V4L/DVB (8425): v4l: fix checkpatch errors introduced by recent commits
[linux-2.6/btrfs-unstable.git] / fs / ext4 / inode.c
blob8ca2763df091051fea3e02ae7bba35a1e82e21d9
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
44 static inline int ext4_begin_ordered_truncate(struct inode *inode,
45 loff_t new_size)
47 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
48 new_size);
51 static void ext4_invalidatepage(struct page *page, unsigned long offset);
54 * Test whether an inode is a fast symlink.
56 static int ext4_inode_is_fast_symlink(struct inode *inode)
58 int ea_blocks = EXT4_I(inode)->i_file_acl ?
59 (inode->i_sb->s_blocksize >> 9) : 0;
61 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
65 * The ext4 forget function must perform a revoke if we are freeing data
66 * which has been journaled. Metadata (eg. indirect blocks) must be
67 * revoked in all cases.
69 * "bh" may be NULL: a metadata block may have been freed from memory
70 * but there may still be a record of it in the journal, and that record
71 * still needs to be revoked.
73 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
74 struct buffer_head *bh, ext4_fsblk_t blocknr)
76 int err;
78 might_sleep();
80 BUFFER_TRACE(bh, "enter");
82 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
83 "data mode %lx\n",
84 bh, is_metadata, inode->i_mode,
85 test_opt(inode->i_sb, DATA_FLAGS));
87 /* Never use the revoke function if we are doing full data
88 * journaling: there is no need to, and a V1 superblock won't
89 * support it. Otherwise, only skip the revoke on un-journaled
90 * data blocks. */
92 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
93 (!is_metadata && !ext4_should_journal_data(inode))) {
94 if (bh) {
95 BUFFER_TRACE(bh, "call jbd2_journal_forget");
96 return ext4_journal_forget(handle, bh);
98 return 0;
102 * data!=journal && (is_metadata || should_journal_data(inode))
104 BUFFER_TRACE(bh, "call ext4_journal_revoke");
105 err = ext4_journal_revoke(handle, blocknr, bh);
106 if (err)
107 ext4_abort(inode->i_sb, __func__,
108 "error %d when attempting revoke", err);
109 BUFFER_TRACE(bh, "exit");
110 return err;
114 * Work out how many blocks we need to proceed with the next chunk of a
115 * truncate transaction.
117 static unsigned long blocks_for_truncate(struct inode *inode)
119 ext4_lblk_t needed;
121 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
123 /* Give ourselves just enough room to cope with inodes in which
124 * i_blocks is corrupt: we've seen disk corruptions in the past
125 * which resulted in random data in an inode which looked enough
126 * like a regular file for ext4 to try to delete it. Things
127 * will go a bit crazy if that happens, but at least we should
128 * try not to panic the whole kernel. */
129 if (needed < 2)
130 needed = 2;
132 /* But we need to bound the transaction so we don't overflow the
133 * journal. */
134 if (needed > EXT4_MAX_TRANS_DATA)
135 needed = EXT4_MAX_TRANS_DATA;
137 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
141 * Truncate transactions can be complex and absolutely huge. So we need to
142 * be able to restart the transaction at a conventient checkpoint to make
143 * sure we don't overflow the journal.
145 * start_transaction gets us a new handle for a truncate transaction,
146 * and extend_transaction tries to extend the existing one a bit. If
147 * extend fails, we need to propagate the failure up and restart the
148 * transaction in the top-level truncate loop. --sct
150 static handle_t *start_transaction(struct inode *inode)
152 handle_t *result;
154 result = ext4_journal_start(inode, blocks_for_truncate(inode));
155 if (!IS_ERR(result))
156 return result;
158 ext4_std_error(inode->i_sb, PTR_ERR(result));
159 return result;
163 * Try to extend this transaction for the purposes of truncation.
165 * Returns 0 if we managed to create more room. If we can't create more
166 * room, and the transaction must be restarted we return 1.
168 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
170 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
171 return 0;
172 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
173 return 0;
174 return 1;
178 * Restart the transaction associated with *handle. This does a commit,
179 * so before we call here everything must be consistently dirtied against
180 * this transaction.
182 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
184 jbd_debug(2, "restarting handle %p\n", handle);
185 return ext4_journal_restart(handle, blocks_for_truncate(inode));
189 * Called at the last iput() if i_nlink is zero.
191 void ext4_delete_inode (struct inode * inode)
193 handle_t *handle;
195 if (ext4_should_order_data(inode))
196 ext4_begin_ordered_truncate(inode, 0);
197 truncate_inode_pages(&inode->i_data, 0);
199 if (is_bad_inode(inode))
200 goto no_delete;
202 handle = start_transaction(inode);
203 if (IS_ERR(handle)) {
205 * If we're going to skip the normal cleanup, we still need to
206 * make sure that the in-core orphan linked list is properly
207 * cleaned up.
209 ext4_orphan_del(NULL, inode);
210 goto no_delete;
213 if (IS_SYNC(inode))
214 handle->h_sync = 1;
215 inode->i_size = 0;
216 if (inode->i_blocks)
217 ext4_truncate(inode);
219 * Kill off the orphan record which ext4_truncate created.
220 * AKPM: I think this can be inside the above `if'.
221 * Note that ext4_orphan_del() has to be able to cope with the
222 * deletion of a non-existent orphan - this is because we don't
223 * know if ext4_truncate() actually created an orphan record.
224 * (Well, we could do this if we need to, but heck - it works)
226 ext4_orphan_del(handle, inode);
227 EXT4_I(inode)->i_dtime = get_seconds();
230 * One subtle ordering requirement: if anything has gone wrong
231 * (transaction abort, IO errors, whatever), then we can still
232 * do these next steps (the fs will already have been marked as
233 * having errors), but we can't free the inode if the mark_dirty
234 * fails.
236 if (ext4_mark_inode_dirty(handle, inode))
237 /* If that failed, just do the required in-core inode clear. */
238 clear_inode(inode);
239 else
240 ext4_free_inode(handle, inode);
241 ext4_journal_stop(handle);
242 return;
243 no_delete:
244 clear_inode(inode); /* We must guarantee clearing of inode... */
247 typedef struct {
248 __le32 *p;
249 __le32 key;
250 struct buffer_head *bh;
251 } Indirect;
253 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
255 p->key = *(p->p = v);
256 p->bh = bh;
260 * ext4_block_to_path - parse the block number into array of offsets
261 * @inode: inode in question (we are only interested in its superblock)
262 * @i_block: block number to be parsed
263 * @offsets: array to store the offsets in
264 * @boundary: set this non-zero if the referred-to block is likely to be
265 * followed (on disk) by an indirect block.
267 * To store the locations of file's data ext4 uses a data structure common
268 * for UNIX filesystems - tree of pointers anchored in the inode, with
269 * data blocks at leaves and indirect blocks in intermediate nodes.
270 * This function translates the block number into path in that tree -
271 * return value is the path length and @offsets[n] is the offset of
272 * pointer to (n+1)th node in the nth one. If @block is out of range
273 * (negative or too large) warning is printed and zero returned.
275 * Note: function doesn't find node addresses, so no IO is needed. All
276 * we need to know is the capacity of indirect blocks (taken from the
277 * inode->i_sb).
281 * Portability note: the last comparison (check that we fit into triple
282 * indirect block) is spelled differently, because otherwise on an
283 * architecture with 32-bit longs and 8Kb pages we might get into trouble
284 * if our filesystem had 8Kb blocks. We might use long long, but that would
285 * kill us on x86. Oh, well, at least the sign propagation does not matter -
286 * i_block would have to be negative in the very beginning, so we would not
287 * get there at all.
290 static int ext4_block_to_path(struct inode *inode,
291 ext4_lblk_t i_block,
292 ext4_lblk_t offsets[4], int *boundary)
294 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
295 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
296 const long direct_blocks = EXT4_NDIR_BLOCKS,
297 indirect_blocks = ptrs,
298 double_blocks = (1 << (ptrs_bits * 2));
299 int n = 0;
300 int final = 0;
302 if (i_block < 0) {
303 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
304 } else if (i_block < direct_blocks) {
305 offsets[n++] = i_block;
306 final = direct_blocks;
307 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
308 offsets[n++] = EXT4_IND_BLOCK;
309 offsets[n++] = i_block;
310 final = ptrs;
311 } else if ((i_block -= indirect_blocks) < double_blocks) {
312 offsets[n++] = EXT4_DIND_BLOCK;
313 offsets[n++] = i_block >> ptrs_bits;
314 offsets[n++] = i_block & (ptrs - 1);
315 final = ptrs;
316 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
317 offsets[n++] = EXT4_TIND_BLOCK;
318 offsets[n++] = i_block >> (ptrs_bits * 2);
319 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
320 offsets[n++] = i_block & (ptrs - 1);
321 final = ptrs;
322 } else {
323 ext4_warning(inode->i_sb, "ext4_block_to_path",
324 "block %lu > max",
325 i_block + direct_blocks +
326 indirect_blocks + double_blocks);
328 if (boundary)
329 *boundary = final - 1 - (i_block & (ptrs - 1));
330 return n;
334 * ext4_get_branch - read the chain of indirect blocks leading to data
335 * @inode: inode in question
336 * @depth: depth of the chain (1 - direct pointer, etc.)
337 * @offsets: offsets of pointers in inode/indirect blocks
338 * @chain: place to store the result
339 * @err: here we store the error value
341 * Function fills the array of triples <key, p, bh> and returns %NULL
342 * if everything went OK or the pointer to the last filled triple
343 * (incomplete one) otherwise. Upon the return chain[i].key contains
344 * the number of (i+1)-th block in the chain (as it is stored in memory,
345 * i.e. little-endian 32-bit), chain[i].p contains the address of that
346 * number (it points into struct inode for i==0 and into the bh->b_data
347 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
348 * block for i>0 and NULL for i==0. In other words, it holds the block
349 * numbers of the chain, addresses they were taken from (and where we can
350 * verify that chain did not change) and buffer_heads hosting these
351 * numbers.
353 * Function stops when it stumbles upon zero pointer (absent block)
354 * (pointer to last triple returned, *@err == 0)
355 * or when it gets an IO error reading an indirect block
356 * (ditto, *@err == -EIO)
357 * or when it reads all @depth-1 indirect blocks successfully and finds
358 * the whole chain, all way to the data (returns %NULL, *err == 0).
360 * Need to be called with
361 * down_read(&EXT4_I(inode)->i_data_sem)
363 static Indirect *ext4_get_branch(struct inode *inode, int depth,
364 ext4_lblk_t *offsets,
365 Indirect chain[4], int *err)
367 struct super_block *sb = inode->i_sb;
368 Indirect *p = chain;
369 struct buffer_head *bh;
371 *err = 0;
372 /* i_data is not going away, no lock needed */
373 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
374 if (!p->key)
375 goto no_block;
376 while (--depth) {
377 bh = sb_bread(sb, le32_to_cpu(p->key));
378 if (!bh)
379 goto failure;
380 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
381 /* Reader: end */
382 if (!p->key)
383 goto no_block;
385 return NULL;
387 failure:
388 *err = -EIO;
389 no_block:
390 return p;
394 * ext4_find_near - find a place for allocation with sufficient locality
395 * @inode: owner
396 * @ind: descriptor of indirect block.
398 * This function returns the preferred place for block allocation.
399 * It is used when heuristic for sequential allocation fails.
400 * Rules are:
401 * + if there is a block to the left of our position - allocate near it.
402 * + if pointer will live in indirect block - allocate near that block.
403 * + if pointer will live in inode - allocate in the same
404 * cylinder group.
406 * In the latter case we colour the starting block by the callers PID to
407 * prevent it from clashing with concurrent allocations for a different inode
408 * in the same block group. The PID is used here so that functionally related
409 * files will be close-by on-disk.
411 * Caller must make sure that @ind is valid and will stay that way.
413 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
415 struct ext4_inode_info *ei = EXT4_I(inode);
416 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
417 __le32 *p;
418 ext4_fsblk_t bg_start;
419 ext4_fsblk_t last_block;
420 ext4_grpblk_t colour;
422 /* Try to find previous block */
423 for (p = ind->p - 1; p >= start; p--) {
424 if (*p)
425 return le32_to_cpu(*p);
428 /* No such thing, so let's try location of indirect block */
429 if (ind->bh)
430 return ind->bh->b_blocknr;
433 * It is going to be referred to from the inode itself? OK, just put it
434 * into the same cylinder group then.
436 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
437 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
439 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
440 colour = (current->pid % 16) *
441 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
442 else
443 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
444 return bg_start + colour;
448 * ext4_find_goal - find a preferred place for allocation.
449 * @inode: owner
450 * @block: block we want
451 * @partial: pointer to the last triple within a chain
453 * Normally this function find the preferred place for block allocation,
454 * returns it.
456 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
457 Indirect *partial)
459 struct ext4_block_alloc_info *block_i;
461 block_i = EXT4_I(inode)->i_block_alloc_info;
464 * try the heuristic for sequential allocation,
465 * failing that at least try to get decent locality.
467 if (block_i && (block == block_i->last_alloc_logical_block + 1)
468 && (block_i->last_alloc_physical_block != 0)) {
469 return block_i->last_alloc_physical_block + 1;
472 return ext4_find_near(inode, partial);
476 * ext4_blks_to_allocate: Look up the block map and count the number
477 * of direct blocks need to be allocated for the given branch.
479 * @branch: chain of indirect blocks
480 * @k: number of blocks need for indirect blocks
481 * @blks: number of data blocks to be mapped.
482 * @blocks_to_boundary: the offset in the indirect block
484 * return the total number of blocks to be allocate, including the
485 * direct and indirect blocks.
487 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
488 int blocks_to_boundary)
490 unsigned long count = 0;
493 * Simple case, [t,d]Indirect block(s) has not allocated yet
494 * then it's clear blocks on that path have not allocated
496 if (k > 0) {
497 /* right now we don't handle cross boundary allocation */
498 if (blks < blocks_to_boundary + 1)
499 count += blks;
500 else
501 count += blocks_to_boundary + 1;
502 return count;
505 count++;
506 while (count < blks && count <= blocks_to_boundary &&
507 le32_to_cpu(*(branch[0].p + count)) == 0) {
508 count++;
510 return count;
514 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
515 * @indirect_blks: the number of blocks need to allocate for indirect
516 * blocks
518 * @new_blocks: on return it will store the new block numbers for
519 * the indirect blocks(if needed) and the first direct block,
520 * @blks: on return it will store the total number of allocated
521 * direct blocks
523 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
524 ext4_lblk_t iblock, ext4_fsblk_t goal,
525 int indirect_blks, int blks,
526 ext4_fsblk_t new_blocks[4], int *err)
528 int target, i;
529 unsigned long count = 0, blk_allocated = 0;
530 int index = 0;
531 ext4_fsblk_t current_block = 0;
532 int ret = 0;
535 * Here we try to allocate the requested multiple blocks at once,
536 * on a best-effort basis.
537 * To build a branch, we should allocate blocks for
538 * the indirect blocks(if not allocated yet), and at least
539 * the first direct block of this branch. That's the
540 * minimum number of blocks need to allocate(required)
542 /* first we try to allocate the indirect blocks */
543 target = indirect_blks;
544 while (target > 0) {
545 count = target;
546 /* allocating blocks for indirect blocks and direct blocks */
547 current_block = ext4_new_meta_blocks(handle, inode,
548 goal, &count, err);
549 if (*err)
550 goto failed_out;
552 target -= count;
553 /* allocate blocks for indirect blocks */
554 while (index < indirect_blks && count) {
555 new_blocks[index++] = current_block++;
556 count--;
558 if (count > 0) {
560 * save the new block number
561 * for the first direct block
563 new_blocks[index] = current_block;
564 printk(KERN_INFO "%s returned more blocks than "
565 "requested\n", __func__);
566 WARN_ON(1);
567 break;
571 target = blks - count ;
572 blk_allocated = count;
573 if (!target)
574 goto allocated;
575 /* Now allocate data blocks */
576 count = target;
577 /* allocating blocks for data blocks */
578 current_block = ext4_new_blocks(handle, inode, iblock,
579 goal, &count, err);
580 if (*err && (target == blks)) {
582 * if the allocation failed and we didn't allocate
583 * any blocks before
585 goto failed_out;
587 if (!*err) {
588 if (target == blks) {
590 * save the new block number
591 * for the first direct block
593 new_blocks[index] = current_block;
595 blk_allocated += count;
597 allocated:
598 /* total number of blocks allocated for direct blocks */
599 ret = blk_allocated;
600 *err = 0;
601 return ret;
602 failed_out:
603 for (i = 0; i <index; i++)
604 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
605 return ret;
609 * ext4_alloc_branch - allocate and set up a chain of blocks.
610 * @inode: owner
611 * @indirect_blks: number of allocated indirect blocks
612 * @blks: number of allocated direct blocks
613 * @offsets: offsets (in the blocks) to store the pointers to next.
