2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
44 #include "blk-mq-sched.h"
47 #ifdef CONFIG_DEBUG_FS
48 struct dentry
*blk_debugfs_root
;
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split
);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug
);
57 DEFINE_IDA(blk_queue_ida
);
60 * For the allocated request tables
62 struct kmem_cache
*request_cachep
;
65 * For queue allocation
67 struct kmem_cache
*blk_requestq_cachep
;
70 * Controlling structure to kblockd
72 static struct workqueue_struct
*kblockd_workqueue
;
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
79 void blk_queue_flag_set(unsigned int flag
, struct request_queue
*q
)
83 spin_lock_irqsave(q
->queue_lock
, flags
);
84 queue_flag_set(flag
, q
);
85 spin_unlock_irqrestore(q
->queue_lock
, flags
);
87 EXPORT_SYMBOL(blk_queue_flag_set
);
90 * blk_queue_flag_clear - atomically clear a queue flag
91 * @flag: flag to be cleared
94 void blk_queue_flag_clear(unsigned int flag
, struct request_queue
*q
)
98 spin_lock_irqsave(q
->queue_lock
, flags
);
99 queue_flag_clear(flag
, q
);
100 spin_unlock_irqrestore(q
->queue_lock
, flags
);
102 EXPORT_SYMBOL(blk_queue_flag_clear
);
105 * blk_queue_flag_test_and_set - atomically test and set a queue flag
106 * @flag: flag to be set
109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110 * the flag was already set.
112 bool blk_queue_flag_test_and_set(unsigned int flag
, struct request_queue
*q
)
117 spin_lock_irqsave(q
->queue_lock
, flags
);
118 res
= queue_flag_test_and_set(flag
, q
);
119 spin_unlock_irqrestore(q
->queue_lock
, flags
);
123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set
);
126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127 * @flag: flag to be cleared
130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
133 bool blk_queue_flag_test_and_clear(unsigned int flag
, struct request_queue
*q
)
138 spin_lock_irqsave(q
->queue_lock
, flags
);
139 res
= queue_flag_test_and_clear(flag
, q
);
140 spin_unlock_irqrestore(q
->queue_lock
, flags
);
144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear
);
146 static void blk_clear_congested(struct request_list
*rl
, int sync
)
148 #ifdef CONFIG_CGROUP_WRITEBACK
149 clear_wb_congested(rl
->blkg
->wb_congested
, sync
);
152 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 * flip its congestion state for events on other blkcgs.
155 if (rl
== &rl
->q
->root_rl
)
156 clear_wb_congested(rl
->q
->backing_dev_info
->wb
.congested
, sync
);
160 static void blk_set_congested(struct request_list
*rl
, int sync
)
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 set_wb_congested(rl
->blkg
->wb_congested
, sync
);
165 /* see blk_clear_congested() */
166 if (rl
== &rl
->q
->root_rl
)
167 set_wb_congested(rl
->q
->backing_dev_info
->wb
.congested
, sync
);
171 void blk_queue_congestion_threshold(struct request_queue
*q
)
175 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
176 if (nr
> q
->nr_requests
)
178 q
->nr_congestion_on
= nr
;
180 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
183 q
->nr_congestion_off
= nr
;
186 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
188 memset(rq
, 0, sizeof(*rq
));
190 INIT_LIST_HEAD(&rq
->queuelist
);
191 INIT_LIST_HEAD(&rq
->timeout_list
);
194 rq
->__sector
= (sector_t
) -1;
195 INIT_HLIST_NODE(&rq
->hash
);
196 RB_CLEAR_NODE(&rq
->rb_node
);
198 rq
->internal_tag
= -1;
199 rq
->start_time
= jiffies
;
200 set_start_time_ns(rq
);
202 seqcount_init(&rq
->gstate_seq
);
203 u64_stats_init(&rq
->aborted_gstate_sync
);
205 * See comment of blk_mq_init_request
207 WRITE_ONCE(rq
->gstate
, MQ_RQ_GEN_INC
);
209 EXPORT_SYMBOL(blk_rq_init
);
211 static const struct {
215 [BLK_STS_OK
] = { 0, "" },
216 [BLK_STS_NOTSUPP
] = { -EOPNOTSUPP
, "operation not supported" },
217 [BLK_STS_TIMEOUT
] = { -ETIMEDOUT
, "timeout" },
218 [BLK_STS_NOSPC
] = { -ENOSPC
, "critical space allocation" },
219 [BLK_STS_TRANSPORT
] = { -ENOLINK
, "recoverable transport" },
220 [BLK_STS_TARGET
] = { -EREMOTEIO
, "critical target" },
221 [BLK_STS_NEXUS
] = { -EBADE
, "critical nexus" },
222 [BLK_STS_MEDIUM
] = { -ENODATA
, "critical medium" },
223 [BLK_STS_PROTECTION
] = { -EILSEQ
, "protection" },
224 [BLK_STS_RESOURCE
] = { -ENOMEM
, "kernel resource" },
225 [BLK_STS_DEV_RESOURCE
] = { -EBUSY
, "device resource" },
226 [BLK_STS_AGAIN
] = { -EAGAIN
, "nonblocking retry" },
228 /* device mapper special case, should not leak out: */
229 [BLK_STS_DM_REQUEUE
] = { -EREMCHG
, "dm internal retry" },
231 /* everything else not covered above: */
232 [BLK_STS_IOERR
] = { -EIO
, "I/O" },
235 blk_status_t
errno_to_blk_status(int errno
)
239 for (i
= 0; i
< ARRAY_SIZE(blk_errors
); i
++) {
240 if (blk_errors
[i
].errno
== errno
)
241 return (__force blk_status_t
)i
;
244 return BLK_STS_IOERR
;
246 EXPORT_SYMBOL_GPL(errno_to_blk_status
);
248 int blk_status_to_errno(blk_status_t status
)
250 int idx
= (__force
int)status
;
252 if (WARN_ON_ONCE(idx
>= ARRAY_SIZE(blk_errors
)))
254 return blk_errors
[idx
].errno
;
256 EXPORT_SYMBOL_GPL(blk_status_to_errno
);
258 static void print_req_error(struct request
*req
, blk_status_t status
)
260 int idx
= (__force
int)status
;
262 if (WARN_ON_ONCE(idx
>= ARRAY_SIZE(blk_errors
)))
265 printk_ratelimited(KERN_ERR
"%s: %s error, dev %s, sector %llu\n",
266 __func__
, blk_errors
[idx
].name
, req
->rq_disk
?
267 req
->rq_disk
->disk_name
: "?",
268 (unsigned long long)blk_rq_pos(req
));
271 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
272 unsigned int nbytes
, blk_status_t error
)
275 bio
->bi_status
= error
;
277 if (unlikely(rq
->rq_flags
& RQF_QUIET
))
278 bio_set_flag(bio
, BIO_QUIET
);
280 bio_advance(bio
, nbytes
);
282 /* don't actually finish bio if it's part of flush sequence */
283 if (bio
->bi_iter
.bi_size
== 0 && !(rq
->rq_flags
& RQF_FLUSH_SEQ
))
287 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
289 printk(KERN_INFO
"%s: dev %s: flags=%llx\n", msg
,
290 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?",
291 (unsigned long long) rq
->cmd_flags
);
293 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
294 (unsigned long long)blk_rq_pos(rq
),
295 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
296 printk(KERN_INFO
" bio %p, biotail %p, len %u\n",
297 rq
->bio
, rq
->biotail
, blk_rq_bytes(rq
));
299 EXPORT_SYMBOL(blk_dump_rq_flags
);
301 static void blk_delay_work(struct work_struct
*work
)
303 struct request_queue
*q
;
305 q
= container_of(work
, struct request_queue
, delay_work
.work
);
306 spin_lock_irq(q
->queue_lock
);
308 spin_unlock_irq(q
->queue_lock
);
312 * blk_delay_queue - restart queueing after defined interval
313 * @q: The &struct request_queue in question
314 * @msecs: Delay in msecs
317 * Sometimes queueing needs to be postponed for a little while, to allow
318 * resources to come back. This function will make sure that queueing is
319 * restarted around the specified time.
321 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
323 lockdep_assert_held(q
->queue_lock
);
324 WARN_ON_ONCE(q
->mq_ops
);
326 if (likely(!blk_queue_dead(q
)))
327 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
328 msecs_to_jiffies(msecs
));
330 EXPORT_SYMBOL(blk_delay_queue
);
333 * blk_start_queue_async - asynchronously restart a previously stopped queue
334 * @q: The &struct request_queue in question
337 * blk_start_queue_async() will clear the stop flag on the queue, and
338 * ensure that the request_fn for the queue is run from an async
341 void blk_start_queue_async(struct request_queue
*q
)
343 lockdep_assert_held(q
->queue_lock
);
344 WARN_ON_ONCE(q
->mq_ops
);
346 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
347 blk_run_queue_async(q
);
349 EXPORT_SYMBOL(blk_start_queue_async
);
352 * blk_start_queue - restart a previously stopped queue
353 * @q: The &struct request_queue in question
356 * blk_start_queue() will clear the stop flag on the queue, and call
357 * the request_fn for the queue if it was in a stopped state when
358 * entered. Also see blk_stop_queue().
360 void blk_start_queue(struct request_queue
*q
)
362 lockdep_assert_held(q
->queue_lock
);
363 WARN_ON(!in_interrupt() && !irqs_disabled());
364 WARN_ON_ONCE(q
->mq_ops
);
366 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
369 EXPORT_SYMBOL(blk_start_queue
);
372 * blk_stop_queue - stop a queue
373 * @q: The &struct request_queue in question
376 * The Linux block layer assumes that a block driver will consume all
377 * entries on the request queue when the request_fn strategy is called.
378 * Often this will not happen, because of hardware limitations (queue
379 * depth settings). If a device driver gets a 'queue full' response,
380 * or if it simply chooses not to queue more I/O at one point, it can
381 * call this function to prevent the request_fn from being called until
382 * the driver has signalled it's ready to go again. This happens by calling
383 * blk_start_queue() to restart queue operations.
385 void blk_stop_queue(struct request_queue
*q
)
387 lockdep_assert_held(q
->queue_lock
);
388 WARN_ON_ONCE(q
->mq_ops
);
390 cancel_delayed_work(&q
->delay_work
);
391 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
393 EXPORT_SYMBOL(blk_stop_queue
);
396 * blk_sync_queue - cancel any pending callbacks on a queue
400 * The block layer may perform asynchronous callback activity
401 * on a queue, such as calling the unplug function after a timeout.
402 * A block device may call blk_sync_queue to ensure that any
403 * such activity is cancelled, thus allowing it to release resources
404 * that the callbacks might use. The caller must already have made sure
405 * that its ->make_request_fn will not re-add plugging prior to calling
408 * This function does not cancel any asynchronous activity arising
409 * out of elevator or throttling code. That would require elevator_exit()
410 * and blkcg_exit_queue() to be called with queue lock initialized.
413 void blk_sync_queue(struct request_queue
*q
)
415 del_timer_sync(&q
->timeout
);
416 cancel_work_sync(&q
->timeout_work
);
419 struct blk_mq_hw_ctx
*hctx
;
422 cancel_delayed_work_sync(&q
->requeue_work
);
423 queue_for_each_hw_ctx(q
, hctx
, i
)
424 cancel_delayed_work_sync(&hctx
->run_work
);
426 cancel_delayed_work_sync(&q
->delay_work
);
429 EXPORT_SYMBOL(blk_sync_queue
);
432 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
433 * @q: request queue pointer
435 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
436 * set and 1 if the flag was already set.
438 int blk_set_preempt_only(struct request_queue
*q
)
440 return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY
, q
);
442 EXPORT_SYMBOL_GPL(blk_set_preempt_only
);
444 void blk_clear_preempt_only(struct request_queue
*q
)
446 blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY
, q
);
447 wake_up_all(&q
->mq_freeze_wq
);
449 EXPORT_SYMBOL_GPL(blk_clear_preempt_only
);
452 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
453 * @q: The queue to run
456 * Invoke request handling on a queue if there are any pending requests.
457 * May be used to restart request handling after a request has completed.
458 * This variant runs the queue whether or not the queue has been
459 * stopped. Must be called with the queue lock held and interrupts
460 * disabled. See also @blk_run_queue.
462 inline void __blk_run_queue_uncond(struct request_queue
*q
)
464 lockdep_assert_held(q
->queue_lock
);
465 WARN_ON_ONCE(q
->mq_ops
);
467 if (unlikely(blk_queue_dead(q
)))
471 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
472 * the queue lock internally. As a result multiple threads may be
473 * running such a request function concurrently. Keep track of the
474 * number of active request_fn invocations such that blk_drain_queue()
475 * can wait until all these request_fn calls have finished.
477 q
->request_fn_active
++;
479 q
->request_fn_active
--;
481 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond
);
484 * __blk_run_queue - run a single device queue
485 * @q: The queue to run
488 * See @blk_run_queue.
490 void __blk_run_queue(struct request_queue
*q
)
492 lockdep_assert_held(q
->queue_lock
);
493 WARN_ON_ONCE(q
->mq_ops
);
495 if (unlikely(blk_queue_stopped(q
)))
498 __blk_run_queue_uncond(q
);
500 EXPORT_SYMBOL(__blk_run_queue
);
503 * blk_run_queue_async - run a single device queue in workqueue context
504 * @q: The queue to run
507 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
511 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
512 * has canceled q->delay_work, callers must hold the queue lock to avoid
513 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
515 void blk_run_queue_async(struct request_queue
*q
)
517 lockdep_assert_held(q
->queue_lock
);
518 WARN_ON_ONCE(q
->mq_ops
);
520 if (likely(!blk_queue_stopped(q
) && !blk_queue_dead(q
)))
521 mod_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
523 EXPORT_SYMBOL(blk_run_queue_async
);
526 * blk_run_queue - run a single device queue
527 * @q: The queue to run
530 * Invoke request handling on this queue, if it has pending work to do.
