block: fix diskstats access
[linux-2.6/btrfs-unstable.git] / block / blk-core.c
blobe0a5ee36849c725e2a3bf6d5276fba040f358cee
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
34 #include "blk.h"
36 static int __make_request(struct request_queue *q, struct bio *bio);
39 * For the allocated request tables
41 static struct kmem_cache *request_cachep;
44 * For queue allocation
46 struct kmem_cache *blk_requestq_cachep;
49 * Controlling structure to kblockd
51 static struct workqueue_struct *kblockd_workqueue;
53 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
55 static void drive_stat_acct(struct request *rq, int new_io)
57 struct hd_struct *part;
58 int rw = rq_data_dir(rq);
59 int cpu;
61 if (!blk_fs_request(rq) || !rq->rq_disk)
62 return;
64 cpu = disk_stat_lock();
65 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
67 if (!new_io)
68 all_stat_inc(cpu, rq->rq_disk, part, merges[rw], rq->sector);
69 else {
70 disk_round_stats(cpu, rq->rq_disk);
71 rq->rq_disk->in_flight++;
72 if (part) {
73 part_round_stats(cpu, part);
74 part->in_flight++;
78 disk_stat_unlock();
81 void blk_queue_congestion_threshold(struct request_queue *q)
83 int nr;
85 nr = q->nr_requests - (q->nr_requests / 8) + 1;
86 if (nr > q->nr_requests)
87 nr = q->nr_requests;
88 q->nr_congestion_on = nr;
90 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
91 if (nr < 1)
92 nr = 1;
93 q->nr_congestion_off = nr;
96 /**
97 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
98 * @bdev: device
100 * Locates the passed device's request queue and returns the address of its
101 * backing_dev_info
103 * Will return NULL if the request queue cannot be located.
105 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
107 struct backing_dev_info *ret = NULL;
108 struct request_queue *q = bdev_get_queue(bdev);
110 if (q)
111 ret = &q->backing_dev_info;
112 return ret;
114 EXPORT_SYMBOL(blk_get_backing_dev_info);
116 void blk_rq_init(struct request_queue *q, struct request *rq)
118 memset(rq, 0, sizeof(*rq));
120 INIT_LIST_HEAD(&rq->queuelist);
121 INIT_LIST_HEAD(&rq->donelist);
122 rq->q = q;
123 rq->sector = rq->hard_sector = (sector_t) -1;
124 INIT_HLIST_NODE(&rq->hash);
125 RB_CLEAR_NODE(&rq->rb_node);
126 rq->cmd = rq->__cmd;
127 rq->tag = -1;
128 rq->ref_count = 1;
130 EXPORT_SYMBOL(blk_rq_init);
132 static void req_bio_endio(struct request *rq, struct bio *bio,
133 unsigned int nbytes, int error)
135 struct request_queue *q = rq->q;
137 if (&q->bar_rq != rq) {
138 if (error)
139 clear_bit(BIO_UPTODATE, &bio->bi_flags);
140 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
141 error = -EIO;
143 if (unlikely(nbytes > bio->bi_size)) {
144 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
145 __func__, nbytes, bio->bi_size);
146 nbytes = bio->bi_size;
149 bio->bi_size -= nbytes;
150 bio->bi_sector += (nbytes >> 9);
152 if (bio_integrity(bio))
153 bio_integrity_advance(bio, nbytes);
155 if (bio->bi_size == 0)
156 bio_endio(bio, error);
157 } else {
160 * Okay, this is the barrier request in progress, just
161 * record the error;
163 if (error && !q->orderr)
164 q->orderr = error;
168 void blk_dump_rq_flags(struct request *rq, char *msg)
170 int bit;
172 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
173 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
174 rq->cmd_flags);
176 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
177 (unsigned long long)rq->sector,
178 rq->nr_sectors,
179 rq->current_nr_sectors);
180 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
181 rq->bio, rq->biotail,
182 rq->buffer, rq->data,
183 rq->data_len);
185 if (blk_pc_request(rq)) {
186 printk(KERN_INFO " cdb: ");
187 for (bit = 0; bit < BLK_MAX_CDB; bit++)
188 printk("%02x ", rq->cmd[bit]);
189 printk("\n");
192 EXPORT_SYMBOL(blk_dump_rq_flags);
195 * "plug" the device if there are no outstanding requests: this will
196 * force the transfer to start only after we have put all the requests
197 * on the list.
199 * This is called with interrupts off and no requests on the queue and
200 * with the queue lock held.
202 void blk_plug_device(struct request_queue *q)
204 WARN_ON(!irqs_disabled());
207 * don't plug a stopped queue, it must be paired with blk_start_queue()
208 * which will restart the queueing
210 if (blk_queue_stopped(q))
211 return;
213 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
214 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
215 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
218 EXPORT_SYMBOL(blk_plug_device);
221 * blk_plug_device_unlocked - plug a device without queue lock held
222 * @q: The &struct request_queue to plug
224 * Description:
225 * Like @blk_plug_device(), but grabs the queue lock and disables
226 * interrupts.
228 void blk_plug_device_unlocked(struct request_queue *q)
230 unsigned long flags;
232 spin_lock_irqsave(q->queue_lock, flags);
233 blk_plug_device(q);
234 spin_unlock_irqrestore(q->queue_lock, flags);
236 EXPORT_SYMBOL(blk_plug_device_unlocked);
239 * remove the queue from the plugged list, if present. called with
240 * queue lock held and interrupts disabled.
242 int blk_remove_plug(struct request_queue *q)
244 WARN_ON(!irqs_disabled());
246 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
247 return 0;
249 del_timer(&q->unplug_timer);
250 return 1;
252 EXPORT_SYMBOL(blk_remove_plug);
255 * remove the plug and let it rip..
257 void __generic_unplug_device(struct request_queue *q)
259 if (unlikely(blk_queue_stopped(q)))
260 return;
262 if (!blk_remove_plug(q))
263 return;
265 q->request_fn(q);
267 EXPORT_SYMBOL(__generic_unplug_device);
270 * generic_unplug_device - fire a request queue
271 * @q: The &struct request_queue in question
273 * Description:
274 * Linux uses plugging to build bigger requests queues before letting
275 * the device have at them. If a queue is plugged, the I/O scheduler
276 * is still adding and merging requests on the queue. Once the queue
277 * gets unplugged, the request_fn defined for the queue is invoked and
278 * transfers started.
280 void generic_unplug_device(struct request_queue *q)
282 if (blk_queue_plugged(q)) {
283 spin_lock_irq(q->queue_lock);
284 __generic_unplug_device(q);
285 spin_unlock_irq(q->queue_lock);
288 EXPORT_SYMBOL(generic_unplug_device);
290 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
291 struct page *page)
293 struct request_queue *q = bdi->unplug_io_data;
295 blk_unplug(q);
298 void blk_unplug_work(struct work_struct *work)
300 struct request_queue *q =
301 container_of(work, struct request_queue, unplug_work);
303 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
304 q->rq.count[READ] + q->rq.count[WRITE]);
306 q->unplug_fn(q);
309 void blk_unplug_timeout(unsigned long data)
311 struct request_queue *q = (struct request_queue *)data;
313 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
314 q->rq.count[READ] + q->rq.count[WRITE]);
316 kblockd_schedule_work(&q->unplug_work);
319 void blk_unplug(struct request_queue *q)
322 * devices don't necessarily have an ->unplug_fn defined
324 if (q->unplug_fn) {
325 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
326 q->rq.count[READ] + q->rq.count[WRITE]);
328 q->unplug_fn(q);
331 EXPORT_SYMBOL(blk_unplug);
334 * blk_start_queue - restart a previously stopped queue
335 * @q: The &struct request_queue in question
337 * Description:
338 * blk_start_queue() will clear the stop flag on the queue, and call
339 * the request_fn for the queue if it was in a stopped state when
340 * entered. Also see blk_stop_queue(). Queue lock must be held.