614 * @branch: place to store the chain in.
616 * This function allocates blocks, zeroes out all but the last one,
617 * links them into chain and (if we are synchronous) writes them to disk.
618 * In other words, it prepares a branch that can be spliced onto the
619 * inode. It stores the information about that chain in the branch[], in
620 * the same format as ext4_get_branch() would do. We are calling it after
621 * we had read the existing part of chain and partial points to the last
622 * triple of that (one with zero ->key). Upon the exit we have the same
623 * picture as after the successful ext4_get_block(), except that in one
624 * place chain is disconnected - *branch->p is still zero (we did not
625 * set the last link), but branch->key contains the number that should
626 * be placed into *branch->p to fill that gap.
628 * If allocation fails we free all blocks we've allocated (and forget
629 * their buffer_heads) and return the error value the from failed
630 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
631 * as described above and return 0.
633 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
634 ext4_lblk_t iblock, int indirect_blks,
635 int *blks, ext4_fsblk_t goal,
636 ext4_lblk_t *offsets, Indirect *branch)
638 int blocksize = inode->i_sb->s_blocksize;
639 int i, n = 0;
640 int err = 0;
641 struct buffer_head *bh;
642 int num;
643 ext4_fsblk_t new_blocks[4];
644 ext4_fsblk_t current_block;
646 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
647 *blks, new_blocks, &err);
648 if (err)
649 return err;
651 branch[0].key = cpu_to_le32(new_blocks[0]);
653 * metadata blocks and data blocks are allocated.
655 for (n = 1; n <= indirect_blks; n++) {
657 * Get buffer_head for parent block, zero it out
658 * and set the pointer to new one, then send
659 * parent to disk.
661 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
662 branch[n].bh = bh;
663 lock_buffer(bh);
664 BUFFER_TRACE(bh, "call get_create_access");
665 err = ext4_journal_get_create_access(handle, bh);
666 if (err) {
667 unlock_buffer(bh);
668 brelse(bh);
669 goto failed;
672 memset(bh->b_data, 0, blocksize);
673 branch[n].p = (__le32 *) bh->b_data + offsets[n];
674 branch[n].key = cpu_to_le32(new_blocks[n]);
675 *branch[n].p = branch[n].key;
676 if ( n == indirect_blks) {
677 current_block = new_blocks[n];
679 * End of chain, update the last new metablock of
680 * the chain to point to the new allocated
681 * data blocks numbers
683 for (i=1; i < num; i++)
684 *(branch[n].p + i) = cpu_to_le32(++current_block);
686 BUFFER_TRACE(bh, "marking uptodate");
687 set_buffer_uptodate(bh);
688 unlock_buffer(bh);
690 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
691 err = ext4_journal_dirty_metadata(handle, bh);
692 if (err)
693 goto failed;
695 *blks = num;
696 return err;
697 failed:
698 /* Allocation failed, free what we already allocated */
699 for (i = 1; i <= n ; i++) {
700 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
701 ext4_journal_forget(handle, branch[i].bh);
703 for (i = 0; i <indirect_blks; i++)
704 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
706 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
708 return err;
712 * ext4_splice_branch - splice the allocated branch onto inode.
713 * @inode: owner
714 * @block: (logical) number of block we are adding
715 * @chain: chain of indirect blocks (with a missing link - see
716 * ext4_alloc_branch)
717 * @where: location of missing link
718 * @num: number of indirect blocks we are adding
719 * @blks: number of direct blocks we are adding
721 * This function fills the missing link and does all housekeeping needed in
722 * inode (->i_blocks, etc.). In case of success we end up with the full
723 * chain to new block and return 0.
725 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
726 ext4_lblk_t block, Indirect *where, int num, int blks)
728 int i;
729 int err = 0;
730 struct ext4_block_alloc_info *block_i;
731 ext4_fsblk_t current_block;
733 block_i = EXT4_I(inode)->i_block_alloc_info;
735 * If we're splicing into a [td]indirect block (as opposed to the
736 * inode) then we need to get write access to the [td]indirect block
737 * before the splice.
739 if (where->bh) {
740 BUFFER_TRACE(where->bh, "get_write_access");
741 err = ext4_journal_get_write_access(handle, where->bh);
742 if (err)
743 goto err_out;
745 /* That's it */
747 *where->p = where->key;
750 * Update the host buffer_head or inode to point to more just allocated
751 * direct blocks blocks
753 if (num == 0 && blks > 1) {
754 current_block = le32_to_cpu(where->key) + 1;
755 for (i = 1; i < blks; i++)
756 *(where->p + i ) = cpu_to_le32(current_block++);
760 * update the most recently allocated logical & physical block
761 * in i_block_alloc_info, to assist find the proper goal block for next
762 * allocation
764 if (block_i) {
765 block_i->last_alloc_logical_block = block + blks - 1;
766 block_i->last_alloc_physical_block =
767 le32_to_cpu(where[num].key) + blks - 1;
770 /* We are done with atomic stuff, now do the rest of housekeeping */
772 inode->i_ctime = ext4_current_time(inode);
773 ext4_mark_inode_dirty(handle, inode);
775 /* had we spliced it onto indirect block? */
776 if (where->bh) {
778 * If we spliced it onto an indirect block, we haven't
779 * altered the inode. Note however that if it is being spliced
780 * onto an indirect block at the very end of the file (the
781 * file is growing) then we *will* alter the inode to reflect
782 * the new i_size. But that is not done here - it is done in
783 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
785 jbd_debug(5, "splicing indirect only\n");
786 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
787 err = ext4_journal_dirty_metadata(handle, where->bh);
788 if (err)
789 goto err_out;
790 } else {
792 * OK, we spliced it into the inode itself on a direct block.
793 * Inode was dirtied above.
795 jbd_debug(5, "splicing direct\n");
797 return err;
799 err_out:
800 for (i = 1; i <= num; i++) {
801 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
802 ext4_journal_forget(handle, where[i].bh);
803 ext4_free_blocks(handle, inode,
804 le32_to_cpu(where[i-1].key), 1, 0);
806 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
808 return err;
812 * Allocation strategy is simple: if we have to allocate something, we will
813 * have to go the whole way to leaf. So let's do it before attaching anything
814 * to tree, set linkage between the newborn blocks, write them if sync is
815 * required, recheck the path, free and repeat if check fails, otherwise
816 * set the last missing link (that will protect us from any truncate-generated
817 * removals - all blocks on the path are immune now) and possibly force the
818 * write on the parent block.
819 * That has a nice additional property: no special recovery from the failed
820 * allocations is needed - we simply release blocks and do not touch anything
821 * reachable from inode.
823 * `handle' can be NULL if create == 0.
825 * return > 0, # of blocks mapped or allocated.
826 * return = 0, if plain lookup failed.
827 * return < 0, error case.
830 * Need to be called with
831 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
832 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
834 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
835 ext4_lblk_t iblock, unsigned long maxblocks,
836 struct buffer_head *bh_result,
837 int create, int extend_disksize)
839 int err = -EIO;
840 ext4_lblk_t offsets[4];
841 Indirect chain[4];
842 Indirect *partial;
843 ext4_fsblk_t goal;
844 int indirect_blks;
845 int blocks_to_boundary = 0;
846 int depth;
847 struct ext4_inode_info *ei = EXT4_I(inode);
848 int count = 0;
849 ext4_fsblk_t first_block = 0;
850 loff_t disksize;
853 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
854 J_ASSERT(handle != NULL || create == 0);
855 depth = ext4_block_to_path(inode, iblock, offsets,
856 &blocks_to_boundary);
858 if (depth == 0)
859 goto out;
861 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
863 /* Simplest case - block found, no allocation needed */
864 if (!partial) {
865 first_block = le32_to_cpu(chain[depth - 1].key);
866 clear_buffer_new(bh_result);
867 count++;
868 /*map more blocks*/
869 while (count < maxblocks && count <= blocks_to_boundary) {
870 ext4_fsblk_t blk;
872 blk = le32_to_cpu(*(chain[depth-1].p + count));
874 if (blk == first_block + count)
875 count++;
876 else
877 break;
879 goto got_it;
882 /* Next simple case - plain lookup or failed read of indirect block */
883 if (!create || err == -EIO)
884 goto cleanup;
887 * Okay, we need to do block allocation. Lazily initialize the block
888 * allocation info here if necessary
890 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
891 ext4_init_block_alloc_info(inode);
893 goal = ext4_find_goal(inode, iblock, partial);
895 /* the number of blocks need to allocate for [d,t]indirect blocks */
896 indirect_blks = (chain + depth) - partial - 1;
899 * Next look up the indirect map to count the totoal number of
900 * direct blocks to allocate for this branch.
902 count = ext4_blks_to_allocate(partial, indirect_blks,
903 maxblocks, blocks_to_boundary);
905 * Block out ext4_truncate while we alter the tree
907 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
908 &count, goal,
909 offsets + (partial - chain), partial);
912 * The ext4_splice_branch call will free and forget any buffers
913 * on the new chain if there is a failure, but that risks using
914 * up transaction credits, especially for bitmaps where the
915 * credits cannot be returned. Can we handle this somehow? We
916 * may need to return -EAGAIN upwards in the worst case. --sct
918 if (!err)
919 err = ext4_splice_branch(handle, inode, iblock,
920 partial, indirect_blks, count);
922 * i_disksize growing is protected by i_data_sem. Don't forget to
923 * protect it if you're about to implement concurrent
924 * ext4_get_block() -bzzz
926 if (!err && extend_disksize) {
927 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
928 if (disksize > i_size_read(inode))
929 disksize = i_size_read(inode);
930 if (disksize > ei->i_disksize)
931 ei->i_disksize = disksize;
933 if (err)
934 goto cleanup;
936 set_buffer_new(bh_result);
937 got_it:
938 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
939 if (count > blocks_to_boundary)
940 set_buffer_boundary(bh_result);
941 err = count;
942 /* Clean up and exit */
943 partial = chain + depth - 1; /* the whole chain */
944 cleanup:
945 while (partial > chain) {
946 BUFFER_TRACE(partial->bh, "call brelse");
947 brelse(partial->bh);
948 partial--;
950 BUFFER_TRACE(bh_result, "returned");
951 out:
952 return err;
955 /* Maximum number of blocks we map for direct IO at once. */
956 #define DIO_MAX_BLOCKS 4096
958 * Number of credits we need for writing DIO_MAX_BLOCKS:
959 * We need sb + group descriptor + bitmap + inode -> 4
960 * For B blocks with A block pointers per block we need:
961 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
962 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
964 #define DIO_CREDITS 25
970 * ext4_ext4 get_block() wrapper function
971 * It will do a look up first, and returns if the blocks already mapped.
972 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
973 * and store the allocated blocks in the result buffer head and mark it
974 * mapped.
976 * If file type is extents based, it will call ext4_ext_get_blocks(),
977 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
978 * based files
980 * On success, it returns the number of blocks being mapped or allocate.
981 * if create==0 and the blocks are pre-allocated and uninitialized block,
982 * the result buffer head is unmapped. If the create ==1, it will make sure
983 * the buffer head is mapped.
985 * It returns 0 if plain look up failed (blocks have not been allocated), in
986 * that casem, buffer head is unmapped
988 * It returns the error in case of allocation failure.
990 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
991 unsigned long max_blocks, struct buffer_head *bh,
992 int create, int extend_disksize, int flag)
994 int retval;
996 clear_buffer_mapped(bh);
999 * Try to see if we can get the block without requesting
1000 * for new file system block.
1002 down_read((&EXT4_I(inode)->i_data_sem));
1003 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1004 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1005 bh, 0, 0);
1006 } else {
1007 retval = ext4_get_blocks_handle(handle,
1008 inode, block, max_blocks, bh, 0, 0);
1010 up_read((&EXT4_I(inode)->i_data_sem));
1012 /* If it is only a block(s) look up */
1013 if (!create)
1014 return retval;
1017 * Returns if the blocks have already allocated
1019 * Note that if blocks have been preallocated
1020 * ext4_ext_get_block() returns th create = 0
1021 * with buffer head unmapped.
1023 if (retval > 0 && buffer_mapped(bh))
1024 return retval;
1027 * New blocks allocate and/or writing to uninitialized extent
1028 * will possibly result in updating i_data, so we take
1029 * the write lock of i_data_sem, and call get_blocks()
1030 * with create == 1 flag.
1032 down_write((&EXT4_I(inode)->i_data_sem));
1035 * if the caller is from delayed allocation writeout path
1036 * we have already reserved fs blocks for allocation
1037 * let the underlying get_block() function know to
1038 * avoid double accounting
1040 if (flag)
1041 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1043 * We need to check for EXT4 here because migrate
1044 * could have changed the inode type in between
1046 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1047 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1048 bh, create, extend_disksize);
1049 } else {
1050 retval = ext4_get_blocks_handle(handle, inode, block,
1051 max_blocks, bh, create, extend_disksize);
1053 if (retval > 0 && buffer_new(bh)) {
1055 * We allocated new blocks which will result in
1056 * i_data's format changing. Force the migrate
1057 * to fail by clearing migrate flags
1059 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1060 ~EXT4_EXT_MIGRATE;
1064 if (flag) {
1065 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1067 * Update reserved blocks/metadata blocks
1068 * after successful block allocation
1069 * which were deferred till now
1071 if ((retval > 0) && buffer_delay(bh))
1072 ext4_da_release_space(inode, retval, 0);
1075 up_write((&EXT4_I(inode)->i_data_sem));
1076 return retval;
1079 static int ext4_get_block(struct inode *inode, sector_t iblock,
1080 struct buffer_head *bh_result, int create)
1082 handle_t *handle = ext4_journal_current_handle();
1083 int ret = 0, started = 0;
1084 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1086 if (create && !handle) {
1087 /* Direct IO write... */
1088 if (max_blocks > DIO_MAX_BLOCKS)
1089 max_blocks = DIO_MAX_BLOCKS;
1090 handle = ext4_journal_start(inode, DIO_CREDITS +
1091 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
1092 if (IS_ERR(handle)) {
1093 ret = PTR_ERR(handle);
1094 goto out;
1096 started = 1;
1099 ret = ext4_get_blocks_wrap(handle, inode, iblock,
1100 max_blocks, bh_result, create, 0, 0);
1101 if (ret > 0) {
1102 bh_result->b_size = (ret << inode->i_blkbits);
1103 ret = 0;
1105 if (started)
1106 ext4_journal_stop(handle);
1107 out:
1108 return ret;
1112 * `handle' can be NULL if create is zero
1114 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1115 ext4_lblk_t block, int create, int *errp)
1117 struct buffer_head dummy;
1118 int fatal = 0, err;
1120 J_ASSERT(handle != NULL || create == 0);
1122 dummy.b_state = 0;
1123 dummy.b_blocknr = -1000;
1124 buffer_trace_init(&dummy.b_history);
1125 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1126 &dummy, create, 1, 0);
1128 * ext4_get_blocks_handle() returns number of blocks
1129 * mapped. 0 in case of a HOLE.
1131 if (err > 0) {
1132 if (err > 1)
1133 WARN_ON(1);
1134 err = 0;
1136 *errp = err;
1137 if (!err && buffer_mapped(&dummy)) {
1138 struct buffer_head *bh;
1139 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1140 if (!bh) {
1141 *errp = -EIO;
1142 goto err;
1144 if (buffer_new(&dummy)) {
1145 J_ASSERT(create != 0);
1146 J_ASSERT(handle != NULL);
1149 * Now that we do not always journal data, we should
1150 * keep in mind whether this should always journal the
1151 * new buffer as metadata. For now, regular file
1152 * writes use ext4_get_block instead, so it's not a
1153 * problem.
1155 lock_buffer(bh);
1156 BUFFER_TRACE(bh, "call get_create_access");
1157 fatal = ext4_journal_get_create_access(handle, bh);
1158 if (!fatal && !buffer_uptodate(bh)) {
1159 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1160 set_buffer_uptodate(bh);
1162 unlock_buffer(bh);
1163 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1164 err = ext4_journal_dirty_metadata(handle, bh);
1165 if (!fatal)
1166 fatal = err;
1167 } else {
1168 BUFFER_TRACE(bh, "not a new buffer");
1170 if (fatal) {
1171 *errp = fatal;
1172 brelse(bh);
1173 bh = NULL;
1175 return bh;
1177 err:
1178 return NULL;
1181 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1182 ext4_lblk_t block, int create, int *err)
1184 struct buffer_head * bh;
1186 bh = ext4_getblk(handle, inode, block, create, err);
1187 if (!bh)
1188 return bh;
1189 if (buffer_uptodate(bh))
1190 return bh;
1191 ll_rw_block(READ_META, 1, &bh);
1192 wait_on_buffer(bh);
1193 if (buffer_uptodate(bh))
1194 return bh;
1195 put_bh(bh);
1196 *err = -EIO;
1197 return NULL;
1200 static int walk_page_buffers( handle_t *handle,
1201 struct buffer_head *head,
1202 unsigned from,
1203 unsigned to,
1204 int *partial,
1205 int (*fn)( handle_t *handle,
1206 struct buffer_head *bh))
1208 struct buffer_head *bh;
1209 unsigned block_start, block_end;
1210 unsigned blocksize = head->b_size;
1211 int err, ret = 0;
1212 struct buffer_head *next;
1214 for ( bh = head, block_start = 0;
1215 ret == 0 && (bh != head || !block_start);
1216 block_start = block_end, bh = next)
1218 next = bh->b_this_page;
1219 block_end = block_start + blocksize;
1220 if (block_end <= from || block_start >= to) {
1221 if (partial && !buffer_uptodate(bh))
1222 *partial = 1;
1223 continue;
1225 err = (*fn)(handle, bh);
1226 if (!ret)
1227 ret = err;
1229 return ret;
1233 * To preserve ordering, it is essential that the hole instantiation and
1234 * the data write be encapsulated in a single transaction. We cannot
1235 * close off a transaction and start a new one between the ext4_get_block()
1236 * and the commit_write(). So doing the jbd2_journal_start at the start of
1237 * prepare_write() is the right place.
