr;
1358 for (j=0; j < vcnt ; j++) {
1359 tbio->bi_io_vec[j].bv_offset = 0;
1360 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1362 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1363 page_address(fbio->bi_io_vec[j].bv_page),
1364 PAGE_SIZE);
1366 tbio->bi_end_io = end_sync_write;
1368 d = r10_bio->devs[i].devnum;
1369 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1370 atomic_inc(&r10_bio->remaining);
1371 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1373 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1374 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1375 generic_make_request(tbio);
1378 done:
1379 if (atomic_dec_and_test(&r10_bio->remaining)) {
1380 md_done_sync(mddev, r10_bio->sectors, 1);
1381 put_buf(r10_bio);
1386 * Now for the recovery code.
1387 * Recovery happens across physical sectors.
1388 * We recover all non-is_sync drives by finding the virtual address of
1389 * each, and then choose a working drive that also has that virt address.
1390 * There is a separate r10_bio for each non-in_sync drive.
1391 * Only the first two slots are in use. The first for reading,
1392 * The second for writing.
1396 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1398 conf_t *conf = mddev_to_conf(mddev);
1399 int i, d;
1400 struct bio *bio, *wbio;
1403 /* move the pages across to the second bio
1404 * and submit the write request
1406 bio = r10_bio->devs[0].bio;
1407 wbio = r10_bio->devs[1].bio;
1408 for (i=0; i < wbio->bi_vcnt; i++) {
1409 struct page *p = bio->bi_io_vec[i].bv_page;
1410 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1411 wbio->bi_io_vec[i].bv_page = p;
1413 d = r10_bio->devs[1].devnum;
1415 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1416 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1417 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1418 generic_make_request(wbio);
1419 else
1420 bio_endio(wbio, -EIO);
1425 * This is a kernel thread which:
1427 * 1. Retries failed read operations on working mirrors.
1428 * 2. Updates the raid superblock when problems encounter.
1429 * 3. Performs writes following reads for array synchronising.
1432 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1434 int sect = 0; /* Offset from r10_bio->sector */
1435 int sectors = r10_bio->sectors;
1436 mdk_rdev_t*rdev;
1437 while(sectors) {
1438 int s = sectors;
1439 int sl = r10_bio->read_slot;
1440 int success = 0;
1441 int start;
1443 if (s > (PAGE_SIZE>>9))
1444 s = PAGE_SIZE >> 9;
1446 rcu_read_lock();
1447 do {
1448 int d = r10_bio->devs[sl].devnum;
1449 rdev = rcu_dereference(conf->mirrors[d].rdev);
1450 if (rdev &&
1451 test_bit(In_sync, &rdev->flags)) {
1452 atomic_inc(&rdev->nr_pending);
1453 rcu_read_unlock();
1454 success = sync_page_io(rdev->bdev,
1455 r10_bio->devs[sl].addr +
1456 sect + rdev->data_offset,
1457 s<<9,
1458 conf->tmppage, READ);
1459 rdev_dec_pending(rdev, mddev);
1460 rcu_read_lock();
1461 if (success)
1462 break;
1464 sl++;
1465 if (sl == conf->copies)
1466 sl = 0;
1467 } while (!success && sl != r10_bio->read_slot);
1468 rcu_read_unlock();