531 * May be used to restart queueing when a request has completed.
533 void blk_run_queue(struct request_queue
*q
)
537 WARN_ON_ONCE(q
->mq_ops
);
539 spin_lock_irqsave(q
->queue_lock
, flags
);
541 spin_unlock_irqrestore(q
->queue_lock
, flags
);
543 EXPORT_SYMBOL(blk_run_queue
);
545 void blk_put_queue(struct request_queue
*q
)
547 kobject_put(&q
->kobj
);
549 EXPORT_SYMBOL(blk_put_queue
);
552 * __blk_drain_queue - drain requests from request_queue
554 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
556 * Drain requests from @q. If @drain_all is set, all requests are drained.
557 * If not, only ELVPRIV requests are drained. The caller is responsible
558 * for ensuring that no new requests which need to be drained are queued.
560 static void __blk_drain_queue(struct request_queue
*q
, bool drain_all
)
561 __releases(q
->queue_lock
)
562 __acquires(q
->queue_lock
)
566 lockdep_assert_held(q
->queue_lock
);
567 WARN_ON_ONCE(q
->mq_ops
);
573 * The caller might be trying to drain @q before its
574 * elevator is initialized.
577 elv_drain_elevator(q
);
579 blkcg_drain_queue(q
);
582 * This function might be called on a queue which failed
583 * driver init after queue creation or is not yet fully
584 * active yet. Some drivers (e.g. fd and loop) get unhappy
585 * in such cases. Kick queue iff dispatch queue has
586 * something on it and @q has request_fn set.
588 if (!list_empty(&q
->queue_head
) && q
->request_fn
)
591 drain
|= q
->nr_rqs_elvpriv
;
592 drain
|= q
->request_fn_active
;
595 * Unfortunately, requests are queued at and tracked from
596 * multiple places and there's no single counter which can
597 * be drained. Check all the queues and counters.
600 struct blk_flush_queue
*fq
= blk_get_flush_queue(q
, NULL
);
601 drain
|= !list_empty(&q
->queue_head
);
602 for (i
= 0; i
< 2; i
++) {
603 drain
|= q
->nr_rqs
[i
];
604 drain
|= q
->in_flight
[i
];
606 drain
|= !list_empty(&fq
->flush_queue
[i
]);
613 spin_unlock_irq(q
->queue_lock
);
617 spin_lock_irq(q
->queue_lock
);
621 * With queue marked dead, any woken up waiter will fail the
622 * allocation path, so the wakeup chaining is lost and we're
623 * left with hung waiters. We need to wake up those waiters.
626 struct request_list
*rl
;
628 blk_queue_for_each_rl(rl
, q
)
629 for (i
= 0; i
< ARRAY_SIZE(rl
->wait
); i
++)
630 wake_up_all(&rl
->wait
[i
]);
634 void blk_drain_queue(struct request_queue
*q
)
636 spin_lock_irq(q
->queue_lock
);
637 __blk_drain_queue(q
, true);
638 spin_unlock_irq(q
->queue_lock
);
642 * blk_queue_bypass_start - enter queue bypass mode
643 * @q: queue of interest
645 * In bypass mode, only the dispatch FIFO queue of @q is used. This
646 * function makes @q enter bypass mode and drains all requests which were
647 * throttled or issued before. On return, it's guaranteed that no request
648 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
649 * inside queue or RCU read lock.
651 void blk_queue_bypass_start(struct request_queue
*q
)
653 WARN_ON_ONCE(q
->mq_ops
);
655 spin_lock_irq(q
->queue_lock
);
657 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
658 spin_unlock_irq(q
->queue_lock
);
661 * Queues start drained. Skip actual draining till init is
662 * complete. This avoids lenghty delays during queue init which
663 * can happen many times during boot.
665 if (blk_queue_init_done(q
)) {
666 spin_lock_irq(q
->queue_lock
);
667 __blk_drain_queue(q
, false);
668 spin_unlock_irq(q
->queue_lock
);
670 /* ensure blk_queue_bypass() is %true inside RCU read lock */
674 EXPORT_SYMBOL_GPL(blk_queue_bypass_start
);
677 * blk_queue_bypass_end - leave queue bypass mode
678 * @q: queue of interest
680 * Leave bypass mode and restore the normal queueing behavior.
682 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
683 * this function is called for both blk-sq and blk-mq queues.
685 void blk_queue_bypass_end(struct request_queue
*q
)
687 spin_lock_irq(q
->queue_lock
);
688 if (!--q
->bypass_depth
)
689 queue_flag_clear(QUEUE_FLAG_BYPASS
, q
);
690 WARN_ON_ONCE(q
->bypass_depth
< 0);
691 spin_unlock_irq(q
->queue_lock
);
693 EXPORT_SYMBOL_GPL(blk_queue_bypass_end
);
695 void blk_set_queue_dying(struct request_queue
*q
)
697 blk_queue_flag_set(QUEUE_FLAG_DYING
, q
);
700 * When queue DYING flag is set, we need to block new req
701 * entering queue, so we call blk_freeze_queue_start() to
702 * prevent I/O from crossing blk_queue_enter().
704 blk_freeze_queue_start(q
);
707 blk_mq_wake_waiters(q
);
709 struct request_list
*rl
;
711 spin_lock_irq(q
->queue_lock
);
712 blk_queue_for_each_rl(rl
, q
) {
714 wake_up_all(&rl
->wait
[BLK_RW_SYNC
]);
715 wake_up_all(&rl
->wait
[BLK_RW_ASYNC
]);
718 spin_unlock_irq(q
->queue_lock
);
721 /* Make blk_queue_enter() reexamine the DYING flag. */
722 wake_up_all(&q
->mq_freeze_wq
);
724 EXPORT_SYMBOL_GPL(blk_set_queue_dying
);
727 * blk_cleanup_queue - shutdown a request queue
728 * @q: request queue to shutdown
730 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
731 * put it. All future requests will be failed immediately with -ENODEV.
733 void blk_cleanup_queue(struct request_queue
*q
)
735 spinlock_t
*lock
= q
->queue_lock
;
737 /* mark @q DYING, no new request or merges will be allowed afterwards */
738 mutex_lock(&q
->sysfs_lock
);
739 blk_set_queue_dying(q
);
743 * A dying queue is permanently in bypass mode till released. Note
744 * that, unlike blk_queue_bypass_start(), we aren't performing
745 * synchronize_rcu() after entering bypass mode to avoid the delay
746 * as some drivers create and destroy a lot of queues while
747 * probing. This is still safe because blk_release_queue() will be
748 * called only after the queue refcnt drops to zero and nothing,
749 * RCU or not, would be traversing the queue by then.
752 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
754 queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
755 queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
756 queue_flag_set(QUEUE_FLAG_DYING
, q
);
757 spin_unlock_irq(lock
);
758 mutex_unlock(&q
->sysfs_lock
);
761 * Drain all requests queued before DYING marking. Set DEAD flag to
762 * prevent that q->request_fn() gets invoked after draining finished.
766 queue_flag_set(QUEUE_FLAG_DEAD
, q
);
767 spin_unlock_irq(lock
);
770 * make sure all in-progress dispatch are completed because
771 * blk_freeze_queue() can only complete all requests, and
772 * dispatch may still be in-progress since we dispatch requests
773 * from more than one contexts
776 blk_mq_quiesce_queue(q
);
778 /* for synchronous bio-based driver finish in-flight integrity i/o */
779 blk_flush_integrity();
781 /* @q won't process any more request, flush async actions */
782 del_timer_sync(&q
->backing_dev_info
->laptop_mode_wb_timer
);
786 * I/O scheduler exit is only safe after the sysfs scheduler attribute
789 WARN_ON_ONCE(q
->kobj
.state_in_sysfs
);
792 * Since the I/O scheduler exit code may access cgroup information,
793 * perform I/O scheduler exit before disassociating from the block
798 elevator_exit(q
, q
->elevator
);
803 * Remove all references to @q from the block cgroup controller before
804 * restoring @q->queue_lock to avoid that restoring this pointer causes
805 * e.g. blkcg_print_blkgs() to crash.
810 * Since the cgroup code may dereference the @q->backing_dev_info
811 * pointer, only decrease its reference count after having removed the
812 * association with the block cgroup controller.
814 bdi_put(q
->backing_dev_info
);
817 blk_mq_free_queue(q
);
818 percpu_ref_exit(&q
->q_usage_counter
);
821 if (q
->queue_lock
!= &q
->__queue_lock
)
822 q
->queue_lock
= &q
->__queue_lock
;
823 spin_unlock_irq(lock
);
825 /* @q is and will stay empty, shutdown and put */
828 EXPORT_SYMBOL(blk_cleanup_queue
);
830 /* Allocate memory local to the request queue */
831 static void *alloc_request_simple(gfp_t gfp_mask
, void *data
)
833 struct request_queue
*q
= data
;
835 return kmem_cache_alloc_node(request_cachep
, gfp_mask
, q
->node
);
838 static void free_request_simple(void *element
, void *data
)
840 kmem_cache_free(request_cachep
, element
);
843 static void *alloc_request_size(gfp_t gfp_mask
, void *data
)
845 struct request_queue
*q
= data
;
848 rq
= kmalloc_node(sizeof(struct request
) + q
->cmd_size
, gfp_mask
,
850 if (rq
&& q
->init_rq_fn
&& q
->init_rq_fn(q
, rq
, gfp_mask
) < 0) {
857 static void free_request_size(void *element
, void *data
)
859 struct request_queue
*q
= data
;
862 q
->exit_rq_fn(q
, element
);
866 int blk_init_rl(struct request_list
*rl
, struct request_queue
*q
,
869 if (unlikely(rl
->rq_pool
) || q
->mq_ops
)
873 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
874 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
875 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
876 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
879 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
,
880 alloc_request_size
, free_request_size
,
881 q
, gfp_mask
, q
->node
);
883 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
,
884 alloc_request_simple
, free_request_simple
,
885 q
, gfp_mask
, q
->node
);
890 if (rl
!= &q
->root_rl
)
891 WARN_ON_ONCE(!blk_get_queue(q
));
896 void blk_exit_rl(struct request_queue
*q
, struct request_list
*rl
)
899 mempool_destroy(rl
->rq_pool
);
900 if (rl
!= &q
->root_rl
)
905 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
907 return blk_alloc_queue_node(gfp_mask
, NUMA_NO_NODE
, NULL
);
909 EXPORT_SYMBOL(blk_alloc_queue
);
912 * blk_queue_enter() - try to increase q->q_usage_counter
913 * @q: request queue pointer
914 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
916 int blk_queue_enter(struct request_queue
*q
, blk_mq_req_flags_t flags
)
918 const bool preempt
= flags
& BLK_MQ_REQ_PREEMPT
;
921 bool success
= false;
924 if (percpu_ref_tryget_live(&q
->q_usage_counter
)) {
926 * The code that sets the PREEMPT_ONLY flag is
927 * responsible for ensuring that that flag is globally
928 * visible before the queue is unfrozen.
930 if (preempt
|| !blk_queue_preempt_only(q
)) {
933 percpu_ref_put(&q
->q_usage_counter
);
941 if (flags
& BLK_MQ_REQ_NOWAIT
)
945 * read pair of barrier in blk_freeze_queue_start(),
946 * we need to order reading __PERCPU_REF_DEAD flag of
947 * .q_usage_counter and reading .mq_freeze_depth or
948 * queue dying flag, otherwise the following wait may
949 * never return if the two reads are reordered.
953 wait_event(q
->mq_freeze_wq
,
954 (atomic_read(&q
->mq_freeze_depth
) == 0 &&
955 (preempt
|| !blk_queue_preempt_only(q
))) ||
957 if (blk_queue_dying(q
))
962 void blk_queue_exit(struct request_queue
*q
)
964 percpu_ref_put(&q
->q_usage_counter
);
967 static void blk_queue_usage_counter_release(struct percpu_ref
*ref
)
969 struct request_queue
*q
=
970 container_of(ref
, struct request_queue
, q_usage_counter
);
972 wake_up_all(&q
->mq_freeze_wq
);
975 static void blk_rq_timed_out_timer(struct timer_list
*t
)
977 struct request_queue
*q
= from_timer(q
, t
, timeout
);
979 kblockd_schedule_work(&q
->timeout_work
);
983 * blk_alloc_queue_node - allocate a request queue
984 * @gfp_mask: memory allocation flags
985 * @node_id: NUMA node to allocate memory from
986 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
987 * serialize calls to the legacy .request_fn() callback. Ignored for
988 * blk-mq request queues.
990 * Note: pass the queue lock as the third argument to this function instead of
991 * setting the queue lock pointer explicitly to avoid triggering a sporadic
992 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
993 * the queue lock pointer must be set before blkcg_init_queue() is called.
995 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
,
998 struct request_queue
*q
;
1000 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
1001 gfp_mask
| __GFP_ZERO
, node_id
);
1005 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, gfp_mask
);
1009 q
->bio_split
= bioset_create(BIO_POOL_SIZE
, 0, BIOSET_NEED_BVECS
);
1013 q
->backing_dev_info
= bdi_alloc_node(gfp_mask
, node_id
);
1014 if (!q
->backing_dev_info
)
1017 q
->stats
= blk_alloc_queue_stats();
1021 q
->backing_dev_info
->ra_pages
=
1022 (VM_MAX_READAHEAD
* 1024) / PAGE_SIZE
;
1023 q
->backing_dev_info
->capabilities
= BDI_CAP_CGROUP_WRITEBACK
;
1024 q
->backing_dev_info
->name
= "block";
1027 timer_setup(&q
->backing_dev_info
->laptop_mode_wb_timer
,
1028 laptop_mode_timer_fn
, 0);
1029 timer_setup(&q
->timeout
, blk_rq_timed_out_timer
, 0);
1030 INIT_WORK(&q
->timeout_work
, NULL
);
1031 INIT_LIST_HEAD(&q
->queue_head
);
1032 INIT_LIST_HEAD(&q
->timeout_list
);
1033 INIT_LIST_HEAD(&q
->icq_list
);
1034 #ifdef CONFIG_BLK_CGROUP
1035 INIT_LIST_HEAD(&q
->blkg_list
);
1037 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
1039 kobject_init(&q
->kobj
, &blk_queue_ktype
);
1041 #ifdef CONFIG_BLK_DEV_IO_TRACE
1042 mutex_init(&q
->blk_trace_mutex
);
1044 mutex_init(&q
->sysfs_lock
);
1045 spin_lock_init(&q
->__queue_lock
);
1048 q
->queue_lock
= lock
? : &q
->__queue_lock
;
1051 * A queue starts its life with bypass turned on to avoid
1052 * unnecessary bypass on/off overhead and nasty surprises during
1053 * init. The initial bypass will be finished when the queue is
1054 * registered by blk_register_queue().
