Merge 4.18-rc7 into staging-next
[linux-2.6/btrfs-unstable.git] / drivers / cpufreq / imx6q-cpufreq.c
blob8b3c2a79ad6cd113e38982f6cb1700a282ebff16
1 /*
2 * Copyright (C) 2013 Freescale Semiconductor, Inc.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/pm_opp.h>
17 #include <linux/platform_device.h>
18 #include <linux/regulator/consumer.h>
20 #define PU_SOC_VOLTAGE_NORMAL 1250000
21 #define PU_SOC_VOLTAGE_HIGH 1275000
22 #define FREQ_1P2_GHZ 1200000000
24 static struct regulator *arm_reg;
25 static struct regulator *pu_reg;
26 static struct regulator *soc_reg;
28 enum IMX6_CPUFREQ_CLKS {
29 ARM,
30 PLL1_SYS,
31 STEP,
32 PLL1_SW,
33 PLL2_PFD2_396M,
34 /* MX6UL requires two more clks */
35 PLL2_BUS,
36 SECONDARY_SEL,
38 #define IMX6Q_CPUFREQ_CLK_NUM 5
39 #define IMX6UL_CPUFREQ_CLK_NUM 7
41 static int num_clks;
42 static struct clk_bulk_data clks[] = {
43 { .id = "arm" },
44 { .id = "pll1_sys" },
45 { .id = "step" },
46 { .id = "pll1_sw" },
47 { .id = "pll2_pfd2_396m" },
48 { .id = "pll2_bus" },
49 { .id = "secondary_sel" },
52 static struct device *cpu_dev;
53 static bool free_opp;
54 static struct cpufreq_frequency_table *freq_table;
55 static unsigned int max_freq;
56 static unsigned int transition_latency;
58 static u32 *imx6_soc_volt;
59 static u32 soc_opp_count;
61 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
63 struct dev_pm_opp *opp;
64 unsigned long freq_hz, volt, volt_old;
65 unsigned int old_freq, new_freq;
66 bool pll1_sys_temp_enabled = false;
67 int ret;
69 new_freq = freq_table[index].frequency;
70 freq_hz = new_freq * 1000;
71 old_freq = clk_get_rate(clks[ARM].clk) / 1000;
73 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
74 if (IS_ERR(opp)) {
75 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
76 return PTR_ERR(opp);
79 volt = dev_pm_opp_get_voltage(opp);
80 dev_pm_opp_put(opp);
82 volt_old = regulator_get_voltage(arm_reg);
84 dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
85 old_freq / 1000, volt_old / 1000,
86 new_freq / 1000, volt / 1000);
88 /* scaling up? scale voltage before frequency */
89 if (new_freq > old_freq) {
90 if (!IS_ERR(pu_reg)) {
91 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
92 if (ret) {
93 dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
94 return ret;
97 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
98 if (ret) {
99 dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
100 return ret;
102 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
103 if (ret) {
104 dev_err(cpu_dev,
105 "failed to scale vddarm up: %d\n", ret);
106 return ret;
111 * The setpoints are selected per PLL/PDF frequencies, so we need to
112 * reprogram PLL for frequency scaling. The procedure of reprogramming
113 * PLL1 is as below.
114 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
115 * flow is slightly different from other i.MX6 OSC.
116 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
117 * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
118 * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
119 * - Disable pll2_pfd2_396m_clk
121 if (of_machine_is_compatible("fsl,imx6ul") ||
122 of_machine_is_compatible("fsl,imx6ull")) {
124 * When changing pll1_sw_clk's parent to pll1_sys_clk,
125 * CPU may run at higher than 528MHz, this will lead to
126 * the system unstable if the voltage is lower than the
127 * voltage of 528MHz, so lower the CPU frequency to one
128 * half before changing CPU frequency.