1239 * Also, this function can nest inside ext4_writepage() ->
1240 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1241 * has generated enough buffer credits to do the whole page. So we won't
1242 * block on the journal in that case, which is good, because the caller may
1243 * be PF_MEMALLOC.
1245 * By accident, ext4 can be reentered when a transaction is open via
1246 * quota file writes. If we were to commit the transaction while thus
1247 * reentered, there can be a deadlock - we would be holding a quota
1248 * lock, and the commit would never complete if another thread had a
1249 * transaction open and was blocking on the quota lock - a ranking
1250 * violation.
1252 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1253 * will _not_ run commit under these circumstances because handle->h_ref
1254 * is elevated. We'll still have enough credits for the tiny quotafile
1255 * write.
1257 static int do_journal_get_write_access(handle_t *handle,
1258 struct buffer_head *bh)
1260 if (!buffer_mapped(bh) || buffer_freed(bh))
1261 return 0;
1262 return ext4_journal_get_write_access(handle, bh);
1265 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1266 loff_t pos, unsigned len, unsigned flags,
1267 struct page **pagep, void **fsdata)
1269 struct inode *inode = mapping->host;
1270 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1271 handle_t *handle;
1272 int retries = 0;
1273 struct page *page;
1274 pgoff_t index;
1275 unsigned from, to;
1277 index = pos >> PAGE_CACHE_SHIFT;
1278 from = pos & (PAGE_CACHE_SIZE - 1);
1279 to = from + len;
1281 retry:
1282 handle = ext4_journal_start(inode, needed_blocks);
1283 if (IS_ERR(handle)) {
1284 ret = PTR_ERR(handle);
1285 goto out;
1288 page = __grab_cache_page(mapping, index);
1289 if (!page) {
1290 ext4_journal_stop(handle);
1291 ret = -ENOMEM;
1292 goto out;
1294 *pagep = page;
1296 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1297 ext4_get_block);
1299 if (!ret && ext4_should_journal_data(inode)) {
1300 ret = walk_page_buffers(handle, page_buffers(page),
1301 from, to, NULL, do_journal_get_write_access);
1304 if (ret) {
1305 unlock_page(page);
1306 ext4_journal_stop(handle);
1307 page_cache_release(page);
1310 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1311 goto retry;
1312 out:
1313 return ret;
1316 /* For write_end() in data=journal mode */
1317 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1319 if (!buffer_mapped(bh) || buffer_freed(bh))
1320 return 0;
1321 set_buffer_uptodate(bh);
1322 return ext4_journal_dirty_metadata(handle, bh);
1326 * We need to pick up the new inode size which generic_commit_write gave us
1327 * `file' can be NULL - eg, when called from page_symlink().
1329 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1330 * buffers are managed internally.
1332 static int ext4_ordered_write_end(struct file *file,
1333 struct address_space *mapping,
1334 loff_t pos, unsigned len, unsigned copied,
1335 struct page *page, void *fsdata)
1337 handle_t *handle = ext4_journal_current_handle();
1338 struct inode *inode = mapping->host;
1339 unsigned from, to;
1340 int ret = 0, ret2;
1342 from = pos & (PAGE_CACHE_SIZE - 1);
1343 to = from + len;
1345 ret = ext4_jbd2_file_inode(handle, inode);
1347 if (ret == 0) {
1349 * generic_write_end() will run mark_inode_dirty() if i_size
1350 * changes. So let's piggyback the i_disksize mark_inode_dirty
1351 * into that.
1353 loff_t new_i_size;
1355 new_i_size = pos + copied;
1356 if (new_i_size > EXT4_I(inode)->i_disksize)
1357 EXT4_I(inode)->i_disksize = new_i_size;
1358 ret2 = generic_write_end(file, mapping, pos, len, copied,
1359 page, fsdata);
1360 copied = ret2;
1361 if (ret2 < 0)
1362 ret = ret2;
1364 ret2 = ext4_journal_stop(handle);
1365 if (!ret)
1366 ret = ret2;
1368 return ret ? ret : copied;
1371 static int ext4_writeback_write_end(struct file *file,
1372 struct address_space *mapping,
1373 loff_t pos, unsigned len, unsigned copied,
1374 struct page *page, void *fsdata)
1376 handle_t *handle = ext4_journal_current_handle();
1377 struct inode *inode = mapping->host;
1378 int ret = 0, ret2;
1379 loff_t new_i_size;
1381 new_i_size = pos + copied;
1382 if (new_i_size > EXT4_I(inode)->i_disksize)
1383 EXT4_I(inode)->i_disksize = new_i_size;
1385 ret2 = generic_write_end(file, mapping, pos, len, copied,
1386 page, fsdata);
1387 copied = ret2;
1388 if (ret2 < 0)
1389 ret = ret2;
1391 ret2 = ext4_journal_stop(handle);
1392 if (!ret)
1393 ret = ret2;
1395 return ret ? ret : copied;
1398 static int ext4_journalled_write_end(struct file *file,
1399 struct address_space *mapping,
1400 loff_t pos, unsigned len, unsigned copied,
1401 struct page *page, void *fsdata)
1403 handle_t *handle = ext4_journal_current_handle();
1404 struct inode *inode = mapping->host;
1405 int ret = 0, ret2;
1406 int partial = 0;
1407 unsigned from, to;
1409 from = pos & (PAGE_CACHE_SIZE - 1);
1410 to = from + len;
1412 if (copied < len) {
1413 if (!PageUptodate(page))
1414 copied = 0;
1415 page_zero_new_buffers(page, from+copied, to);
1418 ret = walk_page_buffers(handle, page_buffers(page), from,
1419 to, &partial, write_end_fn);
1420 if (!partial)
1421 SetPageUptodate(page);
1422 if (pos+copied > inode->i_size)
1423 i_size_write(inode, pos+copied);
1424 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1425 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1426 EXT4_I(inode)->i_disksize = inode->i_size;
1427 ret2 = ext4_mark_inode_dirty(handle, inode);
1428 if (!ret)
1429 ret = ret2;
1432 unlock_page(page);
1433 ret2 = ext4_journal_stop(handle);
1434 if (!ret)
1435 ret = ret2;
1436 page_cache_release(page);
1438 return ret ? ret : copied;
1441 * Calculate the number of metadata blocks need to reserve
1442 * to allocate @blocks for non extent file based file
1444 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1446 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1447 int ind_blks, dind_blks, tind_blks;
1449 /* number of new indirect blocks needed */
1450 ind_blks = (blocks + icap - 1) / icap;
1452 dind_blks = (ind_blks + icap - 1) / icap;
1454 tind_blks = 1;
1456 return ind_blks + dind_blks + tind_blks;
1460 * Calculate the number of metadata blocks need to reserve
1461 * to allocate given number of blocks
1463 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1465 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1466 return ext4_ext_calc_metadata_amount(inode, blocks);
1468 return ext4_indirect_calc_metadata_amount(inode, blocks);
1471 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1473 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1474 unsigned long md_needed, mdblocks, total = 0;
1477 * recalculate the amount of metadata blocks to reserve
1478 * in order to allocate nrblocks
1479 * worse case is one extent per block
1481 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1482 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1483 mdblocks = ext4_calc_metadata_amount(inode, total);
1484 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1486 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1487 total = md_needed + nrblocks;
1489 if (ext4_has_free_blocks(sbi, total) < total) {
1490 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1491 return -ENOSPC;
1494 /* reduce fs free blocks counter */
1495 percpu_counter_sub(&sbi->s_freeblocks_counter, total);
1497 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1498 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1500 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1501 return 0; /* success */
1504 void ext4_da_release_space(struct inode *inode, int used, int to_free)
1506 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1507 int total, mdb, mdb_free, release;
1509 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1510 /* recalculate the number of metablocks still need to be reserved */
1511 total = EXT4_I(inode)->i_reserved_data_blocks - used - to_free;
1512 mdb = ext4_calc_metadata_amount(inode, total);
1514 /* figure out how many metablocks to release */
1515 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1516 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1518 /* Account for allocated meta_blocks */
1519 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1521 release = to_free + mdb_free;
1523 /* update fs free blocks counter for truncate case */
1524 percpu_counter_add(&sbi->s_freeblocks_counter, release);
1526 /* update per-inode reservations */
1527 BUG_ON(used + to_free > EXT4_I(inode)->i_reserved_data_blocks);
1528 EXT4_I(inode)->i_reserved_data_blocks -= (used + to_free);
1530 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1531 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1532 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1533 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1536 static void ext4_da_page_release_reservation(struct page *page,
1537 unsigned long offset)
1539 int to_release = 0;
1540 struct buffer_head *head, *bh;
1541 unsigned int curr_off = 0;
1543 head = page_buffers(page);
1544 bh = head;
1545 do {
1546 unsigned int next_off = curr_off + bh->b_size;
1548 if ((offset <= curr_off) && (buffer_delay(bh))) {
1549 to_release++;
1550 clear_buffer_delay(bh);
1552 curr_off = next_off;
1553 } while ((bh = bh->b_this_page) != head);
1554 ext4_da_release_space(page->mapping->host, 0, to_release);
1558 * Delayed allocation stuff
1561 struct mpage_da_data {
1562 struct inode *inode;
1563 struct buffer_head lbh; /* extent of blocks */
1564 unsigned long first_page, next_page; /* extent of pages */
1565 get_block_t *get_block;
1566 struct writeback_control *wbc;
1570 * mpage_da_submit_io - walks through extent of pages and try to write
1571 * them with __mpage_writepage()
1573 * @mpd->inode: inode
1574 * @mpd->first_page: first page of the extent
1575 * @mpd->next_page: page after the last page of the extent
1576 * @mpd->get_block: the filesystem's block mapper function
1578 * By the time mpage_da_submit_io() is called we expect all blocks
1579 * to be allocated. this may be wrong if allocation failed.
1581 * As pages are already locked by write_cache_pages(), we can't use it
1583 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1585 struct address_space *mapping = mpd->inode->i_mapping;
1586 struct mpage_data mpd_pp = {
1587 .bio = NULL,
1588 .last_block_in_bio = 0,
1589 .get_block = mpd->get_block,
1590 .use_writepage = 1,
1592 int ret = 0, err, nr_pages, i;
1593 unsigned long index, end;
1594 struct pagevec pvec;
1596 BUG_ON(mpd->next_page <= mpd->first_page);
1598 pagevec_init(&pvec, 0);
1599 index = mpd->first_page;
1600 end = mpd->next_page - 1;
1602 while (index <= end) {
1603 /* XXX: optimize tail */
1604 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1605 if (nr_pages == 0)
1606 break;
1607 for (i = 0; i < nr_pages; i++) {
1608 struct page *page = pvec.pages[i];
1610 index = page->index;
1611 if (index > end)
1612 break;
1613 index++;
1615 err = __mpage_writepage(page, mpd->wbc, &mpd_pp);
1618 * In error case, we have to continue because
1619 * remaining pages are still locked
1620 * XXX: unlock and re-dirty them?
1622 if (ret == 0)
1623 ret = err;
1625 pagevec_release(&pvec);
1627 if (mpd_pp.bio)
1628 mpage_bio_submit(WRITE, mpd_pp.bio);
1630 return ret;
1634 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1636 * @mpd->inode - inode to walk through
1637 * @exbh->b_blocknr - first block on a disk
1638 * @exbh->b_size - amount of space in bytes
1639 * @logical - first logical block to start assignment with
1641 * the function goes through all passed space and put actual disk
1642 * block numbers into buffer heads, dropping BH_Delay
1644 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1645 struct buffer_head *exbh)
1647 struct inode *inode = mpd->inode;
1648 struct address_space *mapping = inode->i_mapping;
1649 int blocks = exbh->b_size >> inode->i_blkbits;
1650 sector_t pblock = exbh->b_blocknr, cur_logical;
1651 struct buffer_head *head, *bh;
1652 unsigned long index, end;
1653 struct pagevec pvec;
1654 int nr_pages, i;
1656 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1657 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1658 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1660 pagevec_init(&pvec, 0);
1662 while (index <= end) {
1663 /* XXX: optimize tail */
1664 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1665 if (nr_pages == 0)
1666 break;
1667 for (i = 0; i < nr_pages; i++) {
1668 struct page *page = pvec.pages[i];
1670 index = page->index;
1671 if (index > end)
1672 break;
1673 index++;
1675 BUG_ON(!PageLocked(page));
1676 BUG_ON(PageWriteback(page));
1677 BUG_ON(!page_has_buffers(page));
1679 bh = page_buffers(page);
1680 head = bh;
1682 /* skip blocks out of the range */
1683 do {
1684 if (cur_logical >= logical)
1685 break;
1686 cur_logical++;
1687 } while ((bh = bh->b_this_page) != head);
1689 do {
1690 if (cur_logical >= logical + blocks)
1691 break;
1692 if (buffer_delay(bh)) {
1693 bh->b_blocknr = pblock;
1694 clear_buffer_delay(bh);
1695 } else if (buffer_mapped(bh))
1696 BUG_ON(bh->b_blocknr != pblock);
1698 cur_logical++;
1699 pblock++;
1700 } while ((bh = bh->b_this_page) != head);
1702 pagevec_release(&pvec);
1708 * __unmap_underlying_blocks - just a helper function to unmap
1709 * set of blocks described by @bh
1711 static inline void __unmap_underlying_blocks(struct inode *inode,
1712 struct buffer_head *bh)
1714 struct block_device *bdev = inode->i_sb->s_bdev;
1715 int blocks, i;
1717 blocks = bh->b_size >> inode->i_blkbits;
1718 for (i = 0; i < blocks; i++)
1719 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1723 * mpage_da_map_blocks - go through given space
1725 * @mpd->lbh - bh describing space
1726 * @mpd->get_block - the filesystem's block mapper function
1728 * The function skips space we know is already mapped to disk blocks.
1730 * The function ignores errors ->get_block() returns, thus real
1731 * error handling is postponed to __mpage_writepage()
1733 static void mpage_da_map_blocks(struct mpage_da_data *mpd)
1735 struct buffer_head *lbh = &mpd->lbh;
1736 int err = 0, remain = lbh->b_size;
1737 sector_t next = lbh->b_blocknr;
1738 struct buffer_head new;
1741 * We consider only non-mapped and non-allocated blocks
1743 if (buffer_mapped(lbh) && !buffer_delay(lbh))
1744 return;
1746 while (remain) {
1747 new.b_state = lbh->b_state;
1748 new.b_blocknr = 0;
1749 new.b_size = remain;
1750 err = mpd->get_block(mpd->inode, next, &new, 1);
1751 if (err) {
1753 * Rather than implement own error handling
1754 * here, we just leave remaining blocks
1755 * unallocated and try again with ->writepage()
1757 break;
1759 BUG_ON(new.b_size == 0);
1761 if (buffer_new(&new))
1762 __unmap_underlying_blocks(mpd->inode, &new);
1765 * If blocks are delayed marked, we need to
1766 * put actual blocknr and drop delayed bit
1768 if (buffer_delay(lbh))
1769 mpage_put_bnr_to_bhs(mpd, next, &new);
1771 /* go for the remaining blocks */
1772 next += new.b_size >> mpd->inode->i_blkbits;
1773 remain -= new.b_size;
1777 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | (1 << BH_Delay))
1780 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1782 * @mpd->lbh - extent of blocks
1783 * @logical - logical number of the block in the file
1784 * @bh - bh of the block (used to access block's state)
1786 * the function is used to collect contig. blocks in same state
1788 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1789 sector_t logical, struct buffer_head *bh)
1791 struct buffer_head *lbh = &mpd->lbh;
1792 sector_t next;
1794 next = lbh->b_blocknr + (lbh->b_size >> mpd->inode->i_blkbits);
1797 * First block in the extent
1799 if (lbh->b_size == 0) {
1800 lbh->b_blocknr = logical;
1801 lbh->b_size = bh->b_size;
1802 lbh->b_state = bh->b_state & BH_FLAGS;
1803 return;
1807 * Can we merge the block to our big extent?