342 void blk_start_queue(struct request_queue *q)
344 WARN_ON(!irqs_disabled());
346 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
349 * one level of recursion is ok and is much faster than kicking
350 * the unplug handling
352 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
353 q->request_fn(q);
354 queue_flag_clear(QUEUE_FLAG_REENTER, q);
355 } else {
356 blk_plug_device(q);
357 kblockd_schedule_work(&q->unplug_work);
360 EXPORT_SYMBOL(blk_start_queue);
363 * blk_stop_queue - stop a queue
364 * @q: The &struct request_queue in question
366 * Description:
367 * The Linux block layer assumes that a block driver will consume all
368 * entries on the request queue when the request_fn strategy is called.
369 * Often this will not happen, because of hardware limitations (queue
370 * depth settings). If a device driver gets a 'queue full' response,
371 * or if it simply chooses not to queue more I/O at one point, it can
372 * call this function to prevent the request_fn from being called until
373 * the driver has signalled it's ready to go again. This happens by calling
374 * blk_start_queue() to restart queue operations. Queue lock must be held.
376 void blk_stop_queue(struct request_queue *q)
378 blk_remove_plug(q);
379 queue_flag_set(QUEUE_FLAG_STOPPED, q);
381 EXPORT_SYMBOL(blk_stop_queue);
384 * blk_sync_queue - cancel any pending callbacks on a queue
385 * @q: the queue
387 * Description:
388 * The block layer may perform asynchronous callback activity
389 * on a queue, such as calling the unplug function after a timeout.
390 * A block device may call blk_sync_queue to ensure that any
391 * such activity is cancelled, thus allowing it to release resources
392 * that the callbacks might use. The caller must already have made sure
393 * that its ->make_request_fn will not re-add plugging prior to calling
394 * this function.
397 void blk_sync_queue(struct request_queue *q)
399 del_timer_sync(&q->unplug_timer);
400 kblockd_flush_work(&q->unplug_work);
402 EXPORT_SYMBOL(blk_sync_queue);
405 * blk_run_queue - run a single device queue
406 * @q: The queue to run
408 void __blk_run_queue(struct request_queue *q)
410 blk_remove_plug(q);
413 * Only recurse once to avoid overrunning the stack, let the unplug
414 * handling reinvoke the handler shortly if we already got there.
416 if (!elv_queue_empty(q)) {
417 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
418 q->request_fn(q);
419 queue_flag_clear(QUEUE_FLAG_REENTER, q);
420 } else {
421 blk_plug_device(q);
422 kblockd_schedule_work(&q->unplug_work);
426 EXPORT_SYMBOL(__blk_run_queue);
429 * blk_run_queue - run a single device queue
430 * @q: The queue to run
432 void blk_run_queue(struct request_queue *q)
434 unsigned long flags;
436 spin_lock_irqsave(q->queue_lock, flags);
437 __blk_run_queue(q);
438 spin_unlock_irqrestore(q->queue_lock, flags);
440 EXPORT_SYMBOL(blk_run_queue);
442 void blk_put_queue(struct request_queue *q)
444 kobject_put(&q->kobj);
447 void blk_cleanup_queue(struct request_queue *q)
449 mutex_lock(&q->sysfs_lock);
450 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
451 mutex_unlock(&q->sysfs_lock);
453 if (q->elevator)
454 elevator_exit(q->elevator);
456 blk_put_queue(q);
458 EXPORT_SYMBOL(blk_cleanup_queue);
460 static int blk_init_free_list(struct request_queue *q)
462 struct request_list *rl = &q->rq;
464 rl->count[READ] = rl->count[WRITE] = 0;
465 rl->starved[READ] = rl->starved[WRITE] = 0;
466 rl->elvpriv = 0;
467 init_waitqueue_head(&rl->wait[READ]);
468 init_waitqueue_head(&rl->wait[WRITE]);
470 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
471 mempool_free_slab, request_cachep, q->node);
473 if (!rl->rq_pool)
474 return -ENOMEM;
476 return 0;
479 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
481 return blk_alloc_queue_node(gfp_mask, -1);
483 EXPORT_SYMBOL(blk_alloc_queue);
485 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
487 struct request_queue *q;
488 int err;
490 q = kmem_cache_alloc_node(blk_requestq_cachep,
491 gfp_mask | __GFP_ZERO, node_id);
492 if (!q)
493 return NULL;
495 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
496 q->backing_dev_info.unplug_io_data = q;
497 err = bdi_init(&q->backing_dev_info);
498 if (err) {
499 kmem_cache_free(blk_requestq_cachep, q);
500 return NULL;
503 init_timer(&q->unplug_timer);
505 kobject_init(&q->kobj, &blk_queue_ktype);
507 mutex_init(&q->sysfs_lock);
508 spin_lock_init(&q->__queue_lock);
510 return q;
512 EXPORT_SYMBOL(blk_alloc_queue_node);
515 * blk_init_queue - prepare a request queue for use with a block device
516 * @rfn: The function to be called to process requests that have been
517 * placed on the queue.
518 * @lock: Request queue spin lock
520 * Description:
521 * If a block device wishes to use the standard request handling procedures,
522 * which sorts requests and coalesces adjacent requests, then it must
523 * call blk_init_queue(). The function @rfn will be called when there
524 * are requests on the queue that need to be processed. If the device
525 * supports plugging, then @rfn may not be called immediately when requests
526 * are available on the queue, but may be called at some time later instead.
527 * Plugged queues are generally unplugged when a buffer belonging to one
528 * of the requests on the queue is needed, or due to memory pressure.
530 * @rfn is not required, or even expected, to remove all requests off the
531 * queue, but only as many as it can handle at a time. If it does leave
532 * requests on the queue, it is responsible for arranging that the requests
533 * get dealt with eventually.
535 * The queue spin lock must be held while manipulating the requests on the
536 * request queue; this lock will be taken also from interrupt context, so irq
537 * disabling is needed for it.
539 * Function returns a pointer to the initialized request queue, or %NULL if
540 * it didn't succeed.
542 * Note:
543 * blk_init_queue() must be paired with a blk_cleanup_queue() call
544 * when the block device is deactivated (such as at module unload).