1056 q
->bypass_depth
= 1;
1057 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS
, q
);
1059 init_waitqueue_head(&q
->mq_freeze_wq
);
1062 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1063 * See blk_register_queue() for details.
1065 if (percpu_ref_init(&q
->q_usage_counter
,
1066 blk_queue_usage_counter_release
,
1067 PERCPU_REF_INIT_ATOMIC
, GFP_KERNEL
))
1070 if (blkcg_init_queue(q
))
1076 percpu_ref_exit(&q
->q_usage_counter
);
1078 blk_free_queue_stats(q
->stats
);
1080 bdi_put(q
->backing_dev_info
);
1082 bioset_free(q
->bio_split
);
1084 ida_simple_remove(&blk_queue_ida
, q
->id
);
1086 kmem_cache_free(blk_requestq_cachep
, q
);
1089 EXPORT_SYMBOL(blk_alloc_queue_node
);
1092 * blk_init_queue - prepare a request queue for use with a block device
1093 * @rfn: The function to be called to process requests that have been
1094 * placed on the queue.
1095 * @lock: Request queue spin lock
1098 * If a block device wishes to use the standard request handling procedures,
1099 * which sorts requests and coalesces adjacent requests, then it must
1100 * call blk_init_queue(). The function @rfn will be called when there
1101 * are requests on the queue that need to be processed. If the device
1102 * supports plugging, then @rfn may not be called immediately when requests
1103 * are available on the queue, but may be called at some time later instead.
1104 * Plugged queues are generally unplugged when a buffer belonging to one
1105 * of the requests on the queue is needed, or due to memory pressure.
1107 * @rfn is not required, or even expected, to remove all requests off the
1108 * queue, but only as many as it can handle at a time. If it does leave
1109 * requests on the queue, it is responsible for arranging that the requests
1110 * get dealt with eventually.
1112 * The queue spin lock must be held while manipulating the requests on the
1113 * request queue; this lock will be taken also from interrupt context, so irq
1114 * disabling is needed for it.
1116 * Function returns a pointer to the initialized request queue, or %NULL if
1117 * it didn't succeed.
1120 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1121 * when the block device is deactivated (such as at module unload).
1124 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
1126 return blk_init_queue_node(rfn
, lock
, NUMA_NO_NODE
);
1128 EXPORT_SYMBOL(blk_init_queue
);
1130 struct request_queue
*
1131 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
1133 struct request_queue
*q
;
1135 q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
, lock
);
1139 q
->request_fn
= rfn
;
1140 if (blk_init_allocated_queue(q
) < 0) {
1141 blk_cleanup_queue(q
);
1147 EXPORT_SYMBOL(blk_init_queue_node
);
1149 static blk_qc_t
blk_queue_bio(struct request_queue
*q
, struct bio
*bio
);
1152 int blk_init_allocated_queue(struct request_queue
*q
)
1154 WARN_ON_ONCE(q
->mq_ops
);
1156 q
->fq
= blk_alloc_flush_queue(q
, NUMA_NO_NODE
, q
->cmd_size
);
1160 if (q
->init_rq_fn
&& q
->init_rq_fn(q
, q
->fq
->flush_rq
, GFP_KERNEL
))
1161 goto out_free_flush_queue
;
1163 if (blk_init_rl(&q
->root_rl
, q
, GFP_KERNEL
))
1164 goto out_exit_flush_rq
;
1166 INIT_WORK(&q
->timeout_work
, blk_timeout_work
);
1167 q
->queue_flags
|= QUEUE_FLAG_DEFAULT
;
1170 * This also sets hw/phys segments, boundary and size
1172 blk_queue_make_request(q
, blk_queue_bio
);
1174 q
->sg_reserved_size
= INT_MAX
;
1176 /* Protect q->elevator from elevator_change */
1177 mutex_lock(&q
->sysfs_lock
);
1180 if (elevator_init(q
, NULL
)) {
1181 mutex_unlock(&q
->sysfs_lock
);
1182 goto out_exit_flush_rq
;
1185 mutex_unlock(&q
->sysfs_lock
);
1190 q
->exit_rq_fn(q
, q
->fq
->flush_rq
);
1191 out_free_flush_queue
:
1192 blk_free_flush_queue(q
->fq
);
1195 EXPORT_SYMBOL(blk_init_allocated_queue
);
1197 bool blk_get_queue(struct request_queue
*q
)
1199 if (likely(!blk_queue_dying(q
))) {
1206 EXPORT_SYMBOL(blk_get_queue
);
1208 static inline void blk_free_request(struct request_list
*rl
, struct request
*rq
)
1210 if (rq
->rq_flags
& RQF_ELVPRIV
) {
1211 elv_put_request(rl
->q
, rq
);
1213 put_io_context(rq
->elv
.icq
->ioc
);
1216 mempool_free(rq
, rl
->rq_pool
);
1220 * ioc_batching returns true if the ioc is a valid batching request and
1221 * should be given priority access to a request.
1223 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
1229 * Make sure the process is able to allocate at least 1 request
1230 * even if the batch times out, otherwise we could theoretically
1233 return ioc
->nr_batch_requests
== q
->nr_batching
||
1234 (ioc
->nr_batch_requests
> 0
1235 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
1239 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1240 * will cause the process to be a "batcher" on all queues in the system. This
1241 * is the behaviour we want though - once it gets a wakeup it should be given
1244 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
1246 if (!ioc
|| ioc_batching(q
, ioc
))
1249 ioc
->nr_batch_requests
= q
->nr_batching
;
1250 ioc
->last_waited
= jiffies
;
1253 static void __freed_request(struct request_list
*rl
, int sync
)
1255 struct request_queue
*q
= rl
->q
;
1257 if (rl
->count
[sync
] < queue_congestion_off_threshold(q
))
1258 blk_clear_congested(rl
, sync
);
1260 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
1261 if (waitqueue_active(&rl
->wait
[sync
]))
1262 wake_up(&rl
->wait
[sync
]);
1264 blk_clear_rl_full(rl
, sync
);
1269 * A request has just been released. Account for it, update the full and
1270 * congestion status, wake up any waiters. Called under q->queue_lock.
1272 static void freed_request(struct request_list
*rl
, bool sync
,
1273 req_flags_t rq_flags
)
1275 struct request_queue
*q
= rl
->q
;
1279 if (rq_flags
& RQF_ELVPRIV
)
1280 q
->nr_rqs_elvpriv
--;
1282 __freed_request(rl
, sync
);
1284 if (unlikely(rl
->starved
[sync
^ 1]))
1285 __freed_request(rl
, sync
^ 1);
1288 int blk_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
1290 struct request_list
*rl
;
1291 int on_thresh
, off_thresh
;
1293 WARN_ON_ONCE(q
->mq_ops
);
1295 spin_lock_irq(q
->queue_lock
);
1296 q
->nr_requests
= nr
;
1297 blk_queue_congestion_threshold(q
);
1298 on_thresh
= queue_congestion_on_threshold(q
);
1299 off_thresh
= queue_congestion_off_threshold(q
);
1301 blk_queue_for_each_rl(rl
, q
) {
1302 if (rl
->count
[BLK_RW_SYNC
] >= on_thresh
)
1303 blk_set_congested(rl
, BLK_RW_SYNC
);
1304 else if (rl
->count
[BLK_RW_SYNC
] < off_thresh
)
1305 blk_clear_congested(rl
, BLK_RW_SYNC
);
1307 if (rl
->count
[BLK_RW_ASYNC
] >= on_thresh
)
1308 blk_set_congested(rl
, BLK_RW_ASYNC
);
1309 else if (rl
->count
[BLK_RW_ASYNC
] < off_thresh
)
1310 blk_clear_congested(rl
, BLK_RW_ASYNC
);
1312 if (rl
->count
[BLK_RW_SYNC
] >= q
->nr_requests
) {
1313 blk_set_rl_full(rl
, BLK_RW_SYNC
);
1315 blk_clear_rl_full(rl
, BLK_RW_SYNC
);
1316 wake_up(&rl
->wait
[BLK_RW_SYNC
]);
1319 if (rl
->count
[BLK_RW_ASYNC
] >= q
->nr_requests
) {
1320 blk_set_rl_full(rl
, BLK_RW_ASYNC
);
1322 blk_clear_rl_full(rl
, BLK_RW_ASYNC
);
1323 wake_up(&rl
->wait
[BLK_RW_ASYNC
]);
1327 spin_unlock_irq(q
->queue_lock
);
1332 * __get_request - get a free request
1333 * @rl: request list to allocate from
1334 * @op: operation and flags
1335 * @bio: bio to allocate request for (can be %NULL)
1336 * @flags: BLQ_MQ_REQ_* flags
1338 * Get a free request from @q. This function may fail under memory
1339 * pressure or if @q is dead.
1341 * Must be called with @q->queue_lock held and,
1342 * Returns ERR_PTR on failure, with @q->queue_lock held.
1343 * Returns request pointer on success, with @q->queue_lock *not held*.
1345 static struct request
*__get_request(struct request_list
*rl
, unsigned int op
,
1346 struct bio
*bio
, blk_mq_req_flags_t flags
)
1348 struct request_queue
*q
= rl
->q
;
1350 struct elevator_type
*et
= q
->elevator
->type
;
1351 struct io_context
*ioc
= rq_ioc(bio
);
1352 struct io_cq
*icq
= NULL
;
1353 const bool is_sync
= op_is_sync(op
);
1355 gfp_t gfp_mask
= flags
& BLK_MQ_REQ_NOWAIT
? GFP_ATOMIC
:
1356 __GFP_DIRECT_RECLAIM
;
1357 req_flags_t rq_flags
= RQF_ALLOCED
;
1359 lockdep_assert_held(q
->queue_lock
);
1361 if (unlikely(blk_queue_dying(q
)))
1362 return ERR_PTR(-ENODEV
);
1364 may_queue
= elv_may_queue(q
, op
);
1365 if (may_queue
== ELV_MQUEUE_NO
)
1368 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
1369 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
1371 * The queue will fill after this allocation, so set
1372 * it as full, and mark this process as "batching".
1373 * This process will be allowed to complete a batch of
1374 * requests, others will be blocked.
1376 if (!blk_rl_full(rl
, is_sync
)) {
1377 ioc_set_batching(q
, ioc
);
1378 blk_set_rl_full(rl
, is_sync
);
1380 if (may_queue
!= ELV_MQUEUE_MUST
1381 && !ioc_batching(q
, ioc
)) {
1383 * The queue is full and the allocating
1384 * process is not a "batcher", and not
1385 * exempted by the IO scheduler
1387 return ERR_PTR(-ENOMEM
);
1391 blk_set_congested(rl
, is_sync
);
1395 * Only allow batching queuers to allocate up to 50% over the defined
1396 * limit of requests, otherwise we could have thousands of requests
1397 * allocated with any setting of ->nr_requests
1399 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
1400 return ERR_PTR(-ENOMEM
);
1402 q
->nr_rqs
[is_sync
]++;
1403 rl
->count
[is_sync
]++;
1404 rl
->starved
[is_sync
] = 0;
1407 * Decide whether the new request will be managed by elevator. If
1408 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1409 * prevent the current elevator from being destroyed until the new
1410 * request is freed. This guarantees icq's won't be destroyed and
1411 * makes creating new ones safe.
1413 * Flush requests do not use the elevator so skip initialization.
1414 * This allows a request to share the flush and elevator data.
1416 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1417 * it will be created after releasing queue_lock.
1419 if (!op_is_flush(op
) && !blk_queue_bypass(q
)) {
1420 rq_flags
|= RQF_ELVPRIV
;
1421 q
->nr_rqs_elvpriv
++;
1422 if (et
->icq_cache
&& ioc
)
1423 icq
= ioc_lookup_icq(ioc
, q
);
1426 if (blk_queue_io_stat(q
))
1427 rq_flags
|= RQF_IO_STAT
;
1428 spin_unlock_irq(q
->queue_lock
);
1430 /* allocate and init request */
1431 rq
= mempool_alloc(rl
->rq_pool
, gfp_mask
);
1436 blk_rq_set_rl(rq
, rl
);
1438 rq
->rq_flags
= rq_flags
;
1439 if (flags
& BLK_MQ_REQ_PREEMPT
)
1440 rq
->rq_flags
|= RQF_PREEMPT
;
1443 if (rq_flags
& RQF_ELVPRIV
) {
1444 if (unlikely(et
->icq_cache
&& !icq
)) {
1446 icq
= ioc_create_icq(ioc
, q
, gfp_mask
);
1452 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
)))
1455 /* @rq->elv.icq holds io_context until @rq is freed */
1457 get_io_context(icq
->ioc
);
1461 * ioc may be NULL here, and ioc_batching will be false. That's
1462 * OK, if the queue is under the request limit then requests need
1463 * not count toward the nr_batch_requests limit. There will always
1464 * be some limit enforced by BLK_BATCH_TIME.