1809 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1810 lbh->b_size += bh->b_size;
1811 return;
1815 * We couldn't merge the block to our extent, so we
1816 * need to flush current extent and start new one
1818 mpage_da_map_blocks(mpd);
1821 * Now start a new extent
1823 lbh->b_size = bh->b_size;
1824 lbh->b_state = bh->b_state & BH_FLAGS;
1825 lbh->b_blocknr = logical;
1829 * __mpage_da_writepage - finds extent of pages and blocks
1831 * @page: page to consider
1832 * @wbc: not used, we just follow rules
1833 * @data: context
1835 * The function finds extents of pages and scan them for all blocks.
1837 static int __mpage_da_writepage(struct page *page,
1838 struct writeback_control *wbc, void *data)
1840 struct mpage_da_data *mpd = data;
1841 struct inode *inode = mpd->inode;
1842 struct buffer_head *bh, *head, fake;
1843 sector_t logical;
1846 * Can we merge this page to current extent?
1848 if (mpd->next_page != page->index) {
1850 * Nope, we can't. So, we map non-allocated blocks
1851 * and start IO on them using __mpage_writepage()
1853 if (mpd->next_page != mpd->first_page) {
1854 mpage_da_map_blocks(mpd);
1855 mpage_da_submit_io(mpd);
1859 * Start next extent of pages ...
1861 mpd->first_page = page->index;
1864 * ... and blocks
1866 mpd->lbh.b_size = 0;
1867 mpd->lbh.b_state = 0;
1868 mpd->lbh.b_blocknr = 0;
1871 mpd->next_page = page->index + 1;
1872 logical = (sector_t) page->index <<
1873 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1875 if (!page_has_buffers(page)) {
1877 * There is no attached buffer heads yet (mmap?)
1878 * we treat the page asfull of dirty blocks
1880 bh = &fake;
1881 bh->b_size = PAGE_CACHE_SIZE;
1882 bh->b_state = 0;
1883 set_buffer_dirty(bh);
1884 set_buffer_uptodate(bh);
1885 mpage_add_bh_to_extent(mpd, logical, bh);
1886 } else {
1888 * Page with regular buffer heads, just add all dirty ones
1890 head = page_buffers(page);
1891 bh = head;
1892 do {
1893 BUG_ON(buffer_locked(bh));
1894 if (buffer_dirty(bh))
1895 mpage_add_bh_to_extent(mpd, logical, bh);
1896 logical++;
1897 } while ((bh = bh->b_this_page) != head);
1900 return 0;
1904 * mpage_da_writepages - walk the list of dirty pages of the given
1905 * address space, allocates non-allocated blocks, maps newly-allocated
1906 * blocks to existing bhs and issue IO them
1908 * @mapping: address space structure to write
1909 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1910 * @get_block: the filesystem's block mapper function.
1912 * This is a library function, which implements the writepages()
1913 * address_space_operation.
1915 * In order to avoid duplication of logic that deals with partial pages,
1916 * multiple bio per page, etc, we find non-allocated blocks, allocate
1917 * them with minimal calls to ->get_block() and re-use __mpage_writepage()
1919 * It's important that we call __mpage_writepage() only once for each
1920 * involved page, otherwise we'd have to implement more complicated logic
1921 * to deal with pages w/o PG_lock or w/ PG_writeback and so on.
1923 * See comments to mpage_writepages()
1925 static int mpage_da_writepages(struct address_space *mapping,
1926 struct writeback_control *wbc,
1927 get_block_t get_block)
1929 struct mpage_da_data mpd;
1930 int ret;
1932 if (!get_block)
1933 return generic_writepages(mapping, wbc);
1935 mpd.wbc = wbc;
1936 mpd.inode = mapping->host;
1937 mpd.lbh.b_size = 0;
1938 mpd.lbh.b_state = 0;
1939 mpd.lbh.b_blocknr = 0;
1940 mpd.first_page = 0;
1941 mpd.next_page = 0;
1942 mpd.get_block = get_block;
1944 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
1947 * Handle last extent of pages
1949 if (mpd.next_page != mpd.first_page) {
1950 mpage_da_map_blocks(&mpd);
1951 mpage_da_submit_io(&mpd);
1954 return ret;
1958 * this is a special callback for ->write_begin() only
1959 * it's intention is to return mapped block or reserve space
1961 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1962 struct buffer_head *bh_result, int create)
1964 int ret = 0;
1966 BUG_ON(create == 0);
1967 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1970 * first, we need to know whether the block is allocated already
1971 * preallocated blocks are unmapped but should treated
1972 * the same as allocated blocks.
1974 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
1975 if ((ret == 0) && !buffer_delay(bh_result)) {
1976 /* the block isn't (pre)allocated yet, let's reserve space */
1978 * XXX: __block_prepare_write() unmaps passed block,
1979 * is it OK?
1981 ret = ext4_da_reserve_space(inode, 1);
1982 if (ret)
1983 /* not enough space to reserve */
1984 return ret;
1986 map_bh(bh_result, inode->i_sb, 0);
1987 set_buffer_new(bh_result);
1988 set_buffer_delay(bh_result);
1989 } else if (ret > 0) {
1990 bh_result->b_size = (ret << inode->i_blkbits);
1991 ret = 0;
1994 return ret;
1996 #define EXT4_DELALLOC_RSVED 1
1997 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
1998 struct buffer_head *bh_result, int create)
2000 int ret;
2001 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2002 loff_t disksize = EXT4_I(inode)->i_disksize;
2003 handle_t *handle = NULL;
2005 handle = ext4_journal_current_handle();
2006 if (!handle) {
2007 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2008 bh_result, 0, 0, 0);
2009 BUG_ON(!ret);
2010 } else {
2011 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2012 bh_result, create, 0, EXT4_DELALLOC_RSVED);
2015 if (ret > 0) {
2016 bh_result->b_size = (ret << inode->i_blkbits);
2019 * Update on-disk size along with block allocation
2020 * we don't use 'extend_disksize' as size may change
2021 * within already allocated block -bzzz
2023 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2024 if (disksize > i_size_read(inode))
2025 disksize = i_size_read(inode);
2026 if (disksize > EXT4_I(inode)->i_disksize) {
2028 * XXX: replace with spinlock if seen contended -bzzz
2030 down_write(&EXT4_I(inode)->i_data_sem);
2031 if (disksize > EXT4_I(inode)->i_disksize)
2032 EXT4_I(inode)->i_disksize = disksize;
2033 up_write(&EXT4_I(inode)->i_data_sem);
2035 if (EXT4_I(inode)->i_disksize == disksize) {
2036 ret = ext4_mark_inode_dirty(handle, inode);
2037 return ret;
2040 ret = 0;
2042 return ret;
2045 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2048 * unmapped buffer is possible for holes.
2049 * delay buffer is possible with delayed allocation
2051 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2054 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2055 struct buffer_head *bh_result, int create)
2057 int ret = 0;
2058 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2061 * we don't want to do block allocation in writepage
2062 * so call get_block_wrap with create = 0
2064 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2065 bh_result, 0, 0, 0);
2066 if (ret > 0) {
2067 bh_result->b_size = (ret << inode->i_blkbits);
2068 ret = 0;
2070 return ret;
2074 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2075 * get called via journal_submit_inode_data_buffers (no journal handle)
2076 * get called via shrink_page_list via pdflush (no journal handle)
2077 * or grab_page_cache when doing write_begin (have journal handle)
2079 static int ext4_da_writepage(struct page *page,
2080 struct writeback_control *wbc)
2082 int ret = 0;
2083 loff_t size;
2084 unsigned long len;
2085 struct buffer_head *page_bufs;
2086 struct inode *inode = page->mapping->host;
2088 size = i_size_read(inode);
2089 if (page->index == size >> PAGE_CACHE_SHIFT)
2090 len = size & ~PAGE_CACHE_MASK;
2091 else
2092 len = PAGE_CACHE_SIZE;
2094 if (page_has_buffers(page)) {
2095 page_bufs = page_buffers(page);
2096 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2097 ext4_bh_unmapped_or_delay)) {
2099 * We don't want to do block allocation
2100 * So redirty the page and return
2101 * We may reach here when we do a journal commit
2102 * via journal_submit_inode_data_buffers.
2103 * If we don't have mapping block we just ignore
2104 * them. We can also reach here via shrink_page_list
2106 redirty_page_for_writepage(wbc, page);
2107 unlock_page(page);
2108 return 0;
2110 } else {
2112 * The test for page_has_buffers() is subtle:
2113 * We know the page is dirty but it lost buffers. That means
2114 * that at some moment in time after write_begin()/write_end()
2115 * has been called all buffers have been clean and thus they
2116 * must have been written at least once. So they are all
2117 * mapped and we can happily proceed with mapping them
2118 * and writing the page.
2120 * Try to initialize the buffer_heads and check whether
2121 * all are mapped and non delay. We don't want to
2122 * do block allocation here.
2124 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2125 ext4_normal_get_block_write);
2126 if (!ret) {
2127 page_bufs = page_buffers(page);
2128 /* check whether all are mapped and non delay */
2129 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2130 ext4_bh_unmapped_or_delay)) {
2131 redirty_page_for_writepage(wbc, page);
2132 unlock_page(page);
2133 return 0;
2135 } else {
2137 * We can't do block allocation here
2138 * so just redity the page and unlock
2139 * and return
2141 redirty_page_for_writepage(wbc, page);
2142 unlock_page(page);
2143 return 0;
2147 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2148 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2149 else
2150 ret = block_write_full_page(page,
2151 ext4_normal_get_block_write,
2152 wbc);
2154 return ret;
2158 * For now just follow the DIO way to estimate the max credits
2159 * needed to write out EXT4_MAX_WRITEBACK_PAGES.
2160 * todo: need to calculate the max credits need for
2161 * extent based files, currently the DIO credits is based on
2162 * indirect-blocks mapping way.
2164 * Probably should have a generic way to calculate credits
2165 * for DIO, writepages, and truncate
2167 #define EXT4_MAX_WRITEBACK_PAGES DIO_MAX_BLOCKS
2168 #define EXT4_MAX_WRITEBACK_CREDITS DIO_CREDITS
2170 static int ext4_da_writepages(struct address_space *mapping,
2171 struct writeback_control *wbc)
2173 struct inode *inode = mapping->host;
2174 handle_t *handle = NULL;
2175 int needed_blocks;
2176 int ret = 0;
2177 long to_write;
2178 loff_t range_start = 0;
2181 * No pages to write? This is mainly a kludge to avoid starting
2182 * a transaction for special inodes like journal inode on last iput()
2183 * because that could violate lock ordering on umount
2185 if (!mapping->nrpages)
2186 return 0;
2189 * Estimate the worse case needed credits to write out
2190 * EXT4_MAX_BUF_BLOCKS pages
2192 needed_blocks = EXT4_MAX_WRITEBACK_CREDITS;
2194 to_write = wbc->nr_to_write;
2195 if (!wbc->range_cyclic) {
2197 * If range_cyclic is not set force range_cont
2198 * and save the old writeback_index
2200 wbc->range_cont = 1;
2201 range_start = wbc->range_start;
2204 while (!ret && to_write) {
2205 /* start a new transaction*/
2206 handle = ext4_journal_start(inode, needed_blocks);
2207 if (IS_ERR(handle)) {
2208 ret = PTR_ERR(handle);
2209 goto out_writepages;
2211 if (ext4_should_order_data(inode)) {
2213 * With ordered mode we need to add
2214 * the inode to the journal handle
2215 * when we do block allocation.
2217 ret = ext4_jbd2_file_inode(handle, inode);
2218 if (ret) {
2219 ext4_journal_stop(handle);
2220 goto out_writepages;
2225 * set the max dirty pages could be write at a time
2226 * to fit into the reserved transaction credits
2228 if (wbc->nr_to_write > EXT4_MAX_WRITEBACK_PAGES)
2229 wbc->nr_to_write = EXT4_MAX_WRITEBACK_PAGES;
2231 to_write -= wbc->nr_to_write;
2232 ret = mpage_da_writepages(mapping, wbc,
2233 ext4_da_get_block_write);
2234 ext4_journal_stop(handle);
2235 if (wbc->nr_to_write) {
2237 * There is no more writeout needed
2238 * or we requested for a noblocking writeout
2239 * and we found the device congested
2241 to_write += wbc->nr_to_write;
2242 break;
2244 wbc->nr_to_write = to_write;
2247 out_writepages:
2248 wbc->nr_to_write = to_write;
2249 if (range_start)
2250 wbc->range_start = range_start;
2251 return ret;
2254 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2255 loff_t pos, unsigned len, unsigned flags,
2256 struct page **pagep, void **fsdata)
2258 int ret, retries = 0;
2259 struct page *page;
2260 pgoff_t index;
2261 unsigned from, to;
2262 struct inode *inode = mapping->host;
2263 handle_t *handle;
2265 index = pos >> PAGE_CACHE_SHIFT;
2266 from = pos & (PAGE_CACHE_SIZE - 1);
2267 to = from + len;
2269 retry:
2271 * With delayed allocation, we don't log the i_disksize update
2272 * if there is delayed block allocation. But we still need
2273 * to journalling the i_disksize update if writes to the end
2274 * of file which has an already mapped buffer.
2276 handle = ext4_journal_start(inode, 1);
2277 if (IS_ERR(handle)) {
2278 ret = PTR_ERR(handle);
2279 goto out;
2282 page = __grab_cache_page(mapping, index);
2283 if (!page)
2284 return -ENOMEM;
2285 *pagep = page;
2287 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2288 ext4_da_get_block_prep);
2289 if (ret < 0) {
2290 unlock_page(page);
2291 ext4_journal_stop(handle);
2292 page_cache_release(page);
2295 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2296 goto retry;
2297 out:
2298 return ret;
2302 * Check if we should update i_disksize
2303 * when write to the end of file but not require block allocation
2305 static int ext4_da_should_update_i_disksize(struct page *page,
2306 unsigned long offset)
2308 struct buffer_head *bh;
2309 struct inode *inode = page->mapping->host;
2310 unsigned int idx;
2311 int i;
2313 bh = page_buffers(page);
2314 idx = offset >> inode->i_blkbits;
2316 for (i=0; i < idx; i++)
2317 bh = bh->b_this_page;
2319 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2320 return 0;
2321 return 1;
2324 static int ext4_da_write_end(struct file *file,
2325 struct address_space *mapping,
2326 loff_t pos, unsigned len, unsigned copied,
2327 struct page *page, void *fsdata)
2329 struct inode *inode = mapping->host;
2330 int ret = 0, ret2;
2331 handle_t *handle = ext4_journal_current_handle();
2332 loff_t new_i_size;
2333 unsigned long start, end;
2335 start = pos & (PAGE_CACHE_SIZE - 1);
2336 end = start + copied -1;
2339 * generic_write_end() will run mark_inode_dirty() if i_size
2340 * changes. So let's piggyback the i_disksize mark_inode_dirty
2341 * into that.
2344 new_i_size = pos + copied;
2345 if (new_i_size > EXT4_I(inode)->i_disksize) {
2346 if (ext4_da_should_update_i_disksize(page, end)) {
2347 down_write(&EXT4_I(inode)->i_data_sem);
2348 if (new_i_size > EXT4_I(inode)->i_disksize) {
2350 * Updating i_disksize when extending file
2351 * without needing block allocation
2353 if (ext4_should_order_data(inode))
2354 ret = ext4_jbd2_file_inode(handle,
2355 inode);
2357 EXT4_I(inode)->i_disksize = new_i_size;
2359 up_write(&EXT4_I(inode)->i_data_sem);
2362 ret2 = generic_write_end(file, mapping, pos, len, copied,
2363 page, fsdata);
2364 copied = ret2;
2365 if (ret2 < 0)
2366 ret = ret2;
2367 ret2 = ext4_journal_stop(handle);
2368 if (!ret)
2369 ret = ret2;
2371 return ret ? ret : copied;
2374 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2377 * Drop reserved blocks
2379 BUG_ON(!PageLocked(page));
2380 if (!page_has_buffers(page))
2381 goto out;
2383 ext4_da_page_release_reservation(page, offset);
2385 out:
2386 ext4_invalidatepage(page, offset);
2388 return;
2393 * bmap() is special. It gets used by applications such as lilo and by
2394 * the swapper to find the on-disk block of a specific piece of data.
2396 * Naturally, this is dangerous if the block concerned is still in the
2397 * journal. If somebody makes a swapfile on an ext4 data-journaling
2398 * filesystem and enables swap, then they may get a nasty shock when the
2399 * data getting swapped to that swapfile suddenly gets overwritten by
2400 * the original zero's written out previously to the journal and
2401 * awaiting writeback in the kernel's buffer cache.
