[SCSI] qla2xxx: Add setting of driver version string for vendor application.
[linux-2.6/btrfs-unstable.git] / net / mac80211 / rx.c
blob2c5a79bd3777f5c313d3205a1154ef6b714a8d4d
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
35 * monitor mode reception
37 * This function cleans up the SKB, i.e. it removes all the stuff
38 * only useful for monitoring.
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 struct sk_buff *skb)
43 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 if (likely(skb->len > FCS_LEN))
47 __pskb_trim(skb, skb->len - FCS_LEN);
48 else {
49 /* driver bug */
50 WARN_ON(1);
51 dev_kfree_skb(skb);
52 return NULL;
56 if (status->vendor_radiotap_len)
57 __pskb_pull(skb, status->vendor_radiotap_len);
59 return skb;
62 static inline int should_drop_frame(struct sk_buff *skb, int present_fcs_len)
64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
65 struct ieee80211_hdr *hdr;
67 hdr = (void *)(skb->data + status->vendor_radiotap_len);
69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
70 RX_FLAG_FAILED_PLCP_CRC |
71 RX_FLAG_AMPDU_IS_ZEROLEN))
72 return 1;
73 if (unlikely(skb->len < 16 + present_fcs_len +
74 status->vendor_radiotap_len))
75 return 1;
76 if (ieee80211_is_ctl(hdr->frame_control) &&
77 !ieee80211_is_pspoll(hdr->frame_control) &&
78 !ieee80211_is_back_req(hdr->frame_control))
79 return 1;
80 return 0;
83 static int
84 ieee80211_rx_radiotap_space(struct ieee80211_local *local,
85 struct ieee80211_rx_status *status)
87 int len;
89 /* always present fields */
90 len = sizeof(struct ieee80211_radiotap_header) + 9;
92 /* allocate extra bitmap */
93 if (status->vendor_radiotap_len)
94 len += 4;
96 if (ieee80211_have_rx_timestamp(status)) {
97 len = ALIGN(len, 8);
98 len += 8;
100 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
101 len += 1;
103 /* padding for RX_FLAGS if necessary */
104 len = ALIGN(len, 2);
106 if (status->flag & RX_FLAG_HT) /* HT info */
107 len += 3;
109 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
110 len = ALIGN(len, 4);
111 len += 8;
114 if (status->flag & RX_FLAG_VHT) {
115 len = ALIGN(len, 2);
116 len += 12;
119 if (status->vendor_radiotap_len) {
120 if (WARN_ON_ONCE(status->vendor_radiotap_align == 0))
121 status->vendor_radiotap_align = 1;
122 /* align standard part of vendor namespace */
123 len = ALIGN(len, 2);
124 /* allocate standard part of vendor namespace */
125 len += 6;
126 /* align vendor-defined part */
127 len = ALIGN(len, status->vendor_radiotap_align);
128 /* vendor-defined part is already in skb */
131 return len;
135 * ieee80211_add_rx_radiotap_header - add radiotap header
137 * add a radiotap header containing all the fields which the hardware provided.