1466 if (ioc_batching(q
, ioc
))
1467 ioc
->nr_batch_requests
--;
1469 trace_block_getrq(q
, bio
, op
);
1474 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1475 * and may fail indefinitely under memory pressure and thus
1476 * shouldn't stall IO. Treat this request as !elvpriv. This will
1477 * disturb iosched and blkcg but weird is bettern than dead.
1479 printk_ratelimited(KERN_WARNING
"%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1480 __func__
, dev_name(q
->backing_dev_info
->dev
));
1482 rq
->rq_flags
&= ~RQF_ELVPRIV
;
1485 spin_lock_irq(q
->queue_lock
);
1486 q
->nr_rqs_elvpriv
--;
1487 spin_unlock_irq(q
->queue_lock
);
1492 * Allocation failed presumably due to memory. Undo anything we
1493 * might have messed up.
1495 * Allocating task should really be put onto the front of the wait
1496 * queue, but this is pretty rare.
1498 spin_lock_irq(q
->queue_lock
);
1499 freed_request(rl
, is_sync
, rq_flags
);
1502 * in the very unlikely event that allocation failed and no
1503 * requests for this direction was pending, mark us starved so that
1504 * freeing of a request in the other direction will notice
1505 * us. another possible fix would be to split the rq mempool into
1509 if (unlikely(rl
->count
[is_sync
] == 0))
1510 rl
->starved
[is_sync
] = 1;
1511 return ERR_PTR(-ENOMEM
);
1515 * get_request - get a free request
1516 * @q: request_queue to allocate request from
1517 * @op: operation and flags
1518 * @bio: bio to allocate request for (can be %NULL)
1519 * @flags: BLK_MQ_REQ_* flags.
1521 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1522 * this function keeps retrying under memory pressure and fails iff @q is dead.
1524 * Must be called with @q->queue_lock held and,
1525 * Returns ERR_PTR on failure, with @q->queue_lock held.
1526 * Returns request pointer on success, with @q->queue_lock *not held*.
1528 static struct request
*get_request(struct request_queue
*q
, unsigned int op
,
1529 struct bio
*bio
, blk_mq_req_flags_t flags
)
1531 const bool is_sync
= op_is_sync(op
);
1533 struct request_list
*rl
;
1536 lockdep_assert_held(q
->queue_lock
);
1537 WARN_ON_ONCE(q
->mq_ops
);
1539 rl
= blk_get_rl(q
, bio
); /* transferred to @rq on success */
1541 rq
= __get_request(rl
, op
, bio
, flags
);
1545 if (op
& REQ_NOWAIT
) {
1547 return ERR_PTR(-EAGAIN
);
1550 if ((flags
& BLK_MQ_REQ_NOWAIT
) || unlikely(blk_queue_dying(q
))) {
1555 /* wait on @rl and retry */
1556 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
1557 TASK_UNINTERRUPTIBLE
);
1559 trace_block_sleeprq(q
, bio
, op
);
1561 spin_unlock_irq(q
->queue_lock
);
1565 * After sleeping, we become a "batching" process and will be able
1566 * to allocate at least one request, and up to a big batch of them
1567 * for a small period time. See ioc_batching, ioc_set_batching
1569 ioc_set_batching(q
, current
->io_context
);
1571 spin_lock_irq(q
->queue_lock
);
1572 finish_wait(&rl
->wait
[is_sync
], &wait
);
1577 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1578 static struct request
*blk_old_get_request(struct request_queue
*q
,
1579 unsigned int op
, blk_mq_req_flags_t flags
)
1582 gfp_t gfp_mask
= flags
& BLK_MQ_REQ_NOWAIT
? GFP_ATOMIC
:
1583 __GFP_DIRECT_RECLAIM
;
1586 WARN_ON_ONCE(q
->mq_ops
);
1588 /* create ioc upfront */
1589 create_io_context(gfp_mask
, q
->node
);
1591 ret
= blk_queue_enter(q
, flags
);
1593 return ERR_PTR(ret
);
1594 spin_lock_irq(q
->queue_lock
);
1595 rq
= get_request(q
, op
, NULL
, flags
);
1597 spin_unlock_irq(q
->queue_lock
);
1602 /* q->queue_lock is unlocked at this point */
1604 rq
->__sector
= (sector_t
) -1;
1605 rq
->bio
= rq
->biotail
= NULL
;
1610 * blk_get_request_flags - allocate a request
1611 * @q: request queue to allocate a request for
1612 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1613 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1615 struct request
*blk_get_request_flags(struct request_queue
*q
, unsigned int op
,
1616 blk_mq_req_flags_t flags
)
1618 struct request
*req
;
1620 WARN_ON_ONCE(op
& REQ_NOWAIT
);
1621 WARN_ON_ONCE(flags
& ~(BLK_MQ_REQ_NOWAIT
| BLK_MQ_REQ_PREEMPT
));
1624 req
= blk_mq_alloc_request(q
, op
, flags
);
1625 if (!IS_ERR(req
) && q
->mq_ops
->initialize_rq_fn
)
1626 q
->mq_ops
->initialize_rq_fn(req
);
1628 req
= blk_old_get_request(q
, op
, flags
);
1629 if (!IS_ERR(req
) && q
->initialize_rq_fn
)
1630 q
->initialize_rq_fn(req
);
1635 EXPORT_SYMBOL(blk_get_request_flags
);
1637 struct request
*blk_get_request(struct request_queue
*q
, unsigned int op
,
1640 return blk_get_request_flags(q
, op
, gfp_mask
& __GFP_DIRECT_RECLAIM
?
1641 0 : BLK_MQ_REQ_NOWAIT
);
1643 EXPORT_SYMBOL(blk_get_request
);
1646 * blk_requeue_request - put a request back on queue
1647 * @q: request queue where request should be inserted
1648 * @rq: request to be inserted
1651 * Drivers often keep queueing requests until the hardware cannot accept
1652 * more, when that condition happens we need to put the request back
1653 * on the queue. Must be called with queue lock held.
1655 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
1657 lockdep_assert_held(q
->queue_lock
);
1658 WARN_ON_ONCE(q
->mq_ops
);
1660 blk_delete_timer(rq
);
1661 blk_clear_rq_complete(rq
);
1662 trace_block_rq_requeue(q
, rq
);
1663 wbt_requeue(q
->rq_wb
, &rq
->issue_stat
);
1665 if (rq
->rq_flags
& RQF_QUEUED
)
1666 blk_queue_end_tag(q
, rq
);
1668 BUG_ON(blk_queued_rq(rq
));
1670 elv_requeue_request(q
, rq
);
1672 EXPORT_SYMBOL(blk_requeue_request
);
1674 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
1677 blk_account_io_start(rq
, true);
1678 __elv_add_request(q
, rq
, where
);
1681 static void part_round_stats_single(struct request_queue
*q
, int cpu
,
1682 struct hd_struct
*part
, unsigned long now
,
1683 unsigned int inflight
)
1686 __part_stat_add(cpu
, part
, time_in_queue
,
1687 inflight
* (now
- part
->stamp
));
1688 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1694 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1695 * @q: target block queue
1696 * @cpu: cpu number for stats access
1697 * @part: target partition
1699 * The average IO queue length and utilisation statistics are maintained
1700 * by observing the current state of the queue length and the amount of
1701 * time it has been in this state for.
1703 * Normally, that accounting is done on IO completion, but that can result
1704 * in more than a second's worth of IO being accounted for within any one
1705 * second, leading to >100% utilisation. To deal with that, we call this
1706 * function to do a round-off before returning the results when reading
1707 * /proc/diskstats. This accounts immediately for all queue usage up to
1708 * the current jiffies and restarts the counters again.
1710 void part_round_stats(struct request_queue
*q
, int cpu
, struct hd_struct
*part
)
1712 struct hd_struct
*part2
= NULL
;
1713 unsigned long now
= jiffies
;
1714 unsigned int inflight
[2];
1717 if (part
->stamp
!= now
)
1721 part2
= &part_to_disk(part
)->part0
;
1722 if (part2
->stamp
!= now
)
1729 part_in_flight(q
, part
, inflight
);
1732 part_round_stats_single(q
, cpu
, part2
, now
, inflight
[1]);
1734 part_round_stats_single(q
, cpu
, part
, now
, inflight
[0]);
1736 EXPORT_SYMBOL_GPL(part_round_stats
);
1739 static void blk_pm_put_request(struct request
*rq
)
1741 if (rq
->q
->dev
&& !(rq
->rq_flags
& RQF_PM
) && !--rq
->q
->nr_pending
)
1742 pm_runtime_mark_last_busy(rq
->q
->dev
);
1745 static inline void blk_pm_put_request(struct request
*rq
) {}
1748 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1750 req_flags_t rq_flags
= req
->rq_flags
;
1756 blk_mq_free_request(req
);
1760 lockdep_assert_held(q
->queue_lock
);
1762 blk_req_zone_write_unlock(req
);
1763 blk_pm_put_request(req
);
1765 elv_completed_request(q
, req
);
1767 /* this is a bio leak */
1768 WARN_ON(req
->bio
!= NULL
);
1770 wbt_done(q
->rq_wb
, &req
->issue_stat
);
1773 * Request may not have originated from ll_rw_blk. if not,
1774 * it didn't come out of our reserved rq pools
1776 if (rq_flags
& RQF_ALLOCED
) {
1777 struct request_list
*rl
= blk_rq_rl(req
);
1778 bool sync
= op_is_sync(req
->cmd_flags
);
1780 BUG_ON(!list_empty(&req
->queuelist
));
1781 BUG_ON(ELV_ON_HASH(req
));
1783 blk_free_request(rl
, req
);
1784 freed_request(rl
, sync
, rq_flags
);
1789 EXPORT_SYMBOL_GPL(__blk_put_request
);
1791 void blk_put_request(struct request
*req
)
1793 struct request_queue
*q
= req
->q
;
1796 blk_mq_free_request(req
);
1798 unsigned long flags
;
1800 spin_lock_irqsave(q
->queue_lock
, flags
);
1801 __blk_put_request(q
, req
);
1802 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1805 EXPORT_SYMBOL(blk_put_request
);
1807 bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1810 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
1812 if (!ll_back_merge_fn(q
, req
, bio
))
1815 trace_block_bio_backmerge(q
, req
, bio
);
1817 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1818 blk_rq_set_mixed_merge(req
);
1820 req
->biotail
->bi_next
= bio
;
1822 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1823 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1825 blk_account_io_start(req
, false);
1829 bool bio_attempt_front_merge(struct request_queue
*q
, struct request
*req
,
1832 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
1834 if (!ll_front_merge_fn(q
, req
, bio
))
1837 trace_block_bio_frontmerge(q
, req
, bio
);
1839 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1840 blk_rq_set_mixed_merge(req
);
1842 bio
->bi_next
= req
->bio
;
1845 req
->__sector
= bio
->bi_iter
.bi_sector
;
1846 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1847 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1849 blk_account_io_start(req
, false);
1853 bool bio_attempt_discard_merge(struct request_queue
*q
, struct request
*req
,
1856 unsigned short segments
= blk_rq_nr_discard_segments(req
);
1858 if (segments
>= queue_max_discard_segments(q
))
1860 if (blk_rq_sectors(req
) + bio_sectors(bio
) >
1861 blk_rq_get_max_sectors(req
, blk_rq_pos(req
)))
1864 req
->biotail
->bi_next
= bio
;
1866 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1867 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1868 req
->nr_phys_segments
= segments
+ 1;
1870 blk_account_io_start(req
, false);
1873 req_set_nomerge(q
, req
);
1878 * blk_attempt_plug_merge - try to merge with %current's plugged list
1879 * @q: request_queue new bio is being queued at
1880 * @bio: new bio being queued
1881 * @request_count: out parameter for number of traversed plugged requests
1882 * @same_queue_rq: pointer to &struct request that gets filled in when
1883 * another request associated with @q is found on the plug list
1884 * (optional, may be %NULL)
1886 * Determine whether @bio being queued on @q can be merged with a request
1887 * on %current's plugged list. Returns %true if merge was successful,
1890 * Plugging coalesces IOs from the same issuer for the same purpose without
1891 * going through @q->queue_lock. As such it's more of an issuing mechanism
1892 * than scheduling, and the request, while may have elvpriv data, is not
1893 * added on the elevator at this point. In addition, we don't have
1894 * reliable access to the elevator outside queue lock. Only check basic
1895 * merging parameters without querying the elevator.
