[PATCH] ARM: Add top_pmd, which points at the top-most page table
[linux-2.6/btrfs-unstable.git] / arch / arm / mm / mm-armv.c
blobfa60fd65fcf844c995411156e8a5c169f6abad2e
1 /*
2 * linux/arch/arm/mm/mm-armv.c
4 * Copyright (C) 1998-2002 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * Page table sludge for ARM v3 and v4 processor architectures.
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/bootmem.h>
17 #include <linux/highmem.h>
18 #include <linux/nodemask.h>
20 #include <asm/pgalloc.h>
21 #include <asm/page.h>
22 #include <asm/io.h>
23 #include <asm/setup.h>
24 #include <asm/tlbflush.h>
26 #include <asm/mach/map.h>
28 #define CPOLICY_UNCACHED 0
29 #define CPOLICY_BUFFERED 1
30 #define CPOLICY_WRITETHROUGH 2
31 #define CPOLICY_WRITEBACK 3
32 #define CPOLICY_WRITEALLOC 4
34 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
35 static unsigned int ecc_mask __initdata = 0;
36 pgprot_t pgprot_kernel;
38 EXPORT_SYMBOL(pgprot_kernel);
40 pmd_t *top_pmd;
42 struct cachepolicy {
43 const char policy[16];
44 unsigned int cr_mask;
45 unsigned int pmd;
46 unsigned int pte;
49 static struct cachepolicy cache_policies[] __initdata = {
51 .policy = "uncached",
52 .cr_mask = CR_W|CR_C,
53 .pmd = PMD_SECT_UNCACHED,
54 .pte = 0,
55 }, {
56 .policy = "buffered",
57 .cr_mask = CR_C,
58 .pmd = PMD_SECT_BUFFERED,
59 .pte = PTE_BUFFERABLE,
60 }, {
61 .policy = "writethrough",
62 .cr_mask = 0,
63 .pmd = PMD_SECT_WT,
64 .pte = PTE_CACHEABLE,
65 }, {
66 .policy = "writeback",
67 .cr_mask = 0,
68 .pmd = PMD_SECT_WB,
69 .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
70 }, {
71 .policy = "writealloc",
72 .cr_mask = 0,
73 .pmd = PMD_SECT_WBWA,
74 .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
79 * These are useful for identifing cache coherency
80 * problems by allowing the cache or the cache and
81 * writebuffer to be turned off. (Note: the write
82 * buffer should not be on and the cache off).
84 static void __init early_cachepolicy(char **p)
86 int i;
88 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
89 int len = strlen(cache_policies[i].policy);
91 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
92 cachepolicy = i;
93 cr_alignment &= ~cache_policies[i].cr_mask;
94 cr_no_alignment &= ~cache_policies[i].cr_mask;
95 *p += len;
96 break;
99 if (i == ARRAY_SIZE(cache_policies))
100 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
101 flush_cache_all();
102 set_cr(cr_alignment);
105 static void __init early_nocache(char **__unused)
107 char *p = "buffered";
108 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
109 early_cachepolicy(&p);
112 static void __init early_nowrite(char **__unused)
114 char *p = "uncached";
115 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
116 early_cachepolicy(&p);
119 static void __init early_ecc(char **p)
121 if (memcmp(*p, "on", 2) == 0) {
122 ecc_mask = PMD_PROTECTION;
123 *p += 2;
124 } else if (memcmp(*p, "off", 3) == 0) {
125 ecc_mask = 0;
126 *p += 3;
130 __early_param("nocache", early_nocache);
131 __early_param("nowb", early_nowrite);
132 __early_param("cachepolicy=", early_cachepolicy);
133 __early_param("ecc=", early_ecc);
135 static int __init noalign_setup(char *__unused)
137 cr_alignment &= ~CR_A;
138 cr_no_alignment &= ~CR_A;
139 set_cr(cr_alignment);
140 return 1;
143 __setup("noalign", noalign_setup);
145 #define FIRST_KERNEL_PGD_NR (FIRST_USER_PGD_NR + USER_PTRS_PER_PGD)
147 static inline pmd_t *pmd_off(pgd_t *pgd, unsigned long virt)
149 return pmd_offset(pgd, virt);
152 static inline pmd_t *pmd_off_k(unsigned long virt)
154 return pmd_off(pgd_offset_k(virt), virt);
158 * need to get a 16k page for level 1
160 pgd_t *get_pgd_slow(struct mm_struct *mm)
162 pgd_t *new_pgd, *init_pgd;
163 pmd_t *new_pmd, *init_pmd;
164 pte_t *new_pte, *init_pte;
166 new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2);
167 if (!new_pgd)
168 goto no_pgd;
170 memzero(new_pgd, FIRST_KERNEL_PGD_NR * sizeof(pgd_t));
172 init_pgd = pgd_offset_k(0);
174 if (!vectors_high()) {
176 * This lock is here just to satisfy pmd_alloc and pte_lock
178 spin_lock(&mm->page_table_lock);
181 * On ARM, first page must always be allocated since it
182 * contains the machine vectors.
