Merge 4.18-rc7 into staging-next
[linux-2.6/btrfs-unstable.git] / drivers / cpufreq / intel_pstate.c
blob3c397125613038f3ea1809adfa3ab6de1a19d98b
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/acpi.h>
30 #include <linux/vmalloc.h>
31 #include <trace/events/power.h>
33 #include <asm/div64.h>
34 #include <asm/msr.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
39 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
41 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58 static inline int32_t mul_fp(int32_t x, int32_t y)
60 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 static inline int32_t div_fp(s64 x, s64 y)
65 return div64_s64((int64_t)x << FRAC_BITS, y);
68 static inline int ceiling_fp(int32_t x)
70 int mask, ret;
72 ret = fp_toint(x);
73 mask = (1 << FRAC_BITS) - 1;
74 if (x & mask)
75 ret += 1;
76 return ret;
79 static inline int32_t percent_fp(int percent)
81 return div_fp(percent, 100);
84 static inline u64 mul_ext_fp(u64 x, u64 y)
86 return (x * y) >> EXT_FRAC_BITS;
89 static inline u64 div_ext_fp(u64 x, u64 y)
91 return div64_u64(x << EXT_FRAC_BITS, y);
94 static inline int32_t percent_ext_fp(int percent)
96 return div_ext_fp(percent, 100);
99 /**
100 * struct sample - Store performance sample
101 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
102 * performance during last sample period
103 * @busy_scaled: Scaled busy value which is used to calculate next
104 * P state. This can be different than core_avg_perf
105 * to account for cpu idle period
106 * @aperf: Difference of actual performance frequency clock count
107 * read from APERF MSR between last and current sample
108 * @mperf: Difference of maximum performance frequency clock count
109 * read from MPERF MSR between last and current sample
110 * @tsc: Difference of time stamp counter between last and
111 * current sample
112 * @time: Current time from scheduler
114 * This structure is used in the cpudata structure to store performance sample
115 * data for choosing next P State.
117 struct sample {
118 int32_t core_avg_perf;
119 int32_t busy_scaled;
120 u64 aperf;
121 u64 mperf;
122 u64 tsc;
123 u64 time;
127 * struct pstate_data - Store P state data
128 * @current_pstate: Current requested P state
129 * @min_pstate: Min P state possible for this platform
130 * @max_pstate: Max P state possible for this platform
131 * @max_pstate_physical:This is physical Max P state for a processor
132 * This can be higher than the max_pstate which can
133 * be limited by platform thermal design power limits
134 * @scaling: Scaling factor to convert frequency to cpufreq
135 * frequency units
136 * @turbo_pstate: Max Turbo P state possible for this platform
137 * @max_freq: @max_pstate frequency in cpufreq units
138 * @turbo_freq: @turbo_pstate frequency in cpufreq units
140 * Stores the per cpu model P state limits and current P state.
142 struct pstate_data {
143 int current_pstate;
144 int min_pstate;
145 int max_pstate;
146 int max_pstate_physical;
147 int scaling;
148 int turbo_pstate;
149 unsigned int max_freq;
150 unsigned int turbo_freq;
154 * struct vid_data - Stores voltage information data
155 * @min: VID data for this platform corresponding to
156 * the lowest P state
157 * @max: VID data corresponding to the highest P State.
158 * @turbo: VID data for turbo P state
159 * @ratio: Ratio of (vid max - vid min) /
160 * (max P state - Min P State)
162 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
163 * This data is used in Atom platforms, where in addition to target P state,
164 * the voltage data needs to be specified to select next P State.
166 struct vid_data {
167 int min;
168 int max;
169 int turbo;
170 int32_t ratio;
174 * struct global_params - Global parameters, mostly tunable via sysfs.
175 * @no_turbo: Whether or not to use turbo P-states.
176 * @turbo_disabled: Whethet or not turbo P-states are available at all,
177 * based on the MSR_IA32_MISC_ENABLE value and whether or
178 * not the maximum reported turbo P-state is different from
179 * the maximum reported non-turbo one.
180 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
181 * P-state capacity.
182 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
183 * P-state capacity.
185 struct global_params {
186 bool no_turbo;
187 bool turbo_disabled;
188 int max_perf_pct;
189 int min_perf_pct;
193 * struct cpudata - Per CPU instance data storage
194 * @cpu: CPU number for this instance data
195 * @policy: CPUFreq policy value
196 * @update_util: CPUFreq utility callback information
197 * @update_util_set: CPUFreq utility callback is set
198 * @iowait_boost: iowait-related boost fraction
199 * @last_update: Time of the last update.
200 * @pstate: Stores P state limits for this CPU
201 * @vid: Stores VID limits for this CPU
202 * @last_sample_time: Last Sample time
203 * @aperf_mperf_shift: Number of clock cycles after aperf, merf is incremented
204 * This shift is a multiplier to mperf delta to
205 * calculate CPU busy.
206 * @prev_aperf: Last APERF value read from APERF MSR
207 * @prev_mperf: Last MPERF value read from MPERF MSR
208 * @prev_tsc: Last timestamp counter (TSC) value
209 * @prev_cummulative_iowait: IO Wait time difference from last and
210 * current sample
211 * @sample: Storage for storing last Sample data
212 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
213 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
214 * @acpi_perf_data: Stores ACPI perf information read from _PSS
215 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
216 * @epp_powersave: Last saved HWP energy performance preference
217 * (EPP) or energy performance bias (EPB),
218 * when policy switched to performance
219 * @epp_policy: Last saved policy used to set EPP/EPB
220 * @epp_default: Power on default HWP energy performance
221 * preference/bias
222 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
223 * operation
224 * @hwp_req_cached: Cached value of the last HWP Request MSR
225 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
226 * @last_io_update: Last time when IO wake flag was set
227 * @sched_flags: Store scheduler flags for possible cross CPU update
228 * @hwp_boost_min: Last HWP boosted min performance
230 * This structure stores per CPU instance data for all CPUs.
232 struct cpudata {
233 int cpu;
235 unsigned int policy;
236 struct update_util_data update_util;
237 bool update_util_set;
239 struct pstate_data pstate;
240 struct vid_data vid;
242 u64 last_update;
243 u64 last_sample_time;
244 u64 aperf_mperf_shift;
245 u64 prev_aperf;
246 u64 prev_mperf;
247 u64 prev_tsc;
248 u64 prev_cummulative_iowait;
249 struct sample sample;
250 int32_t min_perf_ratio;
251 int32_t max_perf_ratio;
252 #ifdef CONFIG_ACPI
253 struct acpi_processor_performance acpi_perf_data;
254 bool valid_pss_table;
255 #endif
256 unsigned int iowait_boost;
257 s16 epp_powersave;
258 s16 epp_policy;
259 s16 epp_default;
260 s16 epp_saved;
261 u64 hwp_req_cached;
262 u64 hwp_cap_cached;
263 u64 last_io_update;
264 unsigned int sched_flags;
265 u32 hwp_boost_min;
268 static struct cpudata **all_cpu_data;
271 * struct pstate_funcs - Per CPU model specific callbacks
272 * @get_max: Callback to get maximum non turbo effective P state
273 * @get_max_physical: Callback to get maximum non turbo physical P state
274 * @get_min: Callback to get minimum P state
275 * @get_turbo: Callback to get turbo P state
276 * @get_scaling: Callback to get frequency scaling factor
277 * @get_val: Callback to convert P state to actual MSR write value
278 * @get_vid: Callback to get VID data for Atom platforms
280 * Core and Atom CPU models have different way to get P State limits. This
281 * structure is used to store those callbacks.