130 clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
131 clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
132 if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
133 clk_set_parent(clks[SECONDARY_SEL].clk,
134 clks[PLL2_BUS].clk);
135 else
136 clk_set_parent(clks[SECONDARY_SEL].clk,
137 clks[PLL2_PFD2_396M].clk);
138 clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
139 clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
140 if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
141 clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
142 clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
144 } else {
145 clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
146 clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
147 if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
148 clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
149 clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
150 } else {
151 /* pll1_sys needs to be enabled for divider rate change to work. */
152 pll1_sys_temp_enabled = true;
153 clk_prepare_enable(clks[PLL1_SYS].clk);
157 /* Ensure the arm clock divider is what we expect */
158 ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
159 if (ret) {
160 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
161 regulator_set_voltage_tol(arm_reg, volt_old, 0);
162 return ret;
165 /* PLL1 is only needed until after ARM-PODF is set. */
166 if (pll1_sys_temp_enabled)
167 clk_disable_unprepare(clks[PLL1_SYS].clk);
169 /* scaling down? scale voltage after frequency */
170 if (new_freq < old_freq) {
171 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
172 if (ret) {
173 dev_warn(cpu_dev,
174 "failed to scale vddarm down: %d\n", ret);
175 ret = 0;
177 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
178 if (ret) {
179 dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
180 ret = 0;
182 if (!IS_ERR(pu_reg)) {
183 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
184 if (ret) {
185 dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
186 ret = 0;
191 return 0;
194 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
196 int ret;
198 policy->clk = clks[ARM].clk;
199 ret = cpufreq_generic_init(policy, freq_table, transition_latency);
200 policy->suspend_freq = max_freq;
202 return ret;
205 static struct cpufreq_driver imx6q_cpufreq_driver = {
206 .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
207 .verify = cpufreq_generic_frequency_table_verify,
208 .target_index = imx6q_set_target,
209 .get = cpufreq_generic_get,
210 .init = imx6q_cpufreq_init,
211 .name = "imx6q-cpufreq",
212 .attr = cpufreq_generic_attr,
213 .suspend = cpufreq_generic_suspend,
216 #define OCOTP_CFG3 0x440
217 #define OCOTP_CFG3_SPEED_SHIFT 16
218 #define OCOTP_CFG3_SPEED_1P2GHZ 0x3
219 #define OCOTP_CFG3_SPEED_996MHZ 0x2
220 #define OCOTP_CFG3_SPEED_852MHZ 0x1
222 static void imx6q_opp_check_speed_grading(struct device *dev)
224 struct device_node *np;
225 void __iomem *base;
226 u32 val;
228 np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp");
229 if (!np)
230 return;
232 base = of_iomap(np, 0);
233 if (!base) {
234 dev_err(dev, "failed to map ocotp\n");
235 goto put_node;
239 * SPEED_GRADING[1:0] defines the max speed of ARM:
240 * 2b'11: 1200000000Hz;
241 * 2b'10: 996000000Hz;
242 * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
243 * 2b'00: 792000000Hz;
244 * We need to set the max speed of ARM according to fuse map.
246 val = readl_relaxed(base + OCOTP_CFG3);
247 val >>= OCOTP_CFG3_SPEED_SHIFT;
248 val &= 0x3;
250 if (val < OCOTP_CFG3_SPEED_996MHZ)
251 if (dev_pm_opp_disable(dev, 996000000))
252 dev_warn(dev, "failed to disable 996MHz OPP\n");
254 if (of_machine_is_compatible("fsl,imx6q") ||
255 of_machine_is_compatible("fsl,imx6qp")) {
256 if (val != OCOTP_CFG3_SPEED_852MHZ)
257 if (dev_pm_opp_disable(dev, 852000000))
258 dev_warn(dev, "failed to disable 852MHz OPP\n");
259 if (val != OCOTP_CFG3_SPEED_1P2GHZ)
260 if (dev_pm_opp_disable(dev, 1200000000))
261 dev_warn(dev, "failed to disable 1.2GHz OPP\n");
263 iounmap(base);
264 put_node:
265 of_node_put(np);
268 #define OCOTP_CFG3_6UL_SPEED_696MHZ 0x2
269 #define OCOTP_CFG3_6ULL_SPEED_792MHZ 0x2
270 #define OCOTP_CFG3_6ULL_SPEED_900MHZ 0x3
272 static void imx6ul_opp_check_speed_grading(struct device *dev)
274 struct device_node *np;
275 void __iomem *base;
276 u32 val;
278 np = of_find_compatible_node(NULL, NULL, "fsl,imx6ul-ocotp");
279 if (!np)
280 return;
282 base = of_iomap(np, 0);
283 if (!base) {
284 dev_err(dev, "failed to map ocotp\n");
285 goto put_node;
289 * Speed GRADING[1:0] defines the max speed of ARM:
290 * 2b'00: Reserved;
291 * 2b'01: 528000000Hz;
292 * 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL;
293 * 2b'11: 900000000Hz on i.MX6ULL only;
294 * We need to set the max speed of ARM according to fuse map.
