powerpc: dts: P1010: Add endianness property to flexcan node
[linux-2.6/btrfs-unstable.git] / drivers / md / dm-integrity.c
blob05c7bfd0c9d9a7b06804d01fa3085f6ca67afbd7
1 /*
2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3 * Copyright (C) 2016-2017 Milan Broz
4 * Copyright (C) 2016-2017 Mikulas Patocka
6 * This file is released under the GPL.
7 */
9 #include <linux/compiler.h>
10 #include <linux/module.h>
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/vmalloc.h>
14 #include <linux/sort.h>
15 #include <linux/rbtree.h>
16 #include <linux/delay.h>
17 #include <linux/random.h>
18 #include <crypto/hash.h>
19 #include <crypto/skcipher.h>
20 #include <linux/async_tx.h>
21 #include "dm-bufio.h"
23 #define DM_MSG_PREFIX "integrity"
25 #define DEFAULT_INTERLEAVE_SECTORS 32768
26 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
27 #define DEFAULT_BUFFER_SECTORS 128
28 #define DEFAULT_JOURNAL_WATERMARK 50
29 #define DEFAULT_SYNC_MSEC 10000
30 #define DEFAULT_MAX_JOURNAL_SECTORS 131072
31 #define MIN_LOG2_INTERLEAVE_SECTORS 3
32 #define MAX_LOG2_INTERLEAVE_SECTORS 31
33 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
36 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
37 * so it should not be enabled in the official kernel
39 //#define DEBUG_PRINT
40 //#define INTERNAL_VERIFY
43 * On disk structures
46 #define SB_MAGIC "integrt"
47 #define SB_VERSION 1
48 #define SB_SECTORS 8
49 #define MAX_SECTORS_PER_BLOCK 8
51 struct superblock {
52 __u8 magic[8];
53 __u8 version;
54 __u8 log2_interleave_sectors;
55 __u16 integrity_tag_size;
56 __u32 journal_sections;
57 __u64 provided_data_sectors; /* userspace uses this value */
58 __u32 flags;
59 __u8 log2_sectors_per_block;
62 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
64 #define JOURNAL_ENTRY_ROUNDUP 8
66 typedef __u64 commit_id_t;
67 #define JOURNAL_MAC_PER_SECTOR 8
69 struct journal_entry {
70 union {
71 struct {
72 __u32 sector_lo;
73 __u32 sector_hi;
74 } s;
75 __u64 sector;
76 } u;
77 commit_id_t last_bytes[0];
78 /* __u8 tag[0]; */
81 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
83 #if BITS_PER_LONG == 64
84 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
85 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
86 #elif defined(CONFIG_LBDAF)
87 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
88 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
89 #else
90 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32(0)); } while (0)
91 #define journal_entry_get_sector(je) le32_to_cpu((je)->u.s.sector_lo)
92 #endif
93 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
94 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
95 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
96 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
98 #define JOURNAL_BLOCK_SECTORS 8
99 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
100 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
102 struct journal_sector {
103 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
104 __u8 mac[JOURNAL_MAC_PER_SECTOR];
105 commit_id_t commit_id;
108 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
110 #define METADATA_PADDING_SECTORS 8
112 #define N_COMMIT_IDS 4
114 static unsigned char prev_commit_seq(unsigned char seq)
116 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
119 static unsigned char next_commit_seq(unsigned char seq)
121 return (seq + 1) % N_COMMIT_IDS;
125 * In-memory structures
128 struct journal_node {
129 struct rb_node node;
130 sector_t sector;
133 struct alg_spec {
134 char *alg_string;
135 char *key_string;
136 __u8 *key;
137 unsigned key_size;
140 struct dm_integrity_c {
141 struct dm_dev *dev;
142 unsigned tag_size;
143 __s8 log2_tag_size;
144 sector_t start;
145 mempool_t *journal_io_mempool;
146 struct dm_io_client *io;
147 struct dm_bufio_client *bufio;
148 struct workqueue_struct *metadata_wq;
149 struct superblock *sb;
150 unsigned journal_pages;
151 struct page_list *journal;
152 struct page_list *journal_io;
153 struct page_list *journal_xor;
155 struct crypto_skcipher *journal_crypt;
156 struct scatterlist **journal_scatterlist;
157 struct scatterlist **journal_io_scatterlist;
158 struct skcipher_request **sk_requests;
160 struct crypto_shash *journal_mac;
162 struct journal_node *journal_tree;
163 struct rb_root journal_tree_root;
165 sector_t provided_data_sectors;
167 unsigned short journal_entry_size;
168 unsigned char journal_entries_per_sector;
169 unsigned char journal_section_entries;
170 unsigned short journal_section_sectors;
171 unsigned journal_sections;
172 unsigned journal_entries;
173 sector_t device_sectors;
174 unsigned initial_sectors;
175 unsigned metadata_run;
176 __s8 log2_metadata_run;
177 __u8 log2_buffer_sectors;
178 __u8 sectors_per_block;
180 unsigned char mode;
181 bool suspending;
183 int failed;
185 struct crypto_shash *internal_hash;
187 /* these variables are locked with endio_wait.lock */
188 struct rb_root in_progress;
189 wait_queue_head_t endio_wait;
190 struct workqueue_struct *wait_wq;
192 unsigned char commit_seq;
193 commit_id_t commit_ids[N_COMMIT_IDS];
195 unsigned committed_section;
196 unsigned n_committed_sections;
198 unsigned uncommitted_section;
199 unsigned n_uncommitted_sections;
201 unsigned free_section;
202 unsigned char free_section_entry;
203 unsigned free_sectors;
205 unsigned free_sectors_threshold;
207 struct workqueue_struct *commit_wq;
208 struct work_struct commit_work;
210 struct workqueue_struct *writer_wq;
211 struct work_struct writer_work;
213 struct bio_list flush_bio_list;
215 unsigned long autocommit_jiffies;
216 struct timer_list autocommit_timer;
217 unsigned autocommit_msec;
219 wait_queue_head_t copy_to_journal_wait;
221 struct completion crypto_backoff;
223 bool journal_uptodate;
224 bool just_formatted;
226 struct alg_spec internal_hash_alg;
227 struct alg_spec journal_crypt_alg;
228 struct alg_spec journal_mac_alg;
230 atomic64_t number_of_mismatches;
233 struct dm_integrity_range {
234 sector_t logical_sector;
235 unsigned n_sectors;
236 struct rb_node node;
239 struct dm_integrity_io {
240 struct work_struct work;
242 struct dm_integrity_c *ic;
243 bool write;
244 bool fua;
246 struct dm_integrity_range range;
248 sector_t metadata_block;
249 unsigned metadata_offset;
251 atomic_t in_flight;
252 blk_status_t bi_status;
254 struct completion *completion;
256 struct gendisk *orig_bi_disk;
257 u8 orig_bi_partno;
258 bio_end_io_t *orig_bi_end_io;
259 struct bio_integrity_payload *orig_bi_integrity;
260 struct bvec_iter orig_bi_iter;
263 struct journal_completion {
264 struct dm_integrity_c *ic;
265 atomic_t in_flight;
266 struct completion comp;
269 struct journal_io {
270 struct dm_integrity_range range;
271 struct journal_completion *comp;
274 static struct kmem_cache *journal_io_cache;
276 #define JOURNAL_IO_MEMPOOL 32
278 #ifdef DEBUG_PRINT
279 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
280 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
282 va_list args;
283 va_start(args, msg);
284 vprintk(msg, args);
285 va_end(args);
286 if (len)
287 pr_cont(":");
288 while (len) {
289 pr_cont(" %02x", *bytes);
290 bytes++;
291 len--;
293 pr_cont("\n");
295 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
296 #else
297 #define DEBUG_print(x, ...) do { } while (0)
298 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
299 #endif
302 * DM Integrity profile, protection is performed layer above (dm-crypt)
304 static const struct blk_integrity_profile dm_integrity_profile = {
305 .name = "DM-DIF-EXT-TAG",
306 .generate_fn = NULL,
307 .verify_fn = NULL,
310 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
311 static void integrity_bio_wait(struct work_struct *w);
312 static void dm_integrity_dtr(struct dm_target *ti);
314 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
316 if (err == -EILSEQ)
317 atomic64_inc(&ic->number_of_mismatches);
318 if (!cmpxchg(&ic->failed, 0, err))
319 DMERR("Error on %s: %d", msg, err);
322 static int dm_integrity_failed(struct dm_integrity_c *ic)
324 return READ_ONCE(ic->failed);
327 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
328 unsigned j, unsigned char seq)
331 * Xor the number with section and sector, so that if a piece of
332 * journal is written at wrong place, it is detected.