283 struct pstate_funcs {
284 int (*get_max)(void);
285 int (*get_max_physical)(void);
286 int (*get_min)(void);
287 int (*get_turbo)(void);
288 int (*get_scaling)(void);
289 int (*get_aperf_mperf_shift)(void);
290 u64 (*get_val)(struct cpudata*, int pstate);
291 void (*get_vid)(struct cpudata *);
294 static struct pstate_funcs pstate_funcs __read_mostly;
296 static int hwp_active __read_mostly;
297 static int hwp_mode_bdw __read_mostly;
298 static bool per_cpu_limits __read_mostly;
299 static bool hwp_boost __read_mostly;
301 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
303 #ifdef CONFIG_ACPI
304 static bool acpi_ppc;
305 #endif
307 static struct global_params global;
309 static DEFINE_MUTEX(intel_pstate_driver_lock);
310 static DEFINE_MUTEX(intel_pstate_limits_lock);
312 #ifdef CONFIG_ACPI
314 static bool intel_pstate_get_ppc_enable_status(void)
316 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
317 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
318 return true;
320 return acpi_ppc;
323 #ifdef CONFIG_ACPI_CPPC_LIB
325 /* The work item is needed to avoid CPU hotplug locking issues */
326 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
328 sched_set_itmt_support();
331 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
333 static void intel_pstate_set_itmt_prio(int cpu)
335 struct cppc_perf_caps cppc_perf;
336 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
337 int ret;
339 ret = cppc_get_perf_caps(cpu, &cppc_perf);
340 if (ret)
341 return;
344 * The priorities can be set regardless of whether or not
345 * sched_set_itmt_support(true) has been called and it is valid to
346 * update them at any time after it has been called.
348 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
350 if (max_highest_perf <= min_highest_perf) {
351 if (cppc_perf.highest_perf > max_highest_perf)
352 max_highest_perf = cppc_perf.highest_perf;
354 if (cppc_perf.highest_perf < min_highest_perf)
355 min_highest_perf = cppc_perf.highest_perf;
357 if (max_highest_perf > min_highest_perf) {
359 * This code can be run during CPU online under the
360 * CPU hotplug locks, so sched_set_itmt_support()
361 * cannot be called from here. Queue up a work item
362 * to invoke it.
364 schedule_work(&sched_itmt_work);
368 #else
369 static void intel_pstate_set_itmt_prio(int cpu)
372 #endif
374 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
376 struct cpudata *cpu;
377 int ret;
378 int i;
380 if (hwp_active) {
381 intel_pstate_set_itmt_prio(policy->cpu);
382 return;
385 if (!intel_pstate_get_ppc_enable_status())
386 return;
388 cpu = all_cpu_data[policy->cpu];
390 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
391 policy->cpu);
392 if (ret)
393 return;
396 * Check if the control value in _PSS is for PERF_CTL MSR, which should
397 * guarantee that the states returned by it map to the states in our
398 * list directly.
400 if (cpu->acpi_perf_data.control_register.space_id !=
401 ACPI_ADR_SPACE_FIXED_HARDWARE)
402 goto err;
405 * If there is only one entry _PSS, simply ignore _PSS and continue as
406 * usual without taking _PSS into account
408 if (cpu->acpi_perf_data.state_count < 2)
409 goto err;
411 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
412 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
413 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
414 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
415 (u32) cpu->acpi_perf_data.states[i].core_frequency,
416 (u32) cpu->acpi_perf_data.states[i].power,
417 (u32) cpu->acpi_perf_data.states[i].control);
421 * The _PSS table doesn't contain whole turbo frequency range.
422 * This just contains +1 MHZ above the max non turbo frequency,
423 * with control value corresponding to max turbo ratio. But
424 * when cpufreq set policy is called, it will call with this
425 * max frequency, which will cause a reduced performance as
426 * this driver uses real max turbo frequency as the max
427 * frequency. So correct this frequency in _PSS table to
428 * correct max turbo frequency based on the turbo state.
429 * Also need to convert to MHz as _PSS freq is in MHz.
431 if (!global.turbo_disabled)
432 cpu->acpi_perf_data.states[0].core_frequency =
433 policy->cpuinfo.max_freq / 1000;
434 cpu->valid_pss_table = true;
435 pr_debug("_PPC limits will be enforced\n");
437 return;
439 err:
440 cpu->valid_pss_table = false;
441 acpi_processor_unregister_performance(policy->cpu);
444 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
446 struct cpudata *cpu;
448 cpu = all_cpu_data[policy->cpu];
449 if (!cpu->valid_pss_table)
450 return;
452 acpi_processor_unregister_performance(policy->cpu);
454 #else
455 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
459 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
462 #endif
464 static inline void update_turbo_state(void)
466 u64 misc_en;
467 struct cpudata *cpu;
469 cpu = all_cpu_data[0];
470 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
471 global.turbo_disabled =
472 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
473 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
476 static int min_perf_pct_min(void)
478 struct cpudata *cpu = all_cpu_data[0];
479 int turbo_pstate = cpu->pstate.turbo_pstate;
481 return turbo_pstate ?
482 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
485 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
487 u64 epb;
488 int ret;
490 if (!static_cpu_has(X86_FEATURE_EPB))
491 return -ENXIO;
493 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
494 if (ret)
495 return (s16)ret;
497 return (s16)(epb & 0x0f);
500 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
502 s16 epp;
504 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
506 * When hwp_req_data is 0, means that caller didn't read
507 * MSR_HWP_REQUEST, so need to read and get EPP.
509 if (!hwp_req_data) {
510 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
511 &hwp_req_data);
512 if (epp)
513 return epp;
515 epp = (hwp_req_data >> 24) & 0xff;
516 } else {
517 /* When there is no EPP present, HWP uses EPB settings */
518 epp = intel_pstate_get_epb(cpu_data);
521 return epp;
524 static int intel_pstate_set_epb(int cpu, s16 pref)
526 u64 epb;
527 int ret;
529 if (!static_cpu_has(X86_FEATURE_EPB))
530 return -ENXIO;
532 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
533 if (ret)
534 return ret;
536 epb = (epb & ~0x0f) | pref;
537 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
539 return 0;
543 * EPP/EPB display strings corresponding to EPP index in the
544 * energy_perf_strings[]
545 * index String
546 *-------------------------------------
547 * 0 default
548 * 1 performance
549 * 2 balance_performance
550 * 3 balance_power
551 * 4 power
553 static const char * const energy_perf_strings[] = {
554 "default",
555 "performance",
556 "balance_performance",
557 "balance_power",
558 "power",
559 NULL
561 static const unsigned int epp_values[] = {
562 HWP_EPP_PERFORMANCE,
563 HWP_EPP_BALANCE_PERFORMANCE,
564 HWP_EPP_BALANCE_POWERSAVE,
565 HWP_EPP_POWERSAVE
568 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
570 s16 epp;
571 int index = -EINVAL;
573 epp = intel_pstate_get_epp(cpu_data, 0);
574 if (epp < 0)
575 return epp;
577 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
578 if (epp == HWP_EPP_PERFORMANCE)
579 return 1;
580 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
581 return 2;
582 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
583 return 3;
584 else
585 return 4;
586 } else if (static_cpu_has(X86_FEATURE_EPB)) {
588 * Range:
589 * 0x00-0x03 : Performance
590 * 0x04-0x07 : Balance performance
591 * 0x08-0x0B : Balance power
592 * 0x0C-0x0F : Power
593 * The EPB is a 4 bit value, but our ranges restrict the
594 * value which can be set. Here only using top two bits
595 * effectively.