2403 * So, if we see any bmap calls here on a modified, data-journaled file,
2404 * take extra steps to flush any blocks which might be in the cache.
2406 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2408 struct inode *inode = mapping->host;
2409 journal_t *journal;
2410 int err;
2412 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2413 test_opt(inode->i_sb, DELALLOC)) {
2415 * With delalloc we want to sync the file
2416 * so that we can make sure we allocate
2417 * blocks for file
2419 filemap_write_and_wait(mapping);
2422 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2424 * This is a REALLY heavyweight approach, but the use of
2425 * bmap on dirty files is expected to be extremely rare:
2426 * only if we run lilo or swapon on a freshly made file
2427 * do we expect this to happen.
2429 * (bmap requires CAP_SYS_RAWIO so this does not
2430 * represent an unprivileged user DOS attack --- we'd be
2431 * in trouble if mortal users could trigger this path at
2432 * will.)
2434 * NB. EXT4_STATE_JDATA is not set on files other than
2435 * regular files. If somebody wants to bmap a directory
2436 * or symlink and gets confused because the buffer
2437 * hasn't yet been flushed to disk, they deserve
2438 * everything they get.
2441 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2442 journal = EXT4_JOURNAL(inode);
2443 jbd2_journal_lock_updates(journal);
2444 err = jbd2_journal_flush(journal);
2445 jbd2_journal_unlock_updates(journal);
2447 if (err)
2448 return 0;
2451 return generic_block_bmap(mapping,block,ext4_get_block);
2454 static int bget_one(handle_t *handle, struct buffer_head *bh)
2456 get_bh(bh);
2457 return 0;
2460 static int bput_one(handle_t *handle, struct buffer_head *bh)
2462 put_bh(bh);
2463 return 0;
2467 * Note that we don't need to start a transaction unless we're journaling data
2468 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2469 * need to file the inode to the transaction's list in ordered mode because if
2470 * we are writing back data added by write(), the inode is already there and if
2471 * we are writing back data modified via mmap(), noone guarantees in which
2472 * transaction the data will hit the disk. In case we are journaling data, we
2473 * cannot start transaction directly because transaction start ranks above page
2474 * lock so we have to do some magic.
2476 * In all journaling modes block_write_full_page() will start the I/O.
2478 * Problem:
2480 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2481 * ext4_writepage()
2483 * Similar for:
2485 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2487 * Same applies to ext4_get_block(). We will deadlock on various things like
2488 * lock_journal and i_data_sem
2490 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2491 * allocations fail.
2493 * 16May01: If we're reentered then journal_current_handle() will be
2494 * non-zero. We simply *return*.
2496 * 1 July 2001: @@@ FIXME:
2497 * In journalled data mode, a data buffer may be metadata against the
2498 * current transaction. But the same file is part of a shared mapping
2499 * and someone does a writepage() on it.
2501 * We will move the buffer onto the async_data list, but *after* it has
2502 * been dirtied. So there's a small window where we have dirty data on
2503 * BJ_Metadata.
2505 * Note that this only applies to the last partial page in the file. The
2506 * bit which block_write_full_page() uses prepare/commit for. (That's
2507 * broken code anyway: it's wrong for msync()).
2509 * It's a rare case: affects the final partial page, for journalled data
2510 * where the file is subject to bith write() and writepage() in the same
2511 * transction. To fix it we'll need a custom block_write_full_page().
2512 * We'll probably need that anyway for journalling writepage() output.
2514 * We don't honour synchronous mounts for writepage(). That would be
2515 * disastrous. Any write() or metadata operation will sync the fs for
2516 * us.
2519 static int __ext4_normal_writepage(struct page *page,
2520 struct writeback_control *wbc)
2522 struct inode *inode = page->mapping->host;
2524 if (test_opt(inode->i_sb, NOBH))
2525 return nobh_writepage(page,
2526 ext4_normal_get_block_write, wbc);
2527 else
2528 return block_write_full_page(page,
2529 ext4_normal_get_block_write,
2530 wbc);
2533 static int ext4_normal_writepage(struct page *page,
2534 struct writeback_control *wbc)
2536 struct inode *inode = page->mapping->host;
2537 loff_t size = i_size_read(inode);
2538 loff_t len;
2540 J_ASSERT(PageLocked(page));
2541 if (page->index == size >> PAGE_CACHE_SHIFT)
2542 len = size & ~PAGE_CACHE_MASK;
2543 else
2544 len = PAGE_CACHE_SIZE;
2546 if (page_has_buffers(page)) {
2547 /* if page has buffers it should all be mapped
2548 * and allocated. If there are not buffers attached
2549 * to the page we know the page is dirty but it lost
2550 * buffers. That means that at some moment in time
2551 * after write_begin() / write_end() has been called
2552 * all buffers have been clean and thus they must have been
2553 * written at least once. So they are all mapped and we can
2554 * happily proceed with mapping them and writing the page.
2556 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2557 ext4_bh_unmapped_or_delay));
2560 if (!ext4_journal_current_handle())
2561 return __ext4_normal_writepage(page, wbc);
2563 redirty_page_for_writepage(wbc, page);
2564 unlock_page(page);
2565 return 0;
2568 static int __ext4_journalled_writepage(struct page *page,
2569 struct writeback_control *wbc)
2571 struct address_space *mapping = page->mapping;
2572 struct inode *inode = mapping->host;
2573 struct buffer_head *page_bufs;
2574 handle_t *handle = NULL;
2575 int ret = 0;
2576 int err;
2578 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2579 ext4_normal_get_block_write);
2580 if (ret != 0)
2581 goto out_unlock;
2583 page_bufs = page_buffers(page);
2584 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2585 bget_one);
2586 /* As soon as we unlock the page, it can go away, but we have
2587 * references to buffers so we are safe */
2588 unlock_page(page);
2590 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2591 if (IS_ERR(handle)) {
2592 ret = PTR_ERR(handle);
2593 goto out;
2596 ret = walk_page_buffers(handle, page_bufs, 0,
2597 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2599 err = walk_page_buffers(handle, page_bufs, 0,
2600 PAGE_CACHE_SIZE, NULL, write_end_fn);
2601 if (ret == 0)
2602 ret = err;
2603 err = ext4_journal_stop(handle);
2604 if (!ret)
2605 ret = err;
2607 walk_page_buffers(handle, page_bufs, 0,
2608 PAGE_CACHE_SIZE, NULL, bput_one);
2609 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2610 goto out;
2612 out_unlock:
2613 unlock_page(page);
2614 out:
2615 return ret;
2618 static int ext4_journalled_writepage(struct page *page,
2619 struct writeback_control *wbc)
2621 struct inode *inode = page->mapping->host;
2622 loff_t size = i_size_read(inode);
2623 loff_t len;
2625 J_ASSERT(PageLocked(page));
2626 if (page->index == size >> PAGE_CACHE_SHIFT)
2627 len = size & ~PAGE_CACHE_MASK;
2628 else
2629 len = PAGE_CACHE_SIZE;
2631 if (page_has_buffers(page)) {
2632 /* if page has buffers it should all be mapped
2633 * and allocated. If there are not buffers attached
2634 * to the page we know the page is dirty but it lost
2635 * buffers. That means that at some moment in time
2636 * after write_begin() / write_end() has been called
2637 * all buffers have been clean and thus they must have been
2638 * written at least once. So they are all mapped and we can
2639 * happily proceed with mapping them and writing the page.
2641 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2642 ext4_bh_unmapped_or_delay));
2645 if (ext4_journal_current_handle())
2646 goto no_write;
2648 if (PageChecked(page)) {
2650 * It's mmapped pagecache. Add buffers and journal it. There
2651 * doesn't seem much point in redirtying the page here.
2653 ClearPageChecked(page);
2654 return __ext4_journalled_writepage(page, wbc);
2655 } else {
2657 * It may be a page full of checkpoint-mode buffers. We don't
2658 * really know unless we go poke around in the buffer_heads.
2659 * But block_write_full_page will do the right thing.
2661 return block_write_full_page(page,
2662 ext4_normal_get_block_write,
2663 wbc);
2665 no_write:
2666 redirty_page_for_writepage(wbc, page);
2667 unlock_page(page);
2668 return 0;
2671 static int ext4_readpage(struct file *file, struct page *page)
2673 return mpage_readpage(page, ext4_get_block);
2676 static int
2677 ext4_readpages(struct file *file, struct address_space *mapping,
2678 struct list_head *pages, unsigned nr_pages)
2680 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2683 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2685 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2688 * If it's a full truncate we just forget about the pending dirtying
2690 if (offset == 0)
2691 ClearPageChecked(page);
2693 jbd2_journal_invalidatepage(journal, page, offset);
2696 static int ext4_releasepage(struct page *page, gfp_t wait)
2698 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2700 WARN_ON(PageChecked(page));
2701 if (!page_has_buffers(page))
2702 return 0;
2703 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2707 * If the O_DIRECT write will extend the file then add this inode to the
2708 * orphan list. So recovery will truncate it back to the original size
2709 * if the machine crashes during the write.
2711 * If the O_DIRECT write is intantiating holes inside i_size and the machine
2712 * crashes then stale disk data _may_ be exposed inside the file. But current
2713 * VFS code falls back into buffered path in that case so we are safe.
2715 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2716 const struct iovec *iov, loff_t offset,
2717 unsigned long nr_segs)
2719 struct file *file = iocb->ki_filp;
2720 struct inode *inode = file->f_mapping->host;
2721 struct ext4_inode_info *ei = EXT4_I(inode);
2722 handle_t *handle;
2723 ssize_t ret;
2724 int orphan = 0;
2725 size_t count = iov_length(iov, nr_segs);
2727 if (rw == WRITE) {
2728 loff_t final_size = offset + count;
2730 if (final_size > inode->i_size) {
2731 /* Credits for sb + inode write */
2732 handle = ext4_journal_start(inode, 2);
2733 if (IS_ERR(handle)) {
2734 ret = PTR_ERR(handle);
2735 goto out;
2737 ret = ext4_orphan_add(handle, inode);
2738 if (ret) {
2739 ext4_journal_stop(handle);
2740 goto out;
2742 orphan = 1;
2743 ei->i_disksize = inode->i_size;
2744 ext4_journal_stop(handle);
2748 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2749 offset, nr_segs,
2750 ext4_get_block, NULL);
2752 if (orphan) {
2753 int err;
2755 /* Credits for sb + inode write */
2756 handle = ext4_journal_start(inode, 2);
2757 if (IS_ERR(handle)) {
2758 /* This is really bad luck. We've written the data
2759 * but cannot extend i_size. Bail out and pretend
2760 * the write failed... */
2761 ret = PTR_ERR(handle);
2762 goto out;
2764 if (inode->i_nlink)
2765 ext4_orphan_del(handle, inode);
2766 if (ret > 0) {
2767 loff_t end = offset + ret;
2768 if (end > inode->i_size) {
2769 ei->i_disksize = end;
2770 i_size_write(inode, end);
2772 * We're going to return a positive `ret'
2773 * here due to non-zero-length I/O, so there's
2774 * no way of reporting error returns from
2775 * ext4_mark_inode_dirty() to userspace. So
2776 * ignore it.
2778 ext4_mark_inode_dirty(handle, inode);
2781 err = ext4_journal_stop(handle);
2782 if (ret == 0)
2783 ret = err;
2785 out:
2786 return ret;
2790 * Pages can be marked dirty completely asynchronously from ext4's journalling
2791 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2792 * much here because ->set_page_dirty is called under VFS locks. The page is
2793 * not necessarily locked.
2795 * We cannot just dirty the page and leave attached buffers clean, because the
2796 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2797 * or jbddirty because all the journalling code will explode.
2799 * So what we do is to mark the page "pending dirty" and next time writepage
2800 * is called, propagate that into the buffers appropriately.
2802 static int ext4_journalled_set_page_dirty(struct page *page)
2804 SetPageChecked(page);
2805 return __set_page_dirty_nobuffers(page);
2808 static const struct address_space_operations ext4_ordered_aops = {
2809 .readpage = ext4_readpage,
2810 .readpages = ext4_readpages,
2811 .writepage = ext4_normal_writepage,
2812 .sync_page = block_sync_page,
2813 .write_begin = ext4_write_begin,
2814 .write_end = ext4_ordered_write_end,
2815 .bmap = ext4_bmap,
2816 .invalidatepage = ext4_invalidatepage,
2817 .releasepage = ext4_releasepage,
2818 .direct_IO = ext4_direct_IO,
2819 .migratepage = buffer_migrate_page,
2822 static const struct address_space_operations ext4_writeback_aops = {
2823 .readpage = ext4_readpage,
2824 .readpages = ext4_readpages,
2825 .writepage = ext4_normal_writepage,
2826 .sync_page = block_sync_page,
2827 .write_begin = ext4_write_begin,
2828 .write_end = ext4_writeback_write_end,
2829 .bmap = ext4_bmap,
2830 .invalidatepage = ext4_invalidatepage,
2831 .releasepage = ext4_releasepage,
2832 .direct_IO = ext4_direct_IO,
2833 .migratepage = buffer_migrate_page,
2836 static const struct address_space_operations ext4_journalled_aops = {
2837 .readpage = ext4_readpage,
2838 .readpages = ext4_readpages,
2839 .writepage = ext4_journalled_writepage,
2840 .sync_page = block_sync_page,
2841 .write_begin = ext4_write_begin,
2842 .write_end = ext4_journalled_write_end,
2843 .set_page_dirty = ext4_journalled_set_page_dirty,
2844 .bmap = ext4_bmap,
2845 .invalidatepage = ext4_invalidatepage,
2846 .releasepage = ext4_releasepage,
2849 static const struct address_space_operations ext4_da_aops = {
2850 .readpage = ext4_readpage,
2851 .readpages = ext4_readpages,
2852 .writepage = ext4_da_writepage,
2853 .writepages = ext4_da_writepages,
2854 .sync_page = block_sync_page,
2855 .write_begin = ext4_da_write_begin,
2856 .write_end = ext4_da_write_end,
2857 .bmap = ext4_bmap,
2858 .invalidatepage = ext4_da_invalidatepage,
2859 .releasepage = ext4_releasepage,
2860 .direct_IO = ext4_direct_IO,
2861 .migratepage = buffer_migrate_page,
2864 void ext4_set_aops(struct inode *inode)
2866 if (ext4_should_order_data(inode) &&
2867 test_opt(inode->i_sb, DELALLOC))
2868 inode->i_mapping->a_ops = &ext4_da_aops;
2869 else if (ext4_should_order_data(inode))
2870 inode->i_mapping->a_ops = &ext4_ordered_aops;
2871 else if (ext4_should_writeback_data(inode) &&
2872 test_opt(inode->i_sb, DELALLOC))
2873 inode->i_mapping->a_ops = &ext4_da_aops;
2874 else if (ext4_should_writeback_data(inode))
2875 inode->i_mapping->a_ops = &ext4_writeback_aops;
2876 else
2877 inode->i_mapping->a_ops = &ext4_journalled_aops;
2881 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2882 * up to the end of the block which corresponds to `from'.
2883 * This required during truncate. We need to physically zero the tail end
2884 * of that block so it doesn't yield old data if the file is later grown.
2886 int ext4_block_truncate_page(handle_t *handle,
2887 struct address_space *mapping, loff_t from)
2889 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2890 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2891 unsigned blocksize, length, pos;
2892 ext4_lblk_t iblock;
2893 struct inode *inode = mapping->host;
2894 struct buffer_head *bh;
2895 struct page *page;
2896 int err = 0;
2898 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
2899 if (!page)
2900 return -EINVAL;
2902 blocksize = inode->i_sb->s_blocksize;
2903 length = blocksize - (offset & (blocksize - 1));
2904 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2907 * For "nobh" option, we can only work if we don't need to
2908 * read-in the page - otherwise we create buffers to do the IO.