1470 if (!success) {
1471 /* Cannot read from anywhere -- bye bye array */
1472 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1473 md_error(mddev, conf->mirrors[dn].rdev);
1474 break;
1477 start = sl;
1478 /* write it back and re-read */
1479 rcu_read_lock();
1480 while (sl != r10_bio->read_slot) {
1481 int d;
1482 if (sl==0)
1483 sl = conf->copies;
1484 sl--;
1485 d = r10_bio->devs[sl].devnum;
1486 rdev = rcu_dereference(conf->mirrors[d].rdev);
1487 if (rdev &&
1488 test_bit(In_sync, &rdev->flags)) {
1489 atomic_inc(&rdev->nr_pending);
1490 rcu_read_unlock();
1491 atomic_add(s, &rdev->corrected_errors);
1492 if (sync_page_io(rdev->bdev,
1493 r10_bio->devs[sl].addr +
1494 sect + rdev->data_offset,
1495 s<<9, conf->tmppage, WRITE)
1496 == 0)
1497 /* Well, this device is dead */
1498 md_error(mddev, rdev);
1499 rdev_dec_pending(rdev, mddev);
1500 rcu_read_lock();
1503 sl = start;
1504 while (sl != r10_bio->read_slot) {
1505 int d;
1506 if (sl==0)
1507 sl = conf->copies;
1508 sl--;
1509 d = r10_bio->devs[sl].devnum;
1510 rdev = rcu_dereference(conf->mirrors[d].rdev);
1511 if (rdev &&
1512 test_bit(In_sync, &rdev->flags)) {
1513 char b[BDEVNAME_SIZE];
1514 atomic_inc(&rdev->nr_pending);
1515 rcu_read_unlock();
1516 if (sync_page_io(rdev->bdev,
1517 r10_bio->devs[sl].addr +
1518 sect + rdev->data_offset,
1519 s<<9, conf->tmppage, READ) == 0)
1520 /* Well, this device is dead */
1521 md_error(mddev, rdev);
1522 else
1523 printk(KERN_INFO
1524 "raid10:%s: read error corrected"
1525 " (%d sectors at %llu on %s)\n",
1526 mdname(mddev), s,
1527 (unsigned long long)(sect+
1528 rdev->data_offset),
1529 bdevname(rdev->bdev, b));
1531 rdev_dec_pending(rdev, mddev);
1532 rcu_read_lock();
1535 rcu_read_unlock();
1537 sectors -= s;
1538 sect += s;
1542 static void raid10d(mddev_t *mddev)
1544 r10bio_t *r10_bio;
1545 struct bio *bio;
1546 unsigned long flags;
1547 conf_t *conf = mddev_to_conf(mddev);
1548 struct list_head *head = &conf->retry_list;
1549 int unplug=0;
1550 mdk_rdev_t *rdev;
1552 md_check_recovery(mddev);
1554 for (;;) {
1555 char b[BDEVNAME_SIZE];
1557 unplug += flush_pending_writes(conf);
1559 spin_lock_irqsave(&conf->device_lock, flags);
1560 if (list_empty(head)) {
1561 spin_unlock_irqrestore(&conf->device_lock, flags);
1562 break;
1564 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1565 list_del(head->prev);
1566 conf->nr_queued--;
1567 spin_unlock_irqrestore(&conf->device_lock, flags);
1569 mddev = r10_bio->mddev;
1570 conf = mddev_to_conf(mddev);
1571 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1572 sync_request_write(mddev, r10_bio);
1573 unplug = 1;
1574 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1575 recovery_request_write(mddev, r10_bio);
1576 unplug = 1;
1577 } else {
1578 int mirror;
1579 /* we got a read error. Maybe the drive is bad. Maybe just
1580 * the block and we can fix it.
1581 * We freeze all other IO, and try reading the block from
1582 * other devices. When we find one, we re-write
1583 * and check it that fixes the read error.
1584 * This is all done synchronously while the array is
1585 * frozen.