597 index = (epp >> 2) + 1;
600 return index;
603 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
604 int pref_index)
606 int epp = -EINVAL;
607 int ret;
609 if (!pref_index)
610 epp = cpu_data->epp_default;
612 mutex_lock(&intel_pstate_limits_lock);
614 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
615 u64 value;
617 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
618 if (ret)
619 goto return_pref;
621 value &= ~GENMASK_ULL(31, 24);
623 if (epp == -EINVAL)
624 epp = epp_values[pref_index - 1];
626 value |= (u64)epp << 24;
627 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
628 } else {
629 if (epp == -EINVAL)
630 epp = (pref_index - 1) << 2;
631 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
633 return_pref:
634 mutex_unlock(&intel_pstate_limits_lock);
636 return ret;
639 static ssize_t show_energy_performance_available_preferences(
640 struct cpufreq_policy *policy, char *buf)
642 int i = 0;
643 int ret = 0;
645 while (energy_perf_strings[i] != NULL)
646 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
648 ret += sprintf(&buf[ret], "\n");
650 return ret;
653 cpufreq_freq_attr_ro(energy_performance_available_preferences);
655 static ssize_t store_energy_performance_preference(
656 struct cpufreq_policy *policy, const char *buf, size_t count)
658 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
659 char str_preference[21];
660 int ret, i = 0;
662 ret = sscanf(buf, "%20s", str_preference);
663 if (ret != 1)
664 return -EINVAL;
666 while (energy_perf_strings[i] != NULL) {
667 if (!strcmp(str_preference, energy_perf_strings[i])) {
668 intel_pstate_set_energy_pref_index(cpu_data, i);
669 return count;
671 ++i;
674 return -EINVAL;
677 static ssize_t show_energy_performance_preference(
678 struct cpufreq_policy *policy, char *buf)
680 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
681 int preference;
683 preference = intel_pstate_get_energy_pref_index(cpu_data);
684 if (preference < 0)
685 return preference;
687 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
690 cpufreq_freq_attr_rw(energy_performance_preference);
692 static struct freq_attr *hwp_cpufreq_attrs[] = {
693 &energy_performance_preference,
694 &energy_performance_available_preferences,
695 NULL,
698 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
699 int *current_max)
701 u64 cap;
703 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
704 WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
705 if (global.no_turbo)
706 *current_max = HWP_GUARANTEED_PERF(cap);
707 else
708 *current_max = HWP_HIGHEST_PERF(cap);
710 *phy_max = HWP_HIGHEST_PERF(cap);
713 static void intel_pstate_hwp_set(unsigned int cpu)
715 struct cpudata *cpu_data = all_cpu_data[cpu];
716 int max, min;
717 u64 value;
718 s16 epp;
720 max = cpu_data->max_perf_ratio;
721 min = cpu_data->min_perf_ratio;
723 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
724 min = max;
726 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
728 value &= ~HWP_MIN_PERF(~0L);
729 value |= HWP_MIN_PERF(min);
731 value &= ~HWP_MAX_PERF(~0L);
732 value |= HWP_MAX_PERF(max);
734 if (cpu_data->epp_policy == cpu_data->policy)
735 goto skip_epp;
737 cpu_data->epp_policy = cpu_data->policy;
739 if (cpu_data->epp_saved >= 0) {
740 epp = cpu_data->epp_saved;
741 cpu_data->epp_saved = -EINVAL;
742 goto update_epp;
745 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
746 epp = intel_pstate_get_epp(cpu_data, value);
747 cpu_data->epp_powersave = epp;
748 /* If EPP read was failed, then don't try to write */
749 if (epp < 0)
750 goto skip_epp;
752 epp = 0;
753 } else {
754 /* skip setting EPP, when saved value is invalid */
755 if (cpu_data->epp_powersave < 0)
756 goto skip_epp;
759 * No need to restore EPP when it is not zero. This
760 * means:
761 * - Policy is not changed
762 * - user has manually changed
763 * - Error reading EPB
765 epp = intel_pstate_get_epp(cpu_data, value);
766 if (epp)
767 goto skip_epp;
769 epp = cpu_data->epp_powersave;
771 update_epp:
772 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
773 value &= ~GENMASK_ULL(31, 24);
774 value |= (u64)epp << 24;
775 } else {
776 intel_pstate_set_epb(cpu, epp);
778 skip_epp:
779 WRITE_ONCE(cpu_data->hwp_req_cached, value);
780 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
783 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
785 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
787 if (!hwp_active)
788 return 0;
790 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
792 return 0;
795 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
797 static int intel_pstate_resume(struct cpufreq_policy *policy)
799 if (!hwp_active)
800 return 0;
802 mutex_lock(&intel_pstate_limits_lock);
804 if (policy->cpu == 0)
805 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
807 all_cpu_data[policy->cpu]->epp_policy = 0;
808 intel_pstate_hwp_set(policy->cpu);
810 mutex_unlock(&intel_pstate_limits_lock);
812 return 0;
815 static void intel_pstate_update_policies(void)
817 int cpu;
819 for_each_possible_cpu(cpu)
820 cpufreq_update_policy(cpu);
823 /************************** sysfs begin ************************/
824 #define show_one(file_name, object) \
825 static ssize_t show_##file_name \
826 (struct kobject *kobj, struct attribute *attr, char *buf) \
828 return sprintf(buf, "%u\n", global.object); \
831 static ssize_t intel_pstate_show_status(char *buf);
832 static int intel_pstate_update_status(const char *buf, size_t size);
834 static ssize_t show_status(struct kobject *kobj,
835 struct attribute *attr, char *buf)
837 ssize_t ret;
839 mutex_lock(&intel_pstate_driver_lock);
840 ret = intel_pstate_show_status(buf);
841 mutex_unlock(&intel_pstate_driver_lock);
843 return ret;
846 static ssize_t store_status(struct kobject *a, struct attribute *b,
847 const char *buf, size_t count)
849 char *p = memchr(buf, '\n', count);
850 int ret;
852 mutex_lock(&intel_pstate_driver_lock);
853 ret = intel_pstate_update_status(buf, p ? p - buf : count);
854 mutex_unlock(&intel_pstate_driver_lock);
856 return ret < 0 ? ret : count;
859 static ssize_t show_turbo_pct(struct kobject *kobj,
860 struct attribute *attr, char *buf)
862 struct cpudata *cpu;
863 int total, no_turbo, turbo_pct;
864 uint32_t turbo_fp;
866 mutex_lock(&intel_pstate_driver_lock);
868 if (!intel_pstate_driver) {
869 mutex_unlock(&intel_pstate_driver_lock);
870 return -EAGAIN;
873 cpu = all_cpu_data[0];
875 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
876 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
877 turbo_fp = div_fp(no_turbo, total);
878 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
880 mutex_unlock(&intel_pstate_driver_lock);
882 return sprintf(buf, "%u\n", turbo_pct);
885 static ssize_t show_num_pstates(struct kobject *kobj,
886 struct attribute *attr, char *buf)
888 struct cpudata *cpu;
889 int total;
891 mutex_lock(&intel_pstate_driver_lock);
893 if (!intel_pstate_driver) {
894 mutex_unlock(&intel_pstate_driver_lock);
895 return -EAGAIN;
898 cpu = all_cpu_data[0];
899 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
901 mutex_unlock(&intel_pstate_driver_lock);
903 return sprintf(buf, "%u\n", total);
906 static ssize_t show_no_turbo(struct kobject *kobj,
907 struct attribute *attr, char *buf)
909 ssize_t ret;
911 mutex_lock(&intel_pstate_driver_lock);
913 if (!intel_pstate_driver) {
914 mutex_unlock(&intel_pstate_driver_lock);
915 return -EAGAIN;
918 update_turbo_state();
919 if (global.turbo_disabled)
920 ret = sprintf(buf, "%u\n", global.turbo_disabled);
921 else
922 ret = sprintf(buf, "%u\n", global.no_turbo);
924 mutex_unlock(&intel_pstate_driver_lock);
926 return ret;
929 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
930 const char *buf, size_t count)
932 unsigned int input;
933 int ret;
935 ret = sscanf(buf, "%u", &input);
936 if (ret != 1)
937 return -EINVAL;
939 mutex_lock(&intel_pstate_driver_lock);
941 if (!intel_pstate_driver) {
942 mutex_unlock(&intel_pstate_driver_lock);
943 return -EAGAIN;
946 mutex_lock(&intel_pstate_limits_lock);
948 update_turbo_state();
949 if (global.turbo_disabled) {
950 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
951 mutex_unlock(&intel_pstate_limits_lock);
952 mutex_unlock(&intel_pstate_driver_lock);
953 return -EPERM;
956 global.no_turbo = clamp_t(int, input, 0, 1);
958 if (global.no_turbo) {
959 struct cpudata *cpu = all_cpu_data[0];
960 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
962 /* Squash the global minimum into the permitted range. */
963 if (global.min_perf_pct > pct)
964 global.min_perf_pct = pct;
967 mutex_unlock(&intel_pstate_limits_lock);
969 intel_pstate_update_policies();
971 mutex_unlock(&intel_pstate_driver_lock);
973 return count;
976 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
977 const char *buf, size_t count)
979 unsigned int input;
980 int ret;
982 ret = sscanf(buf, "%u", &input);
983 if (ret != 1)
984 return -EINVAL;