2910 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
2911 ext4_should_writeback_data(inode) && PageUptodate(page)) {
2912 zero_user(page, offset, length);
2913 set_page_dirty(page);
2914 goto unlock;
2917 if (!page_has_buffers(page))
2918 create_empty_buffers(page, blocksize, 0);
2920 /* Find the buffer that contains "offset" */
2921 bh = page_buffers(page);
2922 pos = blocksize;
2923 while (offset >= pos) {
2924 bh = bh->b_this_page;
2925 iblock++;
2926 pos += blocksize;
2929 err = 0;
2930 if (buffer_freed(bh)) {
2931 BUFFER_TRACE(bh, "freed: skip");
2932 goto unlock;
2935 if (!buffer_mapped(bh)) {
2936 BUFFER_TRACE(bh, "unmapped");
2937 ext4_get_block(inode, iblock, bh, 0);
2938 /* unmapped? It's a hole - nothing to do */
2939 if (!buffer_mapped(bh)) {
2940 BUFFER_TRACE(bh, "still unmapped");
2941 goto unlock;
2945 /* Ok, it's mapped. Make sure it's up-to-date */
2946 if (PageUptodate(page))
2947 set_buffer_uptodate(bh);
2949 if (!buffer_uptodate(bh)) {
2950 err = -EIO;
2951 ll_rw_block(READ, 1, &bh);
2952 wait_on_buffer(bh);
2953 /* Uhhuh. Read error. Complain and punt. */
2954 if (!buffer_uptodate(bh))
2955 goto unlock;
2958 if (ext4_should_journal_data(inode)) {
2959 BUFFER_TRACE(bh, "get write access");
2960 err = ext4_journal_get_write_access(handle, bh);
2961 if (err)
2962 goto unlock;
2965 zero_user(page, offset, length);
2967 BUFFER_TRACE(bh, "zeroed end of block");
2969 err = 0;
2970 if (ext4_should_journal_data(inode)) {
2971 err = ext4_journal_dirty_metadata(handle, bh);
2972 } else {
2973 if (ext4_should_order_data(inode))
2974 err = ext4_jbd2_file_inode(handle, inode);
2975 mark_buffer_dirty(bh);
2978 unlock:
2979 unlock_page(page);
2980 page_cache_release(page);
2981 return err;
2985 * Probably it should be a library function... search for first non-zero word
2986 * or memcmp with zero_page, whatever is better for particular architecture.
2987 * Linus?
2989 static inline int all_zeroes(__le32 *p, __le32 *q)
2991 while (p < q)
2992 if (*p++)
2993 return 0;
2994 return 1;
2998 * ext4_find_shared - find the indirect blocks for partial truncation.
2999 * @inode: inode in question
3000 * @depth: depth of the affected branch
3001 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3002 * @chain: place to store the pointers to partial indirect blocks
3003 * @top: place to the (detached) top of branch
3005 * This is a helper function used by ext4_truncate().
3007 * When we do truncate() we may have to clean the ends of several
3008 * indirect blocks but leave the blocks themselves alive. Block is
3009 * partially truncated if some data below the new i_size is refered
3010 * from it (and it is on the path to the first completely truncated
3011 * data block, indeed). We have to free the top of that path along
3012 * with everything to the right of the path. Since no allocation
3013 * past the truncation point is possible until ext4_truncate()
3014 * finishes, we may safely do the latter, but top of branch may
3015 * require special attention - pageout below the truncation point
3016 * might try to populate it.
3018 * We atomically detach the top of branch from the tree, store the
3019 * block number of its root in *@top, pointers to buffer_heads of
3020 * partially truncated blocks - in @chain[].bh and pointers to
3021 * their last elements that should not be removed - in
3022 * @chain[].p. Return value is the pointer to last filled element
3023 * of @chain.
3025 * The work left to caller to do the actual freeing of subtrees:
3026 * a) free the subtree starting from *@top
3027 * b) free the subtrees whose roots are stored in
3028 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3029 * c) free the subtrees growing from the inode past the @chain[0].
3030 * (no partially truncated stuff there). */
3032 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3033 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3035 Indirect *partial, *p;
3036 int k, err;
3038 *top = 0;
3039 /* Make k index the deepest non-null offest + 1 */
3040 for (k = depth; k > 1 && !offsets[k-1]; k--)
3042 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3043 /* Writer: pointers */
3044 if (!partial)
3045 partial = chain + k-1;
3047 * If the branch acquired continuation since we've looked at it -
3048 * fine, it should all survive and (new) top doesn't belong to us.
3050 if (!partial->key && *partial->p)
3051 /* Writer: end */
3052 goto no_top;
3053 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
3056 * OK, we've found the last block that must survive. The rest of our
3057 * branch should be detached before unlocking. However, if that rest
3058 * of branch is all ours and does not grow immediately from the inode
3059 * it's easier to cheat and just decrement partial->p.
3061 if (p == chain + k - 1 && p > chain) {
3062 p->p--;
3063 } else {
3064 *top = *p->p;
3065 /* Nope, don't do this in ext4. Must leave the tree intact */
3066 #if 0
3067 *p->p = 0;
3068 #endif
3070 /* Writer: end */
3072 while(partial > p) {
3073 brelse(partial->bh);
3074 partial--;
3076 no_top:
3077 return partial;
3081 * Zero a number of block pointers in either an inode or an indirect block.
3082 * If we restart the transaction we must again get write access to the
3083 * indirect block for further modification.
3085 * We release `count' blocks on disk, but (last - first) may be greater
3086 * than `count' because there can be holes in there.
3088 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3089 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3090 unsigned long count, __le32 *first, __le32 *last)
3092 __le32 *p;
3093 if (try_to_extend_transaction(handle, inode)) {
3094 if (bh) {
3095 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3096 ext4_journal_dirty_metadata(handle, bh);
3098 ext4_mark_inode_dirty(handle, inode);
3099 ext4_journal_test_restart(handle, inode);
3100 if (bh) {
3101 BUFFER_TRACE(bh, "retaking write access");
3102 ext4_journal_get_write_access(handle, bh);
3107 * Any buffers which are on the journal will be in memory. We find
3108 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3109 * on them. We've already detached each block from the file, so
3110 * bforget() in jbd2_journal_forget() should be safe.
3112 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3114 for (p = first; p < last; p++) {
3115 u32 nr = le32_to_cpu(*p);
3116 if (nr) {
3117 struct buffer_head *tbh;
3119 *p = 0;
3120 tbh = sb_find_get_block(inode->i_sb, nr);
3121 ext4_forget(handle, 0, inode, tbh, nr);
3125 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3129 * ext4_free_data - free a list of data blocks
3130 * @handle: handle for this transaction
3131 * @inode: inode we are dealing with
3132 * @this_bh: indirect buffer_head which contains *@first and *@last
3133 * @first: array of block numbers
3134 * @last: points immediately past the end of array
3136 * We are freeing all blocks refered from that array (numbers are stored as
3137 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3139 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3140 * blocks are contiguous then releasing them at one time will only affect one
3141 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3142 * actually use a lot of journal space.
3144 * @this_bh will be %NULL if @first and @last point into the inode's direct
3145 * block pointers.
3147 static void ext4_free_data(handle_t *handle, struct inode *inode,
3148 struct buffer_head *this_bh,
3149 __le32 *first, __le32 *last)
3151 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3152 unsigned long count = 0; /* Number of blocks in the run */
3153 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3154 corresponding to
3155 block_to_free */
3156 ext4_fsblk_t nr; /* Current block # */
3157 __le32 *p; /* Pointer into inode/ind
3158 for current block */
3159 int err;
3161 if (this_bh) { /* For indirect block */
3162 BUFFER_TRACE(this_bh, "get_write_access");
3163 err = ext4_journal_get_write_access(handle, this_bh);
3164 /* Important: if we can't update the indirect pointers
3165 * to the blocks, we can't free them. */
3166 if (err)
3167 return;
3170 for (p = first; p < last; p++) {
3171 nr = le32_to_cpu(*p);
3172 if (nr) {
3173 /* accumulate blocks to free if they're contiguous */
3174 if (count == 0) {
3175 block_to_free = nr;
3176 block_to_free_p = p;
3177 count = 1;
3178 } else if (nr == block_to_free + count) {
3179 count++;
3180 } else {
3181 ext4_clear_blocks(handle, inode, this_bh,
3182 block_to_free,
3183 count, block_to_free_p, p);
3184 block_to_free = nr;
3185 block_to_free_p = p;
3186 count = 1;
3191 if (count > 0)
3192 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3193 count, block_to_free_p, p);
3195 if (this_bh) {
3196 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3199 * The buffer head should have an attached journal head at this
3200 * point. However, if the data is corrupted and an indirect
3201 * block pointed to itself, it would have been detached when
3202 * the block was cleared. Check for this instead of OOPSing.
3204 if (bh2jh(this_bh))
3205 ext4_journal_dirty_metadata(handle, this_bh);
3206 else
3207 ext4_error(inode->i_sb, __func__,
3208 "circular indirect block detected, "
3209 "inode=%lu, block=%llu",
3210 inode->i_ino,
3211 (unsigned long long) this_bh->b_blocknr);
3216 * ext4_free_branches - free an array of branches
3217 * @handle: JBD handle for this transaction
3218 * @inode: inode we are dealing with
3219 * @parent_bh: the buffer_head which contains *@first and *@last
3220 * @first: array of block numbers
3221 * @last: pointer immediately past the end of array
3222 * @depth: depth of the branches to free
3224 * We are freeing all blocks refered from these branches (numbers are
3225 * stored as little-endian 32-bit) and updating @inode->i_blocks
3226 * appropriately.
3228 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3229 struct buffer_head *parent_bh,
3230 __le32 *first, __le32 *last, int depth)
3232 ext4_fsblk_t nr;
3233 __le32 *p;
3235 if (is_handle_aborted(handle))
3236 return;
3238 if (depth--) {
3239 struct buffer_head *bh;
3240 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3241 p = last;
3242 while (--p >= first) {
3243 nr = le32_to_cpu(*p);
3244 if (!nr)
3245 continue; /* A hole */
3247 /* Go read the buffer for the next level down */
3248 bh = sb_bread(inode->i_sb, nr);
3251 * A read failure? Report error and clear slot
3252 * (should be rare).
3254 if (!bh) {
3255 ext4_error(inode->i_sb, "ext4_free_branches",
3256 "Read failure, inode=%lu, block=%llu",
3257 inode->i_ino, nr);
3258 continue;
3261 /* This zaps the entire block. Bottom up. */
3262 BUFFER_TRACE(bh, "free child branches");
3263 ext4_free_branches(handle, inode, bh,
3264 (__le32*)bh->b_data,
3265 (__le32*)bh->b_data + addr_per_block,
3266 depth);
3269 * We've probably journalled the indirect block several
3270 * times during the truncate. But it's no longer
3271 * needed and we now drop it from the transaction via
3272 * jbd2_journal_revoke().
3274 * That's easy if it's exclusively part of this
3275 * transaction. But if it's part of the committing
3276 * transaction then jbd2_journal_forget() will simply
3277 * brelse() it. That means that if the underlying
3278 * block is reallocated in ext4_get_block(),
3279 * unmap_underlying_metadata() will find this block
3280 * and will try to get rid of it. damn, damn.
3282 * If this block has already been committed to the
3283 * journal, a revoke record will be written. And
3284 * revoke records must be emitted *before* clearing
3285 * this block's bit in the bitmaps.
3287 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3290 * Everything below this this pointer has been
3291 * released. Now let this top-of-subtree go.
3293 * We want the freeing of this indirect block to be
3294 * atomic in the journal with the updating of the
3295 * bitmap block which owns it. So make some room in
3296 * the journal.
3298 * We zero the parent pointer *after* freeing its
3299 * pointee in the bitmaps, so if extend_transaction()
3300 * for some reason fails to put the bitmap changes and
3301 * the release into the same transaction, recovery
3302 * will merely complain about releasing a free block,
3303 * rather than leaking blocks.
3305 if (is_handle_aborted(handle))
3306 return;
3307 if (try_to_extend_transaction(handle, inode)) {
3308 ext4_mark_inode_dirty(handle, inode);
3309 ext4_journal_test_restart(handle, inode);
3312 ext4_free_blocks(handle, inode, nr, 1, 1);
3314 if (parent_bh) {
3316 * The block which we have just freed is
3317 * pointed to by an indirect block: journal it
3319 BUFFER_TRACE(parent_bh, "get_write_access");
3320 if (!ext4_journal_get_write_access(handle,
3321 parent_bh)){
3322 *p = 0;
3323 BUFFER_TRACE(parent_bh,
3324 "call ext4_journal_dirty_metadata");
3325 ext4_journal_dirty_metadata(handle,
3326 parent_bh);
3330 } else {
3331 /* We have reached the bottom of the tree. */
3332 BUFFER_TRACE(parent_bh, "free data blocks");
3333 ext4_free_data(handle, inode, parent_bh, first, last);
3337 int ext4_can_truncate(struct inode *inode)
3339 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3340 return 0;
3341 if (S_ISREG(inode->i_mode))
3342 return 1;
3343 if (S_ISDIR(inode->i_mode))
3344 return 1;
3345 if (S_ISLNK(inode->i_mode))
3346 return !ext4_inode_is_fast_symlink(inode);
3347 return 0;
3351 * ext4_truncate()
3353 * We block out ext4_get_block() block instantiations across the entire
3354 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3355 * simultaneously on behalf of the same inode.
3357 * As we work through the truncate and commmit bits of it to the journal there
3358 * is one core, guiding principle: the file's tree must always be consistent on
3359 * disk. We must be able to restart the truncate after a crash.
3361 * The file's tree may be transiently inconsistent in memory (although it
3362 * probably isn't), but whenever we close off and commit a journal transaction,
3363 * the contents of (the filesystem + the journal) must be consistent and
3364 * restartable. It's pretty simple, really: bottom up, right to left (although
3365 * left-to-right works OK too).
3367 * Note that at recovery time, journal replay occurs *before* the restart of
3368 * truncate against the orphan inode list.
3370 * The committed inode has the new, desired i_size (which is the same as
3371 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3372 * that this inode's truncate did not complete and it will again call
3373 * ext4_truncate() to have another go. So there will be instantiated blocks
3374 * to the right of the truncation point in a crashed ext4 filesystem. But
3375 * that's fine - as long as they are linked from the inode, the post-crash
3376 * ext4_truncate() run will find them and release them.
3378 void ext4_truncate(struct inode *inode)
3380 handle_t *handle;
3381 struct ext4_inode_info *ei = EXT4_I(inode);
3382 __le32 *i_data = ei->i_data;
3383 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3384 struct address_space *mapping = inode->i_mapping;
3385 ext4_lblk_t offsets[4];
3386 Indirect chain[4];
3387 Indirect *partial;
3388 __le32 nr = 0;
3389 int n;
3390 ext4_lblk_t last_block;
3391 unsigned blocksize = inode->i_sb->s_blocksize;
3393 if (!ext4_can_truncate(inode))
3394 return;
3396 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3397 ext4_ext_truncate(inode);
3398 return;
3401 handle = start_transaction(inode);
3402 if (IS_ERR(handle))
3403 return; /* AKPM: return what? */
3405 last_block = (inode->i_size + blocksize-1)
3406 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3408 if (inode->i_size & (blocksize - 1))
3409 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3410 goto out_stop;
3412 n = ext4_block_to_path(inode, last_block, offsets, NULL);
3413 if (n == 0)
3414 goto out_stop; /* error */
3417 * OK. This truncate is going to happen. We add the inode to the
3418 * orphan list, so that if this truncate spans multiple transactions,
3419 * and we crash, we will resume the truncate when the filesystem
3420 * recovers. It also marks the inode dirty, to catch the new size.
3422 * Implication: the file must always be in a sane, consistent
3423 * truncatable state while each transaction commits.
3425 if (ext4_orphan_add(handle, inode))
3426 goto out_stop;
3429 * From here we block out all ext4_get_block() callers who want to
3430 * modify the block allocation tree.
3432 down_write(&ei->i_data_sem);
3434 * The orphan list entry will now protect us from any crash which
3435 * occurs before the truncate completes, so it is now safe to propagate
3436 * the new, shorter inode size (held for now in i_size) into the
3437 * on-disk inode. We do this via i_disksize, which is the value which
3438 * ext4 *really* writes onto the disk inode.
3440 ei->i_disksize = inode->i_size;
3442 if (n == 1) { /* direct blocks */
3443 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3444 i_data + EXT4_NDIR_BLOCKS);
3445 goto do_indirects;
3448 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3449 /* Kill the top of shared branch (not detached) */
3450 if (nr) {
3451 if (partial == chain) {
3452 /* Shared branch grows from the inode */
3453 ext4_free_branches(handle, inode, NULL,
3454 &nr, &nr+1, (chain+n-1) - partial);
3455 *partial->p = 0;
3457 * We mark the inode dirty prior to restart,
3458 * and prior to stop. No need for it here.