547 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
549 return blk_init_queue_node(rfn, lock, -1);
551 EXPORT_SYMBOL(blk_init_queue);
553 struct request_queue *
554 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
556 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
558 if (!q)
559 return NULL;
561 q->node = node_id;
562 if (blk_init_free_list(q)) {
563 kmem_cache_free(blk_requestq_cachep, q);
564 return NULL;
568 * if caller didn't supply a lock, they get per-queue locking with
569 * our embedded lock
571 if (!lock)
572 lock = &q->__queue_lock;
574 q->request_fn = rfn;
575 q->prep_rq_fn = NULL;
576 q->unplug_fn = generic_unplug_device;
577 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
578 q->queue_lock = lock;
580 blk_queue_segment_boundary(q, 0xffffffff);
582 blk_queue_make_request(q, __make_request);
583 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
585 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
586 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
588 q->sg_reserved_size = INT_MAX;
590 blk_set_cmd_filter_defaults(&q->cmd_filter);
593 * all done
595 if (!elevator_init(q, NULL)) {
596 blk_queue_congestion_threshold(q);
597 return q;
600 blk_put_queue(q);
601 return NULL;
603 EXPORT_SYMBOL(blk_init_queue_node);
605 int blk_get_queue(struct request_queue *q)
607 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
608 kobject_get(&q->kobj);
609 return 0;
612 return 1;
615 static inline void blk_free_request(struct request_queue *q, struct request *rq)
617 if (rq->cmd_flags & REQ_ELVPRIV)
618 elv_put_request(q, rq);
619 mempool_free(rq, q->rq.rq_pool);
622 static struct request *
623 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
625 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
627 if (!rq)
628 return NULL;
630 blk_rq_init(q, rq);
632 rq->cmd_flags = rw | REQ_ALLOCED;
634 if (priv) {
635 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
636 mempool_free(rq, q->rq.rq_pool);
637 return NULL;
639 rq->cmd_flags |= REQ_ELVPRIV;
642 return rq;
646 * ioc_batching returns true if the ioc is a valid batching request and
647 * should be given priority access to a request.
649 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
651 if (!ioc)
652 return 0;
655 * Make sure the process is able to allocate at least 1 request
656 * even if the batch times out, otherwise we could theoretically
657 * lose wakeups.
659 return ioc->nr_batch_requests == q->nr_batching ||
660 (ioc->nr_batch_requests > 0
661 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
665 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
666 * will cause the process to be a "batcher" on all queues in the system. This
667 * is the behaviour we want though - once it gets a wakeup it should be given
668 * a nice run.
670 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
672 if (!ioc || ioc_batching(q, ioc))
673 return;
675 ioc->nr_batch_requests = q->nr_batching;
676 ioc->last_waited = jiffies;
679 static void __freed_request(struct request_queue *q, int rw)
681 struct request_list *rl = &q->rq;
683 if (rl->count[rw] < queue_congestion_off_threshold(q))
684 blk_clear_queue_congested(q, rw);
686 if (rl->count[rw] + 1 <= q->nr_requests) {
687 if (waitqueue_active(&rl->wait[rw]))
688 wake_up(&rl->wait[rw]);
690 blk_clear_queue_full(q, rw);
695 * A request has just been released. Account for it, update the full and
696 * congestion status, wake up any waiters. Called under q->queue_lock.
698 static void freed_request(struct request_queue *q, int rw, int priv)
700 struct request_list *rl = &q->rq;
702 rl->count[rw]--;
703 if (priv)
704 rl->elvpriv--;
706 __freed_request(q, rw);
708 if (unlikely(rl->starved[rw ^ 1]))
709 __freed_request(q, rw ^ 1);
712 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
714 * Get a free request, queue_lock must be held.
715 * Returns NULL on failure, with queue_lock held.
716 * Returns !NULL on success, with queue_lock *not held*.
718 static struct request *get_request(struct request_queue *q, int rw_flags,
719 struct bio *bio, gfp_t gfp_mask)
721 struct request *rq = NULL;
722 struct request_list *rl = &q->rq;
723 struct io_context *ioc = NULL;
724 const int rw = rw_flags & 0x01;
725 int may_queue, priv;
727 may_queue = elv_may_queue(q, rw_flags);
728 if (may_queue == ELV_MQUEUE_NO)
729 goto rq_starved;
731 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
732 if (rl->count[rw]+1 >= q->nr_requests) {
733 ioc = current_io_context(GFP_ATOMIC, q->node);
735 * The queue will fill after this allocation, so set
736 * it as full, and mark this process as "batching".
737 * This process will be allowed to complete a batch of
738 * requests, others will be blocked.
740 if (!blk_queue_full(q, rw)) {
741 ioc_set_batching(q, ioc);
742 blk_set_queue_full(q, rw);
743 } else {
744 if (may_queue != ELV_MQUEUE_MUST
745 && !ioc_batching(q, ioc)) {
747 * The queue is full and the allocating
748 * process is not a "batcher", and not
749 * exempted by the IO scheduler
751 goto out;
755 blk_set_queue_congested(q, rw);
759 * Only allow batching queuers to allocate up to 50% over the defined
760 * limit of requests, otherwise we could have thousands of requests
761 * allocated with any setting of ->nr_requests
763 if (rl->count[rw] >= (3 * q->nr_requests / 2))
764 goto out;
766 rl->count[rw]++;
767 rl->starved[rw] = 0;
769 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
770 if (priv)
771 rl->elvpriv++;
773 spin_unlock_irq(q->queue_lock);
775 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
776 if (unlikely(!rq)) {
778 * Allocation failed presumably due to memory. Undo anything
779 * we might have messed up.
781 * Allocating task should really be put onto the front of the
782 * wait queue, but this is pretty rare.
784 spin_lock_irq(q->queue_lock);
785 freed_request(q, rw, priv);
788 * in the very unlikely event that allocation failed and no
789 * requests for this direction was pending, mark us starved
790 * so that freeing of a request in the other direction will
791 * notice us. another possible fix would be to split the
792 * rq mempool into READ and WRITE
794 rq_starved:
795 if (unlikely(rl->count[rw] == 0))
796 rl->starved[rw] = 1;
798 goto out;
802 * ioc may be NULL here, and ioc_batching will be false. That's
803 * OK, if the queue is under the request limit then requests need
804 * not count toward the nr_batch_requests limit. There will always
805 * be some limit enforced by BLK_BATCH_TIME.
807 if (ioc_batching(q, ioc))
808 ioc->nr_batch_requests--;
810 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
811 out:
812 return rq;
816 * No available requests for this queue, unplug the device and wait for some
817 * requests to become available.
819 * Called with q->queue_lock held, and returns with it unlocked.
821 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
822 struct bio *bio)
824 const int rw = rw_flags & 0x01;
825 struct request *rq;
827 rq = get_request(q, rw_flags, bio, GFP_NOIO);
828 while (!rq) {
829 DEFINE_WAIT(wait);
830 struct io_context *ioc;
831 struct request_list *rl = &q->rq;
833 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
834 TASK_UNINTERRUPTIBLE);
836 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
838 __generic_unplug_device(q);
839 spin_unlock_irq(q->queue_lock);
840 io_schedule();
843 * After sleeping, we become a "batching" process and
844 * will be able to allocate at least one request, and
845 * up to a big batch of them for a small period time.