1587 if (mddev->ro == 0) {
1588 freeze_array(conf);
1589 fix_read_error(conf, mddev, r10_bio);
1590 unfreeze_array(conf);
1593 bio = r10_bio->devs[r10_bio->read_slot].bio;
1594 r10_bio->devs[r10_bio->read_slot].bio =
1595 mddev->ro ? IO_BLOCKED : NULL;
1596 mirror = read_balance(conf, r10_bio);
1597 if (mirror == -1) {
1598 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1599 " read error for block %llu\n",
1600 bdevname(bio->bi_bdev,b),
1601 (unsigned long long)r10_bio->sector);
1602 raid_end_bio_io(r10_bio);
1603 bio_put(bio);
1604 } else {
1605 const int do_sync = bio_sync(r10_bio->master_bio);
1606 bio_put(bio);
1607 rdev = conf->mirrors[mirror].rdev;
1608 if (printk_ratelimit())
1609 printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1610 " another mirror\n",
1611 bdevname(rdev->bdev,b),
1612 (unsigned long long)r10_bio->sector);
1613 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1614 r10_bio->devs[r10_bio->read_slot].bio = bio;
1615 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1616 + rdev->data_offset;
1617 bio->bi_bdev = rdev->bdev;
1618 bio->bi_rw = READ | do_sync;
1619 bio->bi_private = r10_bio;
1620 bio->bi_end_io = raid10_end_read_request;
1621 unplug = 1;
1622 generic_make_request(bio);
1626 if (unplug)
1627 unplug_slaves(mddev);
1631 static int init_resync(conf_t *conf)
1633 int buffs;
1635 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1636 BUG_ON(conf->r10buf_pool);
1637 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1638 if (!conf->r10buf_pool)
1639 return -ENOMEM;
1640 conf->next_resync = 0;
1641 return 0;
1645 * perform a "sync" on one "block"
1647 * We need to make sure that no normal I/O request - particularly write
1648 * requests - conflict with active sync requests.
1650 * This is achieved by tracking pending requests and a 'barrier' concept
1651 * that can be installed to exclude normal IO requests.
1653 * Resync and recovery are handled very differently.
1654 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1656 * For resync, we iterate over virtual addresses, read all copies,
1657 * and update if there are differences. If only one copy is live,
1658 * skip it.
1659 * For recovery, we iterate over physical addresses, read a good
1660 * value for each non-in_sync drive, and over-write.
1662 * So, for recovery we may have several outstanding complex requests for a
1663 * given address, one for each out-of-sync device. We model this by allocating
1664 * a number of r10_bio structures, one for each out-of-sync device.
1665 * As we setup these structures, we collect all bio's together into a list
1666 * which we then process collectively to add pages, and then process again
1667 * to pass to generic_make_request.
1669 * The r10_bio structures are linked using a borrowed master_bio pointer.
1670 * This link is counted in ->remaining. When the r10_bio that points to NULL
1671 * has its remaining count decremented to 0, the whole complex operation
1672 * is complete.
1676 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1678 conf_t *conf = mddev_to_conf(mddev);
1679 r10bio_t *r10_bio;
1680 struct bio *biolist = NULL, *bio;
1681 sector_t max_sector, nr_sectors;
1682 int disk;
1683 int i;
1684 int max_sync;
1685 int sync_blocks;
1687 sector_t sectors_skipped = 0;
1688 int chunks_skipped = 0;
1690 if (!conf->r10buf_pool)
1691 if (init_resync(conf))
1692 return 0;
1694 skipped:
1695 max_sector = mddev->size << 1;
1696 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1697 max_sector = mddev->resync_max_sectors;
1698 if (sector_nr >= max_sector) {
1699 /* If we aborted, we need to abort the
1700 * sync on the 'current' bitmap chucks (there can
1701 * be several when recovering multiple devices).
1702 * as we may have started syncing it but not finished.
1703 * We can find the current address in
1704 * mddev->curr_resync, but for recovery,
1705 * we need to convert that to several
1706 * virtual addresses.
1708 if (mddev->curr_resync < max_sector) { /* aborted */
1709 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1710 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1711 &sync_blocks, 1);
1712 else for (i=0; i<conf->raid_disks; i++) {
1713 sector_t sect =
1714 raid10_find_virt(conf, mddev->curr_resync, i);
1715 bitmap_end_sync(mddev->bitmap, sect,
1716 &sync_blocks, 1);
1718 } else /* completed sync */
1719 conf->fullsync = 0;
1721 bitmap_close_sync(mddev->bitmap);
1722 close_sync(conf);
1723 *skipped = 1;
1724 return sectors_skipped;
1726 if (chunks_skipped >= conf->raid_disks) {
1727 /* if there has been nothing to do on any drive,
1728 * then there is nothing to do at all..
1730 *skipped = 1;
1731 return (max_sector - sector_nr) + sectors_skipped;
1734 if (max_sector > mddev->resync_max)
1735 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1737 /* make sure whole request will fit in a chunk - if chunks
1738 * are meaningful
1740 if (conf->near_copies < conf->raid_disks &&
1741 max_sector > (sector_nr | conf->chunk_mask))
1742 max_sector = (sector_nr | conf->chunk_mask) + 1;
1744 * If there is non-resync activity waiting for us then
1745 * put in a delay to throttle resync.