334 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
337 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
338 sector_t *area, sector_t *offset)
340 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
342 *area = data_sector >> log2_interleave_sectors;
343 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
346 #define sector_to_block(ic, n) \
347 do { \
348 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
349 (n) >>= (ic)->sb->log2_sectors_per_block; \
350 } while (0)
352 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
353 sector_t offset, unsigned *metadata_offset)
355 __u64 ms;
356 unsigned mo;
358 ms = area << ic->sb->log2_interleave_sectors;
359 if (likely(ic->log2_metadata_run >= 0))
360 ms += area << ic->log2_metadata_run;
361 else
362 ms += area * ic->metadata_run;
363 ms >>= ic->log2_buffer_sectors;
365 sector_to_block(ic, offset);
367 if (likely(ic->log2_tag_size >= 0)) {
368 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
369 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
370 } else {
371 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
372 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
374 *metadata_offset = mo;
375 return ms;
378 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
380 sector_t result;
382 result = area << ic->sb->log2_interleave_sectors;
383 if (likely(ic->log2_metadata_run >= 0))
384 result += (area + 1) << ic->log2_metadata_run;
385 else
386 result += (area + 1) * ic->metadata_run;
388 result += (sector_t)ic->initial_sectors + offset;
389 return result;
392 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
394 if (unlikely(*sec_ptr >= ic->journal_sections))
395 *sec_ptr -= ic->journal_sections;
398 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
400 struct dm_io_request io_req;
401 struct dm_io_region io_loc;
403 io_req.bi_op = op;
404 io_req.bi_op_flags = op_flags;
405 io_req.mem.type = DM_IO_KMEM;
406 io_req.mem.ptr.addr = ic->sb;
407 io_req.notify.fn = NULL;
408 io_req.client = ic->io;
409 io_loc.bdev = ic->dev->bdev;
410 io_loc.sector = ic->start;
411 io_loc.count = SB_SECTORS;
413 return dm_io(&io_req, 1, &io_loc, NULL);
416 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
417 bool e, const char *function)
419 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
420 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
422 if (unlikely(section >= ic->journal_sections) ||
423 unlikely(offset >= limit)) {
424 printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n",
425 function, section, offset, ic->journal_sections, limit);
426 BUG();
428 #endif
431 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
432 unsigned *pl_index, unsigned *pl_offset)
434 unsigned sector;
436 access_journal_check(ic, section, offset, false, "page_list_location");
438 sector = section * ic->journal_section_sectors + offset;
440 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
441 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
444 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
445 unsigned section, unsigned offset, unsigned *n_sectors)
447 unsigned pl_index, pl_offset;
448 char *va;
450 page_list_location(ic, section, offset, &pl_index, &pl_offset);
452 if (n_sectors)
453 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
455 va = lowmem_page_address(pl[pl_index].page);
457 return (struct journal_sector *)(va + pl_offset);
460 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
462 return access_page_list(ic, ic->journal, section, offset, NULL);
465 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
467 unsigned rel_sector, offset;
468 struct journal_sector *js;
470 access_journal_check(ic, section, n, true, "access_journal_entry");
472 rel_sector = n % JOURNAL_BLOCK_SECTORS;
473 offset = n / JOURNAL_BLOCK_SECTORS;
475 js = access_journal(ic, section, rel_sector);
476 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
479 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
481 n <<= ic->sb->log2_sectors_per_block;
483 n += JOURNAL_BLOCK_SECTORS;
485 access_journal_check(ic, section, n, false, "access_journal_data");
487 return access_journal(ic, section, n);
490 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
492 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
493 int r;
494 unsigned j, size;
496 desc->tfm = ic->journal_mac;
497 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
499 r = crypto_shash_init(desc);
500 if (unlikely(r)) {
501 dm_integrity_io_error(ic, "crypto_shash_init", r);
502 goto err;
505 for (j = 0; j < ic->journal_section_entries; j++) {
506 struct journal_entry *je = access_journal_entry(ic, section, j);
507 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
508 if (unlikely(r)) {
509 dm_integrity_io_error(ic, "crypto_shash_update", r);
510 goto err;
514 size = crypto_shash_digestsize(ic->journal_mac);
516 if (likely(size <= JOURNAL_MAC_SIZE)) {
517 r = crypto_shash_final(desc, result);
518 if (unlikely(r)) {
519 dm_integrity_io_error(ic, "crypto_shash_final", r);
520 goto err;
522 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
523 } else {
524 __u8 digest[size];
525 r = crypto_shash_final(desc, digest);
526 if (unlikely(r)) {
527 dm_integrity_io_error(ic, "crypto_shash_final", r);
528 goto err;
530 memcpy(result, digest, JOURNAL_MAC_SIZE);
533 return;
534 err:
535 memset(result, 0, JOURNAL_MAC_SIZE);
538 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
540 __u8 result[JOURNAL_MAC_SIZE];
541 unsigned j;
543 if (!ic->journal_mac)
544 return;
546 section_mac(ic, section, result);
548 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
549 struct journal_sector *js = access_journal(ic, section, j);
551 if (likely(wr))
552 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
553 else {
554 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
555 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
560 static void complete_journal_op(void *context)
562 struct journal_completion *comp = context;
563 BUG_ON(!atomic_read(&comp->in_flight));
564 if (likely(atomic_dec_and_test(&comp->in_flight)))
565 complete(&comp->comp);
568 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
569 unsigned n_sections, struct journal_completion *comp)
571 struct async_submit_ctl submit;
572 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
573 unsigned pl_index, pl_offset, section_index;
574 struct page_list *source_pl, *target_pl;
576 if (likely(encrypt)) {
577 source_pl = ic->journal;
578 target_pl = ic->journal_io;
579 } else {
580 source_pl = ic->journal_io;
581 target_pl = ic->journal;
584 page_list_location(ic, section, 0, &pl_index, &pl_offset);
586 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
588 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
590 section_index = pl_index;
592 do {
593 size_t this_step;
594 struct page *src_pages[2];
595 struct page *dst_page;
597 while (unlikely(pl_index == section_index)) {
598 unsigned dummy;
599 if (likely(encrypt))
600 rw_section_mac(ic, section, true);
601 section++;
602 n_sections--;
603 if (!n_sections)
604 break;
605 page_list_location(ic, section, 0, &section_index, &dummy);
608 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
609 dst_page = target_pl[pl_index].page;
610 src_pages[0] = source_pl[pl_index].page;
611 src_pages[1] = ic->journal_xor[pl_index].page;
613 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
615 pl_index++;
616 pl_offset = 0;
617 n_bytes -= this_step;
618 } while (n_bytes);
620 BUG_ON(n_sections);
622 async_tx_issue_pending_all();
625 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
627 struct journal_completion *comp = req->data;
628 if (unlikely(err)) {
629 if (likely(err == -EINPROGRESS)) {
630 complete(&comp->ic->crypto_backoff);
631 return;
633 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
635 complete_journal_op(comp);
638 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
640 int r;
641 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
642 complete_journal_encrypt, comp);
643 if (likely(encrypt))
644 r = crypto_skcipher_encrypt(req);
645 else
646 r = crypto_skcipher_decrypt(req);
647 if (likely(!r))
648 return false;
649 if (likely(r == -EINPROGRESS))
650 return true;
651 if (likely(r == -EBUSY)) {
652 wait_for_completion(&comp->ic->crypto_backoff);
653 reinit_completion(&comp->ic->crypto_backoff);
654 return true;
656 dm_integrity_io_error(comp->ic, "encrypt", r);
657 return false;
660 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
661 unsigned n_sections, struct journal_completion *comp)
663 struct scatterlist **source_sg;
664 struct scatterlist **target_sg;
666 atomic_add(2, &comp->in_flight);
668 if (likely(encrypt)) {
669 source_sg = ic->journal_scatterlist;
670 target_sg = ic->journal_io_scatterlist;
671 } else {
672 source_sg = ic->journal_io_scatterlist;
673 target_sg = ic->journal_scatterlist;
676 do {
677 struct skcipher_request *req;
678 unsigned ivsize;
679 char *iv;
681 if (likely(encrypt))
682 rw_section_mac(ic, section, true);
684 req = ic->sk_requests[section];
685 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
686 iv = req->iv;
688 memcpy(iv, iv + ivsize, ivsize);
690 req->src = source_sg[section];
691 req->dst = target_sg[section];
693 if (unlikely(do_crypt(encrypt, req, comp)))
694 atomic_inc(&comp->in_flight);
696 section++;
697 n_sections--;
698 } while (n_sections);
700 atomic_dec(&comp->in_flight);
701 complete_journal_op(comp);
704 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
705 unsigned n_sections, struct journal_completion *comp)
707 if (ic->journal_xor)
708 return xor_journal(ic, encrypt, section, n_sections, comp);
709 else
710 return crypt_journal(ic, encrypt, section, n_sections, comp);
713 static void complete_journal_io(unsigned long error, void *context)
715 struct journal_completion *comp = context;
716 if (unlikely(error != 0))
717 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
718 complete_journal_op(comp);
721 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
722 unsigned n_sections, struct journal_completion *comp)
724 struct dm_io_request io_req;
725 struct dm_io_region io_loc;
726 unsigned sector, n_sectors, pl_index, pl_offset;
727 int r;
729 if (unlikely(dm_integrity_failed(ic))) {
730 if (comp)
731 complete_journal_io(-1UL, comp);
732 return;
735 sector = section * ic->journal_section_sectors;
736 n_sectors = n_sections * ic->journal_section_sectors;
738 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
739 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
741 io_req.bi_op = op;
742 io_req.bi_op_flags = op_flags;
743 io_req.mem.type = DM_IO_PAGE_LIST;
744 if (ic->journal_io)
745 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
746 else
747 io_req.mem.ptr.pl = &ic->journal[pl_index];
748 io_req.mem.offset = pl_offset;
749 if (likely(comp != NULL)) {
750 io_req.notify.fn = complete_journal_io;
751 io_req.notify.context = comp;
752 } else {
753 io_req.notify.fn = NULL;
755 io_req.client = ic->io;
756 io_loc.bdev = ic->dev->bdev;
757 io_loc.sector = ic->start + SB_SECTORS + sector;
758 io_loc.count = n_sectors;
760 r = dm_io(&io_req, 1, &io_loc, NULL);
761 if (unlikely(r)) {
762 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
763 if (comp) {
764 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
765 complete_journal_io(-1UL, comp);
770 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
772 struct journal_completion io_comp;
773 struct journal_completion crypt_comp_1;
774 struct journal_completion crypt_comp_2;
775 unsigned i;
777 io_comp.ic = ic;
778 init_completion(&io_comp.comp);
780 if (commit_start + commit_sections <= ic->journal_sections) {
781 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
782 if (ic->journal_io) {
783 crypt_comp_1.ic = ic;
784 init_completion(&crypt_comp_1.comp);
785 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
786 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
787 wait_for_completion_io(&crypt_comp_1.comp);
788 } else {
789 for (i = 0; i < commit_sections; i++)
790 rw_section_mac(ic, commit_start + i, true);
792 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
793 commit_sections, &io_comp);
794 } else {
795 unsigned to_end;
796 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
797 to_end = ic->journal_sections - commit_start;
798 if (ic->journal_io) {
799 crypt_comp_1.ic = ic;
800 init_completion(&crypt_comp_1.comp);
801 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
802 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
803 if (try_wait_for_completion(&crypt_comp_1.comp)) {
804 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
805 reinit_completion(&crypt_comp_1.comp);
806 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
807 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
808 wait_for_completion_io(&crypt_comp_1.comp);
809 } else {
810 crypt_comp_2.ic = ic;
811 init_completion(&crypt_comp_2.comp);
812 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
813 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
814 wait_for_completion_io(&crypt_comp_1.comp);
815 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
816 wait_for_completion_io(&crypt_comp_2.comp);
818 } else {
819 for (i = 0; i < to_end; i++)
820 rw_section_mac(ic, commit_start + i, true);
821 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
822 for (i = 0; i < commit_sections - to_end; i++)
823 rw_section_mac(ic, i, true);
825 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
828 wait_for_completion_io(&io_comp.comp);
831 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