846 * See ioc_batching, ioc_set_batching
848 ioc = current_io_context(GFP_NOIO, q->node);
849 ioc_set_batching(q, ioc);
851 spin_lock_irq(q->queue_lock);
852 finish_wait(&rl->wait[rw], &wait);
854 rq = get_request(q, rw_flags, bio, GFP_NOIO);
857 return rq;
860 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
862 struct request *rq;
864 BUG_ON(rw != READ && rw != WRITE);
866 spin_lock_irq(q->queue_lock);
867 if (gfp_mask & __GFP_WAIT) {
868 rq = get_request_wait(q, rw, NULL);
869 } else {
870 rq = get_request(q, rw, NULL, gfp_mask);
871 if (!rq)
872 spin_unlock_irq(q->queue_lock);
874 /* q->queue_lock is unlocked at this point */
876 return rq;
878 EXPORT_SYMBOL(blk_get_request);
881 * blk_start_queueing - initiate dispatch of requests to device
882 * @q: request queue to kick into gear
884 * This is basically a helper to remove the need to know whether a queue
885 * is plugged or not if someone just wants to initiate dispatch of requests
886 * for this queue.
888 * The queue lock must be held with interrupts disabled.
890 void blk_start_queueing(struct request_queue *q)
892 if (!blk_queue_plugged(q))
893 q->request_fn(q);
894 else
895 __generic_unplug_device(q);
897 EXPORT_SYMBOL(blk_start_queueing);
900 * blk_requeue_request - put a request back on queue
901 * @q: request queue where request should be inserted
902 * @rq: request to be inserted
904 * Description:
905 * Drivers often keep queueing requests until the hardware cannot accept
906 * more, when that condition happens we need to put the request back
907 * on the queue. Must be called with queue lock held.
909 void blk_requeue_request(struct request_queue *q, struct request *rq)
911 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
913 if (blk_rq_tagged(rq))
914 blk_queue_end_tag(q, rq);
916 elv_requeue_request(q, rq);
918 EXPORT_SYMBOL(blk_requeue_request);
921 * blk_insert_request - insert a special request into a request queue
922 * @q: request queue where request should be inserted
923 * @rq: request to be inserted
924 * @at_head: insert request at head or tail of queue
925 * @data: private data
927 * Description:
928 * Many block devices need to execute commands asynchronously, so they don't
929 * block the whole kernel from preemption during request execution. This is
930 * accomplished normally by inserting aritficial requests tagged as
931 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
932 * be scheduled for actual execution by the request queue.
934 * We have the option of inserting the head or the tail of the queue.
935 * Typically we use the tail for new ioctls and so forth. We use the head
936 * of the queue for things like a QUEUE_FULL message from a device, or a
937 * host that is unable to accept a particular command.
939 void blk_insert_request(struct request_queue *q, struct request *rq,
940 int at_head, void *data)
942 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
943 unsigned long flags;
946 * tell I/O scheduler that this isn't a regular read/write (ie it
947 * must not attempt merges on this) and that it acts as a soft
948 * barrier
950 rq->cmd_type = REQ_TYPE_SPECIAL;
951 rq->cmd_flags |= REQ_SOFTBARRIER;
953 rq->special = data;
955 spin_lock_irqsave(q->queue_lock, flags);
958 * If command is tagged, release the tag
960 if (blk_rq_tagged(rq))
961 blk_queue_end_tag(q, rq);
963 drive_stat_acct(rq, 1);
964 __elv_add_request(q, rq, where, 0);
965 blk_start_queueing(q);
966 spin_unlock_irqrestore(q->queue_lock, flags);
968 EXPORT_SYMBOL(blk_insert_request);
971 * add-request adds a request to the linked list.
972 * queue lock is held and interrupts disabled, as we muck with the
973 * request queue list.
975 static inline void add_request(struct request_queue *q, struct request *req)
977 drive_stat_acct(req, 1);
980 * elevator indicated where it wants this request to be
981 * inserted at elevator_merge time
983 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
987 * disk_round_stats() - Round off the performance stats on a struct
988 * disk_stats.
990 * The average IO queue length and utilisation statistics are maintained
991 * by observing the current state of the queue length and the amount of
992 * time it has been in this state for.
994 * Normally, that accounting is done on IO completion, but that can result
995 * in more than a second's worth of IO being accounted for within any one
996 * second, leading to >100% utilisation. To deal with that, we call this
997 * function to do a round-off before returning the results when reading
998 * /proc/diskstats. This accounts immediately for all queue usage up to
999 * the current jiffies and restarts the counters again.
1001 void disk_round_stats(int cpu, struct gendisk *disk)
1003 unsigned long now = jiffies;
1005 if (now == disk->stamp)
1006 return;
1008 if (disk->in_flight) {
1009 disk_stat_add(cpu, disk, time_in_queue,
1010 disk->in_flight * (now - disk->stamp));
1011 disk_stat_add(cpu, disk, io_ticks, (now - disk->stamp));
1013 disk->stamp = now;
1015 EXPORT_SYMBOL_GPL(disk_round_stats);
1017 void part_round_stats(int cpu, struct hd_struct *part)
1019 unsigned long now = jiffies;
1021 if (now == part->stamp)
1022 return;
1024 if (part->in_flight) {
1025 part_stat_add(cpu, part, time_in_queue,
1026 part->in_flight * (now - part->stamp));
1027 part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1029 part->stamp = now;
1033 * queue lock must be held
1035 void __blk_put_request(struct request_queue *q, struct request *req)
1037 if (unlikely(!q))
1038 return;
1039 if (unlikely(--req->ref_count))
1040 return;
1042 elv_completed_request(q, req);
1045 * Request may not have originated from ll_rw_blk. if not,
1046 * it didn't come out of our reserved rq pools
1048 if (req->cmd_flags & REQ_ALLOCED) {
1049 int rw = rq_data_dir(req);
1050 int priv = req->cmd_flags & REQ_ELVPRIV;
1052 BUG_ON(!list_empty(&req->queuelist));
1053 BUG_ON(!hlist_unhashed(&req->hash));
1055 blk_free_request(q, req);
1056 freed_request(q, rw, priv);
1059 EXPORT_SYMBOL_GPL(__blk_put_request);
1061 void blk_put_request(struct request *req)
1063 unsigned long flags;
1064 struct request_queue *q = req->q;
1066 spin_lock_irqsave(q->queue_lock, flags);
1067 __blk_put_request(q, req);
1068 spin_unlock_irqrestore(q->queue_lock, flags);
1070 EXPORT_SYMBOL(blk_put_request);
1072 void init_request_from_bio(struct request *req, struct bio *bio)
1074 req->cmd_type = REQ_TYPE_FS;
1077 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1079 if (bio_rw_ahead(bio) || bio_failfast(bio))
1080 req->cmd_flags |= REQ_FAILFAST;
1083 * REQ_BARRIER implies no merging, but lets make it explicit
1085 if (unlikely(bio_discard(bio))) {
1086 req->cmd_flags |= REQ_DISCARD;
1087 if (bio_barrier(bio))
1088 req->cmd_flags |= REQ_SOFTBARRIER;
1089 req->q->prepare_discard_fn(req->q, req);
1090 } else if (unlikely(bio_barrier(bio)))