1897 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1899 bool blk_attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
1900 unsigned int *request_count
,
1901 struct request
**same_queue_rq
)
1903 struct blk_plug
*plug
;
1905 struct list_head
*plug_list
;
1907 plug
= current
->plug
;
1913 plug_list
= &plug
->mq_list
;
1915 plug_list
= &plug
->list
;
1917 list_for_each_entry_reverse(rq
, plug_list
, queuelist
) {
1918 bool merged
= false;
1923 * Only blk-mq multiple hardware queues case checks the
1924 * rq in the same queue, there should be only one such
1928 *same_queue_rq
= rq
;
1931 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
1934 switch (blk_try_merge(rq
, bio
)) {
1935 case ELEVATOR_BACK_MERGE
:
1936 merged
= bio_attempt_back_merge(q
, rq
, bio
);
1938 case ELEVATOR_FRONT_MERGE
:
1939 merged
= bio_attempt_front_merge(q
, rq
, bio
);
1941 case ELEVATOR_DISCARD_MERGE
:
1942 merged
= bio_attempt_discard_merge(q
, rq
, bio
);
1955 unsigned int blk_plug_queued_count(struct request_queue
*q
)
1957 struct blk_plug
*plug
;
1959 struct list_head
*plug_list
;
1960 unsigned int ret
= 0;
1962 plug
= current
->plug
;
1967 plug_list
= &plug
->mq_list
;
1969 plug_list
= &plug
->list
;
1971 list_for_each_entry(rq
, plug_list
, queuelist
) {
1979 void blk_init_request_from_bio(struct request
*req
, struct bio
*bio
)
1981 struct io_context
*ioc
= rq_ioc(bio
);
1983 if (bio
->bi_opf
& REQ_RAHEAD
)
1984 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1986 req
->__sector
= bio
->bi_iter
.bi_sector
;
1987 if (ioprio_valid(bio_prio(bio
)))
1988 req
->ioprio
= bio_prio(bio
);
1990 req
->ioprio
= ioc
->ioprio
;
1992 req
->ioprio
= IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE
, 0);
1993 req
->write_hint
= bio
->bi_write_hint
;
1994 blk_rq_bio_prep(req
->q
, req
, bio
);
1996 EXPORT_SYMBOL_GPL(blk_init_request_from_bio
);
1998 static blk_qc_t
blk_queue_bio(struct request_queue
*q
, struct bio
*bio
)
2000 struct blk_plug
*plug
;
2001 int where
= ELEVATOR_INSERT_SORT
;
2002 struct request
*req
, *free
;
2003 unsigned int request_count
= 0;
2004 unsigned int wb_acct
;
2007 * low level driver can indicate that it wants pages above a
2008 * certain limit bounced to low memory (ie for highmem, or even
2009 * ISA dma in theory)
2011 blk_queue_bounce(q
, &bio
);
2013 blk_queue_split(q
, &bio
);
2015 if (!bio_integrity_prep(bio
))
2016 return BLK_QC_T_NONE
;
2018 if (op_is_flush(bio
->bi_opf
)) {
2019 spin_lock_irq(q
->queue_lock
);
2020 where
= ELEVATOR_INSERT_FLUSH
;
2025 * Check if we can merge with the plugged list before grabbing
2028 if (!blk_queue_nomerges(q
)) {
2029 if (blk_attempt_plug_merge(q
, bio
, &request_count
, NULL
))
2030 return BLK_QC_T_NONE
;
2032 request_count
= blk_plug_queued_count(q
);
2034 spin_lock_irq(q
->queue_lock
);
2036 switch (elv_merge(q
, &req
, bio
)) {
2037 case ELEVATOR_BACK_MERGE
:
2038 if (!bio_attempt_back_merge(q
, req
, bio
))
2040 elv_bio_merged(q
, req
, bio
);
2041 free
= attempt_back_merge(q
, req
);
2043 __blk_put_request(q
, free
);
2045 elv_merged_request(q
, req
, ELEVATOR_BACK_MERGE
);
2047 case ELEVATOR_FRONT_MERGE
:
2048 if (!bio_attempt_front_merge(q
, req
, bio
))
2050 elv_bio_merged(q
, req
, bio
);
2051 free
= attempt_front_merge(q
, req
);
2053 __blk_put_request(q
, free
);
2055 elv_merged_request(q
, req
, ELEVATOR_FRONT_MERGE
);
2062 wb_acct
= wbt_wait(q
->rq_wb
, bio
, q
->queue_lock
);
2065 * Grab a free request. This is might sleep but can not fail.
2066 * Returns with the queue unlocked.
2068 blk_queue_enter_live(q
);
2069 req
= get_request(q
, bio
->bi_opf
, bio
, 0);
2072 __wbt_done(q
->rq_wb
, wb_acct
);
2073 if (PTR_ERR(req
) == -ENOMEM
)
2074 bio
->bi_status
= BLK_STS_RESOURCE
;
2076 bio
->bi_status
= BLK_STS_IOERR
;
2081 wbt_track(&req
->issue_stat
, wb_acct
);
2084 * After dropping the lock and possibly sleeping here, our request
2085 * may now be mergeable after it had proven unmergeable (above).
2086 * We don't worry about that case for efficiency. It won't happen
2087 * often, and the elevators are able to handle it.
2089 blk_init_request_from_bio(req
, bio
);
2091 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
))
2092 req
->cpu
= raw_smp_processor_id();
2094 plug
= current
->plug
;
2097 * If this is the first request added after a plug, fire
2100 * @request_count may become stale because of schedule
2101 * out, so check plug list again.
2103 if (!request_count
|| list_empty(&plug
->list
))
2104 trace_block_plug(q
);
2106 struct request
*last
= list_entry_rq(plug
->list
.prev
);
2107 if (request_count
>= BLK_MAX_REQUEST_COUNT
||
2108 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
) {
2109 blk_flush_plug_list(plug
, false);
2110 trace_block_plug(q
);
2113 list_add_tail(&req
->queuelist
, &plug
->list
);
2114 blk_account_io_start(req
, true);
2116 spin_lock_irq(q
->queue_lock
);
2117 add_acct_request(q
, req
, where
);
2120 spin_unlock_irq(q
->queue_lock
);
2123 return BLK_QC_T_NONE
;
2126 static void handle_bad_sector(struct bio
*bio
, sector_t maxsector
)
2128 char b
[BDEVNAME_SIZE
];
2130 printk(KERN_INFO
"attempt to access beyond end of device\n");
2131 printk(KERN_INFO
"%s: rw=%d, want=%Lu, limit=%Lu\n",
2132 bio_devname(bio
, b
), bio
->bi_opf
,
2133 (unsigned long long)bio_end_sector(bio
),
2134 (long long)maxsector
);
2137 #ifdef CONFIG_FAIL_MAKE_REQUEST
2139 static DECLARE_FAULT_ATTR(fail_make_request
);
2141 static int __init
setup_fail_make_request(char *str
)
2143 return setup_fault_attr(&fail_make_request
, str
);
2145 __setup("fail_make_request=", setup_fail_make_request
);
2147 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
2149 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
2152 static int __init
fail_make_request_debugfs(void)
2154 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
2155 NULL
, &fail_make_request
);
2157 return PTR_ERR_OR_ZERO(dir
);
2160 late_initcall(fail_make_request_debugfs
);
2162 #else /* CONFIG_FAIL_MAKE_REQUEST */
2164 static inline bool should_fail_request(struct hd_struct
*part
,
2170 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2172 static inline bool bio_check_ro(struct bio
*bio
, struct hd_struct
*part
)
2174 if (part
->policy
&& op_is_write(bio_op(bio
))) {
2175 char b
[BDEVNAME_SIZE
];
2178 "generic_make_request: Trying to write "
2179 "to read-only block-device %s (partno %d)\n",
2180 bio_devname(bio
, b
), part
->partno
);
2187 static noinline
int should_fail_bio(struct bio
*bio
)
2189 if (should_fail_request(&bio
->bi_disk
->part0
, bio
->bi_iter
.bi_size
))
2193 ALLOW_ERROR_INJECTION(should_fail_bio
, ERRNO
);
2196 * Check whether this bio extends beyond the end of the device or partition.
2197 * This may well happen - the kernel calls bread() without checking the size of
2198 * the device, e.g., when mounting a file system.
2200 static inline int bio_check_eod(struct bio
*bio
, sector_t maxsector
)
2202 unsigned int nr_sectors
= bio_sectors(bio
);
2204 if (nr_sectors
&& maxsector
&&
2205 (nr_sectors
> maxsector
||
2206 bio
->bi_iter
.bi_sector
> maxsector
- nr_sectors
)) {
2207 handle_bad_sector(bio
, maxsector
);
2214 * Remap block n of partition p to block n+start(p) of the disk.
2216 static inline int blk_partition_remap(struct bio
*bio
)
2218 struct hd_struct
*p
;
2222 p
= __disk_get_part(bio
->bi_disk
, bio
->bi_partno
);
2225 if (unlikely(should_fail_request(p
, bio
->bi_iter
.bi_size
)))
2227 if (unlikely(bio_check_ro(bio
, p
)))
2231 * Zone reset does not include bi_size so bio_sectors() is always 0.
2232 * Include a test for the reset op code and perform the remap if needed.
2234 if (bio_sectors(bio
) || bio_op(bio
) == REQ_OP_ZONE_RESET
) {
2235 if (bio_check_eod(bio
, part_nr_sects_read(p
)))
2237 bio
->bi_iter
.bi_sector
+= p
->start_sect
;
2239 trace_block_bio_remap(bio
->bi_disk
->queue
, bio
, part_devt(p
),
2240 bio
->bi_iter
.bi_sector
- p
->start_sect
);
2248 static noinline_for_stack
bool
2249 generic_make_request_checks(struct bio
*bio
)
2251 struct request_queue
*q
;
2252 int nr_sectors
= bio_sectors(bio
);
2253 blk_status_t status
= BLK_STS_IOERR
;
2254 char b
[BDEVNAME_SIZE
];
2258 q
= bio
->bi_disk
->queue
;
2261 "generic_make_request: Trying to access "
2262 "nonexistent block-device %s (%Lu)\n",
2263 bio_devname(bio
, b
), (long long)bio
->bi_iter
.bi_sector
);
2268 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2269 * if queue is not a request based queue.
2271 if ((bio
->bi_opf
& REQ_NOWAIT
) && !queue_is_rq_based(q
))
2274 if (should_fail_bio(bio
))
2277 if (bio
->bi_partno
) {
2278 if (unlikely(blk_partition_remap(bio
)))
2281 if (unlikely(bio_check_ro(bio
, &bio
->bi_disk
->part0
)))
2283 if (unlikely(bio_check_eod(bio
, get_capacity(bio
->bi_disk
))))
2288 * Filter flush bio's early so that make_request based
2289 * drivers without flush support don't have to worry
2292 if (op_is_flush(bio
->bi_opf
) &&
2293 !test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
)) {
2294 bio
->bi_opf
&= ~(REQ_PREFLUSH
| REQ_FUA
);
2296 status
= BLK_STS_OK
;
2301 switch (bio_op(bio
)) {
2302 case REQ_OP_DISCARD
:
2303 if (!blk_queue_discard(q
))
2306 case REQ_OP_SECURE_ERASE
:
2307 if (!blk_queue_secure_erase(q
))
2310 case REQ_OP_WRITE_SAME
:
2311 if (!q
->limits
.max_write_same_sectors
)
2314 case REQ_OP_ZONE_REPORT
:
2315 case REQ_OP_ZONE_RESET
:
2316 if (!blk_queue_is_zoned(q
))
2319 case REQ_OP_WRITE_ZEROES
:
2320 if (!q
->limits
.max_write_zeroes_sectors
)
2328 * Various block parts want %current->io_context and lazy ioc
2329 * allocation ends up trading a lot of pain for a small amount of
2330 * memory. Just allocate it upfront. This may fail and block
2331 * layer knows how to live with it.
2333 create_io_context(GFP_ATOMIC
, q
->node
);
2335 if (!blkcg_bio_issue_check(q
, bio
))
2338 if (!bio_flagged(bio
, BIO_TRACE_COMPLETION
)) {
2339 trace_block_bio_queue(q
, bio
);
2340 /* Now that enqueuing has been traced, we need to trace
2341 * completion as well.
2343 bio_set_flag(bio
, BIO_TRACE_COMPLETION
);
2348 status
= BLK_STS_NOTSUPP
;
2350 bio
->bi_status
= status
;
2356 * generic_make_request - hand a buffer to its device driver for I/O
2357 * @bio: The bio describing the location in memory and on the device.
2359 * generic_make_request() is used to make I/O requests of block
2360 * devices. It is passed a &struct bio, which describes the I/O that needs
2363 * generic_make_request() does not return any status. The
2364 * success/failure status of the request, along with notification of
2365 * completion, is delivered asynchronously through the bio->bi_end_io
2366 * function described (one day) else where.
2368 * The caller of generic_make_request must make sure that bi_io_vec
2369 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2370 * set to describe the device address, and the
2371 * bi_end_io and optionally bi_private are set to describe how
2372 * completion notification should be signaled.
2374 * generic_make_request and the drivers it calls may use bi_next if this
2375 * bio happens to be merged with someone else, and may resubmit the bio to
2376 * a lower device by calling into generic_make_request recursively, which
2377 * means the bio should NOT be touched after the call to ->make_request_fn.
2379 blk_qc_t
generic_make_request(struct bio
*bio
)
2382 * bio_list_on_stack[0] contains bios submitted by the current
2384 * bio_list_on_stack[1] contains bios that were submitted before
2385 * the current make_request_fn, but that haven't been processed
2388 struct bio_list bio_list_on_stack
[2];
2389 blk_mq_req_flags_t flags
= 0;
2390 struct request_queue
*q
= bio
->bi_disk
->queue
;
2391 blk_qc_t ret
= BLK_QC_T_NONE
;
2393 if (bio
->bi_opf
& REQ_NOWAIT
)
2394 flags
= BLK_MQ_REQ_NOWAIT
;
2395 if (blk_queue_enter(q
, flags
) < 0) {
2396 if (!blk_queue_dying(q
) && (bio
->bi_opf
& REQ_NOWAIT
))
2397 bio_wouldblock_error(bio
);
2403 if (!generic_make_request_checks(bio
))
2407 * We only want one ->make_request_fn to be active at a time, else
2408 * stack usage with stacked devices could be a problem. So use
2409 * current->bio_list to keep a list of requests submited by a
2410 * make_request_fn function. current->bio_list is also used as a
2411 * flag to say if generic_make_request is currently active in this
2412 * task or not. If it is NULL, then no make_request is active. If
2413 * it is non-NULL, then a make_request is active, and new requests
2414 * should be added at the tail
2416 if (current
->bio_list
) {
2417 bio_list_add(¤t
->bio_list
[0], bio
);
2421 /* following loop may be a bit non-obvious, and so deserves some
2423 * Before entering the loop, bio->bi_next is NULL (as all callers
2424 * ensure that) so we have a list with a single bio.
2425 * We pretend that we have just taken it off a longer list, so
2426 * we assign bio_list to a pointer to the bio_list_on_stack,
2427 * thus initialising the bio_list of new bios to be
2428 * added. ->make_request() may indeed add some more bios
2429 * through a recursive call to generic_make_request. If it
2430 * did, we find a non-NULL value in bio_list and re-enter the loop
2431 * from the top. In this case we really did just take the bio
2432 * of the top of the list (no pretending) and so remove it from
2433 * bio_list, and call into ->make_request() again.