296 val = readl_relaxed(base + OCOTP_CFG3);
297 val >>= OCOTP_CFG3_SPEED_SHIFT;
298 val &= 0x3;
300 if (of_machine_is_compatible("fsl,imx6ul")) {
301 if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
302 if (dev_pm_opp_disable(dev, 696000000))
303 dev_warn(dev, "failed to disable 696MHz OPP\n");
306 if (of_machine_is_compatible("fsl,imx6ull")) {
307 if (val != OCOTP_CFG3_6ULL_SPEED_792MHZ)
308 if (dev_pm_opp_disable(dev, 792000000))
309 dev_warn(dev, "failed to disable 792MHz OPP\n");
311 if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ)
312 if (dev_pm_opp_disable(dev, 900000000))
313 dev_warn(dev, "failed to disable 900MHz OPP\n");
316 iounmap(base);
317 put_node:
318 of_node_put(np);
321 static int imx6q_cpufreq_probe(struct platform_device *pdev)
323 struct device_node *np;
324 struct dev_pm_opp *opp;
325 unsigned long min_volt, max_volt;
326 int num, ret;
327 const struct property *prop;
328 const __be32 *val;
329 u32 nr, i, j;
331 cpu_dev = get_cpu_device(0);
332 if (!cpu_dev) {
333 pr_err("failed to get cpu0 device\n");
334 return -ENODEV;
337 np = of_node_get(cpu_dev->of_node);
338 if (!np) {
339 dev_err(cpu_dev, "failed to find cpu0 node\n");
340 return -ENOENT;
343 if (of_machine_is_compatible("fsl,imx6ul") ||
344 of_machine_is_compatible("fsl,imx6ull"))
345 num_clks = IMX6UL_CPUFREQ_CLK_NUM;
346 else
347 num_clks = IMX6Q_CPUFREQ_CLK_NUM;
349 ret = clk_bulk_get(cpu_dev, num_clks, clks);
350 if (ret)
351 goto put_node;
353 arm_reg = regulator_get(cpu_dev, "arm");
354 pu_reg = regulator_get_optional(cpu_dev, "pu");
355 soc_reg = regulator_get(cpu_dev, "soc");
356 if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
357 PTR_ERR(soc_reg) == -EPROBE_DEFER ||
358 PTR_ERR(pu_reg) == -EPROBE_DEFER) {
359 ret = -EPROBE_DEFER;
360 dev_dbg(cpu_dev, "regulators not ready, defer\n");
361 goto put_reg;
363 if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
364 dev_err(cpu_dev, "failed to get regulators\n");
365 ret = -ENOENT;
366 goto put_reg;
369 ret = dev_pm_opp_of_add_table(cpu_dev);
370 if (ret < 0) {
371 dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
372 goto put_reg;
375 if (of_machine_is_compatible("fsl,imx6ul") ||
376 of_machine_is_compatible("fsl,imx6ull"))
377 imx6ul_opp_check_speed_grading(cpu_dev);
378 else
379 imx6q_opp_check_speed_grading(cpu_dev);
381 /* Because we have added the OPPs here, we must free them */
382 free_opp = true;
383 num = dev_pm_opp_get_opp_count(cpu_dev);
384 if (num < 0) {
385 ret = num;
386 dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
387 goto out_free_opp;
390 ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
391 if (ret) {
392 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
393 goto out_free_opp;
396 /* Make imx6_soc_volt array's size same as arm opp number */
397 imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt),
398 GFP_KERNEL);
399 if (imx6_soc_volt == NULL) {
400 ret = -ENOMEM;
401 goto free_freq_table;
404 prop = of_find_property(np, "fsl,soc-operating-points", NULL);
405 if (!prop || !prop->value)
406 goto soc_opp_out;
409 * Each OPP is a set of tuples consisting of frequency and
410 * voltage like <freq-kHz vol-uV>.