1091 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1093 if (bio_sync(bio))
1094 req->cmd_flags |= REQ_RW_SYNC;
1095 if (bio_rw_meta(bio))
1096 req->cmd_flags |= REQ_RW_META;
1098 req->errors = 0;
1099 req->hard_sector = req->sector = bio->bi_sector;
1100 req->ioprio = bio_prio(bio);
1101 req->start_time = jiffies;
1102 blk_rq_bio_prep(req->q, req, bio);
1105 static int __make_request(struct request_queue *q, struct bio *bio)
1107 struct request *req;
1108 int el_ret, nr_sectors, barrier, discard, err;
1109 const unsigned short prio = bio_prio(bio);
1110 const int sync = bio_sync(bio);
1111 int rw_flags;
1113 nr_sectors = bio_sectors(bio);
1116 * low level driver can indicate that it wants pages above a
1117 * certain limit bounced to low memory (ie for highmem, or even
1118 * ISA dma in theory)
1120 blk_queue_bounce(q, &bio);
1122 barrier = bio_barrier(bio);
1123 if (unlikely(barrier) && bio_has_data(bio) &&
1124 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1125 err = -EOPNOTSUPP;
1126 goto end_io;
1129 discard = bio_discard(bio);
1130 if (unlikely(discard) && !q->prepare_discard_fn) {
1131 err = -EOPNOTSUPP;
1132 goto end_io;
1135 spin_lock_irq(q->queue_lock);
1137 if (unlikely(barrier) || elv_queue_empty(q))
1138 goto get_rq;
1140 el_ret = elv_merge(q, &req, bio);
1141 switch (el_ret) {
1142 case ELEVATOR_BACK_MERGE:
1143 BUG_ON(!rq_mergeable(req));
1145 if (!ll_back_merge_fn(q, req, bio))
1146 break;
1148 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
1150 req->biotail->bi_next = bio;
1151 req->biotail = bio;
1152 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1153 req->ioprio = ioprio_best(req->ioprio, prio);
1154 drive_stat_acct(req, 0);
1155 if (!attempt_back_merge(q, req))
1156 elv_merged_request(q, req, el_ret);
1157 goto out;
1159 case ELEVATOR_FRONT_MERGE:
1160 BUG_ON(!rq_mergeable(req));
1162 if (!ll_front_merge_fn(q, req, bio))
1163 break;
1165 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
1167 bio->bi_next = req->bio;
1168 req->bio = bio;
1171 * may not be valid. if the low level driver said
1172 * it didn't need a bounce buffer then it better
1173 * not touch req->buffer either...
1175 req->buffer = bio_data(bio);
1176 req->current_nr_sectors = bio_cur_sectors(bio);
1177 req->hard_cur_sectors = req->current_nr_sectors;
1178 req->sector = req->hard_sector = bio->bi_sector;
1179 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1180 req->ioprio = ioprio_best(req->ioprio, prio);
1181 drive_stat_acct(req, 0);
1182 if (!attempt_front_merge(q, req))
1183 elv_merged_request(q, req, el_ret);
1184 goto out;
1186 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1187 default:
1191 get_rq:
1193 * This sync check and mask will be re-done in init_request_from_bio(),
1194 * but we need to set it earlier to expose the sync flag to the
1195 * rq allocator and io schedulers.
1197 rw_flags = bio_data_dir(bio);
1198 if (sync)
1199 rw_flags |= REQ_RW_SYNC;
1202 * Grab a free request. This is might sleep but can not fail.
1203 * Returns with the queue unlocked.
1205 req = get_request_wait(q, rw_flags, bio);
1208 * After dropping the lock and possibly sleeping here, our request
1209 * may now be mergeable after it had proven unmergeable (above).
1210 * We don't worry about that case for efficiency. It won't happen
1211 * often, and the elevators are able to handle it.
1213 init_request_from_bio(req, bio);
1215 spin_lock_irq(q->queue_lock);
1216 if (elv_queue_empty(q))
1217 blk_plug_device(q);
1218 add_request(q, req);
1219 out:
1220 if (sync)
1221 __generic_unplug_device(q);
1223 spin_unlock_irq(q->queue_lock);
1224 return 0;
1226 end_io:
1227 bio_endio(bio, err);
1228 return 0;
1232 * If bio->bi_dev is a partition, remap the location
1234 static inline void blk_partition_remap(struct bio *bio)
1236 struct block_device *bdev = bio->bi_bdev;
1238 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1239 struct hd_struct *p = bdev->bd_part;
1241 bio->bi_sector += p->start_sect;
1242 bio->bi_bdev = bdev->bd_contains;
1244 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1245 bdev->bd_dev, bio->bi_sector,
1246 bio->bi_sector - p->start_sect);
1250 static void handle_bad_sector(struct bio *bio)
1252 char b[BDEVNAME_SIZE];
1254 printk(KERN_INFO "attempt to access beyond end of device\n");
1255 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1256 bdevname(bio->bi_bdev, b),
1257 bio->bi_rw,
1258 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1259 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1261 set_bit(BIO_EOF, &bio->bi_flags);
1264 #ifdef CONFIG_FAIL_MAKE_REQUEST
1266 static DECLARE_FAULT_ATTR(fail_make_request);
1268 static int __init setup_fail_make_request(char *str)
1270 return setup_fault_attr(&fail_make_request, str);
1272 __setup("fail_make_request=", setup_fail_make_request);
1274 static int should_fail_request(struct bio *bio)
1276 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
1277 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
1278 return should_fail(&fail_make_request, bio->bi_size);
1280 return 0;
1283 static int __init fail_make_request_debugfs(void)
1285 return init_fault_attr_dentries(&fail_make_request,
1286 "fail_make_request");
1289 late_initcall(fail_make_request_debugfs);
1291 #else /* CONFIG_FAIL_MAKE_REQUEST */
1293 static inline int should_fail_request(struct bio *bio)
1295 return 0;
1298 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1301 * Check whether this bio extends beyond the end of the device.
1303 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1305 sector_t maxsector;
1307 if (!nr_sectors)
1308 return 0;
1310 /* Test device or partition size, when known. */
1311 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1312 if (maxsector) {
1313 sector_t sector = bio->bi_sector;
1315 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1317 * This may well happen - the kernel calls bread()
1318 * without checking the size of the device, e.g., when
1319 * mounting a device.
1321 handle_bad_sector(bio);
1322 return 1;
1326 return 0;
1330 * generic_make_request - hand a buffer to its device driver for I/O
1331 * @bio: The bio describing the location in memory and on the device.
1333 * generic_make_request() is used to make I/O requests of block
1334 * devices. It is passed a &struct bio, which describes the I/O that needs
1335 * to be done.
1337 * generic_make_request() does not return any status. The
1338 * success/failure status of the request, along with notification of
1339 * completion, is delivered asynchronously through the bio->bi_end_io
1340 * function described (one day) else where.
1342 * The caller of generic_make_request must make sure that bi_io_vec
1343 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1344 * set to describe the device address, and the
1345 * bi_end_io and optionally bi_private are set to describe how
1346 * completion notification should be signaled.