184 new_pmd = pmd_alloc(mm, new_pgd, 0);
185 if (!new_pmd)
186 goto no_pmd;
188 new_pte = pte_alloc_map(mm, new_pmd, 0);
189 if (!new_pte)
190 goto no_pte;
192 init_pmd = pmd_offset(init_pgd, 0);
193 init_pte = pte_offset_map_nested(init_pmd, 0);
194 set_pte(new_pte, *init_pte);
195 pte_unmap_nested(init_pte);
196 pte_unmap(new_pte);
198 spin_unlock(&mm->page_table_lock);
202 * Copy over the kernel and IO PGD entries
204 memcpy(new_pgd + FIRST_KERNEL_PGD_NR, init_pgd + FIRST_KERNEL_PGD_NR,
205 (PTRS_PER_PGD - FIRST_KERNEL_PGD_NR) * sizeof(pgd_t));
207 clean_dcache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t));
209 return new_pgd;
211 no_pte:
212 spin_unlock(&mm->page_table_lock);
213 pmd_free(new_pmd);
214 free_pages((unsigned long)new_pgd, 2);
215 return NULL;
217 no_pmd:
218 spin_unlock(&mm->page_table_lock);
219 free_pages((unsigned long)new_pgd, 2);
220 return NULL;
222 no_pgd:
223 return NULL;
226 void free_pgd_slow(pgd_t *pgd)
228 pmd_t *pmd;
229 struct page *pte;
231 if (!pgd)
232 return;
234 /* pgd is always present and good */
235 pmd = pmd_off(pgd, 0);
236 if (pmd_none(*pmd))
237 goto free;
238 if (pmd_bad(*pmd)) {
239 pmd_ERROR(*pmd);
240 pmd_clear(pmd);
241 goto free;
244 pte = pmd_page(*pmd);
245 pmd_clear(pmd);
246 dec_page_state(nr_page_table_pages);
247 pte_free(pte);
248 pmd_free(pmd);
249 free:
250 free_pages((unsigned long) pgd, 2);
254 * Create a SECTION PGD between VIRT and PHYS in domain
255 * DOMAIN with protection PROT. This operates on half-
256 * pgdir entry increments.
258 static inline void
259 alloc_init_section(unsigned long virt, unsigned long phys, int prot)
261 pmd_t *pmdp = pmd_off_k(virt);
263 if (virt & (1 << 20))
264 pmdp++;
266 *pmdp = __pmd(phys | prot);
267 flush_pmd_entry(pmdp);
271 * Create a SUPER SECTION PGD between VIRT and PHYS with protection PROT
273 static inline void
274 alloc_init_supersection(unsigned long virt, unsigned long phys, int prot)
276 int i;
278 for (i = 0; i < 16; i += 1) {
279 alloc_init_section(virt, phys & SUPERSECTION_MASK,
280 prot | PMD_SECT_SUPER);
282 virt += (PGDIR_SIZE / 2);
283 phys += (PGDIR_SIZE / 2);
288 * Add a PAGE mapping between VIRT and PHYS in domain
289 * DOMAIN with protection PROT. Note that due to the
290 * way we map the PTEs, we must allocate two PTE_SIZE'd
291 * blocks - one for the Linux pte table, and one for
292 * the hardware pte table.
294 static inline void
295 alloc_init_page(unsigned long virt, unsigned long phys, unsigned int prot_l1, pgprot_t prot)
297 pmd_t *pmdp = pmd_off_k(virt);
298 pte_t *ptep;
300 if (pmd_none(*pmdp)) {
301 unsigned long pmdval;
302 ptep = alloc_bootmem_low_pages(2 * PTRS_PER_PTE *
303 sizeof(pte_t));
305 pmdval = __pa(ptep) | prot_l1;
306 pmdp[0] = __pmd(pmdval);
307 pmdp[1] = __pmd(pmdval + 256 * sizeof(pte_t));
308 flush_pmd_entry(pmdp);
310 ptep = pte_offset_kernel(pmdp, virt);
312 set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
316 * Clear any PGD mapping. On a two-level page table system,
317 * the clearance is done by the middle-level functions (pmd)
318 * rather than the top-level (pgd) functions.