832 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
834 struct dm_io_request io_req;
835 struct dm_io_region io_loc;
836 int r;
837 unsigned sector, pl_index, pl_offset;
839 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
841 if (unlikely(dm_integrity_failed(ic))) {
842 fn(-1UL, data);
843 return;
846 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
848 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
849 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
851 io_req.bi_op = REQ_OP_WRITE;
852 io_req.bi_op_flags = 0;
853 io_req.mem.type = DM_IO_PAGE_LIST;
854 io_req.mem.ptr.pl = &ic->journal[pl_index];
855 io_req.mem.offset = pl_offset;
856 io_req.notify.fn = fn;
857 io_req.notify.context = data;
858 io_req.client = ic->io;
859 io_loc.bdev = ic->dev->bdev;
860 io_loc.sector = ic->start + target;
861 io_loc.count = n_sectors;
863 r = dm_io(&io_req, 1, &io_loc, NULL);
864 if (unlikely(r)) {
865 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
866 fn(-1UL, data);
870 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
872 struct rb_node **n = &ic->in_progress.rb_node;
873 struct rb_node *parent;
875 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
877 parent = NULL;
879 while (*n) {
880 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
882 parent = *n;
883 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
884 n = &range->node.rb_left;
885 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
886 n = &range->node.rb_right;
887 } else {
888 return false;
892 rb_link_node(&new_range->node, parent, n);
893 rb_insert_color(&new_range->node, &ic->in_progress);
895 return true;
898 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
900 rb_erase(&range->node, &ic->in_progress);
901 wake_up_locked(&ic->endio_wait);
904 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
906 unsigned long flags;
908 spin_lock_irqsave(&ic->endio_wait.lock, flags);
909 remove_range_unlocked(ic, range);
910 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
913 static void init_journal_node(struct journal_node *node)
915 RB_CLEAR_NODE(&node->node);
916 node->sector = (sector_t)-1;
919 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
921 struct rb_node **link;
922 struct rb_node *parent;
924 node->sector = sector;
925 BUG_ON(!RB_EMPTY_NODE(&node->node));
927 link = &ic->journal_tree_root.rb_node;
928 parent = NULL;
930 while (*link) {
931 struct journal_node *j;
932 parent = *link;
933 j = container_of(parent, struct journal_node, node);
934 if (sector < j->sector)
935 link = &j->node.rb_left;
936 else
937 link = &j->node.rb_right;
940 rb_link_node(&node->node, parent, link);
941 rb_insert_color(&node->node, &ic->journal_tree_root);
944 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
946 BUG_ON(RB_EMPTY_NODE(&node->node));
947 rb_erase(&node->node, &ic->journal_tree_root);
948 init_journal_node(node);
951 #define NOT_FOUND (-1U)
953 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
955 struct rb_node *n = ic->journal_tree_root.rb_node;
956 unsigned found = NOT_FOUND;
957 *next_sector = (sector_t)-1;
958 while (n) {
959 struct journal_node *j = container_of(n, struct journal_node, node);
960 if (sector == j->sector) {
961 found = j - ic->journal_tree;
963 if (sector < j->sector) {
964 *next_sector = j->sector;
965 n = j->node.rb_left;
966 } else {
967 n = j->node.rb_right;
971 return found;
974 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
976 struct journal_node *node, *next_node;
977 struct rb_node *next;
979 if (unlikely(pos >= ic->journal_entries))
980 return false;
981 node = &ic->journal_tree[pos];
982 if (unlikely(RB_EMPTY_NODE(&node->node)))
983 return false;
984 if (unlikely(node->sector != sector))
985 return false;
987 next = rb_next(&node->node);
988 if (unlikely(!next))
989 return true;
991 next_node = container_of(next, struct journal_node, node);
992 return next_node->sector != sector;
995 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
997 struct rb_node *next;
998 struct journal_node *next_node;
999 unsigned next_section;
1001 BUG_ON(RB_EMPTY_NODE(&node->node));
1003 next = rb_next(&node->node);
1004 if (unlikely(!next))
1005 return false;
1007 next_node = container_of(next, struct journal_node, node);
1009 if (next_node->sector != node->sector)
1010 return false;
1012 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1013 if (next_section >= ic->committed_section &&
1014 next_section < ic->committed_section + ic->n_committed_sections)
1015 return true;
1016 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1017 return true;
1019 return false;
1022 #define TAG_READ 0
1023 #define TAG_WRITE 1
1024 #define TAG_CMP 2
1026 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1027 unsigned *metadata_offset, unsigned total_size, int op)
1029 do {
1030 unsigned char *data, *dp;
1031 struct dm_buffer *b;
1032 unsigned to_copy;
1033 int r;
1035 r = dm_integrity_failed(ic);
1036 if (unlikely(r))
1037 return r;
1039 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1040 if (unlikely(IS_ERR(data)))
1041 return PTR_ERR(data);
1043 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1044 dp = data + *metadata_offset;
1045 if (op == TAG_READ) {
1046 memcpy(tag, dp, to_copy);
1047 } else if (op == TAG_WRITE) {
1048 memcpy(dp, tag, to_copy);
1049 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1050 } else {
1051 /* e.g.: op == TAG_CMP */
1052 if (unlikely(memcmp(dp, tag, to_copy))) {
1053 unsigned i;
1055 for (i = 0; i < to_copy; i++) {
1056 if (dp[i] != tag[i])
1057 break;
1058 total_size--;
1060 dm_bufio_release(b);
1061 return total_size;
1064 dm_bufio_release(b);
1066 tag += to_copy;
1067 *metadata_offset += to_copy;
1068 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1069 (*metadata_block)++;
1070 *metadata_offset = 0;
1072 total_size -= to_copy;
1073 } while (unlikely(total_size));
1075 return 0;
1078 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1080 int r;
1081 r = dm_bufio_write_dirty_buffers(ic->bufio);
1082 if (unlikely(r))
1083 dm_integrity_io_error(ic, "writing tags", r);
1086 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1088 DECLARE_WAITQUEUE(wait, current);
1089 __add_wait_queue(&ic->endio_wait, &wait);
1090 __set_current_state(TASK_UNINTERRUPTIBLE);
1091 spin_unlock_irq(&ic->endio_wait.lock);
1092 io_schedule();
1093 spin_lock_irq(&ic->endio_wait.lock);
1094 __remove_wait_queue(&ic->endio_wait, &wait);
1097 static void autocommit_fn(struct timer_list *t)
1099 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1101 if (likely(!dm_integrity_failed(ic)))
1102 queue_work(ic->commit_wq, &ic->commit_work);
1105 static void schedule_autocommit(struct dm_integrity_c *ic)
1107 if (!timer_pending(&ic->autocommit_timer))
1108 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1111 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1113 struct bio *bio;
1114 unsigned long flags;
1116 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1117 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1118 bio_list_add(&ic->flush_bio_list, bio);
1119 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1121 queue_work(ic->commit_wq, &ic->commit_work);
1124 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1126 int r = dm_integrity_failed(ic);
1127 if (unlikely(r) && !bio->bi_status)
1128 bio->bi_status = errno_to_blk_status(r);
1129 bio_endio(bio);
1132 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1134 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1136 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1137 submit_flush_bio(ic, dio);
1138 else
1139 do_endio(ic, bio);
1142 static void dec_in_flight(struct dm_integrity_io *dio)
1144 if (atomic_dec_and_test(&dio->in_flight)) {
1145 struct dm_integrity_c *ic = dio->ic;
1146 struct bio *bio;
1148 remove_range(ic, &dio->range);
1150 if (unlikely(dio->write))
1151 schedule_autocommit(ic);
1153 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1155 if (unlikely(dio->bi_status) && !bio->bi_status)
1156 bio->bi_status = dio->bi_status;
1157 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1158 dio->range.logical_sector += dio->range.n_sectors;
1159 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1160 INIT_WORK(&dio->work, integrity_bio_wait);
1161 queue_work(ic->wait_wq, &dio->work);
1162 return;
1164 do_endio_flush(ic, dio);
1168 static void integrity_end_io(struct bio *bio)
1170 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1172 bio->bi_iter = dio->orig_bi_iter;
1173 bio->bi_disk = dio->orig_bi_disk;
1174 bio->bi_partno = dio->orig_bi_partno;
1175 if (dio->orig_bi_integrity) {
1176 bio->bi_integrity = dio->orig_bi_integrity;
1177 bio->bi_opf |= REQ_INTEGRITY;
1179 bio->bi_end_io = dio->orig_bi_end_io;
1181 if (dio->completion)
1182 complete(dio->completion);
1184 dec_in_flight(dio);
1187 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1188 const char *data, char *result)
1190 __u64 sector_le = cpu_to_le64(sector);
1191 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1192 int r;
1193 unsigned digest_size;
1195 req->tfm = ic->internal_hash;
1196 req->flags = 0;
1198 r = crypto_shash_init(req);
1199 if (unlikely(r < 0)) {
1200 dm_integrity_io_error(ic, "crypto_shash_init", r);
1201 goto failed;
1204 r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1205 if (unlikely(r < 0)) {
1206 dm_integrity_io_error(ic, "crypto_shash_update", r);
1207 goto failed;
1210 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1211 if (unlikely(r < 0)) {
1212 dm_integrity_io_error(ic, "crypto_shash_update", r);
1213 goto failed;
1216 r = crypto_shash_final(req, result);
1217 if (unlikely(r < 0)) {
1218 dm_integrity_io_error(ic, "crypto_shash_final", r);
1219 goto failed;
1222 digest_size = crypto_shash_digestsize(ic->internal_hash);
1223 if (unlikely(digest_size < ic->tag_size))
1224 memset(result + digest_size, 0, ic->tag_size - digest_size);
1226 return;
1228 failed:
1229 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1230 get_random_bytes(result, ic->tag_size);
1233 static void integrity_metadata(struct work_struct *w)
1235 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1236 struct dm_integrity_c *ic = dio->ic;
1238 int r;
1240 if (ic->internal_hash) {
1241 struct bvec_iter iter;
1242 struct bio_vec bv;
1243 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1244 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1245 char *checksums;
1246 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1247 char checksums_onstack[ic->tag_size + extra_space];
1248 unsigned sectors_to_process = dio->range.n_sectors;
1249 sector_t sector = dio->range.logical_sector;
1251 if (unlikely(ic->mode == 'R'))
1252 goto skip_io;
1254 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1255 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1256 if (!checksums)
1257 checksums = checksums_onstack;
1259 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
1260 unsigned pos;
1261 char *mem, *checksums_ptr;
1263 again:
1264 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1265 pos = 0;
1266 checksums_ptr = checksums;
1267 do {
1268 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1269 checksums_ptr += ic->tag_size;
1270 sectors_to_process -= ic->sectors_per_block;
1271 pos += ic->sectors_per_block << SECTOR_SHIFT;
1272 sector += ic->sectors_per_block;
1273 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1274 kunmap_atomic(mem);
1276 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1277 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1278 if (unlikely(r)) {
1279 if (r > 0) {
1280 DMERR("Checksum failed at sector 0x%llx",
1281 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1282 r = -EILSEQ;
1283 atomic64_inc(&ic->number_of_mismatches);
1285 if (likely(checksums != checksums_onstack))
1286 kfree(checksums);
1287 goto error;
1290 if (!sectors_to_process)
1291 break;
1293 if (unlikely(pos < bv.bv_len)) {
1294 bv.bv_offset += pos;
1295 bv.bv_len -= pos;
1296 goto again;
1300 if (likely(checksums != checksums_onstack))
1301 kfree(checksums);
1302 } else {
1303 struct bio_integrity_payload *bip = dio->orig_bi_integrity;
1305 if (bip) {
1306 struct bio_vec biv;
1307 struct bvec_iter iter;
1308 unsigned data_to_process = dio->range.n_sectors;
1309 sector_to_block(ic, data_to_process);
1310 data_to_process *= ic->tag_size;
1312 bip_for_each_vec(biv, bip, iter) {
1313 unsigned char *tag;
1314 unsigned this_len;
1316 BUG_ON(PageHighMem(biv.bv_page));
1317 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1318 this_len = min(biv.bv_len, data_to_process);
1319 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1320 this_len, !dio->write ? TAG_READ : TAG_WRITE);
1321 if (unlikely(r))
1322 goto error;
1323 data_to_process -= this_len;
1324 if (!data_to_process)
1325 break;
1329 skip_io:
1330 dec_in_flight(dio);
1331 return;
1332 error:
1333 dio->bi_status = errno_to_blk_status(r);
1334 dec_in_flight(dio);
1337 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1339 struct dm_integrity_c *ic = ti->private;
1340 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1341 struct bio_integrity_payload *bip;
1343 sector_t area, offset;
1345 dio->ic = ic;
1346 dio->bi_status = 0;
1348 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1349 submit_flush_bio(ic, dio);
1350 return DM_MAPIO_SUBMITTED;
1353 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1354 dio->write = bio_op(bio) == REQ_OP_WRITE;
1355 dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1356 if (unlikely(dio->fua)) {
1358 * Don't pass down the FUA flag because we have to flush
1359 * disk cache anyway.