2435 BUG_ON(bio
->bi_next
);
2436 bio_list_init(&bio_list_on_stack
[0]);
2437 current
->bio_list
= bio_list_on_stack
;
2439 bool enter_succeeded
= true;
2441 if (unlikely(q
!= bio
->bi_disk
->queue
)) {
2444 q
= bio
->bi_disk
->queue
;
2446 if (bio
->bi_opf
& REQ_NOWAIT
)
2447 flags
= BLK_MQ_REQ_NOWAIT
;
2448 if (blk_queue_enter(q
, flags
) < 0) {
2449 enter_succeeded
= false;
2454 if (enter_succeeded
) {
2455 struct bio_list lower
, same
;
2457 /* Create a fresh bio_list for all subordinate requests */
2458 bio_list_on_stack
[1] = bio_list_on_stack
[0];
2459 bio_list_init(&bio_list_on_stack
[0]);
2460 ret
= q
->make_request_fn(q
, bio
);
2462 /* sort new bios into those for a lower level
2463 * and those for the same level
2465 bio_list_init(&lower
);
2466 bio_list_init(&same
);
2467 while ((bio
= bio_list_pop(&bio_list_on_stack
[0])) != NULL
)
2468 if (q
== bio
->bi_disk
->queue
)
2469 bio_list_add(&same
, bio
);
2471 bio_list_add(&lower
, bio
);
2472 /* now assemble so we handle the lowest level first */
2473 bio_list_merge(&bio_list_on_stack
[0], &lower
);
2474 bio_list_merge(&bio_list_on_stack
[0], &same
);
2475 bio_list_merge(&bio_list_on_stack
[0], &bio_list_on_stack
[1]);
2477 if (unlikely(!blk_queue_dying(q
) &&
2478 (bio
->bi_opf
& REQ_NOWAIT
)))
2479 bio_wouldblock_error(bio
);
2483 bio
= bio_list_pop(&bio_list_on_stack
[0]);
2485 current
->bio_list
= NULL
; /* deactivate */
2492 EXPORT_SYMBOL(generic_make_request
);
2495 * direct_make_request - hand a buffer directly to its device driver for I/O
2496 * @bio: The bio describing the location in memory and on the device.
2498 * This function behaves like generic_make_request(), but does not protect
2499 * against recursion. Must only be used if the called driver is known
2500 * to not call generic_make_request (or direct_make_request) again from
2501 * its make_request function. (Calling direct_make_request again from
2502 * a workqueue is perfectly fine as that doesn't recurse).
2504 blk_qc_t
direct_make_request(struct bio
*bio
)
2506 struct request_queue
*q
= bio
->bi_disk
->queue
;
2507 bool nowait
= bio
->bi_opf
& REQ_NOWAIT
;
2510 if (!generic_make_request_checks(bio
))
2511 return BLK_QC_T_NONE
;
2513 if (unlikely(blk_queue_enter(q
, nowait
? BLK_MQ_REQ_NOWAIT
: 0))) {
2514 if (nowait
&& !blk_queue_dying(q
))
2515 bio
->bi_status
= BLK_STS_AGAIN
;
2517 bio
->bi_status
= BLK_STS_IOERR
;
2519 return BLK_QC_T_NONE
;
2522 ret
= q
->make_request_fn(q
, bio
);
2526 EXPORT_SYMBOL_GPL(direct_make_request
);
2529 * submit_bio - submit a bio to the block device layer for I/O
2530 * @bio: The &struct bio which describes the I/O
2532 * submit_bio() is very similar in purpose to generic_make_request(), and
2533 * uses that function to do most of the work. Both are fairly rough
2534 * interfaces; @bio must be presetup and ready for I/O.
2537 blk_qc_t
submit_bio(struct bio
*bio
)
2540 * If it's a regular read/write or a barrier with data attached,
2541 * go through the normal accounting stuff before submission.
2543 if (bio_has_data(bio
)) {
2546 if (unlikely(bio_op(bio
) == REQ_OP_WRITE_SAME
))
2547 count
= queue_logical_block_size(bio
->bi_disk
->queue
) >> 9;
2549 count
= bio_sectors(bio
);
2551 if (op_is_write(bio_op(bio
))) {
2552 count_vm_events(PGPGOUT
, count
);
2554 task_io_account_read(bio
->bi_iter
.bi_size
);
2555 count_vm_events(PGPGIN
, count
);
2558 if (unlikely(block_dump
)) {
2559 char b
[BDEVNAME_SIZE
];
2560 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
2561 current
->comm
, task_pid_nr(current
),
2562 op_is_write(bio_op(bio
)) ? "WRITE" : "READ",
2563 (unsigned long long)bio
->bi_iter
.bi_sector
,
2564 bio_devname(bio
, b
), count
);
2568 return generic_make_request(bio
);
2570 EXPORT_SYMBOL(submit_bio
);
2572 bool blk_poll(struct request_queue
*q
, blk_qc_t cookie
)
2574 if (!q
->poll_fn
|| !blk_qc_t_valid(cookie
))
2578 blk_flush_plug_list(current
->plug
, false);
2579 return q
->poll_fn(q
, cookie
);
2581 EXPORT_SYMBOL_GPL(blk_poll
);
2584 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2585 * for new the queue limits
2587 * @rq: the request being checked
2590 * @rq may have been made based on weaker limitations of upper-level queues
2591 * in request stacking drivers, and it may violate the limitation of @q.
2592 * Since the block layer and the underlying device driver trust @rq
2593 * after it is inserted to @q, it should be checked against @q before
2594 * the insertion using this generic function.
2596 * Request stacking drivers like request-based dm may change the queue
2597 * limits when retrying requests on other queues. Those requests need
2598 * to be checked against the new queue limits again during dispatch.
2600 static int blk_cloned_rq_check_limits(struct request_queue
*q
,
2603 if (blk_rq_sectors(rq
) > blk_queue_get_max_sectors(q
, req_op(rq
))) {
2604 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
2609 * queue's settings related to segment counting like q->bounce_pfn
2610 * may differ from that of other stacking queues.
2611 * Recalculate it to check the request correctly on this queue's
2614 blk_recalc_rq_segments(rq
);
2615 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
2616 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
2624 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2625 * @q: the queue to submit the request
2626 * @rq: the request being queued
2628 blk_status_t
blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
2630 unsigned long flags
;
2631 int where
= ELEVATOR_INSERT_BACK
;
2633 if (blk_cloned_rq_check_limits(q
, rq
))
2634 return BLK_STS_IOERR
;
2637 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
2638 return BLK_STS_IOERR
;
2641 if (blk_queue_io_stat(q
))
2642 blk_account_io_start(rq
, true);
2644 * Since we have a scheduler attached on the top device,
2645 * bypass a potential scheduler on the bottom device for
2648 return blk_mq_request_issue_directly(rq
);
2651 spin_lock_irqsave(q
->queue_lock
, flags
);
2652 if (unlikely(blk_queue_dying(q
))) {
2653 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2654 return BLK_STS_IOERR
;
2658 * Submitting request must be dequeued before calling this function
2659 * because it will be linked to another request_queue
2661 BUG_ON(blk_queued_rq(rq
));
2663 if (op_is_flush(rq
->cmd_flags
))
2664 where
= ELEVATOR_INSERT_FLUSH
;
2666 add_acct_request(q
, rq
, where
);
2667 if (where
== ELEVATOR_INSERT_FLUSH
)
2669 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2673 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
2676 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2677 * @rq: request to examine
2680 * A request could be merge of IOs which require different failure
2681 * handling. This function determines the number of bytes which
2682 * can be failed from the beginning of the request without
2683 * crossing into area which need to be retried further.
2686 * The number of bytes to fail.
2688 unsigned int blk_rq_err_bytes(const struct request
*rq
)
2690 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
2691 unsigned int bytes
= 0;
2694 if (!(rq
->rq_flags
& RQF_MIXED_MERGE
))
2695 return blk_rq_bytes(rq
);
2698 * Currently the only 'mixing' which can happen is between
2699 * different fastfail types. We can safely fail portions
2700 * which have all the failfast bits that the first one has -
2701 * the ones which are at least as eager to fail as the first
2704 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
2705 if ((bio
->bi_opf
& ff
) != ff
)
2707 bytes
+= bio
->bi_iter
.bi_size
;
2710 /* this could lead to infinite loop */
2711 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
2714 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
2716 void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
2718 if (blk_do_io_stat(req
)) {
2719 const int rw
= rq_data_dir(req
);
2720 struct hd_struct
*part
;
2723 cpu
= part_stat_lock();
2725 part_stat_add(cpu
, part
, sectors
[rw
], bytes
>> 9);
2730 void blk_account_io_done(struct request
*req
)
2733 * Account IO completion. flush_rq isn't accounted as a
2734 * normal IO on queueing nor completion. Accounting the
2735 * containing request is enough.
2737 if (blk_do_io_stat(req
) && !(req
->rq_flags
& RQF_FLUSH_SEQ
)) {
2738 unsigned long duration
= jiffies
- req
->start_time
;
2739 const int rw
= rq_data_dir(req
);
2740 struct hd_struct
*part
;
2743 cpu
= part_stat_lock();
2746 part_stat_inc(cpu
, part
, ios
[rw
]);
2747 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
2748 part_round_stats(req
->q
, cpu
, part
);
2749 part_dec_in_flight(req
->q
, part
, rw
);
2751 hd_struct_put(part
);
2758 * Don't process normal requests when queue is suspended
2759 * or in the process of suspending/resuming
2761 static bool blk_pm_allow_request(struct request
*rq
)
2763 switch (rq
->q
->rpm_status
) {
2765 case RPM_SUSPENDING
:
2766 return rq
->rq_flags
& RQF_PM
;
2774 static bool blk_pm_allow_request(struct request
*rq
)
2780 void blk_account_io_start(struct request
*rq
, bool new_io
)
2782 struct hd_struct
*part
;
2783 int rw
= rq_data_dir(rq
);
2786 if (!blk_do_io_stat(rq
))
2789 cpu
= part_stat_lock();
2793 part_stat_inc(cpu
, part
, merges
[rw
]);
2795 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
2796 if (!hd_struct_try_get(part
)) {
2798 * The partition is already being removed,
2799 * the request will be accounted on the disk only
2801 * We take a reference on disk->part0 although that
2802 * partition will never be deleted, so we can treat
2803 * it as any other partition.
2805 part
= &rq
->rq_disk
->part0
;
2806 hd_struct_get(part
);
2808 part_round_stats(rq
->q
, cpu
, part
);
2809 part_inc_in_flight(rq
->q
, part
, rw
);
2816 static struct request
*elv_next_request(struct request_queue
*q
)
2819 struct blk_flush_queue
*fq
= blk_get_flush_queue(q
, NULL
);
2821 WARN_ON_ONCE(q
->mq_ops
);
2824 list_for_each_entry(rq
, &q
->queue_head
, queuelist
) {
2825 if (blk_pm_allow_request(rq
))
2828 if (rq
->rq_flags
& RQF_SOFTBARRIER
)
2833 * Flush request is running and flush request isn't queueable
2834 * in the drive, we can hold the queue till flush request is
2835 * finished. Even we don't do this, driver can't dispatch next
2836 * requests and will requeue them. And this can improve
2837 * throughput too. For example, we have request flush1, write1,
2838 * flush 2. flush1 is dispatched, then queue is hold, write1
2839 * isn't inserted to queue. After flush1 is finished, flush2
2840 * will be dispatched. Since disk cache is already clean,
2841 * flush2 will be finished very soon, so looks like flush2 is
2843 * Since the queue is hold, a flag is set to indicate the queue
2844 * should be restarted later. Please see flush_end_io() for
2847 if (fq
->flush_pending_idx
!= fq
->flush_running_idx
&&
2848 !queue_flush_queueable(q
)) {
2849 fq
->flush_queue_delayed
= 1;
2852 if (unlikely(blk_queue_bypass(q
)) ||
2853 !q
->elevator
->type
->ops
.sq
.elevator_dispatch_fn(q
, 0))
2859 * blk_peek_request - peek at the top of a request queue
2860 * @q: request queue to peek at
2863 * Return the request at the top of @q. The returned request
2864 * should be started using blk_start_request() before LLD starts
2868 * Pointer to the request at the top of @q if available. Null
2871 struct request
*blk_peek_request(struct request_queue
*q
)
2876 lockdep_assert_held(q
->queue_lock
);
2877 WARN_ON_ONCE(q
->mq_ops
);
2879 while ((rq
= elv_next_request(q
)) != NULL
) {
2880 if (!(rq
->rq_flags
& RQF_STARTED
)) {
2882 * This is the first time the device driver
2883 * sees this request (possibly after
2884 * requeueing). Notify IO scheduler.
2886 if (rq
->rq_flags
& RQF_SORTED
)
2887 elv_activate_rq(q
, rq
);
2890 * just mark as started even if we don't start
2891 * it, a request that has been delayed should
2892 * not be passed by new incoming requests
2894 rq
->rq_flags
|= RQF_STARTED
;
2895 trace_block_rq_issue(q
, rq
);
2898 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
2899 q
->end_sector
= rq_end_sector(rq
);
2900 q
->boundary_rq
= NULL
;
2903 if (rq
->rq_flags
& RQF_DONTPREP
)
2906 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
2908 * make sure space for the drain appears we
2909 * know we can do this because max_hw_segments
2910 * has been adjusted to be one fewer than the
2913 rq
->nr_phys_segments
++;
2919 ret
= q
->prep_rq_fn(q
, rq
);
2920 if (ret
== BLKPREP_OK
) {
2922 } else if (ret
== BLKPREP_DEFER
) {
2924 * the request may have been (partially) prepped.
2925 * we need to keep this request in the front to
2926 * avoid resource deadlock. RQF_STARTED will
2927 * prevent other fs requests from passing this one.