320 static inline void clear_mapping(unsigned long virt)
322 pmd_clear(pmd_off_k(virt));
325 struct mem_types {
326 unsigned int prot_pte;
327 unsigned int prot_l1;
328 unsigned int prot_sect;
329 unsigned int domain;
332 static struct mem_types mem_types[] __initdata = {
333 [MT_DEVICE] = {
334 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
335 L_PTE_WRITE,
336 .prot_l1 = PMD_TYPE_TABLE,
337 .prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED |
338 PMD_SECT_AP_WRITE,
339 .domain = DOMAIN_IO,
341 [MT_CACHECLEAN] = {
342 .prot_sect = PMD_TYPE_SECT,
343 .domain = DOMAIN_KERNEL,
345 [MT_MINICLEAN] = {
346 .prot_sect = PMD_TYPE_SECT | PMD_SECT_MINICACHE,
347 .domain = DOMAIN_KERNEL,
349 [MT_LOW_VECTORS] = {
350 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
351 L_PTE_EXEC,
352 .prot_l1 = PMD_TYPE_TABLE,
353 .domain = DOMAIN_USER,
355 [MT_HIGH_VECTORS] = {
356 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
357 L_PTE_USER | L_PTE_EXEC,
358 .prot_l1 = PMD_TYPE_TABLE,
359 .domain = DOMAIN_USER,
361 [MT_MEMORY] = {
362 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
363 .domain = DOMAIN_KERNEL,
365 [MT_ROM] = {
366 .prot_sect = PMD_TYPE_SECT,
367 .domain = DOMAIN_KERNEL,
369 [MT_IXP2000_DEVICE] = { /* IXP2400 requires XCB=101 for on-chip I/O */
370 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
371 L_PTE_WRITE,
372 .prot_l1 = PMD_TYPE_TABLE,
373 .prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED |
374 PMD_SECT_AP_WRITE | PMD_SECT_BUFFERABLE |
375 PMD_SECT_TEX(1),
376 .domain = DOMAIN_IO,
381 * Adjust the PMD section entries according to the CPU in use.
383 static void __init build_mem_type_table(void)
385 struct cachepolicy *cp;
386 unsigned int cr = get_cr();
387 int cpu_arch = cpu_architecture();
388 int i;
390 #if defined(CONFIG_CPU_DCACHE_DISABLE)
391 if (cachepolicy > CPOLICY_BUFFERED)
392 cachepolicy = CPOLICY_BUFFERED;
393 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
394 if (cachepolicy > CPOLICY_WRITETHROUGH)
395 cachepolicy = CPOLICY_WRITETHROUGH;
396 #endif
397 if (cpu_arch < CPU_ARCH_ARMv5) {
398 if (cachepolicy >= CPOLICY_WRITEALLOC)
399 cachepolicy = CPOLICY_WRITEBACK;
400 ecc_mask = 0;
403 if (cpu_arch <= CPU_ARCH_ARMv5) {
404 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
405 if (mem_types[i].prot_l1)
406 mem_types[i].prot_l1 |= PMD_BIT4;
407 if (mem_types[i].prot_sect)
408 mem_types[i].prot_sect |= PMD_BIT4;
413 * ARMv6 and above have extended page tables.
415 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
417 * bit 4 becomes XN which we must clear for the
418 * kernel memory mapping.
420 mem_types[MT_MEMORY].prot_sect &= ~PMD_BIT4;
421 mem_types[MT_ROM].prot_sect &= ~PMD_BIT4;
423 * Mark cache clean areas and XIP ROM read only
424 * from SVC mode and no access from userspace.
426 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
427 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
428 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
431 cp = &cache_policies[cachepolicy];
433 if (cpu_arch >= CPU_ARCH_ARMv5) {
434 mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE;
435 mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE;
436 } else {
437 mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte;
438 mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte;
439 mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
442 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
443 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
444 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
445 mem_types[MT_ROM].prot_sect |= cp->pmd;
447 for (i = 0; i < 16; i++) {
448 unsigned long v = pgprot_val(protection_map[i]);
449 v &= (~(PTE_BUFFERABLE|PTE_CACHEABLE)) | cp->pte;
450 protection_map[i] = __pgprot(v);
453 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
454 L_PTE_DIRTY | L_PTE_WRITE |
455 L_PTE_EXEC | cp->pte);
457 switch (cp->pmd) {
458 case PMD_SECT_WT:
459 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
460 break;
461 case PMD_SECT_WB:
462 case PMD_SECT_WBWA:
463 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
464 break;
466 printk("Memory policy: ECC %sabled, Data cache %s\n",
467 ecc_mask ? "en" : "dis", cp->policy);
470 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
473 * Create the page directory entries and any necessary
474 * page tables for the mapping specified by `md'. We
475 * are able to cope here with varying sizes and address
476 * offsets, and we take full advantage of sections and
477 * supersections.