1361 bio->bi_opf &= ~REQ_FUA;
1363 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1364 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1365 (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1366 (unsigned long long)ic->provided_data_sectors);
1367 return DM_MAPIO_KILL;
1369 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1370 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1371 ic->sectors_per_block,
1372 (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1373 return DM_MAPIO_KILL;
1376 if (ic->sectors_per_block > 1) {
1377 struct bvec_iter iter;
1378 struct bio_vec bv;
1379 bio_for_each_segment(bv, bio, iter) {
1380 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1381 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1382 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1383 return DM_MAPIO_KILL;
1388 bip = bio_integrity(bio);
1389 if (!ic->internal_hash) {
1390 if (bip) {
1391 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1392 if (ic->log2_tag_size >= 0)
1393 wanted_tag_size <<= ic->log2_tag_size;
1394 else
1395 wanted_tag_size *= ic->tag_size;
1396 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1397 DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size);
1398 return DM_MAPIO_KILL;
1401 } else {
1402 if (unlikely(bip != NULL)) {
1403 DMERR("Unexpected integrity data when using internal hash");
1404 return DM_MAPIO_KILL;
1408 if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1409 return DM_MAPIO_KILL;
1411 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1412 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1413 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1415 dm_integrity_map_continue(dio, true);
1416 return DM_MAPIO_SUBMITTED;
1419 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1420 unsigned journal_section, unsigned journal_entry)
1422 struct dm_integrity_c *ic = dio->ic;
1423 sector_t logical_sector;
1424 unsigned n_sectors;
1426 logical_sector = dio->range.logical_sector;
1427 n_sectors = dio->range.n_sectors;
1428 do {
1429 struct bio_vec bv = bio_iovec(bio);
1430 char *mem;
1432 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1433 bv.bv_len = n_sectors << SECTOR_SHIFT;
1434 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1435 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1436 retry_kmap:
1437 mem = kmap_atomic(bv.bv_page);
1438 if (likely(dio->write))
1439 flush_dcache_page(bv.bv_page);
1441 do {
1442 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1444 if (unlikely(!dio->write)) {
1445 struct journal_sector *js;
1446 char *mem_ptr;
1447 unsigned s;
1449 if (unlikely(journal_entry_is_inprogress(je))) {
1450 flush_dcache_page(bv.bv_page);
1451 kunmap_atomic(mem);
1453 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1454 goto retry_kmap;
1456 smp_rmb();
1457 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1458 js = access_journal_data(ic, journal_section, journal_entry);
1459 mem_ptr = mem + bv.bv_offset;
1460 s = 0;
1461 do {
1462 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1463 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1464 js++;
1465 mem_ptr += 1 << SECTOR_SHIFT;
1466 } while (++s < ic->sectors_per_block);
1467 #ifdef INTERNAL_VERIFY
1468 if (ic->internal_hash) {
1469 char checksums_onstack[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
1471 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1472 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1473 DMERR("Checksum failed when reading from journal, at sector 0x%llx",
1474 (unsigned long long)logical_sector);
1477 #endif
1480 if (!ic->internal_hash) {
1481 struct bio_integrity_payload *bip = bio_integrity(bio);
1482 unsigned tag_todo = ic->tag_size;
1483 char *tag_ptr = journal_entry_tag(ic, je);
1485 if (bip) do {
1486 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1487 unsigned tag_now = min(biv.bv_len, tag_todo);
1488 char *tag_addr;
1489 BUG_ON(PageHighMem(biv.bv_page));
1490 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1491 if (likely(dio->write))
1492 memcpy(tag_ptr, tag_addr, tag_now);
1493 else
1494 memcpy(tag_addr, tag_ptr, tag_now);
1495 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1496 tag_ptr += tag_now;
1497 tag_todo -= tag_now;
1498 } while (unlikely(tag_todo)); else {
1499 if (likely(dio->write))
1500 memset(tag_ptr, 0, tag_todo);
1504 if (likely(dio->write)) {
1505 struct journal_sector *js;
1506 unsigned s;
1508 js = access_journal_data(ic, journal_section, journal_entry);
1509 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1511 s = 0;
1512 do {
1513 je->last_bytes[s] = js[s].commit_id;
1514 } while (++s < ic->sectors_per_block);
1516 if (ic->internal_hash) {
1517 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1518 if (unlikely(digest_size > ic->tag_size)) {
1519 char checksums_onstack[digest_size];
1520 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1521 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1522 } else
1523 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1526 journal_entry_set_sector(je, logical_sector);
1528 logical_sector += ic->sectors_per_block;
1530 journal_entry++;
1531 if (unlikely(journal_entry == ic->journal_section_entries)) {
1532 journal_entry = 0;
1533 journal_section++;
1534 wraparound_section(ic, &journal_section);
1537 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1538 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1540 if (unlikely(!dio->write))
1541 flush_dcache_page(bv.bv_page);
1542 kunmap_atomic(mem);
1543 } while (n_sectors);
1545 if (likely(dio->write)) {
1546 smp_mb();
1547 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1548 wake_up(&ic->copy_to_journal_wait);
1549 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1550 queue_work(ic->commit_wq, &ic->commit_work);
1551 } else {
1552 schedule_autocommit(ic);
1554 } else {
1555 remove_range(ic, &dio->range);
1558 if (unlikely(bio->bi_iter.bi_size)) {
1559 sector_t area, offset;
1561 dio->range.logical_sector = logical_sector;
1562 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1563 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1564 return true;
1567 return false;
1570 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1572 struct dm_integrity_c *ic = dio->ic;
1573 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1574 unsigned journal_section, journal_entry;
1575 unsigned journal_read_pos;
1576 struct completion read_comp;
1577 bool need_sync_io = ic->internal_hash && !dio->write;
1579 if (need_sync_io && from_map) {
1580 INIT_WORK(&dio->work, integrity_bio_wait);
1581 queue_work(ic->metadata_wq, &dio->work);
1582 return;
1585 lock_retry:
1586 spin_lock_irq(&ic->endio_wait.lock);
1587 retry:
1588 if (unlikely(dm_integrity_failed(ic))) {
1589 spin_unlock_irq(&ic->endio_wait.lock);
1590 do_endio(ic, bio);
1591 return;
1593 dio->range.n_sectors = bio_sectors(bio);
1594 journal_read_pos = NOT_FOUND;
1595 if (likely(ic->mode == 'J')) {
1596 if (dio->write) {
1597 unsigned next_entry, i, pos;
1598 unsigned ws, we, range_sectors;
1600 dio->range.n_sectors = min(dio->range.n_sectors,
1601 ic->free_sectors << ic->sb->log2_sectors_per_block);
1602 if (unlikely(!dio->range.n_sectors))
1603 goto sleep;
1604 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1605 ic->free_sectors -= range_sectors;
1606 journal_section = ic->free_section;
1607 journal_entry = ic->free_section_entry;
1609 next_entry = ic->free_section_entry + range_sectors;
1610 ic->free_section_entry = next_entry % ic->journal_section_entries;
1611 ic->free_section += next_entry / ic->journal_section_entries;
1612 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1613 wraparound_section(ic, &ic->free_section);
1615 pos = journal_section * ic->journal_section_entries + journal_entry;
1616 ws = journal_section;
1617 we = journal_entry;
1618 i = 0;
1619 do {
1620 struct journal_entry *je;
1622 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1623 pos++;
1624 if (unlikely(pos >= ic->journal_entries))
1625 pos = 0;
1627 je = access_journal_entry(ic, ws, we);
1628 BUG_ON(!journal_entry_is_unused(je));
1629 journal_entry_set_inprogress(je);
1630 we++;
1631 if (unlikely(we == ic->journal_section_entries)) {
1632 we = 0;
1633 ws++;
1634 wraparound_section(ic, &ws);
1636 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1638 spin_unlock_irq(&ic->endio_wait.lock);
1639 goto journal_read_write;
1640 } else {
1641 sector_t next_sector;
1642 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1643 if (likely(journal_read_pos == NOT_FOUND)) {
1644 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1645 dio->range.n_sectors = next_sector - dio->range.logical_sector;
1646 } else {
1647 unsigned i;
1648 unsigned jp = journal_read_pos + 1;
1649 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1650 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1651 break;
1653 dio->range.n_sectors = i;
1657 if (unlikely(!add_new_range(ic, &dio->range))) {
1659 * We must not sleep in the request routine because it could
1660 * stall bios on current->bio_list.
1661 * So, we offload the bio to a workqueue if we have to sleep.