412 nr = prop->length / sizeof(u32);
413 if (nr % 2 || (nr / 2) < num)
414 goto soc_opp_out;
416 for (j = 0; j < num; j++) {
417 val = prop->value;
418 for (i = 0; i < nr / 2; i++) {
419 unsigned long freq = be32_to_cpup(val++);
420 unsigned long volt = be32_to_cpup(val++);
421 if (freq_table[j].frequency == freq) {
422 imx6_soc_volt[soc_opp_count++] = volt;
423 break;
428 soc_opp_out:
429 /* use fixed soc opp volt if no valid soc opp info found in dtb */
430 if (soc_opp_count != num) {
431 dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
432 for (j = 0; j < num; j++)
433 imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
434 if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
435 imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
438 if (of_property_read_u32(np, "clock-latency", &transition_latency))
439 transition_latency = CPUFREQ_ETERNAL;
442 * Calculate the ramp time for max voltage change in the
443 * VDDSOC and VDDPU regulators.
445 ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
446 if (ret > 0)
447 transition_latency += ret * 1000;
448 if (!IS_ERR(pu_reg)) {
449 ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
450 if (ret > 0)
451 transition_latency += ret * 1000;
455 * OPP is maintained in order of increasing frequency, and
456 * freq_table initialised from OPP is therefore sorted in the
457 * same order.
459 max_freq = freq_table[--num].frequency;
460 opp = dev_pm_opp_find_freq_exact(cpu_dev,
461 freq_table[0].frequency * 1000, true);
462 min_volt = dev_pm_opp_get_voltage(opp);
463 dev_pm_opp_put(opp);
464 opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true);
465 max_volt = dev_pm_opp_get_voltage(opp);
466 dev_pm_opp_put(opp);
468 ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
469 if (ret > 0)
470 transition_latency += ret * 1000;
472 ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
473 if (ret) {
474 dev_err(cpu_dev, "failed register driver: %d\n", ret);
475 goto free_freq_table;
478 of_node_put(np);
479 return 0;
481 free_freq_table:
482 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
483 out_free_opp:
484 if (free_opp)
485 dev_pm_opp_of_remove_table(cpu_dev);
486 put_reg:
487 if (!IS_ERR(arm_reg))
488 regulator_put(arm_reg);
489 if (!IS_ERR(pu_reg))
490 regulator_put(pu_reg);
491 if (!IS_ERR(soc_reg))
492 regulator_put(soc_reg);
494 clk_bulk_put(num_clks, clks);
495 put_node:
496 of_node_put(np);
498 return ret;
501 static int imx6q_cpufreq_remove(struct platform_device *pdev)
503 cpufreq_unregister_driver(&imx6q_cpufreq_driver);
504 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
505 if (free_opp)
506 dev_pm_opp_of_remove_table(cpu_dev);
507 regulator_put(arm_reg);
508 if (!IS_ERR(pu_reg))
509 regulator_put(pu_reg);
510 regulator_put(soc_reg);
512 clk_bulk_put(num_clks, clks);
514 return 0;
517 static struct platform_driver imx6q_cpufreq_platdrv = {
518 .driver = {
519 .name = "imx6q-cpufreq",
521 .probe = imx6q_cpufreq_probe,
522 .remove = imx6q_cpufreq_remove,
524 module_platform_driver(imx6q_cpufreq_platdrv);
526 MODULE_ALIAS("platform:imx6q-cpufreq");
527 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
528 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
529 MODULE_LICENSE("GPL");