479 static void __init create_mapping(struct map_desc *md)
481 unsigned long virt, length;
482 int prot_sect, prot_l1, domain;
483 pgprot_t prot_pte;
484 long off;
486 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
487 printk(KERN_WARNING "BUG: not creating mapping for "
488 "0x%08lx at 0x%08lx in user region\n",
489 md->physical, md->virtual);
490 return;
493 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
494 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
495 printk(KERN_WARNING "BUG: mapping for 0x%08lx at 0x%08lx "
496 "overlaps vmalloc space\n",
497 md->physical, md->virtual);
500 domain = mem_types[md->type].domain;
501 prot_pte = __pgprot(mem_types[md->type].prot_pte);
502 prot_l1 = mem_types[md->type].prot_l1 | PMD_DOMAIN(domain);
503 prot_sect = mem_types[md->type].prot_sect | PMD_DOMAIN(domain);
505 virt = md->virtual;
506 off = md->physical - virt;
507 length = md->length;
509 if (mem_types[md->type].prot_l1 == 0 &&
510 (virt & 0xfffff || (virt + off) & 0xfffff || (virt + length) & 0xfffff)) {
511 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
512 "be mapped using pages, ignoring.\n",
513 md->physical, md->virtual);
514 return;
517 while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) {
518 alloc_init_page(virt, virt + off, prot_l1, prot_pte);
520 virt += PAGE_SIZE;
521 length -= PAGE_SIZE;
524 /* N.B. ARMv6 supersections are only defined to work with domain 0.
525 * Since domain assignments can in fact be arbitrary, the
526 * 'domain == 0' check below is required to insure that ARMv6
527 * supersections are only allocated for domain 0 regardless
528 * of the actual domain assignments in use.
530 if (cpu_architecture() >= CPU_ARCH_ARMv6 && domain == 0) {
531 /* Align to supersection boundary */
532 while ((virt & ~SUPERSECTION_MASK || (virt + off) &
533 ~SUPERSECTION_MASK) && length >= (PGDIR_SIZE / 2)) {
534 alloc_init_section(virt, virt + off, prot_sect);
536 virt += (PGDIR_SIZE / 2);
537 length -= (PGDIR_SIZE / 2);
540 while (length >= SUPERSECTION_SIZE) {
541 alloc_init_supersection(virt, virt + off, prot_sect);
543 virt += SUPERSECTION_SIZE;
544 length -= SUPERSECTION_SIZE;
549 * A section mapping covers half a "pgdir" entry.
551 while (length >= (PGDIR_SIZE / 2)) {
552 alloc_init_section(virt, virt + off, prot_sect);
554 virt += (PGDIR_SIZE / 2);
555 length -= (PGDIR_SIZE / 2);
558 while (length >= PAGE_SIZE) {
559 alloc_init_page(virt, virt + off, prot_l1, prot_pte);
561 virt += PAGE_SIZE;
562 length -= PAGE_SIZE;
567 * In order to soft-boot, we need to insert a 1:1 mapping in place of
568 * the user-mode pages. This will then ensure that we have predictable
569 * results when turning the mmu off
571 void setup_mm_for_reboot(char mode)
573 unsigned long pmdval;
574 pgd_t *pgd;
575 pmd_t *pmd;
576 int i;
577 int cpu_arch = cpu_architecture();
579 if (current->mm && current->mm->pgd)
580 pgd = current->mm->pgd;
581 else
582 pgd = init_mm.pgd;
584 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++) {
585 pmdval = (i << PGDIR_SHIFT) |
586 PMD_SECT_AP_WRITE | PMD_SECT_AP_READ |
587 PMD_TYPE_SECT;
588 if (cpu_arch <= CPU_ARCH_ARMv5)
589 pmdval |= PMD_BIT4;
590 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
591 pmd[0] = __pmd(pmdval);
592 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
593 flush_pmd_entry(pmd);
597 extern void _stext, _etext;
600 * Setup initial mappings. We use the page we allocated for zero page to hold
601 * the mappings, which will get overwritten by the vectors in traps_init().
602 * The mappings must be in virtual address order.