1663 sleep:
1664 if (from_map) {
1665 spin_unlock_irq(&ic->endio_wait.lock);
1666 INIT_WORK(&dio->work, integrity_bio_wait);
1667 queue_work(ic->wait_wq, &dio->work);
1668 return;
1669 } else {
1670 sleep_on_endio_wait(ic);
1671 goto retry;
1674 spin_unlock_irq(&ic->endio_wait.lock);
1676 if (unlikely(journal_read_pos != NOT_FOUND)) {
1677 journal_section = journal_read_pos / ic->journal_section_entries;
1678 journal_entry = journal_read_pos % ic->journal_section_entries;
1679 goto journal_read_write;
1682 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1684 if (need_sync_io) {
1685 init_completion(&read_comp);
1686 dio->completion = &read_comp;
1687 } else
1688 dio->completion = NULL;
1690 dio->orig_bi_iter = bio->bi_iter;
1692 dio->orig_bi_disk = bio->bi_disk;
1693 dio->orig_bi_partno = bio->bi_partno;
1694 bio_set_dev(bio, ic->dev->bdev);
1696 dio->orig_bi_integrity = bio_integrity(bio);
1697 bio->bi_integrity = NULL;
1698 bio->bi_opf &= ~REQ_INTEGRITY;
1700 dio->orig_bi_end_io = bio->bi_end_io;
1701 bio->bi_end_io = integrity_end_io;
1703 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
1704 bio->bi_iter.bi_sector += ic->start;
1705 generic_make_request(bio);
1707 if (need_sync_io) {
1708 wait_for_completion_io(&read_comp);
1709 if (likely(!bio->bi_status))
1710 integrity_metadata(&dio->work);
1711 else
1712 dec_in_flight(dio);
1714 } else {
1715 INIT_WORK(&dio->work, integrity_metadata);
1716 queue_work(ic->metadata_wq, &dio->work);
1719 return;
1721 journal_read_write:
1722 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
1723 goto lock_retry;
1725 do_endio_flush(ic, dio);
1729 static void integrity_bio_wait(struct work_struct *w)
1731 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1733 dm_integrity_map_continue(dio, false);
1736 static void pad_uncommitted(struct dm_integrity_c *ic)
1738 if (ic->free_section_entry) {
1739 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
1740 ic->free_section_entry = 0;
1741 ic->free_section++;
1742 wraparound_section(ic, &ic->free_section);
1743 ic->n_uncommitted_sections++;
1745 WARN_ON(ic->journal_sections * ic->journal_section_entries !=
1746 (ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors);
1749 static void integrity_commit(struct work_struct *w)
1751 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
1752 unsigned commit_start, commit_sections;
1753 unsigned i, j, n;
1754 struct bio *flushes;
1756 del_timer(&ic->autocommit_timer);
1758 spin_lock_irq(&ic->endio_wait.lock);
1759 flushes = bio_list_get(&ic->flush_bio_list);
1760 if (unlikely(ic->mode != 'J')) {
1761 spin_unlock_irq(&ic->endio_wait.lock);
1762 dm_integrity_flush_buffers(ic);
1763 goto release_flush_bios;
1766 pad_uncommitted(ic);
1767 commit_start = ic->uncommitted_section;
1768 commit_sections = ic->n_uncommitted_sections;
1769 spin_unlock_irq(&ic->endio_wait.lock);
1771 if (!commit_sections)
1772 goto release_flush_bios;
1774 i = commit_start;
1775 for (n = 0; n < commit_sections; n++) {
1776 for (j = 0; j < ic->journal_section_entries; j++) {
1777 struct journal_entry *je;
1778 je = access_journal_entry(ic, i, j);
1779 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1781 for (j = 0; j < ic->journal_section_sectors; j++) {
1782 struct journal_sector *js;
1783 js = access_journal(ic, i, j);
1784 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
1786 i++;
1787 if (unlikely(i >= ic->journal_sections))
1788 ic->commit_seq = next_commit_seq(ic->commit_seq);
1789 wraparound_section(ic, &i);
1791 smp_rmb();
1793 write_journal(ic, commit_start, commit_sections);
1795 spin_lock_irq(&ic->endio_wait.lock);
1796 ic->uncommitted_section += commit_sections;
1797 wraparound_section(ic, &ic->uncommitted_section);
1798 ic->n_uncommitted_sections -= commit_sections;
1799 ic->n_committed_sections += commit_sections;
1800 spin_unlock_irq(&ic->endio_wait.lock);
1802 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
1803 queue_work(ic->writer_wq, &ic->writer_work);
1805 release_flush_bios:
1806 while (flushes) {
1807 struct bio *next = flushes->bi_next;
1808 flushes->bi_next = NULL;
1809 do_endio(ic, flushes);
1810 flushes = next;
1814 static void complete_copy_from_journal(unsigned long error, void *context)
1816 struct journal_io *io = context;
1817 struct journal_completion *comp = io->comp;
1818 struct dm_integrity_c *ic = comp->ic;
1819 remove_range(ic, &io->range);
1820 mempool_free(io, ic->journal_io_mempool);
1821 if (unlikely(error != 0))
1822 dm_integrity_io_error(ic, "copying from journal", -EIO);
1823 complete_journal_op(comp);
1826 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
1827 struct journal_entry *je)
1829 unsigned s = 0;
1830 do {
1831 js->commit_id = je->last_bytes[s];
1832 js++;
1833 } while (++s < ic->sectors_per_block);
1836 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
1837 unsigned write_sections, bool from_replay)
1839 unsigned i, j, n;
1840 struct journal_completion comp;
1841 struct blk_plug plug;
1843 blk_start_plug(&plug);
1845 comp.ic = ic;
1846 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1847 init_completion(&comp.comp);
1849 i = write_start;
1850 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
1851 #ifndef INTERNAL_VERIFY
1852 if (unlikely(from_replay))
1853 #endif
1854 rw_section_mac(ic, i, false);
1855 for (j = 0; j < ic->journal_section_entries; j++) {
1856 struct journal_entry *je = access_journal_entry(ic, i, j);
1857 sector_t sec, area, offset;
1858 unsigned k, l, next_loop;
1859 sector_t metadata_block;
1860 unsigned metadata_offset;
1861 struct journal_io *io;
1863 if (journal_entry_is_unused(je))
1864 continue;
1865 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
1866 sec = journal_entry_get_sector(je);
1867 if (unlikely(from_replay)) {
1868 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
1869 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
1870 sec &= ~(sector_t)(ic->sectors_per_block - 1);
1873 get_area_and_offset(ic, sec, &area, &offset);
1874 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
1875 for (k = j + 1; k < ic->journal_section_entries; k++) {
1876 struct journal_entry *je2 = access_journal_entry(ic, i, k);
1877 sector_t sec2, area2, offset2;
1878 if (journal_entry_is_unused(je2))
1879 break;
1880 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
1881 sec2 = journal_entry_get_sector(je2);
1882 get_area_and_offset(ic, sec2, &area2, &offset2);
1883 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
1884 break;
1885 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
1887 next_loop = k - 1;
1889 io = mempool_alloc(ic->journal_io_mempool, GFP_NOIO);
1890 io->comp = &comp;
1891 io->range.logical_sector = sec;
1892 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
1894 spin_lock_irq(&ic->endio_wait.lock);
1895 while (unlikely(!add_new_range(ic, &io->range)))
1896 sleep_on_endio_wait(ic);
1898 if (likely(!from_replay)) {
1899 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
1901 /* don't write if there is newer committed sector */
1902 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
1903 struct journal_entry *je2 = access_journal_entry(ic, i, j);
1905 journal_entry_set_unused(je2);
1906 remove_journal_node(ic, &section_node[j]);
1907 j++;
1908 sec += ic->sectors_per_block;
1909 offset += ic->sectors_per_block;
1911 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
1912 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
1914 journal_entry_set_unused(je2);
1915 remove_journal_node(ic, &section_node[k - 1]);
1916 k--;
1918 if (j == k) {
1919 remove_range_unlocked(ic, &io->range);
1920 spin_unlock_irq(&ic->endio_wait.lock);
1921 mempool_free(io, ic->journal_io_mempool);
1922 goto skip_io;
1924 for (l = j; l < k; l++) {
1925 remove_journal_node(ic, &section_node[l]);
1928 spin_unlock_irq(&ic->endio_wait.lock);
1930 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
1931 for (l = j; l < k; l++) {
1932 int r;
1933 struct journal_entry *je2 = access_journal_entry(ic, i, l);
1935 if (
1936 #ifndef INTERNAL_VERIFY
1937 unlikely(from_replay) &&
1938 #endif
1939 ic->internal_hash) {
1940 char test_tag[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
1942 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
1943 (char *)access_journal_data(ic, i, l), test_tag);
1944 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
1945 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
1948 journal_entry_set_unused(je2);
1949 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
1950 ic->tag_size, TAG_WRITE);
1951 if (unlikely(r)) {
1952 dm_integrity_io_error(ic, "reading tags", r);
1956 atomic_inc(&comp.in_flight);
1957 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
1958 (k - j) << ic->sb->log2_sectors_per_block,
1959 get_data_sector(ic, area, offset),
1960 complete_copy_from_journal, io);
1961 skip_io:
1962 j = next_loop;
1966 dm_bufio_write_dirty_buffers_async(ic->bufio);
1968 blk_finish_plug(&plug);
1970 complete_journal_op(&comp);
1971 wait_for_completion_io(&comp.comp);
1973 dm_integrity_flush_buffers(ic);
1976 static void integrity_writer(struct work_struct *w)
1978 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
1979 unsigned write_start, write_sections;
1981 unsigned prev_free_sectors;
1983 /* the following test is not needed, but it tests the replay code */
1984 if (READ_ONCE(ic->suspending))
1985 return;
1987 spin_lock_irq(&ic->endio_wait.lock);
1988 write_start = ic->committed_section;
1989 write_sections = ic->n_committed_sections;
1990 spin_unlock_irq(&ic->endio_wait.lock);
1992 if (!write_sections)
1993 return;
1995 do_journal_write(ic, write_start, write_sections, false);
1997 spin_lock_irq(&ic->endio_wait.lock);
1999 ic->committed_section += write_sections;
2000 wraparound_section(ic, &ic->committed_section);
2001 ic->n_committed_sections -= write_sections;
2003 prev_free_sectors = ic->free_sectors;
2004 ic->free_sectors += write_sections * ic->journal_section_entries;
2005 if (unlikely(!prev_free_sectors))
2006 wake_up_locked(&ic->endio_wait);
2008 spin_unlock_irq(&ic->endio_wait.lock);
2011 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2012 unsigned n_sections, unsigned char commit_seq)
2014 unsigned i, j, n;
2016 if (!n_sections)
2017 return;
2019 for (n = 0; n < n_sections; n++) {
2020 i = start_section + n;
2021 wraparound_section(ic, &i);
2022 for (j = 0; j < ic->journal_section_sectors; j++) {
2023 struct journal_sector *js = access_journal(ic, i, j);
2024 memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2025 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2027 for (j = 0; j < ic->journal_section_entries; j++) {
2028 struct journal_entry *je = access_journal_entry(ic, i, j);
2029 journal_entry_set_unused(je);
2033 write_journal(ic, start_section, n_sections);
2036 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2038 unsigned char k;
2039 for (k = 0; k < N_COMMIT_IDS; k++) {
2040 if (dm_integrity_commit_id(ic, i, j, k) == id)
2041 return k;
2043 dm_integrity_io_error(ic, "journal commit id", -EIO);
2044 return -EIO;
2047 static void replay_journal(struct dm_integrity_c *ic)
2049 unsigned i, j;
2050 bool used_commit_ids[N_COMMIT_IDS];
2051 unsigned max_commit_id_sections[N_COMMIT_IDS];
2052 unsigned write_start, write_sections;
2053 unsigned continue_section;
2054 bool journal_empty;
2055 unsigned char unused, last_used, want_commit_seq;
2057 if (ic->mode == 'R')
2058 return;
2060 if (ic->journal_uptodate)
2061 return;
2063 last_used = 0;
2064 write_start = 0;
2066 if (!ic->just_formatted) {
2067 DEBUG_print("reading journal\n");
2068 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2069 if (ic->journal_io)
2070 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2071 if (ic->journal_io) {
2072 struct journal_completion crypt_comp;
2073 crypt_comp.ic = ic;
2074 init_completion(&crypt_comp.comp);
2075 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2076 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2077 wait_for_completion(&crypt_comp.comp);
2079 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2082 if (dm_integrity_failed(ic))
2083 goto clear_journal;
2085 journal_empty = true;
2086 memset(used_commit_ids, 0, sizeof used_commit_ids);
2087 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2088 for (i = 0; i < ic->journal_sections; i++) {
2089 for (j = 0; j < ic->journal_section_sectors; j++) {
2090 int k;
2091 struct journal_sector *js = access_journal(ic, i, j);
2092 k = find_commit_seq(ic, i, j, js->commit_id);
2093 if (k < 0)
2094 goto clear_journal;
2095 used_commit_ids[k] = true;
2096 max_commit_id_sections[k] = i;
2098 if (journal_empty) {
2099 for (j = 0; j < ic->journal_section_entries; j++) {
2100 struct journal_entry *je = access_journal_entry(ic, i, j);
2101 if (!journal_entry_is_unused(je)) {
2102 journal_empty = false;
2103 break;
2109 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2110 unused = N_COMMIT_IDS - 1;
2111 while (unused && !used_commit_ids[unused - 1])
2112 unused--;
2113 } else {
2114 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2115 if (!used_commit_ids[unused])
2116 break;
2117 if (unused == N_COMMIT_IDS) {
2118 dm_integrity_io_error(ic, "journal commit ids", -EIO);
2119 goto clear_journal;
2122 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2123 unused, used_commit_ids[0], used_commit_ids[1],
2124 used_commit_ids[2], used_commit_ids[3]);
2126 last_used = prev_commit_seq(unused);
2127 want_commit_seq = prev_commit_seq(last_used);
2129 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2130 journal_empty = true;
2132 write_start = max_commit_id_sections[last_used] + 1;
2133 if (unlikely(write_start >= ic->journal_sections))
2134 want_commit_seq = next_commit_seq(want_commit_seq);
2135 wraparound_section(ic, &write_start);
2137 i = write_start;
2138 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2139 for (j = 0; j < ic->journal_section_sectors; j++) {
2140 struct journal_sector *js = access_journal(ic, i, j);
2142 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2144 * This could be caused by crash during writing.