2929 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
2930 !(rq
->rq_flags
& RQF_DONTPREP
)) {
2932 * remove the space for the drain we added
2933 * so that we don't add it again
2935 --rq
->nr_phys_segments
;
2940 } else if (ret
== BLKPREP_KILL
|| ret
== BLKPREP_INVALID
) {
2941 rq
->rq_flags
|= RQF_QUIET
;
2943 * Mark this request as started so we don't trigger
2944 * any debug logic in the end I/O path.
2946 blk_start_request(rq
);
2947 __blk_end_request_all(rq
, ret
== BLKPREP_INVALID
?
2948 BLK_STS_TARGET
: BLK_STS_IOERR
);
2950 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
2957 EXPORT_SYMBOL(blk_peek_request
);
2959 static void blk_dequeue_request(struct request
*rq
)
2961 struct request_queue
*q
= rq
->q
;
2963 BUG_ON(list_empty(&rq
->queuelist
));
2964 BUG_ON(ELV_ON_HASH(rq
));
2966 list_del_init(&rq
->queuelist
);
2969 * the time frame between a request being removed from the lists
2970 * and to it is freed is accounted as io that is in progress at
2973 if (blk_account_rq(rq
)) {
2974 q
->in_flight
[rq_is_sync(rq
)]++;
2975 set_io_start_time_ns(rq
);
2980 * blk_start_request - start request processing on the driver
2981 * @req: request to dequeue
2984 * Dequeue @req and start timeout timer on it. This hands off the
2985 * request to the driver.
2987 void blk_start_request(struct request
*req
)
2989 lockdep_assert_held(req
->q
->queue_lock
);
2990 WARN_ON_ONCE(req
->q
->mq_ops
);
2992 blk_dequeue_request(req
);
2994 if (test_bit(QUEUE_FLAG_STATS
, &req
->q
->queue_flags
)) {
2995 blk_stat_set_issue(&req
->issue_stat
, blk_rq_sectors(req
));
2996 req
->rq_flags
|= RQF_STATS
;
2997 wbt_issue(req
->q
->rq_wb
, &req
->issue_stat
);
3000 BUG_ON(blk_rq_is_complete(req
));
3003 EXPORT_SYMBOL(blk_start_request
);
3006 * blk_fetch_request - fetch a request from a request queue
3007 * @q: request queue to fetch a request from
3010 * Return the request at the top of @q. The request is started on
3011 * return and LLD can start processing it immediately.
3014 * Pointer to the request at the top of @q if available. Null
3017 struct request
*blk_fetch_request(struct request_queue
*q
)
3021 lockdep_assert_held(q
->queue_lock
);
3022 WARN_ON_ONCE(q
->mq_ops
);
3024 rq
= blk_peek_request(q
);
3026 blk_start_request(rq
);
3029 EXPORT_SYMBOL(blk_fetch_request
);
3032 * Steal bios from a request and add them to a bio list.
3033 * The request must not have been partially completed before.
3035 void blk_steal_bios(struct bio_list
*list
, struct request
*rq
)
3039 list
->tail
->bi_next
= rq
->bio
;
3041 list
->head
= rq
->bio
;
3042 list
->tail
= rq
->biotail
;
3050 EXPORT_SYMBOL_GPL(blk_steal_bios
);
3053 * blk_update_request - Special helper function for request stacking drivers
3054 * @req: the request being processed
3055 * @error: block status code
3056 * @nr_bytes: number of bytes to complete @req
3059 * Ends I/O on a number of bytes attached to @req, but doesn't complete
3060 * the request structure even if @req doesn't have leftover.
3061 * If @req has leftover, sets it up for the next range of segments.
3063 * This special helper function is only for request stacking drivers
3064 * (e.g. request-based dm) so that they can handle partial completion.
3065 * Actual device drivers should use blk_end_request instead.
3067 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3068 * %false return from this function.
3071 * %false - this request doesn't have any more data
3072 * %true - this request has more data
3074 bool blk_update_request(struct request
*req
, blk_status_t error
,
3075 unsigned int nr_bytes
)
3079 trace_block_rq_complete(req
, blk_status_to_errno(error
), nr_bytes
);
3084 if (unlikely(error
&& !blk_rq_is_passthrough(req
) &&
3085 !(req
->rq_flags
& RQF_QUIET
)))
3086 print_req_error(req
, error
);
3088 blk_account_io_completion(req
, nr_bytes
);
3092 struct bio
*bio
= req
->bio
;
3093 unsigned bio_bytes
= min(bio
->bi_iter
.bi_size
, nr_bytes
);
3095 if (bio_bytes
== bio
->bi_iter
.bi_size
)
3096 req
->bio
= bio
->bi_next
;
3098 /* Completion has already been traced */
3099 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
3100 req_bio_endio(req
, bio
, bio_bytes
, error
);
3102 total_bytes
+= bio_bytes
;
3103 nr_bytes
-= bio_bytes
;
3114 * Reset counters so that the request stacking driver
3115 * can find how many bytes remain in the request
3118 req
->__data_len
= 0;
3122 req
->__data_len
-= total_bytes
;
3124 /* update sector only for requests with clear definition of sector */
3125 if (!blk_rq_is_passthrough(req
))
3126 req
->__sector
+= total_bytes
>> 9;
3128 /* mixed attributes always follow the first bio */
3129 if (req
->rq_flags
& RQF_MIXED_MERGE
) {
3130 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
3131 req
->cmd_flags
|= req
->bio
->bi_opf
& REQ_FAILFAST_MASK
;
3134 if (!(req
->rq_flags
& RQF_SPECIAL_PAYLOAD
)) {
3136 * If total number of sectors is less than the first segment
3137 * size, something has gone terribly wrong.
3139 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
3140 blk_dump_rq_flags(req
, "request botched");
3141 req
->__data_len
= blk_rq_cur_bytes(req
);
3144 /* recalculate the number of segments */
3145 blk_recalc_rq_segments(req
);
3150 EXPORT_SYMBOL_GPL(blk_update_request
);
3152 static bool blk_update_bidi_request(struct request
*rq
, blk_status_t error
,
3153 unsigned int nr_bytes
,
3154 unsigned int bidi_bytes
)
3156 if (blk_update_request(rq
, error
, nr_bytes
))
3159 /* Bidi request must be completed as a whole */
3160 if (unlikely(blk_bidi_rq(rq
)) &&
3161 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
3164 if (blk_queue_add_random(rq
->q
))
3165 add_disk_randomness(rq
->rq_disk
);
3171 * blk_unprep_request - unprepare a request
3174 * This function makes a request ready for complete resubmission (or
3175 * completion). It happens only after all error handling is complete,
3176 * so represents the appropriate moment to deallocate any resources
3177 * that were allocated to the request in the prep_rq_fn. The queue
3178 * lock is held when calling this.
3180 void blk_unprep_request(struct request
*req
)
3182 struct request_queue
*q
= req
->q
;
3184 req
->rq_flags
&= ~RQF_DONTPREP
;
3185 if (q
->unprep_rq_fn
)
3186 q
->unprep_rq_fn(q
, req
);
3188 EXPORT_SYMBOL_GPL(blk_unprep_request
);
3190 void blk_finish_request(struct request
*req
, blk_status_t error
)
3192 struct request_queue
*q
= req
->q
;
3194 lockdep_assert_held(req
->q
->queue_lock
);
3195 WARN_ON_ONCE(q
->mq_ops
);
3197 if (req
->rq_flags
& RQF_STATS
)
3200 if (req
->rq_flags
& RQF_QUEUED
)
3201 blk_queue_end_tag(q
, req
);
3203 BUG_ON(blk_queued_rq(req
));
3205 if (unlikely(laptop_mode
) && !blk_rq_is_passthrough(req
))
3206 laptop_io_completion(req
->q
->backing_dev_info
);
3208 blk_delete_timer(req
);
3210 if (req
->rq_flags
& RQF_DONTPREP
)
3211 blk_unprep_request(req
);
3213 blk_account_io_done(req
);
3216 wbt_done(req
->q
->rq_wb
, &req
->issue_stat
);
3217 req
->end_io(req
, error
);
3219 if (blk_bidi_rq(req
))
3220 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
3222 __blk_put_request(q
, req
);
3225 EXPORT_SYMBOL(blk_finish_request
);
3228 * blk_end_bidi_request - Complete a bidi request
3229 * @rq: the request to complete
3230 * @error: block status code
3231 * @nr_bytes: number of bytes to complete @rq
3232 * @bidi_bytes: number of bytes to complete @rq->next_rq
3235 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3236 * Drivers that supports bidi can safely call this member for any
3237 * type of request, bidi or uni. In the later case @bidi_bytes is
3241 * %false - we are done with this request
3242 * %true - still buffers pending for this request
3244 static bool blk_end_bidi_request(struct request
*rq
, blk_status_t error
,
3245 unsigned int nr_bytes
, unsigned int bidi_bytes
)
3247 struct request_queue
*q
= rq
->q
;
3248 unsigned long flags
;
3250 WARN_ON_ONCE(q
->mq_ops
);
3252 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
3255 spin_lock_irqsave(q
->queue_lock
, flags
);
3256 blk_finish_request(rq
, error
);
3257 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3263 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3264 * @rq: the request to complete
3265 * @error: block status code
3266 * @nr_bytes: number of bytes to complete @rq
3267 * @bidi_bytes: number of bytes to complete @rq->next_rq
3270 * Identical to blk_end_bidi_request() except that queue lock is
3271 * assumed to be locked on entry and remains so on return.
3274 * %false - we are done with this request
3275 * %true - still buffers pending for this request
3277 static bool __blk_end_bidi_request(struct request
*rq
, blk_status_t error
,
3278 unsigned int nr_bytes
, unsigned int bidi_bytes
)
3280 lockdep_assert_held(rq
->q
->queue_lock
);
3281 WARN_ON_ONCE(rq
->q
->mq_ops
);
3283 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
3286 blk_finish_request(rq
, error
);
3292 * blk_end_request - Helper function for drivers to complete the request.
3293 * @rq: the request being processed
3294 * @error: block status code
3295 * @nr_bytes: number of bytes to complete
3298 * Ends I/O on a number of bytes attached to @rq.
3299 * If @rq has leftover, sets it up for the next range of segments.
3302 * %false - we are done with this request
3303 * %true - still buffers pending for this request
3305 bool blk_end_request(struct request
*rq
, blk_status_t error
,
3306 unsigned int nr_bytes
)
3308 WARN_ON_ONCE(rq
->q
->mq_ops
);
3309 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
3311 EXPORT_SYMBOL(blk_end_request
);
3314 * blk_end_request_all - Helper function for drives to finish the request.
3315 * @rq: the request to finish
3316 * @error: block status code
3319 * Completely finish @rq.
3321 void blk_end_request_all(struct request
*rq
, blk_status_t error
)
3324 unsigned int bidi_bytes
= 0;
3326 if (unlikely(blk_bidi_rq(rq
)))
3327 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
3329 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
3332 EXPORT_SYMBOL(blk_end_request_all
);
3335 * __blk_end_request - Helper function for drivers to complete the request.
3336 * @rq: the request being processed
3337 * @error: block status code
3338 * @nr_bytes: number of bytes to complete
3341 * Must be called with queue lock held unlike blk_end_request().
3344 * %false - we are done with this request
3345 * %true - still buffers pending for this request
3347 bool __blk_end_request(struct request
*rq
, blk_status_t error
,
3348 unsigned int nr_bytes
)
3350 lockdep_assert_held(rq
->q
->queue_lock
);
3351 WARN_ON_ONCE(rq
->q
->mq_ops
);
3353 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
3355 EXPORT_SYMBOL(__blk_end_request
);
3358 * __blk_end_request_all - Helper function for drives to finish the request.
3359 * @rq: the request to finish
3360 * @error: block status code
3363 * Completely finish @rq. Must be called with queue lock held.
3365 void __blk_end_request_all(struct request
*rq
, blk_status_t error
)
3368 unsigned int bidi_bytes
= 0;
3370 lockdep_assert_held(rq
->q
->queue_lock
);
3371 WARN_ON_ONCE(rq
->q
->mq_ops
);
3373 if (unlikely(blk_bidi_rq(rq
)))
3374 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
3376 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
3379 EXPORT_SYMBOL(__blk_end_request_all
);
3382 * __blk_end_request_cur - Helper function to finish the current request chunk.
3383 * @rq: the request to finish the current chunk for
3384 * @error: block status code
3387 * Complete the current consecutively mapped chunk from @rq. Must
3388 * be called with queue lock held.
3391 * %false - we are done with this request
3392 * %true - still buffers pending for this request
3394 bool __blk_end_request_cur(struct request
*rq
, blk_status_t error
)
3396 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
3398 EXPORT_SYMBOL(__blk_end_request_cur
);
3400 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
3403 if (bio_has_data(bio
))
3404 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
3405 else if (bio_op(bio
) == REQ_OP_DISCARD
)
3406 rq
->nr_phys_segments
= 1;
3408 rq
->__data_len
= bio
->bi_iter
.bi_size
;
3409 rq
->bio
= rq
->biotail
= bio
;
3412 rq
->rq_disk
= bio
->bi_disk
;
3415 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3417 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3418 * @rq: the request to be flushed
3421 * Flush all pages in @rq.
3423 void rq_flush_dcache_pages(struct request
*rq
)
3425 struct req_iterator iter
;
3426 struct bio_vec bvec
;
3428 rq_for_each_segment(bvec
, rq
, iter
)
3429 flush_dcache_page(bvec
.bv_page
);
3431 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
3435 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3436 * @q : the queue of the device being checked
3439 * Check if underlying low-level drivers of a device are busy.
3440 * If the drivers want to export their busy state, they must set own
3441 * exporting function using blk_queue_lld_busy() first.
3443 * Basically, this function is used only by request stacking drivers
3444 * to stop dispatching requests to underlying devices when underlying
3445 * devices are busy. This behavior helps more I/O merging on the queue
3446 * of the request stacking driver and prevents I/O throughput regression
3447 * on burst I/O load.