986 mutex_lock(&intel_pstate_driver_lock);
988 if (!intel_pstate_driver) {
989 mutex_unlock(&intel_pstate_driver_lock);
990 return -EAGAIN;
993 mutex_lock(&intel_pstate_limits_lock);
995 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
997 mutex_unlock(&intel_pstate_limits_lock);
999 intel_pstate_update_policies();
1001 mutex_unlock(&intel_pstate_driver_lock);
1003 return count;
1006 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1007 const char *buf, size_t count)
1009 unsigned int input;
1010 int ret;
1012 ret = sscanf(buf, "%u", &input);
1013 if (ret != 1)
1014 return -EINVAL;
1016 mutex_lock(&intel_pstate_driver_lock);
1018 if (!intel_pstate_driver) {
1019 mutex_unlock(&intel_pstate_driver_lock);
1020 return -EAGAIN;
1023 mutex_lock(&intel_pstate_limits_lock);
1025 global.min_perf_pct = clamp_t(int, input,
1026 min_perf_pct_min(), global.max_perf_pct);
1028 mutex_unlock(&intel_pstate_limits_lock);
1030 intel_pstate_update_policies();
1032 mutex_unlock(&intel_pstate_driver_lock);
1034 return count;
1037 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1038 struct attribute *attr, char *buf)
1040 return sprintf(buf, "%u\n", hwp_boost);
1043 static ssize_t store_hwp_dynamic_boost(struct kobject *a, struct attribute *b,
1044 const char *buf, size_t count)
1046 unsigned int input;
1047 int ret;
1049 ret = kstrtouint(buf, 10, &input);
1050 if (ret)
1051 return ret;
1053 mutex_lock(&intel_pstate_driver_lock);
1054 hwp_boost = !!input;
1055 intel_pstate_update_policies();
1056 mutex_unlock(&intel_pstate_driver_lock);
1058 return count;
1061 show_one(max_perf_pct, max_perf_pct);
1062 show_one(min_perf_pct, min_perf_pct);
1064 define_one_global_rw(status);
1065 define_one_global_rw(no_turbo);
1066 define_one_global_rw(max_perf_pct);
1067 define_one_global_rw(min_perf_pct);
1068 define_one_global_ro(turbo_pct);
1069 define_one_global_ro(num_pstates);
1070 define_one_global_rw(hwp_dynamic_boost);
1072 static struct attribute *intel_pstate_attributes[] = {
1073 &status.attr,
1074 &no_turbo.attr,
1075 &turbo_pct.attr,
1076 &num_pstates.attr,
1077 NULL
1080 static const struct attribute_group intel_pstate_attr_group = {
1081 .attrs = intel_pstate_attributes,
1084 static void __init intel_pstate_sysfs_expose_params(void)
1086 struct kobject *intel_pstate_kobject;
1087 int rc;
1089 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1090 &cpu_subsys.dev_root->kobj);
1091 if (WARN_ON(!intel_pstate_kobject))
1092 return;
1094 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1095 if (WARN_ON(rc))
1096 return;
1099 * If per cpu limits are enforced there are no global limits, so
1100 * return without creating max/min_perf_pct attributes
1102 if (per_cpu_limits)
1103 return;
1105 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1106 WARN_ON(rc);
1108 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1109 WARN_ON(rc);
1111 if (hwp_active) {
1112 rc = sysfs_create_file(intel_pstate_kobject,
1113 &hwp_dynamic_boost.attr);
1114 WARN_ON(rc);
1117 /************************** sysfs end ************************/
1119 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1121 /* First disable HWP notification interrupt as we don't process them */
1122 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1123 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1125 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1126 cpudata->epp_policy = 0;
1127 if (cpudata->epp_default == -EINVAL)
1128 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1131 #define MSR_IA32_POWER_CTL_BIT_EE 19
1133 /* Disable energy efficiency optimization */
1134 static void intel_pstate_disable_ee(int cpu)
1136 u64 power_ctl;
1137 int ret;
1139 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1140 if (ret)
1141 return;
1143 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1144 pr_info("Disabling energy efficiency optimization\n");
1145 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1146 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1150 static int atom_get_min_pstate(void)
1152 u64 value;
1154 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1155 return (value >> 8) & 0x7F;
1158 static int atom_get_max_pstate(void)
1160 u64 value;
1162 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1163 return (value >> 16) & 0x7F;
1166 static int atom_get_turbo_pstate(void)
1168 u64 value;
1170 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1171 return value & 0x7F;
1174 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1176 u64 val;
1177 int32_t vid_fp;
1178 u32 vid;
1180 val = (u64)pstate << 8;
1181 if (global.no_turbo && !global.turbo_disabled)
1182 val |= (u64)1 << 32;
1184 vid_fp = cpudata->vid.min + mul_fp(
1185 int_tofp(pstate - cpudata->pstate.min_pstate),
1186 cpudata->vid.ratio);
1188 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1189 vid = ceiling_fp(vid_fp);
1191 if (pstate > cpudata->pstate.max_pstate)
1192 vid = cpudata->vid.turbo;
1194 return val | vid;
1197 static int silvermont_get_scaling(void)
1199 u64 value;
1200 int i;
1201 /* Defined in Table 35-6 from SDM (Sept 2015) */
1202 static int silvermont_freq_table[] = {
1203 83300, 100000, 133300, 116700, 80000};
1205 rdmsrl(MSR_FSB_FREQ, value);
1206 i = value & 0x7;
1207 WARN_ON(i > 4);
1209 return silvermont_freq_table[i];
1212 static int airmont_get_scaling(void)
1214 u64 value;
1215 int i;
1216 /* Defined in Table 35-10 from SDM (Sept 2015) */
1217 static int airmont_freq_table[] = {
1218 83300, 100000, 133300, 116700, 80000,
1219 93300, 90000, 88900, 87500};
1221 rdmsrl(MSR_FSB_FREQ, value);
1222 i = value & 0xF;
1223 WARN_ON(i > 8);
1225 return airmont_freq_table[i];
1228 static void atom_get_vid(struct cpudata *cpudata)
1230 u64 value;
1232 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1233 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1234 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1235 cpudata->vid.ratio = div_fp(
1236 cpudata->vid.max - cpudata->vid.min,
1237 int_tofp(cpudata->pstate.max_pstate -
1238 cpudata->pstate.min_pstate));
1240 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1241 cpudata->vid.turbo = value & 0x7f;
1244 static int core_get_min_pstate(void)
1246 u64 value;
1248 rdmsrl(MSR_PLATFORM_INFO, value);
1249 return (value >> 40) & 0xFF;
1252 static int core_get_max_pstate_physical(void)
1254 u64 value;
1256 rdmsrl(MSR_PLATFORM_INFO, value);
1257 return (value >> 8) & 0xFF;
1260 static int core_get_tdp_ratio(u64 plat_info)
1262 /* Check how many TDP levels present */
1263 if (plat_info & 0x600000000) {
1264 u64 tdp_ctrl;
1265 u64 tdp_ratio;
1266 int tdp_msr;
1267 int err;
1269 /* Get the TDP level (0, 1, 2) to get ratios */
1270 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1271 if (err)
1272 return err;
1274 /* TDP MSR are continuous starting at 0x648 */
1275 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1276 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1277 if (err)
1278 return err;
1280 /* For level 1 and 2, bits[23:16] contain the ratio */
1281 if (tdp_ctrl & 0x03)
1282 tdp_ratio >>= 16;
1284 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1285 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1287 return (int)tdp_ratio;
1290 return -ENXIO;
1293 static int core_get_max_pstate(void)
1295 u64 tar;
1296 u64 plat_info;
1297 int max_pstate;
1298 int tdp_ratio;
1299 int err;
1301 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1302 max_pstate = (plat_info >> 8) & 0xFF;
1304 tdp_ratio = core_get_tdp_ratio(plat_info);
1305 if (tdp_ratio <= 0)
1306 return max_pstate;
1308 if (hwp_active) {
1309 /* Turbo activation ratio is not used on HWP platforms */
1310 return tdp_ratio;
1313 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1314 if (!err) {
1315 int tar_levels;
1317 /* Do some sanity checking for safety */
1318 tar_levels = tar & 0xff;
1319 if (tdp_ratio - 1 == tar_levels) {
1320 max_pstate = tar_levels;
1321 pr_debug("max_pstate=TAC %x\n", max_pstate);
1325 return max_pstate;
1328 static int core_get_turbo_pstate(void)
1330 u64 value;
1331 int nont, ret;
1333 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1334 nont = core_get_max_pstate();
1335 ret = (value) & 255;
1336 if (ret <= nont)
1337 ret = nont;
1338 return ret;
1341 static inline int core_get_scaling(void)
1343 return 100000;
1346 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1348 u64 val;
1350 val = (u64)pstate << 8;
1351 if (global.no_turbo && !global.turbo_disabled)
1352 val |= (u64)1 << 32;
1354 return val;
1357 static int knl_get_aperf_mperf_shift(void)
1359 return 10;
1362 static int knl_get_turbo_pstate(void)
1364 u64 value;
1365 int nont, ret;
1367 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1368 nont = core_get_max_pstate();
1369 ret = (((value) >> 8) & 0xFF);
1370 if (ret <= nont)
1371 ret = nont;
1372 return ret;
1375 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1377 return global.no_turbo || global.turbo_disabled ?