3460 } else {
3461 /* Shared branch grows from an indirect block */
3462 BUFFER_TRACE(partial->bh, "get_write_access");
3463 ext4_free_branches(handle, inode, partial->bh,
3464 partial->p,
3465 partial->p+1, (chain+n-1) - partial);
3468 /* Clear the ends of indirect blocks on the shared branch */
3469 while (partial > chain) {
3470 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3471 (__le32*)partial->bh->b_data+addr_per_block,
3472 (chain+n-1) - partial);
3473 BUFFER_TRACE(partial->bh, "call brelse");
3474 brelse (partial->bh);
3475 partial--;
3477 do_indirects:
3478 /* Kill the remaining (whole) subtrees */
3479 switch (offsets[0]) {
3480 default:
3481 nr = i_data[EXT4_IND_BLOCK];
3482 if (nr) {
3483 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3484 i_data[EXT4_IND_BLOCK] = 0;
3486 case EXT4_IND_BLOCK:
3487 nr = i_data[EXT4_DIND_BLOCK];
3488 if (nr) {
3489 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3490 i_data[EXT4_DIND_BLOCK] = 0;
3492 case EXT4_DIND_BLOCK:
3493 nr = i_data[EXT4_TIND_BLOCK];
3494 if (nr) {
3495 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3496 i_data[EXT4_TIND_BLOCK] = 0;
3498 case EXT4_TIND_BLOCK:
3502 ext4_discard_reservation(inode);
3504 up_write(&ei->i_data_sem);
3505 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3506 ext4_mark_inode_dirty(handle, inode);
3509 * In a multi-transaction truncate, we only make the final transaction
3510 * synchronous
3512 if (IS_SYNC(inode))
3513 handle->h_sync = 1;
3514 out_stop:
3516 * If this was a simple ftruncate(), and the file will remain alive
3517 * then we need to clear up the orphan record which we created above.
3518 * However, if this was a real unlink then we were called by
3519 * ext4_delete_inode(), and we allow that function to clean up the
3520 * orphan info for us.
3522 if (inode->i_nlink)
3523 ext4_orphan_del(handle, inode);
3525 ext4_journal_stop(handle);
3528 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3529 unsigned long ino, struct ext4_iloc *iloc)
3531 ext4_group_t block_group;
3532 unsigned long offset;
3533 ext4_fsblk_t block;
3534 struct ext4_group_desc *gdp;
3536 if (!ext4_valid_inum(sb, ino)) {
3538 * This error is already checked for in namei.c unless we are
3539 * looking at an NFS filehandle, in which case no error
3540 * report is needed
3542 return 0;
3545 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3546 gdp = ext4_get_group_desc(sb, block_group, NULL);
3547 if (!gdp)
3548 return 0;
3551 * Figure out the offset within the block group inode table
3553 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3554 EXT4_INODE_SIZE(sb);
3555 block = ext4_inode_table(sb, gdp) +
3556 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3558 iloc->block_group = block_group;
3559 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3560 return block;
3564 * ext4_get_inode_loc returns with an extra refcount against the inode's
3565 * underlying buffer_head on success. If 'in_mem' is true, we have all
3566 * data in memory that is needed to recreate the on-disk version of this
3567 * inode.
3569 static int __ext4_get_inode_loc(struct inode *inode,
3570 struct ext4_iloc *iloc, int in_mem)
3572 ext4_fsblk_t block;
3573 struct buffer_head *bh;
3575 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3576 if (!block)
3577 return -EIO;
3579 bh = sb_getblk(inode->i_sb, block);
3580 if (!bh) {
3581 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3582 "unable to read inode block - "
3583 "inode=%lu, block=%llu",
3584 inode->i_ino, block);
3585 return -EIO;
3587 if (!buffer_uptodate(bh)) {
3588 lock_buffer(bh);
3589 if (buffer_uptodate(bh)) {
3590 /* someone brought it uptodate while we waited */
3591 unlock_buffer(bh);
3592 goto has_buffer;
3596 * If we have all information of the inode in memory and this
3597 * is the only valid inode in the block, we need not read the
3598 * block.
3600 if (in_mem) {
3601 struct buffer_head *bitmap_bh;
3602 struct ext4_group_desc *desc;
3603 int inodes_per_buffer;
3604 int inode_offset, i;
3605 ext4_group_t block_group;
3606 int start;
3608 block_group = (inode->i_ino - 1) /
3609 EXT4_INODES_PER_GROUP(inode->i_sb);
3610 inodes_per_buffer = bh->b_size /
3611 EXT4_INODE_SIZE(inode->i_sb);
3612 inode_offset = ((inode->i_ino - 1) %
3613 EXT4_INODES_PER_GROUP(inode->i_sb));
3614 start = inode_offset & ~(inodes_per_buffer - 1);
3616 /* Is the inode bitmap in cache? */
3617 desc = ext4_get_group_desc(inode->i_sb,
3618 block_group, NULL);
3619 if (!desc)
3620 goto make_io;
3622 bitmap_bh = sb_getblk(inode->i_sb,
3623 ext4_inode_bitmap(inode->i_sb, desc));
3624 if (!bitmap_bh)
3625 goto make_io;
3628 * If the inode bitmap isn't in cache then the
3629 * optimisation may end up performing two reads instead
3630 * of one, so skip it.
3632 if (!buffer_uptodate(bitmap_bh)) {
3633 brelse(bitmap_bh);
3634 goto make_io;
3636 for (i = start; i < start + inodes_per_buffer; i++) {
3637 if (i == inode_offset)
3638 continue;
3639 if (ext4_test_bit(i, bitmap_bh->b_data))
3640 break;
3642 brelse(bitmap_bh);
3643 if (i == start + inodes_per_buffer) {
3644 /* all other inodes are free, so skip I/O */
3645 memset(bh->b_data, 0, bh->b_size);
3646 set_buffer_uptodate(bh);
3647 unlock_buffer(bh);
3648 goto has_buffer;
3652 make_io:
3654 * There are other valid inodes in the buffer, this inode
3655 * has in-inode xattrs, or we don't have this inode in memory.
3656 * Read the block from disk.
3658 get_bh(bh);
3659 bh->b_end_io = end_buffer_read_sync;
3660 submit_bh(READ_META, bh);
3661 wait_on_buffer(bh);
3662 if (!buffer_uptodate(bh)) {
3663 ext4_error(inode->i_sb, "ext4_get_inode_loc",
3664 "unable to read inode block - "
3665 "inode=%lu, block=%llu",
3666 inode->i_ino, block);
3667 brelse(bh);
3668 return -EIO;
3671 has_buffer:
3672 iloc->bh = bh;
3673 return 0;
3676 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3678 /* We have all inode data except xattrs in memory here. */
3679 return __ext4_get_inode_loc(inode, iloc,
3680 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3683 void ext4_set_inode_flags(struct inode *inode)
3685 unsigned int flags = EXT4_I(inode)->i_flags;
3687 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3688 if (flags & EXT4_SYNC_FL)
3689 inode->i_flags |= S_SYNC;
3690 if (flags & EXT4_APPEND_FL)
3691 inode->i_flags |= S_APPEND;
3692 if (flags & EXT4_IMMUTABLE_FL)
3693 inode->i_flags |= S_IMMUTABLE;
3694 if (flags & EXT4_NOATIME_FL)
3695 inode->i_flags |= S_NOATIME;
3696 if (flags & EXT4_DIRSYNC_FL)
3697 inode->i_flags |= S_DIRSYNC;
3700 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3701 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3703 unsigned int flags = ei->vfs_inode.i_flags;
3705 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3706 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3707 if (flags & S_SYNC)
3708 ei->i_flags |= EXT4_SYNC_FL;
3709 if (flags & S_APPEND)
3710 ei->i_flags |= EXT4_APPEND_FL;
3711 if (flags & S_IMMUTABLE)
3712 ei->i_flags |= EXT4_IMMUTABLE_FL;
3713 if (flags & S_NOATIME)
3714 ei->i_flags |= EXT4_NOATIME_FL;
3715 if (flags & S_DIRSYNC)
3716 ei->i_flags |= EXT4_DIRSYNC_FL;
3718 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3719 struct ext4_inode_info *ei)
3721 blkcnt_t i_blocks ;
3722 struct inode *inode = &(ei->vfs_inode);
3723 struct super_block *sb = inode->i_sb;
3725 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3726 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3727 /* we are using combined 48 bit field */
3728 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3729 le32_to_cpu(raw_inode->i_blocks_lo);
3730 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3731 /* i_blocks represent file system block size */
3732 return i_blocks << (inode->i_blkbits - 9);
3733 } else {
3734 return i_blocks;
3736 } else {
3737 return le32_to_cpu(raw_inode->i_blocks_lo);
3741 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3743 struct ext4_iloc iloc;
3744 struct ext4_inode *raw_inode;
3745 struct ext4_inode_info *ei;
3746 struct buffer_head *bh;
3747 struct inode *inode;
3748 long ret;
3749 int block;
3751 inode = iget_locked(sb, ino);
3752 if (!inode)
3753 return ERR_PTR(-ENOMEM);
3754 if (!(inode->i_state & I_NEW))
3755 return inode;
3757 ei = EXT4_I(inode);
3758 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3759 ei->i_acl = EXT4_ACL_NOT_CACHED;
3760 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
3761 #endif
3762 ei->i_block_alloc_info = NULL;
3764 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3765 if (ret < 0)
3766 goto bad_inode;
3767 bh = iloc.bh;
3768 raw_inode = ext4_raw_inode(&iloc);
3769 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3770 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3771 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3772 if(!(test_opt (inode->i_sb, NO_UID32))) {
3773 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3774 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3776 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3778 ei->i_state = 0;
3779 ei->i_dir_start_lookup = 0;
3780 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3781 /* We now have enough fields to check if the inode was active or not.
3782 * This is needed because nfsd might try to access dead inodes
3783 * the test is that same one that e2fsck uses
3784 * NeilBrown 1999oct15
3786 if (inode->i_nlink == 0) {
3787 if (inode->i_mode == 0 ||
3788 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3789 /* this inode is deleted */
3790 brelse (bh);
3791 ret = -ESTALE;
3792 goto bad_inode;
3794 /* The only unlinked inodes we let through here have
3795 * valid i_mode and are being read by the orphan
3796 * recovery code: that's fine, we're about to complete
3797 * the process of deleting those. */
3799 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3800 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3801 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3802 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3803 cpu_to_le32(EXT4_OS_HURD)) {
3804 ei->i_file_acl |=
3805 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3807 inode->i_size = ext4_isize(raw_inode);
3808 ei->i_disksize = inode->i_size;
3809 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3810 ei->i_block_group = iloc.block_group;
3812 * NOTE! The in-memory inode i_data array is in little-endian order
3813 * even on big-endian machines: we do NOT byteswap the block numbers!
3815 for (block = 0; block < EXT4_N_BLOCKS; block++)
3816 ei->i_data[block] = raw_inode->i_block[block];
3817 INIT_LIST_HEAD(&ei->i_orphan);
3819 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3820 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3821 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3822 EXT4_INODE_SIZE(inode->i_sb)) {
3823 brelse (bh);
3824 ret = -EIO;
3825 goto bad_inode;
3827 if (ei->i_extra_isize == 0) {
3828 /* The extra space is currently unused. Use it. */
3829 ei->i_extra_isize = sizeof(struct ext4_inode) -
3830 EXT4_GOOD_OLD_INODE_SIZE;
3831 } else {
3832 __le32 *magic = (void *)raw_inode +
3833 EXT4_GOOD_OLD_INODE_SIZE +
3834 ei->i_extra_isize;
3835 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3836 ei->i_state |= EXT4_STATE_XATTR;
3838 } else
3839 ei->i_extra_isize = 0;
3841 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3842 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3843 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3844 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3846 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3847 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3848 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3849 inode->i_version |=
3850 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3853 if (S_ISREG(inode->i_mode)) {
3854 inode->i_op = &ext4_file_inode_operations;
3855 inode->i_fop = &ext4_file_operations;
3856 ext4_set_aops(inode);
3857 } else if (S_ISDIR(inode->i_mode)) {
3858 inode->i_op = &ext4_dir_inode_operations;
3859 inode->i_fop = &ext4_dir_operations;
3860 } else if (S_ISLNK(inode->i_mode)) {
3861 if (ext4_inode_is_fast_symlink(inode))
3862 inode->i_op = &ext4_fast_symlink_inode_operations;
3863 else {
3864 inode->i_op = &ext4_symlink_inode_operations;
3865 ext4_set_aops(inode);
3867 } else {
3868 inode->i_op = &ext4_special_inode_operations;
3869 if (raw_inode->i_block[0])
3870 init_special_inode(inode, inode->i_mode,
3871 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3872 else
3873 init_special_inode(inode, inode->i_mode,
3874 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3876 brelse (iloc.bh);
3877 ext4_set_inode_flags(inode);
3878 unlock_new_inode(inode);
3879 return inode;
3881 bad_inode:
3882 iget_failed(inode);
3883 return ERR_PTR(ret);
3886 static int ext4_inode_blocks_set(handle_t *handle,
3887 struct ext4_inode *raw_inode,
3888 struct ext4_inode_info *ei)
3890 struct inode *inode = &(ei->vfs_inode);
3891 u64 i_blocks = inode->i_blocks;
3892 struct super_block *sb = inode->i_sb;
3893 int err = 0;
3895 if (i_blocks <= ~0U) {
3897 * i_blocks can be represnted in a 32 bit variable
3898 * as multiple of 512 bytes
3900 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3901 raw_inode->i_blocks_high = 0;
3902 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3903 } else if (i_blocks <= 0xffffffffffffULL) {
3905 * i_blocks can be represented in a 48 bit variable
3906 * as multiple of 512 bytes
3908 err = ext4_update_rocompat_feature(handle, sb,
3909 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3910 if (err)
3911 goto err_out;
3912 /* i_block is stored in the split 48 bit fields */
3913 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3914 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3915 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3916 } else {
3918 * i_blocks should be represented in a 48 bit variable
3919 * as multiple of file system block size
3921 err = ext4_update_rocompat_feature(handle, sb,
3922 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3923 if (err)
3924 goto err_out;
3925 ei->i_flags |= EXT4_HUGE_FILE_FL;
3926 /* i_block is stored in file system block size */
3927 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3928 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3929 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3931 err_out:
3932 return err;
3936 * Post the struct inode info into an on-disk inode location in the
3937 * buffer-cache. This gobbles the caller's reference to the
3938 * buffer_head in the inode location struct.
3940 * The caller must have write access to iloc->bh.
3942 static int ext4_do_update_inode(handle_t *handle,
3943 struct inode *inode,
3944 struct ext4_iloc *iloc)
3946 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3947 struct ext4_inode_info *ei = EXT4_I(inode);
3948 struct buffer_head *bh = iloc->bh;
3949 int err = 0, rc, block;
3951 /* For fields not not tracking in the in-memory inode,
3952 * initialise them to zero for new inodes. */
3953 if (ei->i_state & EXT4_STATE_NEW)
3954 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3956 ext4_get_inode_flags(ei);
3957 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3958 if(!(test_opt(inode->i_sb, NO_UID32))) {
3959 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3960 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3962 * Fix up interoperability with old kernels. Otherwise, old inodes get
3963 * re-used with the upper 16 bits of the uid/gid intact
3965 if(!ei->i_dtime) {
3966 raw_inode->i_uid_high =
3967 cpu_to_le16(high_16_bits(inode->i_uid));
3968 raw_inode->i_gid_high =
3969 cpu_to_le16(high_16_bits(inode->i_gid));
3970 } else {
3971 raw_inode->i_uid_high = 0;
3972 raw_inode->i_gid_high = 0;
3974 } else {
3975 raw_inode->i_uid_low =
3976 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3977 raw_inode->i_gid_low =
3978 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3979 raw_inode->i_uid_high = 0;
3980 raw_inode->i_gid_high = 0;
3982 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3984 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3985 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3986 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3987 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3989 if (ext4_inode_blocks_set(handle, raw_inode, ei))
3990 goto out_brelse;
3991 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3992 /* clear the migrate flag in the raw_inode */
3993 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
3994 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3995 cpu_to_le32(EXT4_OS_HURD))
3996 raw_inode->i_file_acl_high =
3997 cpu_to_le16(ei->i_file_acl >> 32);
3998 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3999 ext4_isize_set(raw_inode, ei->i_disksize);
4000 if (ei->i_disksize > 0x7fffffffULL) {
4001 struct super_block *sb = inode->i_sb;
4002 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4003 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4004 EXT4_SB(sb)->s_es->s_rev_level ==
4005 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4006 /* If this is the first large file
4007 * created, add a flag to the superblock.
4009 err = ext4_journal_get_write_access(handle,
4010 EXT4_SB(sb)->s_sbh);
4011 if (err)
4012 goto out_brelse;
4013 ext4_update_dynamic_rev(sb);
4014 EXT4_SET_RO_COMPAT_FEATURE(sb,
4015 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4016 sb->s_dirt = 1;
4017 handle->h_sync = 1;
4018 err = ext4_journal_dirty_metadata(handle,
4019 EXT4_SB(sb)->s_sbh);
4022 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4023 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4024 if (old_valid_dev(inode->i_rdev)) {
4025 raw_inode->i_block[0] =
4026 cpu_to_le32(old_encode_dev(inode->i_rdev));
4027 raw_inode->i_block[1] = 0;
4028 } else {
4029 raw_inode->i_block[0] = 0;
4030 raw_inode->i_block[1] =
4031 cpu_to_le32(new_encode_dev(inode->i_rdev));
4032 raw_inode->i_block[2] = 0;
4034 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4035 raw_inode->i_block[block] = ei->i_data[block];
4037 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4038 if (ei->i_extra_isize) {
4039 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4040 raw_inode->i_version_hi =
4041 cpu_to_le32(inode->i_version >> 32);
4042 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4046 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4047 rc = ext4_journal_dirty_metadata(handle, bh);
4048 if (!err)
4049 err = rc;
4050 ei->i_state &= ~EXT4_STATE_NEW;
4052 out_brelse:
4053 brelse (bh);
4054 ext4_std_error(inode->i_sb, err);
4055 return err;
4059 * ext4_write_inode()
4061 * We are called from a few places:
4063 * - Within generic_file_write() for O_SYNC files.