1747 if (!go_faster && conf->nr_waiting)
1748 msleep_interruptible(1000);
1750 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1752 /* Again, very different code for resync and recovery.
1753 * Both must result in an r10bio with a list of bios that
1754 * have bi_end_io, bi_sector, bi_bdev set,
1755 * and bi_private set to the r10bio.
1756 * For recovery, we may actually create several r10bios
1757 * with 2 bios in each, that correspond to the bios in the main one.
1758 * In this case, the subordinate r10bios link back through a
1759 * borrowed master_bio pointer, and the counter in the master
1760 * includes a ref from each subordinate.
1762 /* First, we decide what to do and set ->bi_end_io
1763 * To end_sync_read if we want to read, and
1764 * end_sync_write if we will want to write.
1767 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1768 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1769 /* recovery... the complicated one */
1770 int i, j, k;
1771 r10_bio = NULL;
1773 for (i=0 ; i<conf->raid_disks; i++)
1774 if (conf->mirrors[i].rdev &&
1775 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1776 int still_degraded = 0;
1777 /* want to reconstruct this device */
1778 r10bio_t *rb2 = r10_bio;
1779 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1780 int must_sync;
1781 /* Unless we are doing a full sync, we only need
1782 * to recover the block if it is set in the bitmap
1784 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1785 &sync_blocks, 1);
1786 if (sync_blocks < max_sync)
1787 max_sync = sync_blocks;
1788 if (!must_sync &&
1789 !conf->fullsync) {
1790 /* yep, skip the sync_blocks here, but don't assume
1791 * that there will never be anything to do here
1793 chunks_skipped = -1;
1794 continue;
1797 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1798 raise_barrier(conf, rb2 != NULL);
1799 atomic_set(&r10_bio->remaining, 0);
1801 r10_bio->master_bio = (struct bio*)rb2;
1802 if (rb2)
1803 atomic_inc(&rb2->remaining);
1804 r10_bio->mddev = mddev;
1805 set_bit(R10BIO_IsRecover, &r10_bio->state);
1806 r10_bio->sector = sect;
1808 raid10_find_phys(conf, r10_bio);
1809 /* Need to check if this section will still be
1810 * degraded
1812 for (j=0; j<conf->copies;j++) {
1813 int d = r10_bio->devs[j].devnum;
1814 if (conf->mirrors[d].rdev == NULL ||
1815 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1816 still_degraded = 1;
1817 break;
1820 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1821 &sync_blocks, still_degraded);
1823 for (j=0; j<conf->copies;j++) {
1824 int d = r10_bio->devs[j].devnum;
1825 if (conf->mirrors[d].rdev &&
1826 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1827 /* This is where we read from */
1828 bio = r10_bio->devs[0].bio;
1829 bio->bi_next = biolist;
1830 biolist = bio;
1831 bio->bi_private = r10_bio;
1832 bio->bi_end_io = end_sync_read;
1833 bio->bi_rw = READ;
1834 bio->bi_sector = r10_bio->devs[j].addr +
1835 conf->mirrors[d].rdev->data_offset;
1836 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1837 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1838 atomic_inc(&r10_bio->remaining);
1839 /* and we write to 'i' */
1841 for (k=0; k<conf->copies; k++)
1842 if (r10_bio->devs[k].devnum == i)
1843 break;
1844 BUG_ON(k == conf->copies);
1845 bio = r10_bio->devs[1].bio;
1846 bio->bi_next = biolist;
1847 biolist = bio;
1848 bio->bi_private = r10_bio;
1849 bio->bi_end_io = end_sync_write;
1850 bio->bi_rw = WRITE;
1851 bio->bi_sector = r10_bio->devs[k].addr +
1852 conf->mirrors[i].rdev->data_offset;
1853 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1855 r10_bio->devs[0].devnum = d;
1856 r10_bio->devs[1].devnum = i;
1858 break;
1861 if (j == conf->copies) {
1862 /* Cannot recover, so abort the recovery */
1863 put_buf(r10_bio);
1864 if (rb2)
1865 atomic_dec(&rb2->remaining);
1866 r10_bio = rb2;
1867 if (!test_and_set_bit(MD_RECOVERY_INTR,
1868 &mddev->recovery))