1378 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1381 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1383 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1384 cpu->pstate.current_pstate = pstate;
1386 * Generally, there is no guarantee that this code will always run on
1387 * the CPU being updated, so force the register update to run on the
1388 * right CPU.
1390 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1391 pstate_funcs.get_val(cpu, pstate));
1394 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1396 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1399 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1401 int pstate;
1403 update_turbo_state();
1404 pstate = intel_pstate_get_base_pstate(cpu);
1405 pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1406 intel_pstate_set_pstate(cpu, pstate);
1409 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1411 cpu->pstate.min_pstate = pstate_funcs.get_min();
1412 cpu->pstate.max_pstate = pstate_funcs.get_max();
1413 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1414 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1415 cpu->pstate.scaling = pstate_funcs.get_scaling();
1416 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1418 if (hwp_active && !hwp_mode_bdw) {
1419 unsigned int phy_max, current_max;
1421 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1422 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1423 } else {
1424 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1427 if (pstate_funcs.get_aperf_mperf_shift)
1428 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1430 if (pstate_funcs.get_vid)
1431 pstate_funcs.get_vid(cpu);
1433 intel_pstate_set_min_pstate(cpu);
1437 * Long hold time will keep high perf limits for long time,
1438 * which negatively impacts perf/watt for some workloads,
1439 * like specpower. 3ms is based on experiements on some
1440 * workoads.
1442 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1444 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1446 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1447 u32 max_limit = (hwp_req & 0xff00) >> 8;
1448 u32 min_limit = (hwp_req & 0xff);
1449 u32 boost_level1;
1452 * Cases to consider (User changes via sysfs or boot time):
1453 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1454 * No boost, return.
1455 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1456 * Should result in one level boost only for P0.
1457 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1458 * Should result in two level boost:
1459 * (min + p1)/2 and P1.
1460 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1461 * Should result in three level boost:
1462 * (min + p1)/2, P1 and P0.
1465 /* If max and min are equal or already at max, nothing to boost */
1466 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1467 return;
1469 if (!cpu->hwp_boost_min)
1470 cpu->hwp_boost_min = min_limit;
1472 /* level at half way mark between min and guranteed */
1473 boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1475 if (cpu->hwp_boost_min < boost_level1)
1476 cpu->hwp_boost_min = boost_level1;
1477 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1478 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1479 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1480 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1481 cpu->hwp_boost_min = max_limit;
1482 else
1483 return;
1485 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1486 wrmsrl(MSR_HWP_REQUEST, hwp_req);
1487 cpu->last_update = cpu->sample.time;
1490 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1492 if (cpu->hwp_boost_min) {
1493 bool expired;
1495 /* Check if we are idle for hold time to boost down */
1496 expired = time_after64(cpu->sample.time, cpu->last_update +
1497 hwp_boost_hold_time_ns);
1498 if (expired) {
1499 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1500 cpu->hwp_boost_min = 0;
1503 cpu->last_update = cpu->sample.time;
1506 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1507 u64 time)
1509 cpu->sample.time = time;
1511 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1512 bool do_io = false;
1514 cpu->sched_flags = 0;
1516 * Set iowait_boost flag and update time. Since IO WAIT flag
1517 * is set all the time, we can't just conclude that there is
1518 * some IO bound activity is scheduled on this CPU with just
1519 * one occurrence. If we receive at least two in two
1520 * consecutive ticks, then we treat as boost candidate.
1522 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1523 do_io = true;
1525 cpu->last_io_update = time;
1527 if (do_io)
1528 intel_pstate_hwp_boost_up(cpu);
1530 } else {
1531 intel_pstate_hwp_boost_down(cpu);
1535 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1536 u64 time, unsigned int flags)
1538 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1540 cpu->sched_flags |= flags;
1542 if (smp_processor_id() == cpu->cpu)
1543 intel_pstate_update_util_hwp_local(cpu, time);
1546 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1548 struct sample *sample = &cpu->sample;
1550 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1553 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1555 u64 aperf, mperf;
1556 unsigned long flags;
1557 u64 tsc;
1559 local_irq_save(flags);
1560 rdmsrl(MSR_IA32_APERF, aperf);
1561 rdmsrl(MSR_IA32_MPERF, mperf);
1562 tsc = rdtsc();
1563 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1564 local_irq_restore(flags);
1565 return false;
1567 local_irq_restore(flags);
1569 cpu->last_sample_time = cpu->sample.time;
1570 cpu->sample.time = time;
1571 cpu->sample.aperf = aperf;
1572 cpu->sample.mperf = mperf;
1573 cpu->sample.tsc = tsc;
1574 cpu->sample.aperf -= cpu->prev_aperf;
1575 cpu->sample.mperf -= cpu->prev_mperf;
1576 cpu->sample.tsc -= cpu->prev_tsc;
1578 cpu->prev_aperf = aperf;
1579 cpu->prev_mperf = mperf;
1580 cpu->prev_tsc = tsc;
1582 * First time this function is invoked in a given cycle, all of the
1583 * previous sample data fields are equal to zero or stale and they must
1584 * be populated with meaningful numbers for things to work, so assume
1585 * that sample.time will always be reset before setting the utilization
1586 * update hook and make the caller skip the sample then.
1588 if (cpu->last_sample_time) {
1589 intel_pstate_calc_avg_perf(cpu);
1590 return true;
1592 return false;
1595 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1597 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1600 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1602 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1603 cpu->sample.core_avg_perf);
1606 static inline int32_t get_target_pstate(struct cpudata *cpu)
1608 struct sample *sample = &cpu->sample;
1609 int32_t busy_frac, boost;
1610 int target, avg_pstate;
1612 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1613 sample->tsc);
1615 boost = cpu->iowait_boost;
1616 cpu->iowait_boost >>= 1;
1618 if (busy_frac < boost)
1619 busy_frac = boost;
1621 sample->busy_scaled = busy_frac * 100;
1623 target = global.no_turbo || global.turbo_disabled ?
1624 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1625 target += target >> 2;
1626 target = mul_fp(target, busy_frac);
1627 if (target < cpu->pstate.min_pstate)
1628 target = cpu->pstate.min_pstate;
1631 * If the average P-state during the previous cycle was higher than the
1632 * current target, add 50% of the difference to the target to reduce
1633 * possible performance oscillations and offset possible performance
1634 * loss related to moving the workload from one CPU to another within
1635 * a package/module.