2145 * We won't replay the inconsistent part of the
2146 * journal.
2148 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2149 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2150 goto brk;
2153 i++;
2154 if (unlikely(i >= ic->journal_sections))
2155 want_commit_seq = next_commit_seq(want_commit_seq);
2156 wraparound_section(ic, &i);
2158 brk:
2160 if (!journal_empty) {
2161 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2162 write_sections, write_start, want_commit_seq);
2163 do_journal_write(ic, write_start, write_sections, true);
2166 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2167 continue_section = write_start;
2168 ic->commit_seq = want_commit_seq;
2169 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2170 } else {
2171 unsigned s;
2172 unsigned char erase_seq;
2173 clear_journal:
2174 DEBUG_print("clearing journal\n");
2176 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2177 s = write_start;
2178 init_journal(ic, s, 1, erase_seq);
2179 s++;
2180 wraparound_section(ic, &s);
2181 if (ic->journal_sections >= 2) {
2182 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2183 s += ic->journal_sections - 2;
2184 wraparound_section(ic, &s);
2185 init_journal(ic, s, 1, erase_seq);
2188 continue_section = 0;
2189 ic->commit_seq = next_commit_seq(erase_seq);
2192 ic->committed_section = continue_section;
2193 ic->n_committed_sections = 0;
2195 ic->uncommitted_section = continue_section;
2196 ic->n_uncommitted_sections = 0;
2198 ic->free_section = continue_section;
2199 ic->free_section_entry = 0;
2200 ic->free_sectors = ic->journal_entries;
2202 ic->journal_tree_root = RB_ROOT;
2203 for (i = 0; i < ic->journal_entries; i++)
2204 init_journal_node(&ic->journal_tree[i]);
2207 static void dm_integrity_postsuspend(struct dm_target *ti)
2209 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2211 del_timer_sync(&ic->autocommit_timer);
2213 ic->suspending = true;
2215 queue_work(ic->commit_wq, &ic->commit_work);
2216 drain_workqueue(ic->commit_wq);
2218 if (ic->mode == 'J') {
2219 drain_workqueue(ic->writer_wq);
2220 dm_integrity_flush_buffers(ic);
2223 ic->suspending = false;
2225 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2227 ic->journal_uptodate = true;
2230 static void dm_integrity_resume(struct dm_target *ti)
2232 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2234 replay_journal(ic);
2237 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2238 unsigned status_flags, char *result, unsigned maxlen)
2240 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2241 unsigned arg_count;
2242 size_t sz = 0;
2244 switch (type) {
2245 case STATUSTYPE_INFO:
2246 DMEMIT("%llu", (unsigned long long)atomic64_read(&ic->number_of_mismatches));
2247 break;
2249 case STATUSTYPE_TABLE: {
2250 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2251 watermark_percentage += ic->journal_entries / 2;
2252 do_div(watermark_percentage, ic->journal_entries);
2253 arg_count = 5;
2254 arg_count += ic->sectors_per_block != 1;
2255 arg_count += !!ic->internal_hash_alg.alg_string;
2256 arg_count += !!ic->journal_crypt_alg.alg_string;
2257 arg_count += !!ic->journal_mac_alg.alg_string;
2258 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2259 ic->tag_size, ic->mode, arg_count);
2260 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2261 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2262 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2263 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2264 DMEMIT(" commit_time:%u", ic->autocommit_msec);
2265 if (ic->sectors_per_block != 1)
2266 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2268 #define EMIT_ALG(a, n) \
2269 do { \
2270 if (ic->a.alg_string) { \
2271 DMEMIT(" %s:%s", n, ic->a.alg_string); \
2272 if (ic->a.key_string) \
2273 DMEMIT(":%s", ic->a.key_string);\
2275 } while (0)
2276 EMIT_ALG(internal_hash_alg, "internal_hash");
2277 EMIT_ALG(journal_crypt_alg, "journal_crypt");
2278 EMIT_ALG(journal_mac_alg, "journal_mac");
2279 break;
2284 static int dm_integrity_iterate_devices(struct dm_target *ti,
2285 iterate_devices_callout_fn fn, void *data)
2287 struct dm_integrity_c *ic = ti->private;
2289 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
2292 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
2294 struct dm_integrity_c *ic = ti->private;
2296 if (ic->sectors_per_block > 1) {
2297 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2298 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2299 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
2303 static void calculate_journal_section_size(struct dm_integrity_c *ic)
2305 unsigned sector_space = JOURNAL_SECTOR_DATA;
2307 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
2308 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
2309 JOURNAL_ENTRY_ROUNDUP);
2311 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
2312 sector_space -= JOURNAL_MAC_PER_SECTOR;
2313 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
2314 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
2315 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
2316 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
2319 static int calculate_device_limits(struct dm_integrity_c *ic)
2321 __u64 initial_sectors;
2322 sector_t last_sector, last_area, last_offset;
2324 calculate_journal_section_size(ic);
2325 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
2326 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->device_sectors || initial_sectors > UINT_MAX)
2327 return -EINVAL;
2328 ic->initial_sectors = initial_sectors;
2330 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
2331 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
2332 if (!(ic->metadata_run & (ic->metadata_run - 1)))
2333 ic->log2_metadata_run = __ffs(ic->metadata_run);
2334 else
2335 ic->log2_metadata_run = -1;
2337 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
2338 last_sector = get_data_sector(ic, last_area, last_offset);
2340 if (ic->start + last_sector < last_sector || ic->start + last_sector >= ic->device_sectors)
2341 return -EINVAL;
2343 return 0;
2346 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
2348 unsigned journal_sections;
2349 int test_bit;
2351 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
2352 memcpy(ic->sb->magic, SB_MAGIC, 8);
2353 ic->sb->version = SB_VERSION;
2354 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
2355 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
2356 if (ic->journal_mac_alg.alg_string)
2357 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
2359 calculate_journal_section_size(ic);
2360 journal_sections = journal_sectors / ic->journal_section_sectors;
2361 if (!journal_sections)
2362 journal_sections = 1;
2363 ic->sb->journal_sections = cpu_to_le32(journal_sections);
2365 if (!interleave_sectors)
2366 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2367 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
2368 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2369 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2371 ic->provided_data_sectors = 0;
2372 for (test_bit = fls64(ic->device_sectors) - 1; test_bit >= 3; test_bit--) {
2373 __u64 prev_data_sectors = ic->provided_data_sectors;
2375 ic->provided_data_sectors |= (sector_t)1 << test_bit;
2376 if (calculate_device_limits(ic))
2377 ic->provided_data_sectors = prev_data_sectors;
2380 if (!ic->provided_data_sectors)
2381 return -EINVAL;
2383 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
2385 return 0;
2388 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
2390 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
2391 struct blk_integrity bi;
2393 memset(&bi, 0, sizeof(bi));
2394 bi.profile = &dm_integrity_profile;
2395 bi.tuple_size = ic->tag_size;
2396 bi.tag_size = bi.tuple_size;
2397 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
2399 blk_integrity_register(disk, &bi);
2400 blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
2403 static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl)
2405 unsigned i;
2407 if (!pl)
2408 return;
2409 for (i = 0; i < ic->journal_pages; i++)
2410 if (pl[i].page)
2411 __free_page(pl[i].page);
2412 kvfree(pl);
2415 static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic)
2417 size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list);
2418 struct page_list *pl;
2419 unsigned i;
2421 pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO);
2422 if (!pl)
2423 return NULL;
2425 for (i = 0; i < ic->journal_pages; i++) {
2426 pl[i].page = alloc_page(GFP_KERNEL);
2427 if (!pl[i].page) {
2428 dm_integrity_free_page_list(ic, pl);
2429 return NULL;
2431 if (i)
2432 pl[i - 1].next = &pl[i];
2435 return pl;
2438 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
2440 unsigned i;
2441 for (i = 0; i < ic->journal_sections; i++)
2442 kvfree(sl[i]);
2443 kfree(sl);
2446 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl)
2448 struct scatterlist **sl;
2449 unsigned i;
2451 sl = kvmalloc(ic->journal_sections * sizeof(struct scatterlist *), GFP_KERNEL | __GFP_ZERO);
2452 if (!sl)
2453 return NULL;
2455 for (i = 0; i < ic->journal_sections; i++) {
2456 struct scatterlist *s;
2457 unsigned start_index, start_offset;
2458 unsigned end_index, end_offset;
2459 unsigned n_pages;
2460 unsigned idx;
2462 page_list_location(ic, i, 0, &start_index, &start_offset);
2463 page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset);
2465 n_pages = (end_index - start_index + 1);
2467 s = kvmalloc(n_pages * sizeof(struct scatterlist), GFP_KERNEL);
2468 if (!s) {
2469 dm_integrity_free_journal_scatterlist(ic, sl);
2470 return NULL;
2473 sg_init_table(s, n_pages);
2474 for (idx = start_index; idx <= end_index; idx++) {
2475 char *va = lowmem_page_address(pl[idx].page);
2476 unsigned start = 0, end = PAGE_SIZE;
2477 if (idx == start_index)
2478 start = start_offset;
2479 if (idx == end_index)
2480 end = end_offset + (1 << SECTOR_SHIFT);
2481 sg_set_buf(&s[idx - start_index], va + start, end - start);
2484 sl[i] = s;
2487 return sl;
2490 static void free_alg(struct alg_spec *a)
2492 kzfree(a->alg_string);
2493 kzfree(a->key);
2494 memset(a, 0, sizeof *a);
2497 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
2499 char *k;
2501 free_alg(a);
2503 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
2504 if (!a->alg_string)
2505 goto nomem;
2507 k = strchr(a->alg_string, ':');
2508 if (k) {
2509 *k = 0;
2510 a->key_string = k + 1;
2511 if (strlen(a->key_string) & 1)
2512 goto inval;
2514 a->key_size = strlen(a->key_string) / 2;
2515 a->key = kmalloc(a->key_size, GFP_KERNEL);
2516 if (!a->key)
2517 goto nomem;
2518 if (hex2bin(a->key, a->key_string, a->key_size))
2519 goto inval;
2522 return 0;
2523 inval:
2524 *error = error_inval;
2525 return -EINVAL;
2526 nomem:
2527 *error = "Out of memory for an argument";
2528 return -ENOMEM;
2531 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
2532 char *error_alg, char *error_key)
2534 int r;
2536 if (a->alg_string) {
2537 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ASYNC);
2538 if (IS_ERR(*hash)) {
2539 *error = error_alg;
2540 r = PTR_ERR(*hash);
2541 *hash = NULL;
2542 return r;
2545 if (a->key) {
2546 r = crypto_shash_setkey(*hash, a->key, a->key_size);
2547 if (r) {
2548 *error = error_key;
2549 return r;
2554 return 0;
2557 static int create_journal(struct dm_integrity_c *ic, char **error)
2559 int r = 0;
2560 unsigned i;
2561 __u64 journal_pages, journal_desc_size, journal_tree_size;
2562 unsigned char *crypt_data = NULL;
2564 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
2565 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
2566 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
2567 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