3450 * 0 - Not busy (The request stacking driver should dispatch request)
3451 * 1 - Busy (The request stacking driver should stop dispatching request)
3453 int blk_lld_busy(struct request_queue
*q
)
3456 return q
->lld_busy_fn(q
);
3460 EXPORT_SYMBOL_GPL(blk_lld_busy
);
3463 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3464 * @rq: the clone request to be cleaned up
3467 * Free all bios in @rq for a cloned request.
3469 void blk_rq_unprep_clone(struct request
*rq
)
3473 while ((bio
= rq
->bio
) != NULL
) {
3474 rq
->bio
= bio
->bi_next
;
3479 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
3482 * Copy attributes of the original request to the clone request.
3483 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3485 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
3487 dst
->cpu
= src
->cpu
;
3488 dst
->__sector
= blk_rq_pos(src
);
3489 dst
->__data_len
= blk_rq_bytes(src
);
3490 dst
->nr_phys_segments
= src
->nr_phys_segments
;
3491 dst
->ioprio
= src
->ioprio
;
3492 dst
->extra_len
= src
->extra_len
;
3496 * blk_rq_prep_clone - Helper function to setup clone request
3497 * @rq: the request to be setup
3498 * @rq_src: original request to be cloned
3499 * @bs: bio_set that bios for clone are allocated from
3500 * @gfp_mask: memory allocation mask for bio
3501 * @bio_ctr: setup function to be called for each clone bio.
3502 * Returns %0 for success, non %0 for failure.
3503 * @data: private data to be passed to @bio_ctr
3506 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3507 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3508 * are not copied, and copying such parts is the caller's responsibility.
3509 * Also, pages which the original bios are pointing to are not copied
3510 * and the cloned bios just point same pages.
3511 * So cloned bios must be completed before original bios, which means
3512 * the caller must complete @rq before @rq_src.
3514 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
3515 struct bio_set
*bs
, gfp_t gfp_mask
,
3516 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
3519 struct bio
*bio
, *bio_src
;
3524 __rq_for_each_bio(bio_src
, rq_src
) {
3525 bio
= bio_clone_fast(bio_src
, gfp_mask
, bs
);
3529 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
3533 rq
->biotail
->bi_next
= bio
;
3536 rq
->bio
= rq
->biotail
= bio
;
3539 __blk_rq_prep_clone(rq
, rq_src
);
3546 blk_rq_unprep_clone(rq
);
3550 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
3552 int kblockd_schedule_work(struct work_struct
*work
)
3554 return queue_work(kblockd_workqueue
, work
);
3556 EXPORT_SYMBOL(kblockd_schedule_work
);
3558 int kblockd_schedule_work_on(int cpu
, struct work_struct
*work
)
3560 return queue_work_on(cpu
, kblockd_workqueue
, work
);
3562 EXPORT_SYMBOL(kblockd_schedule_work_on
);
3564 int kblockd_mod_delayed_work_on(int cpu
, struct delayed_work
*dwork
,
3565 unsigned long delay
)
3567 return mod_delayed_work_on(cpu
, kblockd_workqueue
, dwork
, delay
);
3569 EXPORT_SYMBOL(kblockd_mod_delayed_work_on
);
3572 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3573 * @plug: The &struct blk_plug that needs to be initialized
3576 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3577 * pending I/O should the task end up blocking between blk_start_plug() and
3578 * blk_finish_plug(). This is important from a performance perspective, but
3579 * also ensures that we don't deadlock. For instance, if the task is blocking
3580 * for a memory allocation, memory reclaim could end up wanting to free a
3581 * page belonging to that request that is currently residing in our private
3582 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3583 * this kind of deadlock.
3585 void blk_start_plug(struct blk_plug
*plug
)
3587 struct task_struct
*tsk
= current
;
3590 * If this is a nested plug, don't actually assign it.
3595 INIT_LIST_HEAD(&plug
->list
);
3596 INIT_LIST_HEAD(&plug
->mq_list
);
3597 INIT_LIST_HEAD(&plug
->cb_list
);
3599 * Store ordering should not be needed here, since a potential
3600 * preempt will imply a full memory barrier
3604 EXPORT_SYMBOL(blk_start_plug
);
3606 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
3608 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
3609 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
3611 return !(rqa
->q
< rqb
->q
||
3612 (rqa
->q
== rqb
->q
&& blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
3616 * If 'from_schedule' is true, then postpone the dispatch of requests
3617 * until a safe kblockd context. We due this to avoid accidental big
3618 * additional stack usage in driver dispatch, in places where the originally
3619 * plugger did not intend it.
3621 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
3623 __releases(q
->queue_lock
)
3625 lockdep_assert_held(q
->queue_lock
);
3627 trace_block_unplug(q
, depth
, !from_schedule
);
3630 blk_run_queue_async(q
);
3633 spin_unlock(q
->queue_lock
);
3636 static void flush_plug_callbacks(struct blk_plug
*plug
, bool from_schedule
)
3638 LIST_HEAD(callbacks
);
3640 while (!list_empty(&plug
->cb_list
)) {
3641 list_splice_init(&plug
->cb_list
, &callbacks
);
3643 while (!list_empty(&callbacks
)) {
3644 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
3647 list_del(&cb
->list
);
3648 cb
->callback(cb
, from_schedule
);
3653 struct blk_plug_cb
*blk_check_plugged(blk_plug_cb_fn unplug
, void *data
,
3656 struct blk_plug
*plug
= current
->plug
;
3657 struct blk_plug_cb
*cb
;
3662 list_for_each_entry(cb
, &plug
->cb_list
, list
)
3663 if (cb
->callback
== unplug
&& cb
->data
== data
)
3666 /* Not currently on the callback list */
3667 BUG_ON(size
< sizeof(*cb
));
3668 cb
= kzalloc(size
, GFP_ATOMIC
);
3671 cb
->callback
= unplug
;
3672 list_add(&cb
->list
, &plug
->cb_list
);
3676 EXPORT_SYMBOL(blk_check_plugged
);
3678 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
3680 struct request_queue
*q
;
3681 unsigned long flags
;
3686 flush_plug_callbacks(plug
, from_schedule
);
3688 if (!list_empty(&plug
->mq_list
))
3689 blk_mq_flush_plug_list(plug
, from_schedule
);
3691 if (list_empty(&plug
->list
))
3694 list_splice_init(&plug
->list
, &list
);
3696 list_sort(NULL
, &list
, plug_rq_cmp
);
3702 * Save and disable interrupts here, to avoid doing it for every
3703 * queue lock we have to take.
3705 local_irq_save(flags
);
3706 while (!list_empty(&list
)) {
3707 rq
= list_entry_rq(list
.next
);
3708 list_del_init(&rq
->queuelist
);
3712 * This drops the queue lock
3715 queue_unplugged(q
, depth
, from_schedule
);
3718 spin_lock(q
->queue_lock
);
3722 * Short-circuit if @q is dead
3724 if (unlikely(blk_queue_dying(q
))) {
3725 __blk_end_request_all(rq
, BLK_STS_IOERR
);
3730 * rq is already accounted, so use raw insert
3732 if (op_is_flush(rq
->cmd_flags
))
3733 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
3735 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
3741 * This drops the queue lock
3744 queue_unplugged(q
, depth
, from_schedule
);
3746 local_irq_restore(flags
);
3749 void blk_finish_plug(struct blk_plug
*plug
)
3751 if (plug
!= current
->plug
)
3753 blk_flush_plug_list(plug
, false);
3755 current
->plug
= NULL
;
3757 EXPORT_SYMBOL(blk_finish_plug
);
3761 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3762 * @q: the queue of the device
3763 * @dev: the device the queue belongs to
3766 * Initialize runtime-PM-related fields for @q and start auto suspend for
3767 * @dev. Drivers that want to take advantage of request-based runtime PM
3768 * should call this function after @dev has been initialized, and its
3769 * request queue @q has been allocated, and runtime PM for it can not happen
3770 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3771 * cases, driver should call this function before any I/O has taken place.
3773 * This function takes care of setting up using auto suspend for the device,
3774 * the autosuspend delay is set to -1 to make runtime suspend impossible
3775 * until an updated value is either set by user or by driver. Drivers do
3776 * not need to touch other autosuspend settings.
3778 * The block layer runtime PM is request based, so only works for drivers
3779 * that use request as their IO unit instead of those directly use bio's.
3781 void blk_pm_runtime_init(struct request_queue
*q
, struct device
*dev
)
3783 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3788 q
->rpm_status
= RPM_ACTIVE
;
3789 pm_runtime_set_autosuspend_delay(q
->dev
, -1);
3790 pm_runtime_use_autosuspend(q
->dev
);
3792 EXPORT_SYMBOL(blk_pm_runtime_init
);
3795 * blk_pre_runtime_suspend - Pre runtime suspend check
3796 * @q: the queue of the device
3799 * This function will check if runtime suspend is allowed for the device
3800 * by examining if there are any requests pending in the queue. If there
3801 * are requests pending, the device can not be runtime suspended; otherwise,
3802 * the queue's status will be updated to SUSPENDING and the driver can
3803 * proceed to suspend the device.
3805 * For the not allowed case, we mark last busy for the device so that
3806 * runtime PM core will try to autosuspend it some time later.
3808 * This function should be called near the start of the device's
3809 * runtime_suspend callback.
3812 * 0 - OK to runtime suspend the device
3813 * -EBUSY - Device should not be runtime suspended
3815 int blk_pre_runtime_suspend(struct request_queue
*q
)
3822 spin_lock_irq(q
->queue_lock
);
3823 if (q
->nr_pending
) {
3825 pm_runtime_mark_last_busy(q
->dev
);
3827 q
->rpm_status
= RPM_SUSPENDING
;
3829 spin_unlock_irq(q
->queue_lock
);
3832 EXPORT_SYMBOL(blk_pre_runtime_suspend
);
3835 * blk_post_runtime_suspend - Post runtime suspend processing
3836 * @q: the queue of the device
3837 * @err: return value of the device's runtime_suspend function
3840 * Update the queue's runtime status according to the return value of the
3841 * device's runtime suspend function and mark last busy for the device so
3842 * that PM core will try to auto suspend the device at a later time.
3844 * This function should be called near the end of the device's
3845 * runtime_suspend callback.
3847 void blk_post_runtime_suspend(struct request_queue
*q
, int err
)
3852 spin_lock_irq(q
->queue_lock
);
3854 q
->rpm_status
= RPM_SUSPENDED
;
3856 q
->rpm_status
= RPM_ACTIVE
;
3857 pm_runtime_mark_last_busy(q
->dev
);
3859 spin_unlock_irq(q
->queue_lock
);
3861 EXPORT_SYMBOL(blk_post_runtime_suspend
);
3864 * blk_pre_runtime_resume - Pre runtime resume processing
3865 * @q: the queue of the device
3868 * Update the queue's runtime status to RESUMING in preparation for the
3869 * runtime resume of the device.
3871 * This function should be called near the start of the device's
3872 * runtime_resume callback.
3874 void blk_pre_runtime_resume(struct request_queue
*q
)
3879 spin_lock_irq(q
->queue_lock
);
3880 q
->rpm_status
= RPM_RESUMING
;
3881 spin_unlock_irq(q
->queue_lock
);
3883 EXPORT_SYMBOL(blk_pre_runtime_resume
);
3886 * blk_post_runtime_resume - Post runtime resume processing
3887 * @q: the queue of the device
3888 * @err: return value of the device's runtime_resume function
3891 * Update the queue's runtime status according to the return value of the
3892 * device's runtime_resume function. If it is successfully resumed, process
3893 * the requests that are queued into the device's queue when it is resuming
3894 * and then mark last busy and initiate autosuspend for it.
3896 * This function should be called near the end of the device's
3897 * runtime_resume callback.
3899 void blk_post_runtime_resume(struct request_queue
*q
, int err
)
3904 spin_lock_irq(q
->queue_lock
);
3906 q
->rpm_status
= RPM_ACTIVE
;
3908 pm_runtime_mark_last_busy(q
->dev
);
3909 pm_request_autosuspend(q
->dev
);
3911 q
->rpm_status
= RPM_SUSPENDED
;
3913 spin_unlock_irq(q
->queue_lock
);
3915 EXPORT_SYMBOL(blk_post_runtime_resume
);
3918 * blk_set_runtime_active - Force runtime status of the queue to be active
3919 * @q: the queue of the device
3921 * If the device is left runtime suspended during system suspend the resume
3922 * hook typically resumes the device and corrects runtime status
3923 * accordingly. However, that does not affect the queue runtime PM status
3924 * which is still "suspended". This prevents processing requests from the
3927 * This function can be used in driver's resume hook to correct queue
3928 * runtime PM status and re-enable peeking requests from the queue. It
3929 * should be called before first request is added to the queue.
3931 void blk_set_runtime_active(struct request_queue
*q
)
3933 spin_lock_irq(q
->queue_lock
);
3934 q
->rpm_status
= RPM_ACTIVE
;
3935 pm_runtime_mark_last_busy(q
->dev
);
3936 pm_request_autosuspend(q
->dev
);
3937 spin_unlock_irq(q
->queue_lock
);
3939 EXPORT_SYMBOL(blk_set_runtime_active
);
3942 int __init
blk_dev_init(void)
3944 BUILD_BUG_ON(REQ_OP_LAST
>= (1 << REQ_OP_BITS
));
3945 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
3946 FIELD_SIZEOF(struct request
, cmd_flags
));
3947 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
3948 FIELD_SIZEOF(struct bio
, bi_opf
));
3950 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3951 kblockd_workqueue
= alloc_workqueue("kblockd",
3952 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
3953 if (!kblockd_workqueue
)
3954 panic("Failed to create kblockd\n");
3956 request_cachep
= kmem_cache_create("blkdev_requests",
3957 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
3959 blk_requestq_cachep
= kmem_cache_create("request_queue",
3960 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);
3962 #ifdef CONFIG_DEBUG_FS
3963 blk_debugfs_root
= debugfs_create_dir("block", NULL
);