1348 * generic_make_request and the drivers it calls may use bi_next if this
1349 * bio happens to be merged with someone else, and may change bi_dev and
1350 * bi_sector for remaps as it sees fit. So the values of these fields
1351 * should NOT be depended on after the call to generic_make_request.
1353 static inline void __generic_make_request(struct bio *bio)
1355 struct request_queue *q;
1356 sector_t old_sector;
1357 int ret, nr_sectors = bio_sectors(bio);
1358 dev_t old_dev;
1359 int err = -EIO;
1361 might_sleep();
1363 if (bio_check_eod(bio, nr_sectors))
1364 goto end_io;
1367 * Resolve the mapping until finished. (drivers are
1368 * still free to implement/resolve their own stacking
1369 * by explicitly returning 0)
1371 * NOTE: we don't repeat the blk_size check for each new device.
1372 * Stacking drivers are expected to know what they are doing.
1374 old_sector = -1;
1375 old_dev = 0;
1376 do {
1377 char b[BDEVNAME_SIZE];
1379 q = bdev_get_queue(bio->bi_bdev);
1380 if (!q) {
1381 printk(KERN_ERR
1382 "generic_make_request: Trying to access "
1383 "nonexistent block-device %s (%Lu)\n",
1384 bdevname(bio->bi_bdev, b),
1385 (long long) bio->bi_sector);
1386 end_io:
1387 bio_endio(bio, err);
1388 break;
1391 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1392 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1393 bdevname(bio->bi_bdev, b),
1394 bio_sectors(bio),
1395 q->max_hw_sectors);
1396 goto end_io;
1399 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1400 goto end_io;
1402 if (should_fail_request(bio))
1403 goto end_io;
1406 * If this device has partitions, remap block n
1407 * of partition p to block n+start(p) of the disk.
1409 blk_partition_remap(bio);
1411 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1412 goto end_io;
1414 if (old_sector != -1)
1415 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
1416 old_sector);
1418 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1420 old_sector = bio->bi_sector;
1421 old_dev = bio->bi_bdev->bd_dev;
1423 if (bio_check_eod(bio, nr_sectors))
1424 goto end_io;
1425 if ((bio_empty_barrier(bio) && !q->prepare_flush_fn) ||
1426 (bio_discard(bio) && !q->prepare_discard_fn)) {
1427 err = -EOPNOTSUPP;
1428 goto end_io;
1431 ret = q->make_request_fn(q, bio);
1432 } while (ret);
1436 * We only want one ->make_request_fn to be active at a time,
1437 * else stack usage with stacked devices could be a problem.
1438 * So use current->bio_{list,tail} to keep a list of requests
1439 * submited by a make_request_fn function.
1440 * current->bio_tail is also used as a flag to say if
1441 * generic_make_request is currently active in this task or not.
1442 * If it is NULL, then no make_request is active. If it is non-NULL,
1443 * then a make_request is active, and new requests should be added
1444 * at the tail
1446 void generic_make_request(struct bio *bio)
1448 if (current->bio_tail) {
1449 /* make_request is active */
1450 *(current->bio_tail) = bio;
1451 bio->bi_next = NULL;
1452 current->bio_tail = &bio->bi_next;
1453 return;
1455 /* following loop may be a bit non-obvious, and so deserves some
1456 * explanation.
1457 * Before entering the loop, bio->bi_next is NULL (as all callers
1458 * ensure that) so we have a list with a single bio.
1459 * We pretend that we have just taken it off a longer list, so
1460 * we assign bio_list to the next (which is NULL) and bio_tail
1461 * to &bio_list, thus initialising the bio_list of new bios to be
1462 * added. __generic_make_request may indeed add some more bios
1463 * through a recursive call to generic_make_request. If it
1464 * did, we find a non-NULL value in bio_list and re-enter the loop
1465 * from the top. In this case we really did just take the bio
1466 * of the top of the list (no pretending) and so fixup bio_list and
1467 * bio_tail or bi_next, and call into __generic_make_request again.
1469 * The loop was structured like this to make only one call to
1470 * __generic_make_request (which is important as it is large and
1471 * inlined) and to keep the structure simple.
1473 BUG_ON(bio->bi_next);
1474 do {
1475 current->bio_list = bio->bi_next;
1476 if (bio->bi_next == NULL)
1477 current->bio_tail = &current->bio_list;
1478 else
1479 bio->bi_next = NULL;
1480 __generic_make_request(bio);
1481 bio = current->bio_list;
1482 } while (bio);
1483 current->bio_tail = NULL; /* deactivate */
1485 EXPORT_SYMBOL(generic_make_request);
1488 * submit_bio - submit a bio to the block device layer for I/O
1489 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1490 * @bio: The &struct bio which describes the I/O
1492 * submit_bio() is very similar in purpose to generic_make_request(), and
1493 * uses that function to do most of the work. Both are fairly rough
1494 * interfaces; @bio must be presetup and ready for I/O.
1497 void submit_bio(int rw, struct bio *bio)
1499 int count = bio_sectors(bio);
1501 bio->bi_rw |= rw;
1504 * If it's a regular read/write or a barrier with data attached,
1505 * go through the normal accounting stuff before submission.
1507 if (bio_has_data(bio)) {
1508 if (rw & WRITE) {
1509 count_vm_events(PGPGOUT, count);
1510 } else {
1511 task_io_account_read(bio->bi_size);
1512 count_vm_events(PGPGIN, count);
1515 if (unlikely(block_dump)) {
1516 char b[BDEVNAME_SIZE];
1517 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1518 current->comm, task_pid_nr(current),
1519 (rw & WRITE) ? "WRITE" : "READ",
1520 (unsigned long long)bio->bi_sector,
1521 bdevname(bio->bi_bdev, b));
1525 generic_make_request(bio);
1527 EXPORT_SYMBOL(submit_bio);
1530 * __end_that_request_first - end I/O on a request
1531 * @req: the request being processed
1532 * @error: %0 for success, < %0 for error
1533 * @nr_bytes: number of bytes to complete
1535 * Description:
1536 * Ends I/O on a number of bytes attached to @req, and sets it up
1537 * for the next range of segments (if any) in the cluster.
1539 * Return:
1540 * %0 - we are done with this request, call end_that_request_last()
1541 * %1 - still buffers pending for this request
1543 static int __end_that_request_first(struct request *req, int error,
1544 int nr_bytes)
1546 int total_bytes, bio_nbytes, next_idx = 0;
1547 struct bio *bio;
1549 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1552 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1553 * sense key with us all the way through
1555 if (!blk_pc_request(req))
1556 req->errors = 0;
1558 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1559 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1560 req->rq_disk ? req->rq_disk->disk_name : "?",
1561 (unsigned long long)req->sector);
1564 if (blk_fs_request(req) && req->rq_disk) {
1565 const int rw = rq_data_dir(req);
1566 struct hd_struct *part;
1567 int cpu;
1569 cpu = disk_stat_lock();
1570 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1571 all_stat_add(cpu, req->rq_disk, part, sectors[rw],
1572 nr_bytes >> 9, req->sector);
1573 disk_stat_unlock();
1576 total_bytes = bio_nbytes = 0;
1577 while ((bio = req->bio) != NULL) {
1578 int nbytes;
1581 * For an empty barrier request, the low level driver must
1582 * store a potential error location in ->sector. We pass
1583 * that back up in ->bi_sector.