2569 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
2570 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
2571 journal_desc_size = journal_pages * sizeof(struct page_list);
2572 if (journal_pages >= totalram_pages - totalhigh_pages || journal_desc_size > ULONG_MAX) {
2573 *error = "Journal doesn't fit into memory";
2574 r = -ENOMEM;
2575 goto bad;
2577 ic->journal_pages = journal_pages;
2579 ic->journal = dm_integrity_alloc_page_list(ic);
2580 if (!ic->journal) {
2581 *error = "Could not allocate memory for journal";
2582 r = -ENOMEM;
2583 goto bad;
2585 if (ic->journal_crypt_alg.alg_string) {
2586 unsigned ivsize, blocksize;
2587 struct journal_completion comp;
2589 comp.ic = ic;
2590 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
2591 if (IS_ERR(ic->journal_crypt)) {
2592 *error = "Invalid journal cipher";
2593 r = PTR_ERR(ic->journal_crypt);
2594 ic->journal_crypt = NULL;
2595 goto bad;
2597 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
2598 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
2600 if (ic->journal_crypt_alg.key) {
2601 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
2602 ic->journal_crypt_alg.key_size);
2603 if (r) {
2604 *error = "Error setting encryption key";
2605 goto bad;
2608 DEBUG_print("cipher %s, block size %u iv size %u\n",
2609 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
2611 ic->journal_io = dm_integrity_alloc_page_list(ic);
2612 if (!ic->journal_io) {
2613 *error = "Could not allocate memory for journal io";
2614 r = -ENOMEM;
2615 goto bad;
2618 if (blocksize == 1) {
2619 struct scatterlist *sg;
2620 SKCIPHER_REQUEST_ON_STACK(req, ic->journal_crypt);
2621 unsigned char iv[ivsize];
2622 skcipher_request_set_tfm(req, ic->journal_crypt);
2624 ic->journal_xor = dm_integrity_alloc_page_list(ic);
2625 if (!ic->journal_xor) {
2626 *error = "Could not allocate memory for journal xor";
2627 r = -ENOMEM;
2628 goto bad;
2631 sg = kvmalloc((ic->journal_pages + 1) * sizeof(struct scatterlist), GFP_KERNEL);
2632 if (!sg) {
2633 *error = "Unable to allocate sg list";
2634 r = -ENOMEM;
2635 goto bad;
2637 sg_init_table(sg, ic->journal_pages + 1);
2638 for (i = 0; i < ic->journal_pages; i++) {
2639 char *va = lowmem_page_address(ic->journal_xor[i].page);
2640 clear_page(va);
2641 sg_set_buf(&sg[i], va, PAGE_SIZE);
2643 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
2644 memset(iv, 0x00, ivsize);
2646 skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, iv);
2647 init_completion(&comp.comp);
2648 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2649 if (do_crypt(true, req, &comp))
2650 wait_for_completion(&comp.comp);
2651 kvfree(sg);
2652 r = dm_integrity_failed(ic);
2653 if (r) {
2654 *error = "Unable to encrypt journal";
2655 goto bad;
2657 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
2659 crypto_free_skcipher(ic->journal_crypt);
2660 ic->journal_crypt = NULL;
2661 } else {
2662 SKCIPHER_REQUEST_ON_STACK(req, ic->journal_crypt);
2663 unsigned char iv[ivsize];
2664 unsigned crypt_len = roundup(ivsize, blocksize);
2666 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
2667 if (!crypt_data) {
2668 *error = "Unable to allocate crypt data";
2669 r = -ENOMEM;
2670 goto bad;
2673 skcipher_request_set_tfm(req, ic->journal_crypt);
2675 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
2676 if (!ic->journal_scatterlist) {
2677 *error = "Unable to allocate sg list";
2678 r = -ENOMEM;
2679 goto bad;
2681 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
2682 if (!ic->journal_io_scatterlist) {
2683 *error = "Unable to allocate sg list";
2684 r = -ENOMEM;
2685 goto bad;
2687 ic->sk_requests = kvmalloc(ic->journal_sections * sizeof(struct skcipher_request *), GFP_KERNEL | __GFP_ZERO);
2688 if (!ic->sk_requests) {
2689 *error = "Unable to allocate sk requests";
2690 r = -ENOMEM;
2691 goto bad;
2693 for (i = 0; i < ic->journal_sections; i++) {
2694 struct scatterlist sg;
2695 struct skcipher_request *section_req;
2696 __u32 section_le = cpu_to_le32(i);
2698 memset(iv, 0x00, ivsize);
2699 memset(crypt_data, 0x00, crypt_len);
2700 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
2702 sg_init_one(&sg, crypt_data, crypt_len);
2703 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, iv);
2704 init_completion(&comp.comp);
2705 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2706 if (do_crypt(true, req, &comp))
2707 wait_for_completion(&comp.comp);
2709 r = dm_integrity_failed(ic);
2710 if (r) {
2711 *error = "Unable to generate iv";
2712 goto bad;
2715 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2716 if (!section_req) {
2717 *error = "Unable to allocate crypt request";
2718 r = -ENOMEM;
2719 goto bad;
2721 section_req->iv = kmalloc(ivsize * 2, GFP_KERNEL);
2722 if (!section_req->iv) {
2723 skcipher_request_free(section_req);
2724 *error = "Unable to allocate iv";
2725 r = -ENOMEM;
2726 goto bad;
2728 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
2729 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
2730 ic->sk_requests[i] = section_req;
2731 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
2736 for (i = 0; i < N_COMMIT_IDS; i++) {
2737 unsigned j;
2738 retest_commit_id:
2739 for (j = 0; j < i; j++) {
2740 if (ic->commit_ids[j] == ic->commit_ids[i]) {
2741 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
2742 goto retest_commit_id;
2745 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
2748 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
2749 if (journal_tree_size > ULONG_MAX) {
2750 *error = "Journal doesn't fit into memory";
2751 r = -ENOMEM;
2752 goto bad;
2754 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
2755 if (!ic->journal_tree) {
2756 *error = "Could not allocate memory for journal tree";
2757 r = -ENOMEM;
2759 bad:
2760 kfree(crypt_data);
2761 return r;
2765 * Construct a integrity mapping
2767 * Arguments:
2768 * device
2769 * offset from the start of the device
2770 * tag size
2771 * D - direct writes, J - journal writes, R - recovery mode
2772 * number of optional arguments
2773 * optional arguments:
2774 * journal_sectors
2775 * interleave_sectors
2776 * buffer_sectors
2777 * journal_watermark
2778 * commit_time
2779 * internal_hash
2780 * journal_crypt
2781 * journal_mac
2782 * block_size
2784 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
2786 struct dm_integrity_c *ic;
2787 char dummy;
2788 int r;
2789 unsigned extra_args;
2790 struct dm_arg_set as;
2791 static const struct dm_arg _args[] = {
2792 {0, 9, "Invalid number of feature args"},
2794 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
2795 bool should_write_sb;
2796 __u64 threshold;
2797 unsigned long long start;
2799 #define DIRECT_ARGUMENTS 4
2801 if (argc <= DIRECT_ARGUMENTS) {
2802 ti->error = "Invalid argument count";
2803 return -EINVAL;
2806 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
2807 if (!ic) {
2808 ti->error = "Cannot allocate integrity context";
2809 return -ENOMEM;
2811 ti->private = ic;
2812 ti->per_io_data_size = sizeof(struct dm_integrity_io);
2814 ic->in_progress = RB_ROOT;
2815 init_waitqueue_head(&ic->endio_wait);
2816 bio_list_init(&ic->flush_bio_list);
2817 init_waitqueue_head(&ic->copy_to_journal_wait);
2818 init_completion(&ic->crypto_backoff);
2819 atomic64_set(&ic->number_of_mismatches, 0);
2821 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
2822 if (r) {
2823 ti->error = "Device lookup failed";
2824 goto bad;
2827 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
2828 ti->error = "Invalid starting offset";
2829 r = -EINVAL;
2830 goto bad;
2832 ic->start = start;
2834 if (strcmp(argv[2], "-")) {
2835 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
2836 ti->error = "Invalid tag size";
2837 r = -EINVAL;
2838 goto bad;
2842 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R"))
2843 ic->mode = argv[3][0];
2844 else {
2845 ti->error = "Invalid mode (expecting J, D, R)";
2846 r = -EINVAL;
2847 goto bad;
2850 ic->device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
2851 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
2852 ic->device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
2853 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2854 buffer_sectors = DEFAULT_BUFFER_SECTORS;
2855 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
2856 sync_msec = DEFAULT_SYNC_MSEC;
2857 ic->sectors_per_block = 1;
2859 as.argc = argc - DIRECT_ARGUMENTS;
2860 as.argv = argv + DIRECT_ARGUMENTS;
2861 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
2862 if (r)
2863 goto bad;
2865 while (extra_args--) {
2866 const char *opt_string;
2867 unsigned val;
2868 opt_string = dm_shift_arg(&as);
2869 if (!opt_string) {
2870 r = -EINVAL;
2871 ti->error = "Not enough feature arguments";
2872 goto bad;
2874 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
2875 journal_sectors = val;
2876 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
2877 interleave_sectors = val;
2878 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
2879 buffer_sectors = val;
2880 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
2881 journal_watermark = val;
2882 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
2883 sync_msec = val;
2884 else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
2885 if (val < 1 << SECTOR_SHIFT ||
2886 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
2887 (val & (val -1))) {
2888 r = -EINVAL;
2889 ti->error = "Invalid block_size argument";
2890 goto bad;
2892 ic->sectors_per_block = val >> SECTOR_SHIFT;
2893 } else if (!memcmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
2894 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
2895 "Invalid internal_hash argument");
2896 if (r)
2897 goto bad;
2898 } else if (!memcmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
2899 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
2900 "Invalid journal_crypt argument");
2901 if (r)
2902 goto bad;
2903 } else if (!memcmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
2904 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
2905 "Invalid journal_mac argument");
2906 if (r)
2907 goto bad;
2908 } else {
2909 r = -EINVAL;
2910 ti->error = "Invalid argument";
2911 goto bad;
2915 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
2916 "Invalid internal hash", "Error setting internal hash key");
2917 if (r)
2918 goto bad;
2920 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
2921 "Invalid journal mac", "Error setting journal mac key");
2922 if (r)
2923 goto bad;
2925 if (!ic->tag_size) {
2926 if (!ic->internal_hash) {
2927 ti->error = "Unknown tag size";
2928 r = -EINVAL;
2929 goto bad;
2931 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
2933 if (ic->tag_size > MAX_TAG_SIZE) {
2934 ti->error = "Too big tag size";
2935 r = -EINVAL;
2936 goto bad;
2938 if (!(ic->tag_size & (ic->tag_size - 1)))
2939 ic->log2_tag_size = __ffs(ic->tag_size);
2940 else
2941 ic->log2_tag_size = -1;
2943 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
2944 ic->autocommit_msec = sync_msec;
2945 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
2947 ic->io = dm_io_client_create();
2948 if (IS_ERR(ic->io)) {
2949 r = PTR_ERR(ic->io);
2950 ic->io = NULL;
2951 ti->error = "Cannot allocate dm io";
2952 goto bad;
2955 ic->journal_io_mempool = mempool_create_slab_pool(JOURNAL_IO_MEMPOOL, journal_io_cache);
2956 if (!ic->journal_io_mempool) {
2957 r = -ENOMEM;
2958 ti->error = "Cannot allocate mempool";
2959 goto bad;
2962 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
2963 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
2964 if (!ic->metadata_wq) {
2965 ti->error = "Cannot allocate workqueue";
2966 r = -ENOMEM;
2967 goto bad;
2971 * If this workqueue were percpu, it would cause bio reordering
2972 * and reduced performance.