1637 avg_pstate = get_avg_pstate(cpu);
1638 if (avg_pstate > target)
1639 target += (avg_pstate - target) >> 1;
1641 return target;
1644 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1646 int max_pstate = intel_pstate_get_base_pstate(cpu);
1647 int min_pstate;
1649 min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1650 max_pstate = max(min_pstate, cpu->max_perf_ratio);
1651 return clamp_t(int, pstate, min_pstate, max_pstate);
1654 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1656 if (pstate == cpu->pstate.current_pstate)
1657 return;
1659 cpu->pstate.current_pstate = pstate;
1660 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1663 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1665 int from = cpu->pstate.current_pstate;
1666 struct sample *sample;
1667 int target_pstate;
1669 update_turbo_state();
1671 target_pstate = get_target_pstate(cpu);
1672 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1673 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1674 intel_pstate_update_pstate(cpu, target_pstate);
1676 sample = &cpu->sample;
1677 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1678 fp_toint(sample->busy_scaled),
1679 from,
1680 cpu->pstate.current_pstate,
1681 sample->mperf,
1682 sample->aperf,
1683 sample->tsc,
1684 get_avg_frequency(cpu),
1685 fp_toint(cpu->iowait_boost * 100));
1688 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1689 unsigned int flags)
1691 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1692 u64 delta_ns;
1694 /* Don't allow remote callbacks */
1695 if (smp_processor_id() != cpu->cpu)
1696 return;
1698 if (flags & SCHED_CPUFREQ_IOWAIT) {
1699 cpu->iowait_boost = int_tofp(1);
1700 cpu->last_update = time;
1702 * The last time the busy was 100% so P-state was max anyway
1703 * so avoid overhead of computation.
1705 if (fp_toint(cpu->sample.busy_scaled) == 100)
1706 return;
1708 goto set_pstate;
1709 } else if (cpu->iowait_boost) {
1710 /* Clear iowait_boost if the CPU may have been idle. */
1711 delta_ns = time - cpu->last_update;
1712 if (delta_ns > TICK_NSEC)
1713 cpu->iowait_boost = 0;
1715 cpu->last_update = time;
1716 delta_ns = time - cpu->sample.time;
1717 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1718 return;
1720 set_pstate:
1721 if (intel_pstate_sample(cpu, time))
1722 intel_pstate_adjust_pstate(cpu);
1725 static struct pstate_funcs core_funcs = {
1726 .get_max = core_get_max_pstate,
1727 .get_max_physical = core_get_max_pstate_physical,
1728 .get_min = core_get_min_pstate,
1729 .get_turbo = core_get_turbo_pstate,
1730 .get_scaling = core_get_scaling,
1731 .get_val = core_get_val,
1734 static const struct pstate_funcs silvermont_funcs = {
1735 .get_max = atom_get_max_pstate,
1736 .get_max_physical = atom_get_max_pstate,
1737 .get_min = atom_get_min_pstate,
1738 .get_turbo = atom_get_turbo_pstate,
1739 .get_val = atom_get_val,
1740 .get_scaling = silvermont_get_scaling,
1741 .get_vid = atom_get_vid,
1744 static const struct pstate_funcs airmont_funcs = {
1745 .get_max = atom_get_max_pstate,
1746 .get_max_physical = atom_get_max_pstate,
1747 .get_min = atom_get_min_pstate,
1748 .get_turbo = atom_get_turbo_pstate,
1749 .get_val = atom_get_val,
1750 .get_scaling = airmont_get_scaling,
1751 .get_vid = atom_get_vid,
1754 static const struct pstate_funcs knl_funcs = {
1755 .get_max = core_get_max_pstate,
1756 .get_max_physical = core_get_max_pstate_physical,
1757 .get_min = core_get_min_pstate,
1758 .get_turbo = knl_get_turbo_pstate,
1759 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1760 .get_scaling = core_get_scaling,
1761 .get_val = core_get_val,
1764 #define ICPU(model, policy) \
1765 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1766 (unsigned long)&policy }
1768 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1769 ICPU(INTEL_FAM6_SANDYBRIDGE, core_funcs),
1770 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_funcs),
1771 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_funcs),
1772 ICPU(INTEL_FAM6_IVYBRIDGE, core_funcs),
1773 ICPU(INTEL_FAM6_HASWELL_CORE, core_funcs),
1774 ICPU(INTEL_FAM6_BROADWELL_CORE, core_funcs),
1775 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_funcs),
1776 ICPU(INTEL_FAM6_HASWELL_X, core_funcs),
1777 ICPU(INTEL_FAM6_HASWELL_ULT, core_funcs),
1778 ICPU(INTEL_FAM6_HASWELL_GT3E, core_funcs),
1779 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_funcs),
1780 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_funcs),
1781 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_funcs),
1782 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1783 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1784 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1785 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_funcs),
1786 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_funcs),
1787 ICPU(INTEL_FAM6_ATOM_GOLDMONT, core_funcs),
1788 ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE, core_funcs),
1789 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1792 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1794 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1795 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1796 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1797 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1801 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1802 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1806 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1807 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1808 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1812 static int intel_pstate_init_cpu(unsigned int cpunum)
1814 struct cpudata *cpu;
1816 cpu = all_cpu_data[cpunum];
1818 if (!cpu) {
1819 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1820 if (!cpu)
1821 return -ENOMEM;
1823 all_cpu_data[cpunum] = cpu;
1825 cpu->epp_default = -EINVAL;
1826 cpu->epp_powersave = -EINVAL;
1827 cpu->epp_saved = -EINVAL;
1830 cpu = all_cpu_data[cpunum];
1832 cpu->cpu = cpunum;
1834 if (hwp_active) {
1835 const struct x86_cpu_id *id;
1837 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1838 if (id)
1839 intel_pstate_disable_ee(cpunum);
1841 intel_pstate_hwp_enable(cpu);
1843 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1844 if (id)
1845 hwp_boost = true;
1848 intel_pstate_get_cpu_pstates(cpu);
1850 pr_debug("controlling: cpu %d\n", cpunum);
1852 return 0;
1855 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1857 struct cpudata *cpu = all_cpu_data[cpu_num];
1859 if (hwp_active && !hwp_boost)
1860 return;
1862 if (cpu->update_util_set)
1863 return;
1865 /* Prevent intel_pstate_update_util() from using stale data. */
1866 cpu->sample.time = 0;
1867 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1868 (hwp_active ?
1869 intel_pstate_update_util_hwp :
1870 intel_pstate_update_util));
1871 cpu->update_util_set = true;
1874 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1876 struct cpudata *cpu_data = all_cpu_data[cpu];
1878 if (!cpu_data->update_util_set)
1879 return;
1881 cpufreq_remove_update_util_hook(cpu);
1882 cpu_data->update_util_set = false;
1883 synchronize_sched();
1886 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1888 return global.turbo_disabled || global.no_turbo ?
1889 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1892 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1893 struct cpudata *cpu)
1895 int max_freq = intel_pstate_get_max_freq(cpu);
1896 int32_t max_policy_perf, min_policy_perf;
1897 int max_state, turbo_max;
1900 * HWP needs some special consideration, because on BDX the
1901 * HWP_REQUEST uses abstract value to represent performance
1902 * rather than pure ratios.
1904 if (hwp_active) {
1905 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1906 } else {
1907 max_state = intel_pstate_get_base_pstate(cpu);
1908 turbo_max = cpu->pstate.turbo_pstate;
1911 max_policy_perf = max_state * policy->max / max_freq;
1912 if (policy->max == policy->min) {
1913 min_policy_perf = max_policy_perf;
1914 } else {
1915 min_policy_perf = max_state * policy->min / max_freq;
1916 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1917 0, max_policy_perf);
1920 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1921 policy->cpu, max_state,
1922 min_policy_perf, max_policy_perf);
1924 /* Normalize user input to [min_perf, max_perf] */
1925 if (per_cpu_limits) {
1926 cpu->min_perf_ratio = min_policy_perf;
1927 cpu->max_perf_ratio = max_policy_perf;
1928 } else {
1929 int32_t global_min, global_max;
1931 /* Global limits are in percent of the maximum turbo P-state. */
1932 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1933 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1934 global_min = clamp_t(int32_t, global_min, 0, global_max);
1936 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1937 global_min, global_max);
1939 cpu->min_perf_ratio = max(min_policy_perf, global_min);
1940 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
1941 cpu->max_perf_ratio = min(max_policy_perf, global_max);
1942 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1944 /* Make sure min_perf <= max_perf */
1945 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
1946 cpu->max_perf_ratio);
1949 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
1950 cpu->max_perf_ratio,
1951 cpu->min_perf_ratio);
1954 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1956 struct cpudata *cpu;
1958 if (!policy->cpuinfo.max_freq)
1959 return -ENODEV;
1961 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1962 policy->cpuinfo.max_freq, policy->max);
1964 cpu = all_cpu_data[policy->cpu];
1965 cpu->policy = policy->policy;
1967 mutex_lock(&intel_pstate_limits_lock);
1969 intel_pstate_update_perf_limits(policy, cpu);
1971 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1973 * NOHZ_FULL CPUs need this as the governor callback may not
1974 * be invoked on them.
