tty: hold lock across tty buffer finding and buffer filling
[linux-2.6/btrfs-unstable.git] / arch / um / os-Linux / signal.c
blob2d22f1fcd8e244269ed0e55c7c25e0f09a3b7e8a
1 /*
2 * Copyright (C) 2004 PathScale, Inc
3 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4 * Licensed under the GPL
5 */
7 #include <stdlib.h>
8 #include <stdarg.h>
9 #include <errno.h>
10 #include <signal.h>
11 #include <strings.h>
12 #include "as-layout.h"
13 #include "kern_util.h"
14 #include "os.h"
15 #include "sysdep/mcontext.h"
17 void (*sig_info[NSIG])(int, struct uml_pt_regs *) = {
18 [SIGTRAP] = relay_signal,
19 [SIGFPE] = relay_signal,
20 [SIGILL] = relay_signal,
21 [SIGWINCH] = winch,
22 [SIGBUS] = bus_handler,
23 [SIGSEGV] = segv_handler,
24 [SIGIO] = sigio_handler,
25 [SIGVTALRM] = timer_handler };
27 static void sig_handler_common(int sig, mcontext_t *mc)
29 struct uml_pt_regs r;
30 int save_errno = errno;
32 r.is_user = 0;
33 if (sig == SIGSEGV) {
34 /* For segfaults, we want the data from the sigcontext. */
35 get_regs_from_mc(&r, mc);
36 GET_FAULTINFO_FROM_MC(r.faultinfo, mc);
39 /* enable signals if sig isn't IRQ signal */
40 if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGVTALRM))
41 unblock_signals();
43 (*sig_info[sig])(sig, &r);
45 errno = save_errno;
49 * These are the asynchronous signals. SIGPROF is excluded because we want to
50 * be able to profile all of UML, not just the non-critical sections. If
51 * profiling is not thread-safe, then that is not my problem. We can disable
52 * profiling when SMP is enabled in that case.
54 #define SIGIO_BIT 0
55 #define SIGIO_MASK (1 << SIGIO_BIT)
57 #define SIGVTALRM_BIT 1
58 #define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
60 static int signals_enabled;
61 static unsigned int signals_pending;
63 void sig_handler(int sig, mcontext_t *mc)
65 int enabled;
67 enabled = signals_enabled;
68 if (!enabled && (sig == SIGIO)) {
69 signals_pending |= SIGIO_MASK;
70 return;
73 block_signals();
75 sig_handler_common(sig, mc);
77 set_signals(enabled);
80 static void real_alarm_handler(mcontext_t *mc)
82 struct uml_pt_regs regs;
84 if (mc != NULL)
85 get_regs_from_mc(&regs, mc);
86 regs.is_user = 0;
87 unblock_signals();
88 timer_handler(SIGVTALRM, &regs);
91 void alarm_handler(int sig, mcontext_t *mc)
93 int enabled;
95 enabled = signals_enabled;
96 if (!signals_enabled) {
97 signals_pending |= SIGVTALRM_MASK;
98 return;
101 block_signals();
103 real_alarm_handler(mc);
104 set_signals(enabled);
107 void timer_init(void)
109 set_handler(SIGVTALRM);
112 void set_sigstack(void *sig_stack, int size)
114 stack_t stack = ((stack_t) { .ss_flags = 0,
115 .ss_sp = (__ptr_t) sig_stack,
116 .ss_size = size - sizeof(void *) });
118 if (sigaltstack(&stack, NULL) != 0)
119 panic("enabling signal stack failed, errno = %d\n", errno);
122 static void (*handlers[_NSIG])(int sig, mcontext_t *mc) = {
123 [SIGSEGV] = sig_handler,
124 [SIGBUS] = sig_handler,
125 [SIGILL] = sig_handler,
126 [SIGFPE] = sig_handler,
127 [SIGTRAP] = sig_handler,
129 [SIGIO] = sig_handler,
130 [SIGWINCH] = sig_handler,
131 [SIGVTALRM] = alarm_handler
135 static void hard_handler(int sig, siginfo_t *info, void *p)
137 struct ucontext *uc = p;
138 mcontext_t *mc = &uc->uc_mcontext;
139 unsigned long pending = 1UL << sig;
141 do {
142 int nested, bail;
145 * pending comes back with one bit set for each
146 * interrupt that arrived while setting up the stack,
147 * plus a bit for this interrupt, plus the zero bit is
148 * set if this is a nested interrupt.