2974 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
2975 if (!ic->wait_wq) {
2976 ti->error = "Cannot allocate workqueue";
2977 r = -ENOMEM;
2978 goto bad;
2981 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
2982 if (!ic->commit_wq) {
2983 ti->error = "Cannot allocate workqueue";
2984 r = -ENOMEM;
2985 goto bad;
2987 INIT_WORK(&ic->commit_work, integrity_commit);
2989 if (ic->mode == 'J') {
2990 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
2991 if (!ic->writer_wq) {
2992 ti->error = "Cannot allocate workqueue";
2993 r = -ENOMEM;
2994 goto bad;
2996 INIT_WORK(&ic->writer_work, integrity_writer);
2999 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
3000 if (!ic->sb) {
3001 r = -ENOMEM;
3002 ti->error = "Cannot allocate superblock area";
3003 goto bad;
3006 r = sync_rw_sb(ic, REQ_OP_READ, 0);
3007 if (r) {
3008 ti->error = "Error reading superblock";
3009 goto bad;
3011 should_write_sb = false;
3012 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
3013 if (ic->mode != 'R') {
3014 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
3015 r = -EINVAL;
3016 ti->error = "The device is not initialized";
3017 goto bad;
3021 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
3022 if (r) {
3023 ti->error = "Could not initialize superblock";
3024 goto bad;
3026 if (ic->mode != 'R')
3027 should_write_sb = true;
3030 if (ic->sb->version != SB_VERSION) {
3031 r = -EINVAL;
3032 ti->error = "Unknown version";
3033 goto bad;
3035 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3036 r = -EINVAL;
3037 ti->error = "Tag size doesn't match the information in superblock";
3038 goto bad;
3040 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3041 r = -EINVAL;
3042 ti->error = "Block size doesn't match the information in superblock";
3043 goto bad;
3045 if (!le32_to_cpu(ic->sb->journal_sections)) {
3046 r = -EINVAL;
3047 ti->error = "Corrupted superblock, journal_sections is 0";
3048 goto bad;
3050 /* make sure that ti->max_io_len doesn't overflow */
3051 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3052 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3053 r = -EINVAL;
3054 ti->error = "Invalid interleave_sectors in the superblock";
3055 goto bad;
3057 ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3058 if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3059 /* test for overflow */
3060 r = -EINVAL;
3061 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3062 goto bad;
3064 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3065 r = -EINVAL;
3066 ti->error = "Journal mac mismatch";
3067 goto bad;
3069 r = calculate_device_limits(ic);
3070 if (r) {
3071 ti->error = "The device is too small";
3072 goto bad;
3074 if (ti->len > ic->provided_data_sectors) {
3075 r = -EINVAL;
3076 ti->error = "Not enough provided sectors for requested mapping size";
3077 goto bad;
3080 if (!buffer_sectors)
3081 buffer_sectors = 1;
3082 ic->log2_buffer_sectors = min3((int)__fls(buffer_sectors), (int)__ffs(ic->metadata_run), 31 - SECTOR_SHIFT);
3084 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
3085 threshold += 50;
3086 do_div(threshold, 100);
3087 ic->free_sectors_threshold = threshold;
3089 DEBUG_print("initialized:\n");
3090 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
3091 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
3092 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
3093 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
3094 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
3095 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
3096 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
3097 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
3098 DEBUG_print(" device_sectors 0x%llx\n", (unsigned long long)ic->device_sectors);
3099 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
3100 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
3101 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
3102 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
3103 (unsigned long long)ic->provided_data_sectors);
3104 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
3106 ic->bufio = dm_bufio_client_create(ic->dev->bdev, 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors),
3107 1, 0, NULL, NULL);
3108 if (IS_ERR(ic->bufio)) {
3109 r = PTR_ERR(ic->bufio);
3110 ti->error = "Cannot initialize dm-bufio";
3111 ic->bufio = NULL;
3112 goto bad;
3114 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
3116 if (ic->mode != 'R') {
3117 r = create_journal(ic, &ti->error);
3118 if (r)
3119 goto bad;
3122 if (should_write_sb) {
3123 int r;
3125 init_journal(ic, 0, ic->journal_sections, 0);
3126 r = dm_integrity_failed(ic);
3127 if (unlikely(r)) {
3128 ti->error = "Error initializing journal";
3129 goto bad;
3131 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3132 if (r) {
3133 ti->error = "Error initializing superblock";
3134 goto bad;
3136 ic->just_formatted = true;
3139 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
3140 if (r)
3141 goto bad;
3143 if (!ic->internal_hash)
3144 dm_integrity_set(ti, ic);
3146 ti->num_flush_bios = 1;
3147 ti->flush_supported = true;
3149 return 0;
3150 bad:
3151 dm_integrity_dtr(ti);
3152 return r;
3155 static void dm_integrity_dtr(struct dm_target *ti)
3157 struct dm_integrity_c *ic = ti->private;
3159 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3161 if (ic->metadata_wq)
3162 destroy_workqueue(ic->metadata_wq);
3163 if (ic->wait_wq)
3164 destroy_workqueue(ic->wait_wq);
3165 if (ic->commit_wq)
3166 destroy_workqueue(ic->commit_wq);
3167 if (ic->writer_wq)
3168 destroy_workqueue(ic->writer_wq);
3169 if (ic->bufio)
3170 dm_bufio_client_destroy(ic->bufio);
3171 mempool_destroy(ic->journal_io_mempool);
3172 if (ic->io)
3173 dm_io_client_destroy(ic->io);
3174 if (ic->dev)
3175 dm_put_device(ti, ic->dev);
3176 dm_integrity_free_page_list(ic, ic->journal);
3177 dm_integrity_free_page_list(ic, ic->journal_io);
3178 dm_integrity_free_page_list(ic, ic->journal_xor);
3179 if (ic->journal_scatterlist)
3180 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
3181 if (ic->journal_io_scatterlist)
3182 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
3183 if (ic->sk_requests) {
3184 unsigned i;
3186 for (i = 0; i < ic->journal_sections; i++) {
3187 struct skcipher_request *req = ic->sk_requests[i];
3188 if (req) {
3189 kzfree(req->iv);
3190 skcipher_request_free(req);
3193 kvfree(ic->sk_requests);
3195 kvfree(ic->journal_tree);
3196 if (ic->sb)
3197 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
3199 if (ic->internal_hash)
3200 crypto_free_shash(ic->internal_hash);
3201 free_alg(&ic->internal_hash_alg);
3203 if (ic->journal_crypt)
3204 crypto_free_skcipher(ic->journal_crypt);
3205 free_alg(&ic->journal_crypt_alg);
3207 if (ic->journal_mac)
3208 crypto_free_shash(ic->journal_mac);
3209 free_alg(&ic->journal_mac_alg);
3211 kfree(ic);
3214 static struct target_type integrity_target = {
3215 .name = "integrity",
3216 .version = {1, 1, 0},
3217 .module = THIS_MODULE,
3218 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
3219 .ctr = dm_integrity_ctr,
3220 .dtr = dm_integrity_dtr,
3221 .map = dm_integrity_map,
3222 .postsuspend = dm_integrity_postsuspend,
3223 .resume = dm_integrity_resume,
3224 .status = dm_integrity_status,
3225 .iterate_devices = dm_integrity_iterate_devices,
3226 .io_hints = dm_integrity_io_hints,
3229 int __init dm_integrity_init(void)
3231 int r;
3233 journal_io_cache = kmem_cache_create("integrity_journal_io",
3234 sizeof(struct journal_io), 0, 0, NULL);
3235 if (!journal_io_cache) {
3236 DMERR("can't allocate journal io cache");
3237 return -ENOMEM;
3240 r = dm_register_target(&integrity_target);
3242 if (r < 0)
3243 DMERR("register failed %d", r);
3245 return r;
3248 void dm_integrity_exit(void)
3250 dm_unregister_target(&integrity_target);
3251 kmem_cache_destroy(journal_io_cache);
3254 module_init(dm_integrity_init);
3255 module_exit(dm_integrity_exit);
3257 MODULE_AUTHOR("Milan Broz");
3258 MODULE_AUTHOR("Mikulas Patocka");
3259 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
3260 MODULE_LICENSE("GPL");