1976 intel_pstate_clear_update_util_hook(policy->cpu);
1977 intel_pstate_max_within_limits(cpu);
1978 } else {
1979 intel_pstate_set_update_util_hook(policy->cpu);
1982 if (hwp_active) {
1984 * When hwp_boost was active before and dynamically it
1985 * was turned off, in that case we need to clear the
1986 * update util hook.
1988 if (!hwp_boost)
1989 intel_pstate_clear_update_util_hook(policy->cpu);
1990 intel_pstate_hwp_set(policy->cpu);
1993 mutex_unlock(&intel_pstate_limits_lock);
1995 return 0;
1998 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
1999 struct cpudata *cpu)
2001 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2002 policy->max < policy->cpuinfo.max_freq &&
2003 policy->max > cpu->pstate.max_freq) {
2004 pr_debug("policy->max > max non turbo frequency\n");
2005 policy->max = policy->cpuinfo.max_freq;
2009 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2011 struct cpudata *cpu = all_cpu_data[policy->cpu];
2013 update_turbo_state();
2014 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2015 intel_pstate_get_max_freq(cpu));
2017 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2018 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2019 return -EINVAL;
2021 intel_pstate_adjust_policy_max(policy, cpu);
2023 return 0;
2026 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2028 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2031 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2033 pr_debug("CPU %d exiting\n", policy->cpu);
2035 intel_pstate_clear_update_util_hook(policy->cpu);
2036 if (hwp_active)
2037 intel_pstate_hwp_save_state(policy);
2038 else
2039 intel_cpufreq_stop_cpu(policy);
2042 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2044 intel_pstate_exit_perf_limits(policy);
2046 policy->fast_switch_possible = false;
2048 return 0;
2051 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2053 struct cpudata *cpu;
2054 int rc;
2056 rc = intel_pstate_init_cpu(policy->cpu);
2057 if (rc)
2058 return rc;
2060 cpu = all_cpu_data[policy->cpu];
2062 cpu->max_perf_ratio = 0xFF;
2063 cpu->min_perf_ratio = 0;
2065 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2066 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2068 /* cpuinfo and default policy values */
2069 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2070 update_turbo_state();
2071 policy->cpuinfo.max_freq = global.turbo_disabled ?
2072 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2073 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2075 intel_pstate_init_acpi_perf_limits(policy);
2077 policy->fast_switch_possible = true;
2079 return 0;
2082 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2084 int ret = __intel_pstate_cpu_init(policy);
2086 if (ret)
2087 return ret;
2089 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2090 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2091 else
2092 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2094 return 0;
2097 static struct cpufreq_driver intel_pstate = {
2098 .flags = CPUFREQ_CONST_LOOPS,
2099 .verify = intel_pstate_verify_policy,
2100 .setpolicy = intel_pstate_set_policy,
2101 .suspend = intel_pstate_hwp_save_state,
2102 .resume = intel_pstate_resume,
2103 .init = intel_pstate_cpu_init,
2104 .exit = intel_pstate_cpu_exit,
2105 .stop_cpu = intel_pstate_stop_cpu,
2106 .name = "intel_pstate",
2109 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2111 struct cpudata *cpu = all_cpu_data[policy->cpu];
2113 update_turbo_state();
2114 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2115 intel_pstate_get_max_freq(cpu));
2117 intel_pstate_adjust_policy_max(policy, cpu);
2119 intel_pstate_update_perf_limits(policy, cpu);
2121 return 0;
2124 /* Use of trace in passive mode:
2126 * In passive mode the trace core_busy field (also known as the
2127 * performance field, and lablelled as such on the graphs; also known as
2128 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2129 * driver call was via the normal or fast switch path. Various graphs
2130 * output from the intel_pstate_tracer.py utility that include core_busy
2131 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2132 * so we use 10 to indicate the the normal path through the driver, and
2133 * 90 to indicate the fast switch path through the driver.
2134 * The scaled_busy field is not used, and is set to 0.
2137 #define INTEL_PSTATE_TRACE_TARGET 10
2138 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2140 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2142 struct sample *sample;
2144 if (!trace_pstate_sample_enabled())
2145 return;
2147 if (!intel_pstate_sample(cpu, ktime_get()))
2148 return;
2150 sample = &cpu->sample;
2151 trace_pstate_sample(trace_type,
2153 old_pstate,
2154 cpu->pstate.current_pstate,
2155 sample->mperf,
2156 sample->aperf,
2157 sample->tsc,
2158 get_avg_frequency(cpu),
2159 fp_toint(cpu->iowait_boost * 100));
2162 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2163 unsigned int target_freq,
2164 unsigned int relation)
2166 struct cpudata *cpu = all_cpu_data[policy->cpu];
2167 struct cpufreq_freqs freqs;
2168 int target_pstate, old_pstate;
2170 update_turbo_state();
2172 freqs.old = policy->cur;
2173 freqs.new = target_freq;
2175 cpufreq_freq_transition_begin(policy, &freqs);
2176 switch (relation) {
2177 case CPUFREQ_RELATION_L:
2178 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2179 break;
2180 case CPUFREQ_RELATION_H:
2181 target_pstate = freqs.new / cpu->pstate.scaling;
2182 break;
2183 default:
2184 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2185 break;
2187 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2188 old_pstate = cpu->pstate.current_pstate;
2189 if (target_pstate != cpu->pstate.current_pstate) {
2190 cpu->pstate.current_pstate = target_pstate;
2191 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2192 pstate_funcs.get_val(cpu, target_pstate));
2194 freqs.new = target_pstate * cpu->pstate.scaling;
2195 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2196 cpufreq_freq_transition_end(policy, &freqs, false);
2198 return 0;
2201 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2202 unsigned int target_freq)
2204 struct cpudata *cpu = all_cpu_data[policy->cpu];
2205 int target_pstate, old_pstate;
2207 update_turbo_state();
2209 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2210 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2211 old_pstate = cpu->pstate.current_pstate;
2212 intel_pstate_update_pstate(cpu, target_pstate);
2213 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2214 return target_pstate * cpu->pstate.scaling;
2217 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2219 int ret = __intel_pstate_cpu_init(policy);
2221 if (ret)
2222 return ret;
2224 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2225 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2226 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2227 policy->cur = policy->cpuinfo.min_freq;
2229 return 0;
2232 static struct cpufreq_driver intel_cpufreq = {
2233 .flags = CPUFREQ_CONST_LOOPS,
2234 .verify = intel_cpufreq_verify_policy,
2235 .target = intel_cpufreq_target,
2236 .fast_switch = intel_cpufreq_fast_switch,
2237 .init = intel_cpufreq_cpu_init,
2238 .exit = intel_pstate_cpu_exit,
2239 .stop_cpu = intel_cpufreq_stop_cpu,
2240 .name = "intel_cpufreq",
2243 static struct cpufreq_driver *default_driver = &intel_pstate;
2245 static void intel_pstate_driver_cleanup(void)
2247 unsigned int cpu;
2249 get_online_cpus();
2250 for_each_online_cpu(cpu) {
2251 if (all_cpu_data[cpu]) {
2252 if (intel_pstate_driver == &intel_pstate)
2253 intel_pstate_clear_update_util_hook(cpu);
2255 kfree(all_cpu_data[cpu]);
2256 all_cpu_data[cpu] = NULL;
2259 put_online_cpus();
2260 intel_pstate_driver = NULL;
2263 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2265 int ret;
2267 memset(&global, 0, sizeof(global));
2268 global.max_perf_pct = 100;
2270 intel_pstate_driver = driver;
2271 ret = cpufreq_register_driver(intel_pstate_driver);
2272 if (ret) {
2273 intel_pstate_driver_cleanup();
2274 return ret;
2277 global.min_perf_pct = min_perf_pct_min();
2279 return 0;
2282 static int intel_pstate_unregister_driver(void)
2284 if (hwp_active)
2285 return -EBUSY;
2287 cpufreq_unregister_driver(intel_pstate_driver);
2288 intel_pstate_driver_cleanup();
2290 return 0;
2293 static ssize_t intel_pstate_show_status(char *buf)
2295 if (!intel_pstate_driver)
2296 return sprintf(buf, "off\n");
2298 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2299 "active" : "passive");
2302 static int intel_pstate_update_status(const char *buf, size_t size)
2304 int ret;
2306 if (size == 3 && !strncmp(buf, "off", size))
2307 return intel_pstate_driver ?