1585 if (blk_empty_barrier(req))
1586 bio->bi_sector = req->sector;
1588 if (nr_bytes >= bio->bi_size) {
1589 req->bio = bio->bi_next;
1590 nbytes = bio->bi_size;
1591 req_bio_endio(req, bio, nbytes, error);
1592 next_idx = 0;
1593 bio_nbytes = 0;
1594 } else {
1595 int idx = bio->bi_idx + next_idx;
1597 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1598 blk_dump_rq_flags(req, "__end_that");
1599 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1600 __func__, bio->bi_idx, bio->bi_vcnt);
1601 break;
1604 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1605 BIO_BUG_ON(nbytes > bio->bi_size);
1608 * not a complete bvec done
1610 if (unlikely(nbytes > nr_bytes)) {
1611 bio_nbytes += nr_bytes;
1612 total_bytes += nr_bytes;
1613 break;
1617 * advance to the next vector
1619 next_idx++;
1620 bio_nbytes += nbytes;
1623 total_bytes += nbytes;
1624 nr_bytes -= nbytes;
1626 bio = req->bio;
1627 if (bio) {
1629 * end more in this run, or just return 'not-done'
1631 if (unlikely(nr_bytes <= 0))
1632 break;
1637 * completely done
1639 if (!req->bio)
1640 return 0;
1643 * if the request wasn't completed, update state
1645 if (bio_nbytes) {
1646 req_bio_endio(req, bio, bio_nbytes, error);
1647 bio->bi_idx += next_idx;
1648 bio_iovec(bio)->bv_offset += nr_bytes;
1649 bio_iovec(bio)->bv_len -= nr_bytes;
1652 blk_recalc_rq_sectors(req, total_bytes >> 9);
1653 blk_recalc_rq_segments(req);
1654 return 1;
1658 * splice the completion data to a local structure and hand off to
1659 * process_completion_queue() to complete the requests
1661 static void blk_done_softirq(struct softirq_action *h)
1663 struct list_head *cpu_list, local_list;
1665 local_irq_disable();
1666 cpu_list = &__get_cpu_var(blk_cpu_done);
1667 list_replace_init(cpu_list, &local_list);
1668 local_irq_enable();
1670 while (!list_empty(&local_list)) {
1671 struct request *rq;
1673 rq = list_entry(local_list.next, struct request, donelist);
1674 list_del_init(&rq->donelist);
1675 rq->q->softirq_done_fn(rq);
1679 static int __cpuinit blk_cpu_notify(struct notifier_block *self,
1680 unsigned long action, void *hcpu)
1683 * If a CPU goes away, splice its entries to the current CPU
1684 * and trigger a run of the softirq
1686 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1687 int cpu = (unsigned long) hcpu;
1689 local_irq_disable();
1690 list_splice_init(&per_cpu(blk_cpu_done, cpu),
1691 &__get_cpu_var(blk_cpu_done));
1692 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1693 local_irq_enable();
1696 return NOTIFY_OK;
1700 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
1701 .notifier_call = blk_cpu_notify,
1705 * blk_complete_request - end I/O on a request
1706 * @req: the request being processed
1708 * Description:
1709 * Ends all I/O on a request. It does not handle partial completions,
1710 * unless the driver actually implements this in its completion callback
1711 * through requeueing. The actual completion happens out-of-order,
1712 * through a softirq handler. The user must have registered a completion
1713 * callback through blk_queue_softirq_done().
1716 void blk_complete_request(struct request *req)
1718 struct list_head *cpu_list;
1719 unsigned long flags;
1721 BUG_ON(!req->q->softirq_done_fn);
1723 local_irq_save(flags);
1725 cpu_list = &__get_cpu_var(blk_cpu_done);
1726 list_add_tail(&req->donelist, cpu_list);
1727 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1729 local_irq_restore(flags);
1731 EXPORT_SYMBOL(blk_complete_request);
1734 * queue lock must be held
1736 static void end_that_request_last(struct request *req, int error)
1738 struct gendisk *disk = req->rq_disk;
1740 if (blk_rq_tagged(req))
1741 blk_queue_end_tag(req->q, req);
1743 if (blk_queued_rq(req))
1744 blkdev_dequeue_request(req);
1746 if (unlikely(laptop_mode) && blk_fs_request(req))
1747 laptop_io_completion();
1750 * Account IO completion. bar_rq isn't accounted as a normal
1751 * IO on queueing nor completion. Accounting the containing
1752 * request is enough.
1754 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1755 unsigned long duration = jiffies - req->start_time;
1756 const int rw = rq_data_dir(req);
1757 struct hd_struct *part;
1758 int cpu;
1760 cpu = disk_stat_lock();
1761 part = disk_map_sector_rcu(disk, req->sector);
1763 all_stat_inc(cpu, disk, part, ios[rw], req->sector);
1764 all_stat_add(cpu, disk, part, ticks[rw], duration, req->sector);
1765 disk_round_stats(cpu, disk);
1766 disk->in_flight--;
1767 if (part) {
1768 part_round_stats(cpu, part);
1769 part->in_flight--;
1772 disk_stat_unlock();
1775 if (req->end_io)
1776 req->end_io(req, error);
1777 else {
1778 if (blk_bidi_rq(req))
1779 __blk_put_request(req->next_rq->q, req->next_rq);
1781 __blk_put_request(req->q, req);
1785 static inline void __end_request(struct request *rq, int uptodate,
1786 unsigned int nr_bytes)
1788 int error = 0;
1790 if (uptodate <= 0)
1791 error = uptodate ? uptodate : -EIO;
1793 __blk_end_request(rq, error, nr_bytes);
1797 * blk_rq_bytes - Returns bytes left to complete in the entire request
1798 * @rq: the request being processed
1800 unsigned int blk_rq_bytes(struct request *rq)
1802 if (blk_fs_request(rq))
1803 return rq->hard_nr_sectors << 9;
1805 return rq->data_len;
1807 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1810 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1811 * @rq: the request being processed
1813 unsigned int blk_rq_cur_bytes(struct request *rq)
1815 if (blk_fs_request(rq))
1816 return rq->current_nr_sectors << 9;
1818 if (rq->bio)
1819 return rq->bio->bi_size;
1821 return rq->data_len;
1823 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1826 * end_queued_request - end all I/O on a queued request
1827 * @rq: the request being processed
1828 * @uptodate: error value or %0/%1 uptodate flag
1830 * Description:
1831 * Ends all I/O on a request, and removes it from the block layer queues.
1832 * Not suitable for normal I/O completion, unless the driver still has
1833 * the request attached to the block layer.
1836 void end_queued_request(struct request *rq, int uptodate)
1838 __end_request(rq, uptodate, blk_rq_bytes(rq));
1840 EXPORT_SYMBOL(end_queued_request);
1843 * end_dequeued_request - end all I/O on a dequeued request
1844 * @rq: the request being processed
1845 * @uptodate: error value or %0/%1 uptodate flag
1847 * Description:
1848 * Ends all I/O on a request. The request must already have been
1849 * dequeued using blkdev_dequeue_request(), as is normally the case
1850 * for most drivers.