1869 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1870 mdname(mddev));
1871 break;
1874 if (biolist == NULL) {
1875 while (r10_bio) {
1876 r10bio_t *rb2 = r10_bio;
1877 r10_bio = (r10bio_t*) rb2->master_bio;
1878 rb2->master_bio = NULL;
1879 put_buf(rb2);
1881 goto giveup;
1883 } else {
1884 /* resync. Schedule a read for every block at this virt offset */
1885 int count = 0;
1887 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1888 &sync_blocks, mddev->degraded) &&
1889 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1890 /* We can skip this block */
1891 *skipped = 1;
1892 return sync_blocks + sectors_skipped;
1894 if (sync_blocks < max_sync)
1895 max_sync = sync_blocks;
1896 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1898 r10_bio->mddev = mddev;
1899 atomic_set(&r10_bio->remaining, 0);
1900 raise_barrier(conf, 0);
1901 conf->next_resync = sector_nr;
1903 r10_bio->master_bio = NULL;
1904 r10_bio->sector = sector_nr;
1905 set_bit(R10BIO_IsSync, &r10_bio->state);
1906 raid10_find_phys(conf, r10_bio);
1907 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1909 for (i=0; i<conf->copies; i++) {
1910 int d = r10_bio->devs[i].devnum;
1911 bio = r10_bio->devs[i].bio;
1912 bio->bi_end_io = NULL;
1913 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1914 if (conf->mirrors[d].rdev == NULL ||
1915 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1916 continue;
1917 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1918 atomic_inc(&r10_bio->remaining);
1919 bio->bi_next = biolist;
1920 biolist = bio;
1921 bio->bi_private = r10_bio;
1922 bio->bi_end_io = end_sync_read;
1923 bio->bi_rw = READ;
1924 bio->bi_sector = r10_bio->devs[i].addr +
1925 conf->mirrors[d].rdev->data_offset;
1926 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1927 count++;
1930 if (count < 2) {
1931 for (i=0; i<conf->copies; i++) {
1932 int d = r10_bio->devs[i].devnum;
1933 if (r10_bio->devs[i].bio->bi_end_io)
1934 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1936 put_buf(r10_bio);
1937 biolist = NULL;
1938 goto giveup;
1942 for (bio = biolist; bio ; bio=bio->bi_next) {
1944 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1945 if (bio->bi_end_io)
1946 bio->bi_flags |= 1 << BIO_UPTODATE;
1947 bio->bi_vcnt = 0;
1948 bio->bi_idx = 0;
1949 bio->bi_phys_segments = 0;
1950 bio->bi_size = 0;
1953 nr_sectors = 0;
1954 if (sector_nr + max_sync < max_sector)
1955 max_sector = sector_nr + max_sync;
1956 do {
1957 struct page *page;
1958 int len = PAGE_SIZE;
1959 disk = 0;
1960 if (sector_nr + (len>>9) > max_sector)
1961 len = (max_sector - sector_nr) << 9;
1962 if (len == 0)
1963 break;
1964 for (bio= biolist ; bio ; bio=bio->bi_next) {
1965 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1966 if (bio_add_page(bio, page, len, 0) == 0) {
1967 /* stop here */
1968 struct bio *bio2;
1969 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1970 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1971 /* remove last page from this bio */
1972 bio2->bi_vcnt--;
1973 bio2->bi_size -= len;
1974 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1976 goto bio_full;
1978 disk = i;
1980 nr_sectors += len>>9;
1981 sector_nr += len>>9;
1982 } while (biolist->bi_vcnt < RESYNC_PAGES);
1983 bio_full:
1984 r10_bio->sectors = nr_sectors;
1986 while (biolist) {
1987 bio = biolist;
1988 biolist = biolist->bi_next;
1990 bio->bi_next = NULL;
1991 r10_bio = bio->bi_private;
1992 r10_bio->sectors = nr_sectors;
1994 if (bio->bi_end_io == end_sync_read) {
1995 md_sync_acct(bio->bi_bdev, nr_sectors);
1996 generic_make_request(bio);
2000 if (sectors_skipped)
2001 /* pretend they weren't skipped, it makes
2002 * no important difference in this case
2004 md_done_sync(mddev, sectors_skipped, 1);
2006 return sectors_skipped + nr_sectors;
2007 giveup:
2008 /* There is nowhere to write, so all non-sync
2009 * drives must be failed, so try the next chunk...