2308 intel_pstate_unregister_driver() : -EINVAL;
2310 if (size == 6 && !strncmp(buf, "active", size)) {
2311 if (intel_pstate_driver) {
2312 if (intel_pstate_driver == &intel_pstate)
2313 return 0;
2315 ret = intel_pstate_unregister_driver();
2316 if (ret)
2317 return ret;
2320 return intel_pstate_register_driver(&intel_pstate);
2323 if (size == 7 && !strncmp(buf, "passive", size)) {
2324 if (intel_pstate_driver) {
2325 if (intel_pstate_driver == &intel_cpufreq)
2326 return 0;
2328 ret = intel_pstate_unregister_driver();
2329 if (ret)
2330 return ret;
2333 return intel_pstate_register_driver(&intel_cpufreq);
2336 return -EINVAL;
2339 static int no_load __initdata;
2340 static int no_hwp __initdata;
2341 static int hwp_only __initdata;
2342 static unsigned int force_load __initdata;
2344 static int __init intel_pstate_msrs_not_valid(void)
2346 if (!pstate_funcs.get_max() ||
2347 !pstate_funcs.get_min() ||
2348 !pstate_funcs.get_turbo())
2349 return -ENODEV;
2351 return 0;
2354 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2356 pstate_funcs.get_max = funcs->get_max;
2357 pstate_funcs.get_max_physical = funcs->get_max_physical;
2358 pstate_funcs.get_min = funcs->get_min;
2359 pstate_funcs.get_turbo = funcs->get_turbo;
2360 pstate_funcs.get_scaling = funcs->get_scaling;
2361 pstate_funcs.get_val = funcs->get_val;
2362 pstate_funcs.get_vid = funcs->get_vid;
2363 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2366 #ifdef CONFIG_ACPI
2368 static bool __init intel_pstate_no_acpi_pss(void)
2370 int i;
2372 for_each_possible_cpu(i) {
2373 acpi_status status;
2374 union acpi_object *pss;
2375 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2376 struct acpi_processor *pr = per_cpu(processors, i);
2378 if (!pr)
2379 continue;
2381 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2382 if (ACPI_FAILURE(status))
2383 continue;
2385 pss = buffer.pointer;
2386 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2387 kfree(pss);
2388 return false;
2391 kfree(pss);
2394 return true;
2397 static bool __init intel_pstate_no_acpi_pcch(void)
2399 acpi_status status;
2400 acpi_handle handle;
2402 status = acpi_get_handle(NULL, "\\_SB", &handle);
2403 if (ACPI_FAILURE(status))
2404 return true;
2406 return !acpi_has_method(handle, "PCCH");
2409 static bool __init intel_pstate_has_acpi_ppc(void)
2411 int i;
2413 for_each_possible_cpu(i) {
2414 struct acpi_processor *pr = per_cpu(processors, i);
2416 if (!pr)
2417 continue;
2418 if (acpi_has_method(pr->handle, "_PPC"))
2419 return true;
2421 return false;
2424 enum {
2425 PSS,
2426 PPC,
2429 /* Hardware vendor-specific info that has its own power management modes */
2430 static struct acpi_platform_list plat_info[] __initdata = {
2431 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2432 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2433 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2434 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2435 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2436 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2437 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2438 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2439 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2440 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2441 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2442 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2443 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2444 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2445 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2446 { } /* End */
2449 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2451 const struct x86_cpu_id *id;
2452 u64 misc_pwr;
2453 int idx;
2455 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2456 if (id) {
2457 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2458 if ( misc_pwr & (1 << 8))
2459 return true;
2462 idx = acpi_match_platform_list(plat_info);
2463 if (idx < 0)
2464 return false;
2466 switch (plat_info[idx].data) {
2467 case PSS:
2468 if (!intel_pstate_no_acpi_pss())
2469 return false;
2471 return intel_pstate_no_acpi_pcch();
2472 case PPC:
2473 return intel_pstate_has_acpi_ppc() && !force_load;
2476 return false;
2479 static void intel_pstate_request_control_from_smm(void)
2482 * It may be unsafe to request P-states control from SMM if _PPC support
2483 * has not been enabled.
2485 if (acpi_ppc)
2486 acpi_processor_pstate_control();
2488 #else /* CONFIG_ACPI not enabled */
2489 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2490 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2491 static inline void intel_pstate_request_control_from_smm(void) {}
2492 #endif /* CONFIG_ACPI */
2494 #define INTEL_PSTATE_HWP_BROADWELL 0x01
2496 #define ICPU_HWP(model, hwp_mode) \
2497 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2499 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2500 ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2501 ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2502 ICPU_HWP(X86_MODEL_ANY, 0),
2506 static int __init intel_pstate_init(void)
2508 const struct x86_cpu_id *id;
2509 int rc;
2511 if (no_load)
2512 return -ENODEV;
2514 id = x86_match_cpu(hwp_support_ids);
2515 if (id) {
2516 copy_cpu_funcs(&core_funcs);
2517 if (!no_hwp) {
2518 hwp_active++;
2519 hwp_mode_bdw = id->driver_data;
2520 intel_pstate.attr = hwp_cpufreq_attrs;
2521 goto hwp_cpu_matched;
2523 } else {
2524 id = x86_match_cpu(intel_pstate_cpu_ids);
2525 if (!id)
2526 return -ENODEV;
2528 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2531 if (intel_pstate_msrs_not_valid())
2532 return -ENODEV;
2534 hwp_cpu_matched:
2536 * The Intel pstate driver will be ignored if the platform
2537 * firmware has its own power management modes.
2539 if (intel_pstate_platform_pwr_mgmt_exists())
2540 return -ENODEV;
2542 if (!hwp_active && hwp_only)
2543 return -ENOTSUPP;
2545 pr_info("Intel P-state driver initializing\n");
2547 all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2548 if (!all_cpu_data)
2549 return -ENOMEM;
2551 intel_pstate_request_control_from_smm();
2553 intel_pstate_sysfs_expose_params();
2555 mutex_lock(&intel_pstate_driver_lock);
2556 rc = intel_pstate_register_driver(default_driver);
2557 mutex_unlock(&intel_pstate_driver_lock);
2558 if (rc)
2559 return rc;
2561 if (hwp_active)
2562 pr_info("HWP enabled\n");
2564 return 0;
2566 device_initcall(intel_pstate_init);
2568 static int __init intel_pstate_setup(char *str)
2570 if (!str)
2571 return -EINVAL;
2573 if (!strcmp(str, "disable")) {
2574 no_load = 1;
2575 } else if (!strcmp(str, "passive")) {
2576 pr_info("Passive mode enabled\n");
2577 default_driver = &intel_cpufreq;
2578 no_hwp = 1;
2580 if (!strcmp(str, "no_hwp")) {
2581 pr_info("HWP disabled\n");
2582 no_hwp = 1;
2584 if (!strcmp(str, "force"))
2585 force_load = 1;
2586 if (!strcmp(str, "hwp_only"))
2587 hwp_only = 1;
2588 if (!strcmp(str, "per_cpu_perf_limits"))
2589 per_cpu_limits = true;
2591 #ifdef CONFIG_ACPI
2592 if (!strcmp(str, "support_acpi_ppc"))
2593 acpi_ppc = true;
2594 #endif
2596 return 0;
2598 early_param("intel_pstate", intel_pstate_setup);
2600 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2601 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2602 MODULE_LICENSE("GPL");