604 void __init memtable_init(struct meminfo *mi)
606 struct map_desc *init_maps, *p, *q;
607 unsigned long address = 0;
608 int i;
610 build_mem_type_table();
612 init_maps = p = alloc_bootmem_low_pages(PAGE_SIZE);
614 #ifdef CONFIG_XIP_KERNEL
615 p->physical = CONFIG_XIP_PHYS_ADDR & PMD_MASK;
616 p->virtual = (unsigned long)&_stext & PMD_MASK;
617 p->length = ((unsigned long)&_etext - p->virtual + ~PMD_MASK) & PMD_MASK;
618 p->type = MT_ROM;
619 p ++;
620 #endif
622 for (i = 0; i < mi->nr_banks; i++) {
623 if (mi->bank[i].size == 0)
624 continue;
626 p->physical = mi->bank[i].start;
627 p->virtual = __phys_to_virt(p->physical);
628 p->length = mi->bank[i].size;
629 p->type = MT_MEMORY;
630 p ++;
633 #ifdef FLUSH_BASE
634 p->physical = FLUSH_BASE_PHYS;
635 p->virtual = FLUSH_BASE;
636 p->length = PGDIR_SIZE;
637 p->type = MT_CACHECLEAN;
638 p ++;
639 #endif
641 #ifdef FLUSH_BASE_MINICACHE
642 p->physical = FLUSH_BASE_PHYS + PGDIR_SIZE;
643 p->virtual = FLUSH_BASE_MINICACHE;
644 p->length = PGDIR_SIZE;
645 p->type = MT_MINICLEAN;
646 p ++;
647 #endif
650 * Go through the initial mappings, but clear out any
651 * pgdir entries that are not in the description.
653 q = init_maps;
654 do {
655 if (address < q->virtual || q == p) {
656 clear_mapping(address);
657 address += PGDIR_SIZE;
658 } else {
659 create_mapping(q);
661 address = q->virtual + q->length;
662 address = (address + PGDIR_SIZE - 1) & PGDIR_MASK;
664 q ++;
666 } while (address != 0);
669 * Create a mapping for the machine vectors at the high-vectors
670 * location (0xffff0000). If we aren't using high-vectors, also
671 * create a mapping at the low-vectors virtual address.
673 init_maps->physical = virt_to_phys(init_maps);
674 init_maps->virtual = 0xffff0000;
675 init_maps->length = PAGE_SIZE;
676 init_maps->type = MT_HIGH_VECTORS;
677 create_mapping(init_maps);
679 if (!vectors_high()) {
680 init_maps->virtual = 0;
681 init_maps->type = MT_LOW_VECTORS;
682 create_mapping(init_maps);
685 flush_cache_all();
686 flush_tlb_all();
688 top_pmd = pmd_off_k(VECTORS_HIGH);
692 * Create the architecture specific mappings
694 void __init iotable_init(struct map_desc *io_desc, int nr)
696 int i;
698 for (i = 0; i < nr; i++)
699 create_mapping(io_desc + i);
702 static inline void
703 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
705 struct page *start_pg, *end_pg;
706 unsigned long pg, pgend;
709 * Convert start_pfn/end_pfn to a struct page pointer.
711 start_pg = pfn_to_page(start_pfn);
712 end_pg = pfn_to_page(end_pfn);
715 * Convert to physical addresses, and
716 * round start upwards and end downwards.
718 pg = PAGE_ALIGN(__pa(start_pg));
719 pgend = __pa(end_pg) & PAGE_MASK;
722 * If there are free pages between these,
723 * free the section of the memmap array.
725 if (pg < pgend)
726 free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
729 static inline void free_unused_memmap_node(int node, struct meminfo *mi)
731 unsigned long bank_start, prev_bank_end = 0;
732 unsigned int i;
735 * [FIXME] This relies on each bank being in address order. This
736 * may not be the case, especially if the user has provided the
737 * information on the command line.
739 for (i = 0; i < mi->nr_banks; i++) {
740 if (mi->bank[i].size == 0 || mi->bank[i].node != node)
741 continue;
743 bank_start = mi->bank[i].start >> PAGE_SHIFT;
744 if (bank_start < prev_bank_end) {
745 printk(KERN_ERR "MEM: unordered memory banks. "
746 "Not freeing memmap.\n");
747 break;
751 * If we had a previous bank, and there is a space
752 * between the current bank and the previous, free it.
754 if (prev_bank_end && prev_bank_end != bank_start)
755 free_memmap(node, prev_bank_end, bank_start);
757 prev_bank_end = PAGE_ALIGN(mi->bank[i].start +
758 mi->bank[i].size) >> PAGE_SHIFT;
763 * The mem_map array can get very big. Free
764 * the unused area of the memory map.
766 void __init create_memmap_holes(struct meminfo *mi)
768 int node;
770 for_each_online_node(node)
771 free_unused_memmap_node(node, mi);