149 * If bail is true, then we interrupted another
150 * handler setting up the stack. In this case, we
151 * have to return, and the upper handler will deal
152 * with this interrupt.
154 bail = to_irq_stack(&pending);
155 if (bail)
156 return;
158 nested = pending & 1;
159 pending &= ~1;
161 while ((sig = ffs(pending)) != 0){
162 sig--;
163 pending &= ~(1 << sig);
164 (*handlers[sig])(sig, mc);
168 * Again, pending comes back with a mask of signals
169 * that arrived while tearing down the stack. If this
170 * is non-zero, we just go back, set up the stack
171 * again, and handle the new interrupts.
173 if (!nested)
174 pending = from_irq_stack(nested);
175 } while (pending);
178 void set_handler(int sig)
180 struct sigaction action;
181 int flags = SA_SIGINFO | SA_ONSTACK;
182 sigset_t sig_mask;
184 action.sa_sigaction = hard_handler;
186 /* block irq ones */
187 sigemptyset(&action.sa_mask);
188 sigaddset(&action.sa_mask, SIGVTALRM);
189 sigaddset(&action.sa_mask, SIGIO);
190 sigaddset(&action.sa_mask, SIGWINCH);
192 if (sig == SIGSEGV)
193 flags |= SA_NODEFER;
195 if (sigismember(&action.sa_mask, sig))
196 flags |= SA_RESTART; /* if it's an irq signal */
198 action.sa_flags = flags;
199 action.sa_restorer = NULL;
200 if (sigaction(sig, &action, NULL) < 0)
201 panic("sigaction failed - errno = %d\n", errno);
203 sigemptyset(&sig_mask);
204 sigaddset(&sig_mask, sig);
205 if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
206 panic("sigprocmask failed - errno = %d\n", errno);
209 int change_sig(int signal, int on)
211 sigset_t sigset;
213 sigemptyset(&sigset);
214 sigaddset(&sigset, signal);
215 if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
216 return -errno;
218 return 0;
221 void block_signals(void)
223 signals_enabled = 0;
225 * This must return with signals disabled, so this barrier
226 * ensures that writes are flushed out before the return.
227 * This might matter if gcc figures out how to inline this and
228 * decides to shuffle this code into the caller.
230 barrier();
233 void unblock_signals(void)
235 int save_pending;
237 if (signals_enabled == 1)
238 return;
241 * We loop because the IRQ handler returns with interrupts off. So,
242 * interrupts may have arrived and we need to re-enable them and
243 * recheck signals_pending.
245 while (1) {
247 * Save and reset save_pending after enabling signals. This
248 * way, signals_pending won't be changed while we're reading it.
250 signals_enabled = 1;
253 * Setting signals_enabled and reading signals_pending must
254 * happen in this order.
256 barrier();
258 save_pending = signals_pending;
259 if (save_pending == 0)
260 return;
262 signals_pending = 0;
265 * We have pending interrupts, so disable signals, as the
266 * handlers expect them off when they are called. They will
267 * be enabled again above.
270 signals_enabled = 0;
273 * Deal with SIGIO first because the alarm handler might
274 * schedule, leaving the pending SIGIO stranded until we come
275 * back here.
277 if (save_pending & SIGIO_MASK)
278 sig_handler_common(SIGIO, NULL);
280 if (save_pending & SIGVTALRM_MASK)
281 real_alarm_handler(NULL);
285 int get_signals(void)
287 return signals_enabled;
290 int set_signals(int enable)
292 int ret;
293 if (signals_enabled == enable)
294 return enable;
296 ret = signals_enabled;
297 if (enable)
298 unblock_signals();
299 else block_signals();
301 return ret;