1853 void end_dequeued_request(struct request *rq, int uptodate)
1855 __end_request(rq, uptodate, blk_rq_bytes(rq));
1857 EXPORT_SYMBOL(end_dequeued_request);
1861 * end_request - end I/O on the current segment of the request
1862 * @req: the request being processed
1863 * @uptodate: error value or %0/%1 uptodate flag
1865 * Description:
1866 * Ends I/O on the current segment of a request. If that is the only
1867 * remaining segment, the request is also completed and freed.
1869 * This is a remnant of how older block drivers handled I/O completions.
1870 * Modern drivers typically end I/O on the full request in one go, unless
1871 * they have a residual value to account for. For that case this function
1872 * isn't really useful, unless the residual just happens to be the
1873 * full current segment. In other words, don't use this function in new
1874 * code. Either use end_request_completely(), or the
1875 * end_that_request_chunk() (along with end_that_request_last()) for
1876 * partial completions.
1879 void end_request(struct request *req, int uptodate)
1881 __end_request(req, uptodate, req->hard_cur_sectors << 9);
1883 EXPORT_SYMBOL(end_request);
1886 * blk_end_io - Generic end_io function to complete a request.
1887 * @rq: the request being processed
1888 * @error: %0 for success, < %0 for error
1889 * @nr_bytes: number of bytes to complete @rq
1890 * @bidi_bytes: number of bytes to complete @rq->next_rq
1891 * @drv_callback: function called between completion of bios in the request
1892 * and completion of the request.
1893 * If the callback returns non %0, this helper returns without
1894 * completion of the request.
1896 * Description:
1897 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1898 * If @rq has leftover, sets it up for the next range of segments.
1900 * Return:
1901 * %0 - we are done with this request
1902 * %1 - this request is not freed yet, it still has pending buffers.
1904 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1905 unsigned int bidi_bytes,
1906 int (drv_callback)(struct request *))
1908 struct request_queue *q = rq->q;
1909 unsigned long flags = 0UL;
1911 if (bio_has_data(rq->bio) || blk_discard_rq(rq)) {
1912 if (__end_that_request_first(rq, error, nr_bytes))
1913 return 1;
1915 /* Bidi request must be completed as a whole */
1916 if (blk_bidi_rq(rq) &&
1917 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1918 return 1;
1921 /* Special feature for tricky drivers */
1922 if (drv_callback && drv_callback(rq))
1923 return 1;
1925 add_disk_randomness(rq->rq_disk);
1927 spin_lock_irqsave(q->queue_lock, flags);
1928 end_that_request_last(rq, error);
1929 spin_unlock_irqrestore(q->queue_lock, flags);
1931 return 0;
1935 * blk_end_request - Helper function for drivers to complete the request.
1936 * @rq: the request being processed
1937 * @error: %0 for success, < %0 for error
1938 * @nr_bytes: number of bytes to complete
1940 * Description:
1941 * Ends I/O on a number of bytes attached to @rq.
1942 * If @rq has leftover, sets it up for the next range of segments.
1944 * Return:
1945 * %0 - we are done with this request
1946 * %1 - still buffers pending for this request
1948 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1950 return blk_end_io(rq, error, nr_bytes, 0, NULL);
1952 EXPORT_SYMBOL_GPL(blk_end_request);
1955 * __blk_end_request - Helper function for drivers to complete the request.
1956 * @rq: the request being processed
1957 * @error: %0 for success, < %0 for error
1958 * @nr_bytes: number of bytes to complete
1960 * Description:
1961 * Must be called with queue lock held unlike blk_end_request().
1963 * Return:
1964 * %0 - we are done with this request
1965 * %1 - still buffers pending for this request
1967 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1969 if ((bio_has_data(rq->bio) || blk_discard_rq(rq)) &&
1970 __end_that_request_first(rq, error, nr_bytes))
1971 return 1;
1973 add_disk_randomness(rq->rq_disk);
1975 end_that_request_last(rq, error);
1977 return 0;
1979 EXPORT_SYMBOL_GPL(__blk_end_request);
1982 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1983 * @rq: the bidi request being processed
1984 * @error: %0 for success, < %0 for error
1985 * @nr_bytes: number of bytes to complete @rq
1986 * @bidi_bytes: number of bytes to complete @rq->next_rq
1988 * Description:
1989 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1991 * Return:
1992 * %0 - we are done with this request
1993 * %1 - still buffers pending for this request
1995 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1996 unsigned int bidi_bytes)
1998 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
2000 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
2003 * blk_end_request_callback - Special helper function for tricky drivers
2004 * @rq: the request being processed
2005 * @error: %0 for success, < %0 for error
2006 * @nr_bytes: number of bytes to complete
2007 * @drv_callback: function called between completion of bios in the request
2008 * and completion of the request.
2009 * If the callback returns non %0, this helper returns without
2010 * completion of the request.
2012 * Description:
2013 * Ends I/O on a number of bytes attached to @rq.
2014 * If @rq has leftover, sets it up for the next range of segments.
2016 * This special helper function is used only for existing tricky drivers.
2017 * (e.g. cdrom_newpc_intr() of ide-cd)
2018 * This interface will be removed when such drivers are rewritten.
2019 * Don't use this interface in other places anymore.
2021 * Return:
2022 * %0 - we are done with this request
2023 * %1 - this request is not freed yet.
2024 * this request still has pending buffers or
2025 * the driver doesn't want to finish this request yet.
2027 int blk_end_request_callback(struct request *rq, int error,
2028 unsigned int nr_bytes,
2029 int (drv_callback)(struct request *))
2031 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
2033 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2035 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2036 struct bio *bio)
2038 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2039 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2040 rq->cmd_flags |= (bio->bi_rw & 3);
2042 if (bio_has_data(bio)) {
2043 rq->nr_phys_segments = bio_phys_segments(q, bio);
2044 rq->buffer = bio_data(bio);
2046 rq->current_nr_sectors = bio_cur_sectors(bio);
2047 rq->hard_cur_sectors = rq->current_nr_sectors;
2048 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2049 rq->data_len = bio->bi_size;
2051 rq->bio = rq->biotail = bio;
2053 if (bio->bi_bdev)
2054 rq->rq_disk = bio->bi_bdev->bd_disk;
2057 int kblockd_schedule_work(struct work_struct *work)
2059 return queue_work(kblockd_workqueue, work);
2061 EXPORT_SYMBOL(kblockd_schedule_work);
2063 void kblockd_flush_work(struct work_struct *work)
2065 cancel_work_sync(work);
2067 EXPORT_SYMBOL(kblockd_flush_work);
2069 int __init blk_dev_init(void)
2071 int i;
2073 kblockd_workqueue = create_workqueue("kblockd");
2074 if (!kblockd_workqueue)
2075 panic("Failed to create kblockd\n");
2077 request_cachep = kmem_cache_create("blkdev_requests",
2078 sizeof(struct request), 0, SLAB_PANIC, NULL);
2080 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2081 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2083 for_each_possible_cpu(i)
2084 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
2086 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
2087 register_hotcpu_notifier(&blk_cpu_notifier);
2089 return 0;