2012 sector_t sec = max_sector - sector_nr;
2013 sectors_skipped += sec;
2014 chunks_skipped ++;
2015 sector_nr = max_sector;
2016 goto skipped;
2020 static int run(mddev_t *mddev)
2022 conf_t *conf;
2023 int i, disk_idx;
2024 mirror_info_t *disk;
2025 mdk_rdev_t *rdev;
2026 struct list_head *tmp;
2027 int nc, fc, fo;
2028 sector_t stride, size;
2030 if (mddev->chunk_size == 0) {
2031 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n");
2032 return -EINVAL;
2035 nc = mddev->layout & 255;
2036 fc = (mddev->layout >> 8) & 255;
2037 fo = mddev->layout & (1<<16);
2038 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2039 (mddev->layout >> 17)) {
2040 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2041 mdname(mddev), mddev->layout);
2042 goto out;
2045 * copy the already verified devices into our private RAID10
2046 * bookkeeping area. [whatever we allocate in run(),
2047 * should be freed in stop()]
2049 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2050 mddev->private = conf;
2051 if (!conf) {
2052 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2053 mdname(mddev));
2054 goto out;
2056 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2057 GFP_KERNEL);
2058 if (!conf->mirrors) {
2059 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2060 mdname(mddev));
2061 goto out_free_conf;
2064 conf->tmppage = alloc_page(GFP_KERNEL);
2065 if (!conf->tmppage)
2066 goto out_free_conf;
2068 conf->mddev = mddev;
2069 conf->raid_disks = mddev->raid_disks;
2070 conf->near_copies = nc;
2071 conf->far_copies = fc;
2072 conf->copies = nc*fc;
2073 conf->far_offset = fo;
2074 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
2075 conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
2076 size = mddev->size >> (conf->chunk_shift-1);
2077 sector_div(size, fc);
2078 size = size * conf->raid_disks;
2079 sector_div(size, nc);
2080 /* 'size' is now the number of chunks in the array */
2081 /* calculate "used chunks per device" in 'stride' */
2082 stride = size * conf->copies;
2084 /* We need to round up when dividing by raid_disks to
2085 * get the stride size.
2087 stride += conf->raid_disks - 1;
2088 sector_div(stride, conf->raid_disks);
2089 mddev->size = stride << (conf->chunk_shift-1);
2091 if (fo)
2092 stride = 1;
2093 else
2094 sector_div(stride, fc);
2095 conf->stride = stride << conf->chunk_shift;
2097 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2098 r10bio_pool_free, conf);
2099 if (!conf->r10bio_pool) {
2100 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2101 mdname(mddev));
2102 goto out_free_conf;
2105 spin_lock_init(&conf->device_lock);
2106 mddev->queue->queue_lock = &conf->device_lock;
2108 rdev_for_each(rdev, tmp, mddev) {
2109 disk_idx = rdev->raid_disk;
2110 if (disk_idx >= mddev->raid_disks
2111 || disk_idx < 0)
2112 continue;
2113 disk = conf->mirrors + disk_idx;
2115 disk->rdev = rdev;
2117 blk_queue_stack_limits(mddev->queue,
2118 rdev->bdev->bd_disk->queue);
2119 /* as we don't honour merge_bvec_fn, we must never risk
2120 * violating it, so limit ->max_sector to one PAGE, as
2121 * a one page request is never in violation.