4064 * Here, there will be no transaction running. We wait for any running
4065 * trasnaction to commit.
4067 * - Within sys_sync(), kupdate and such.
4068 * We wait on commit, if tol to.
4070 * - Within prune_icache() (PF_MEMALLOC == true)
4071 * Here we simply return. We can't afford to block kswapd on the
4072 * journal commit.
4074 * In all cases it is actually safe for us to return without doing anything,
4075 * because the inode has been copied into a raw inode buffer in
4076 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4077 * knfsd.
4079 * Note that we are absolutely dependent upon all inode dirtiers doing the
4080 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4081 * which we are interested.
4083 * It would be a bug for them to not do this. The code:
4085 * mark_inode_dirty(inode)
4086 * stuff();
4087 * inode->i_size = expr;
4089 * is in error because a kswapd-driven write_inode() could occur while
4090 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4091 * will no longer be on the superblock's dirty inode list.
4093 int ext4_write_inode(struct inode *inode, int wait)
4095 if (current->flags & PF_MEMALLOC)
4096 return 0;
4098 if (ext4_journal_current_handle()) {
4099 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4100 dump_stack();
4101 return -EIO;
4104 if (!wait)
4105 return 0;
4107 return ext4_force_commit(inode->i_sb);
4111 * ext4_setattr()
4113 * Called from notify_change.
4115 * We want to trap VFS attempts to truncate the file as soon as
4116 * possible. In particular, we want to make sure that when the VFS
4117 * shrinks i_size, we put the inode on the orphan list and modify
4118 * i_disksize immediately, so that during the subsequent flushing of
4119 * dirty pages and freeing of disk blocks, we can guarantee that any
4120 * commit will leave the blocks being flushed in an unused state on
4121 * disk. (On recovery, the inode will get truncated and the blocks will
4122 * be freed, so we have a strong guarantee that no future commit will
4123 * leave these blocks visible to the user.)
4125 * Another thing we have to assure is that if we are in ordered mode
4126 * and inode is still attached to the committing transaction, we must
4127 * we start writeout of all the dirty pages which are being truncated.
4128 * This way we are sure that all the data written in the previous
4129 * transaction are already on disk (truncate waits for pages under
4130 * writeback).
4132 * Called with inode->i_mutex down.
4134 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4136 struct inode *inode = dentry->d_inode;
4137 int error, rc = 0;
4138 const unsigned int ia_valid = attr->ia_valid;
4140 error = inode_change_ok(inode, attr);
4141 if (error)
4142 return error;
4144 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4145 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4146 handle_t *handle;
4148 /* (user+group)*(old+new) structure, inode write (sb,
4149 * inode block, ? - but truncate inode update has it) */
4150 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4151 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4152 if (IS_ERR(handle)) {
4153 error = PTR_ERR(handle);
4154 goto err_out;
4156 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4157 if (error) {
4158 ext4_journal_stop(handle);
4159 return error;
4161 /* Update corresponding info in inode so that everything is in
4162 * one transaction */
4163 if (attr->ia_valid & ATTR_UID)
4164 inode->i_uid = attr->ia_uid;
4165 if (attr->ia_valid & ATTR_GID)
4166 inode->i_gid = attr->ia_gid;
4167 error = ext4_mark_inode_dirty(handle, inode);
4168 ext4_journal_stop(handle);
4171 if (attr->ia_valid & ATTR_SIZE) {
4172 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4173 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4175 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4176 error = -EFBIG;
4177 goto err_out;
4182 if (S_ISREG(inode->i_mode) &&
4183 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4184 handle_t *handle;
4186 handle = ext4_journal_start(inode, 3);
4187 if (IS_ERR(handle)) {
4188 error = PTR_ERR(handle);
4189 goto err_out;
4192 error = ext4_orphan_add(handle, inode);
4193 EXT4_I(inode)->i_disksize = attr->ia_size;
4194 rc = ext4_mark_inode_dirty(handle, inode);
4195 if (!error)
4196 error = rc;
4197 ext4_journal_stop(handle);
4199 if (ext4_should_order_data(inode)) {
4200 error = ext4_begin_ordered_truncate(inode,
4201 attr->ia_size);
4202 if (error) {
4203 /* Do as much error cleanup as possible */
4204 handle = ext4_journal_start(inode, 3);
4205 if (IS_ERR(handle)) {
4206 ext4_orphan_del(NULL, inode);
4207 goto err_out;
4209 ext4_orphan_del(handle, inode);
4210 ext4_journal_stop(handle);
4211 goto err_out;
4216 rc = inode_setattr(inode, attr);
4218 /* If inode_setattr's call to ext4_truncate failed to get a
4219 * transaction handle at all, we need to clean up the in-core
4220 * orphan list manually. */
4221 if (inode->i_nlink)
4222 ext4_orphan_del(NULL, inode);
4224 if (!rc && (ia_valid & ATTR_MODE))
4225 rc = ext4_acl_chmod(inode);
4227 err_out:
4228 ext4_std_error(inode->i_sb, error);
4229 if (!error)
4230 error = rc;
4231 return error;
4234 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4235 struct kstat *stat)
4237 struct inode *inode;
4238 unsigned long delalloc_blocks;
4240 inode = dentry->d_inode;
4241 generic_fillattr(inode, stat);
4244 * We can't update i_blocks if the block allocation is delayed
4245 * otherwise in the case of system crash before the real block
4246 * allocation is done, we will have i_blocks inconsistent with
4247 * on-disk file blocks.
4248 * We always keep i_blocks updated together with real
4249 * allocation. But to not confuse with user, stat
4250 * will return the blocks that include the delayed allocation
4251 * blocks for this file.
4253 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4254 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4255 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4257 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4258 return 0;
4262 * How many blocks doth make a writepage()?
4264 * With N blocks per page, it may be:
4265 * N data blocks
4266 * 2 indirect block
4267 * 2 dindirect
4268 * 1 tindirect
4269 * N+5 bitmap blocks (from the above)
4270 * N+5 group descriptor summary blocks
4271 * 1 inode block
4272 * 1 superblock.
4273 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
4275 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
4277 * With ordered or writeback data it's the same, less the N data blocks.
4279 * If the inode's direct blocks can hold an integral number of pages then a
4280 * page cannot straddle two indirect blocks, and we can only touch one indirect
4281 * and dindirect block, and the "5" above becomes "3".
4283 * This still overestimates under most circumstances. If we were to pass the
4284 * start and end offsets in here as well we could do block_to_path() on each
4285 * block and work out the exact number of indirects which are touched. Pah.
4288 int ext4_writepage_trans_blocks(struct inode *inode)
4290 int bpp = ext4_journal_blocks_per_page(inode);
4291 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
4292 int ret;
4294 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
4295 return ext4_ext_writepage_trans_blocks(inode, bpp);
4297 if (ext4_should_journal_data(inode))
4298 ret = 3 * (bpp + indirects) + 2;
4299 else
4300 ret = 2 * (bpp + indirects) + 2;
4302 #ifdef CONFIG_QUOTA
4303 /* We know that structure was already allocated during DQUOT_INIT so
4304 * we will be updating only the data blocks + inodes */
4305 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
4306 #endif
4308 return ret;
4312 * The caller must have previously called ext4_reserve_inode_write().
4313 * Give this, we know that the caller already has write access to iloc->bh.
4315 int ext4_mark_iloc_dirty(handle_t *handle,
4316 struct inode *inode, struct ext4_iloc *iloc)
4318 int err = 0;
4320 if (test_opt(inode->i_sb, I_VERSION))
4321 inode_inc_iversion(inode);
4323 /* the do_update_inode consumes one bh->b_count */
4324 get_bh(iloc->bh);
4326 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4327 err = ext4_do_update_inode(handle, inode, iloc);
4328 put_bh(iloc->bh);
4329 return err;
4333 * On success, We end up with an outstanding reference count against
4334 * iloc->bh. This _must_ be cleaned up later.
4338 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4339 struct ext4_iloc *iloc)
4341 int err = 0;
4342 if (handle) {
4343 err = ext4_get_inode_loc(inode, iloc);
4344 if (!err) {
4345 BUFFER_TRACE(iloc->bh, "get_write_access");
4346 err = ext4_journal_get_write_access(handle, iloc->bh);
4347 if (err) {
4348 brelse(iloc->bh);
4349 iloc->bh = NULL;
4353 ext4_std_error(inode->i_sb, err);
4354 return err;
4358 * Expand an inode by new_extra_isize bytes.
4359 * Returns 0 on success or negative error number on failure.
4361 static int ext4_expand_extra_isize(struct inode *inode,
4362 unsigned int new_extra_isize,
4363 struct ext4_iloc iloc,
4364 handle_t *handle)
4366 struct ext4_inode *raw_inode;
4367 struct ext4_xattr_ibody_header *header;
4368 struct ext4_xattr_entry *entry;
4370 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4371 return 0;
4373 raw_inode = ext4_raw_inode(&iloc);
4375 header = IHDR(inode, raw_inode);
4376 entry = IFIRST(header);
4378 /* No extended attributes present */
4379 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4380 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4381 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4382 new_extra_isize);
4383 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4384 return 0;
4387 /* try to expand with EAs present */
4388 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4389 raw_inode, handle);
4393 * What we do here is to mark the in-core inode as clean with respect to inode
4394 * dirtiness (it may still be data-dirty).
4395 * This means that the in-core inode may be reaped by prune_icache
4396 * without having to perform any I/O. This is a very good thing,
4397 * because *any* task may call prune_icache - even ones which
4398 * have a transaction open against a different journal.
4400 * Is this cheating? Not really. Sure, we haven't written the
4401 * inode out, but prune_icache isn't a user-visible syncing function.
4402 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4403 * we start and wait on commits.
4405 * Is this efficient/effective? Well, we're being nice to the system
4406 * by cleaning up our inodes proactively so they can be reaped
4407 * without I/O. But we are potentially leaving up to five seconds'
4408 * worth of inodes floating about which prune_icache wants us to
4409 * write out. One way to fix that would be to get prune_icache()
4410 * to do a write_super() to free up some memory. It has the desired
4411 * effect.
4413 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4415 struct ext4_iloc iloc;
4416 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4417 static unsigned int mnt_count;
4418 int err, ret;
4420 might_sleep();
4421 err = ext4_reserve_inode_write(handle, inode, &iloc);
4422 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4423 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4425 * We need extra buffer credits since we may write into EA block
4426 * with this same handle. If journal_extend fails, then it will
4427 * only result in a minor loss of functionality for that inode.
4428 * If this is felt to be critical, then e2fsck should be run to
4429 * force a large enough s_min_extra_isize.
4431 if ((jbd2_journal_extend(handle,
4432 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4433 ret = ext4_expand_extra_isize(inode,
4434 sbi->s_want_extra_isize,
4435 iloc, handle);
4436 if (ret) {
4437 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4438 if (mnt_count !=
4439 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4440 ext4_warning(inode->i_sb, __func__,
4441 "Unable to expand inode %lu. Delete"
4442 " some EAs or run e2fsck.",
4443 inode->i_ino);
4444 mnt_count =
4445 le16_to_cpu(sbi->s_es->s_mnt_count);
4450 if (!err)
4451 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4452 return err;
4456 * ext4_dirty_inode() is called from __mark_inode_dirty()
4458 * We're really interested in the case where a file is being extended.
4459 * i_size has been changed by generic_commit_write() and we thus need
4460 * to include the updated inode in the current transaction.
4462 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4463 * are allocated to the file.
4465 * If the inode is marked synchronous, we don't honour that here - doing
4466 * so would cause a commit on atime updates, which we don't bother doing.
4467 * We handle synchronous inodes at the highest possible level.
4469 void ext4_dirty_inode(struct inode *inode)
4471 handle_t *current_handle = ext4_journal_current_handle();
4472 handle_t *handle;
4474 handle = ext4_journal_start(inode, 2);
4475 if (IS_ERR(handle))
4476 goto out;
4477 if (current_handle &&
4478 current_handle->h_transaction != handle->h_transaction) {
4479 /* This task has a transaction open against a different fs */
4480 printk(KERN_EMERG "%s: transactions do not match!\n",
4481 __func__);
4482 } else {
4483 jbd_debug(5, "marking dirty. outer handle=%p\n",
4484 current_handle);
4485 ext4_mark_inode_dirty(handle, inode);
4487 ext4_journal_stop(handle);
4488 out:
4489 return;
4492 #if 0
4494 * Bind an inode's backing buffer_head into this transaction, to prevent
4495 * it from being flushed to disk early. Unlike
4496 * ext4_reserve_inode_write, this leaves behind no bh reference and
4497 * returns no iloc structure, so the caller needs to repeat the iloc
4498 * lookup to mark the inode dirty later.
4500 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4502 struct ext4_iloc iloc;
4504 int err = 0;
4505 if (handle) {
4506 err = ext4_get_inode_loc(inode, &iloc);
4507 if (!err) {
4508 BUFFER_TRACE(iloc.bh, "get_write_access");
4509 err = jbd2_journal_get_write_access(handle, iloc.bh);
4510 if (!err)
4511 err = ext4_journal_dirty_metadata(handle,
4512 iloc.bh);
4513 brelse(iloc.bh);
4516 ext4_std_error(inode->i_sb, err);
4517 return err;
4519 #endif
4521 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4523 journal_t *journal;
4524 handle_t *handle;
4525 int err;
4528 * We have to be very careful here: changing a data block's
4529 * journaling status dynamically is dangerous. If we write a
4530 * data block to the journal, change the status and then delete
4531 * that block, we risk forgetting to revoke the old log record
4532 * from the journal and so a subsequent replay can corrupt data.
4533 * So, first we make sure that the journal is empty and that
4534 * nobody is changing anything.
4537 journal = EXT4_JOURNAL(inode);
4538 if (is_journal_aborted(journal))
4539 return -EROFS;
4541 jbd2_journal_lock_updates(journal);
4542 jbd2_journal_flush(journal);
4545 * OK, there are no updates running now, and all cached data is
4546 * synced to disk. We are now in a completely consistent state
4547 * which doesn't have anything in the journal, and we know that
4548 * no filesystem updates are running, so it is safe to modify
4549 * the inode's in-core data-journaling state flag now.
4552 if (val)
4553 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4554 else
4555 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4556 ext4_set_aops(inode);
4558 jbd2_journal_unlock_updates(journal);
4560 /* Finally we can mark the inode as dirty. */
4562 handle = ext4_journal_start(inode, 1);
4563 if (IS_ERR(handle))
4564 return PTR_ERR(handle);
4566 err = ext4_mark_inode_dirty(handle, inode);
4567 handle->h_sync = 1;
4568 ext4_journal_stop(handle);
4569 ext4_std_error(inode->i_sb, err);
4571 return err;
4574 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4576 return !buffer_mapped(bh);
4579 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4581 loff_t size;
4582 unsigned long len;
4583 int ret = -EINVAL;
4584 struct file *file = vma->vm_file;
4585 struct inode *inode = file->f_path.dentry->d_inode;
4586 struct address_space *mapping = inode->i_mapping;
4589 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4590 * get i_mutex because we are already holding mmap_sem.
4592 down_read(&inode->i_alloc_sem);
4593 size = i_size_read(inode);
4594 if (page->mapping != mapping || size <= page_offset(page)
4595 || !PageUptodate(page)) {
4596 /* page got truncated from under us? */
4597 goto out_unlock;
4599 ret = 0;
4600 if (PageMappedToDisk(page))
4601 goto out_unlock;
4603 if (page->index == size >> PAGE_CACHE_SHIFT)
4604 len = size & ~PAGE_CACHE_MASK;
4605 else
4606 len = PAGE_CACHE_SIZE;
4608 if (page_has_buffers(page)) {
4609 /* return if we have all the buffers mapped */
4610 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4611 ext4_bh_unmapped))
4612 goto out_unlock;
4615 * OK, we need to fill the hole... Do write_begin write_end
4616 * to do block allocation/reservation.We are not holding
4617 * inode.i__mutex here. That allow * parallel write_begin,
4618 * write_end call. lock_page prevent this from happening
4619 * on the same page though
4621 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4622 len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4623 if (ret < 0)
4624 goto out_unlock;
4625 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4626 len, len, page, NULL);
4627 if (ret < 0)
4628 goto out_unlock;
4629 ret = 0;
4630 out_unlock:
4631 up_read(&inode->i_alloc_sem);
4632 return ret;