2123 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2124 mddev->queue->max_sectors > (PAGE_SIZE>>9))
2125 mddev->queue->max_sectors = (PAGE_SIZE>>9);
2127 disk->head_position = 0;
2129 INIT_LIST_HEAD(&conf->retry_list);
2131 spin_lock_init(&conf->resync_lock);
2132 init_waitqueue_head(&conf->wait_barrier);
2134 /* need to check that every block has at least one working mirror */
2135 if (!enough(conf)) {
2136 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2137 mdname(mddev));
2138 goto out_free_conf;
2141 mddev->degraded = 0;
2142 for (i = 0; i < conf->raid_disks; i++) {
2144 disk = conf->mirrors + i;
2146 if (!disk->rdev ||
2147 !test_bit(In_sync, &disk->rdev->flags)) {
2148 disk->head_position = 0;
2149 mddev->degraded++;
2150 if (disk->rdev)
2151 conf->fullsync = 1;
2156 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2157 if (!mddev->thread) {
2158 printk(KERN_ERR
2159 "raid10: couldn't allocate thread for %s\n",
2160 mdname(mddev));
2161 goto out_free_conf;
2164 printk(KERN_INFO
2165 "raid10: raid set %s active with %d out of %d devices\n",
2166 mdname(mddev), mddev->raid_disks - mddev->degraded,
2167 mddev->raid_disks);
2169 * Ok, everything is just fine now
2171 mddev->array_sectors = size << conf->chunk_shift;
2172 mddev->resync_max_sectors = size << conf->chunk_shift;
2174 mddev->queue->unplug_fn = raid10_unplug;
2175 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2176 mddev->queue->backing_dev_info.congested_data = mddev;
2178 /* Calculate max read-ahead size.
2179 * We need to readahead at least twice a whole stripe....
2180 * maybe...
2183 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
2184 stripe /= conf->near_copies;
2185 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2186 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2189 if (conf->near_copies < mddev->raid_disks)
2190 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2191 return 0;
2193 out_free_conf:
2194 if (conf->r10bio_pool)
2195 mempool_destroy(conf->r10bio_pool);
2196 safe_put_page(conf->tmppage);
2197 kfree(conf->mirrors);
2198 kfree(conf);
2199 mddev->private = NULL;
2200 out:
2201 return -EIO;
2204 static int stop(mddev_t *mddev)
2206 conf_t *conf = mddev_to_conf(mddev);
2208 md_unregister_thread(mddev->thread);
2209 mddev->thread = NULL;
2210 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2211 if (conf->r10bio_pool)
2212 mempool_destroy(conf->r10bio_pool);
2213 kfree(conf->mirrors);
2214 kfree(conf);
2215 mddev->private = NULL;
2216 return 0;
2219 static void raid10_quiesce(mddev_t *mddev, int state)
2221 conf_t *conf = mddev_to_conf(mddev);
2223 switch(state) {
2224 case 1:
2225 raise_barrier(conf, 0);
2226 break;
2227 case 0:
2228 lower_barrier(conf);
2229 break;
2231 if (mddev->thread) {
2232 if (mddev->bitmap)
2233 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2234 else
2235 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2236 md_wakeup_thread(mddev->thread);
2240 static struct mdk_personality raid10_personality =
2242 .name = "raid10",
2243 .level = 10,
2244 .owner = THIS_MODULE,
2245 .make_request = make_request,
2246 .run = run,
2247 .stop = stop,
2248 .status = status,
2249 .error_handler = error,
2250 .hot_add_disk = raid10_add_disk,
2251 .hot_remove_disk= raid10_remove_disk,
2252 .spare_active = raid10_spare_active,
2253 .sync_request = sync_request,
2254 .quiesce = raid10_quiesce,
2257 static int __init raid_init(void)
2259 return register_md_personality(&raid10_personality);
2262 static void raid_exit(void)
2264 unregister_md_personality(&raid10_personality);
2267 module_init(raid_init);
2268 module_exit(raid_exit);
2269 MODULE_LICENSE("GPL");
2270 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2271 MODULE_ALIAS("md-raid10");
2272 MODULE_ALIAS("md-level-10");