139 static void
140 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
141 struct sk_buff *skb,
142 struct ieee80211_rate *rate,
143 int rtap_len, bool has_fcs)
145 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
146 struct ieee80211_radiotap_header *rthdr;
147 unsigned char *pos;
148 u16 rx_flags = 0;
149 int mpdulen;
151 mpdulen = skb->len;
152 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
153 mpdulen += FCS_LEN;
155 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
156 memset(rthdr, 0, rtap_len);
158 /* radiotap header, set always present flags */
159 rthdr->it_present =
160 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
161 (1 << IEEE80211_RADIOTAP_CHANNEL) |
162 (1 << IEEE80211_RADIOTAP_ANTENNA) |
163 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
164 rthdr->it_len = cpu_to_le16(rtap_len + status->vendor_radiotap_len);
166 pos = (unsigned char *)(rthdr + 1);
168 if (status->vendor_radiotap_len) {
169 rthdr->it_present |=
170 cpu_to_le32(BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE)) |
171 cpu_to_le32(BIT(IEEE80211_RADIOTAP_EXT));
172 put_unaligned_le32(status->vendor_radiotap_bitmap, pos);
173 pos += 4;
176 /* the order of the following fields is important */
178 /* IEEE80211_RADIOTAP_TSFT */
179 if (ieee80211_have_rx_timestamp(status)) {
180 /* padding */
181 while ((pos - (u8 *)rthdr) & 7)
182 *pos++ = 0;
183 put_unaligned_le64(
184 ieee80211_calculate_rx_timestamp(local, status,
185 mpdulen, 0),
186 pos);
187 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
188 pos += 8;
191 /* IEEE80211_RADIOTAP_FLAGS */
192 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
193 *pos |= IEEE80211_RADIOTAP_F_FCS;
194 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
195 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
196 if (status->flag & RX_FLAG_SHORTPRE)
197 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
198 pos++;
200 /* IEEE80211_RADIOTAP_RATE */
201 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
203 * Without rate information don't add it. If we have,
204 * MCS information is a separate field in radiotap,
205 * added below. The byte here is needed as padding
206 * for the channel though, so initialise it to 0.
208 *pos = 0;
209 } else {
210 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
211 *pos = rate->bitrate / 5;
213 pos++;
215 /* IEEE80211_RADIOTAP_CHANNEL */
216 put_unaligned_le16(status->freq, pos);
217 pos += 2;
218 if (status->band == IEEE80211_BAND_5GHZ)
219 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
220 pos);
221 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
222 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
223 pos);
224 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
225 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
226 pos);
227 else if (rate)
228 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
229 pos);
230 else
231 put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos);
232 pos += 2;
234 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
235 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
236 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
237 *pos = status->signal;
238 rthdr->it_present |=
239 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
240 pos++;
243 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
245 /* IEEE80211_RADIOTAP_ANTENNA */
246 *pos = status->antenna;
247 pos++;
249 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
251 /* IEEE80211_RADIOTAP_RX_FLAGS */
252 /* ensure 2 byte alignment for the 2 byte field as required */
253 if ((pos - (u8 *)rthdr) & 1)
254 *pos++ = 0;
255 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
256 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
257 put_unaligned_le16(rx_flags, pos);
258 pos += 2;
260 if (status->flag & RX_FLAG_HT) {
261 unsigned int stbc;
263 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
264 *pos++ = local->hw.radiotap_mcs_details;
265 *pos = 0;
266 if (status->flag & RX_FLAG_SHORT_GI)
267 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
268 if (status->flag & RX_FLAG_40MHZ)
269 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
270 if (status->flag & RX_FLAG_HT_GF)
271 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
272 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
273 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
274 pos++;
275 *pos++ = status->rate_idx;
278 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
279 u16 flags = 0;
281 /* ensure 4 byte alignment */
282 while ((pos - (u8 *)rthdr) & 3)
283 pos++;
284 rthdr->it_present |=
285 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
286 put_unaligned_le32(status->ampdu_reference, pos);
287 pos += 4;
288 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
289 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
290 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
291 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
292 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
293 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
294 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
295 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
296 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
297 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
298 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
299 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
300 put_unaligned_le16(flags, pos);
301 pos += 2;
302 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
303 *pos++ = status->ampdu_delimiter_crc;
304 else
305 *pos++ = 0;
306 *pos++ = 0;
309 if (status->flag & RX_FLAG_VHT) {
310 u16 known = local->hw.radiotap_vht_details;
312 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
313 /* known field - how to handle 80+80? */
314 if (status->flag & RX_FLAG_80P80MHZ)
315 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
316 put_unaligned_le16(known, pos);
317 pos += 2;
318 /* flags */
319 if (status->flag & RX_FLAG_SHORT_GI)
320 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
321 pos++;
322 /* bandwidth */
323 if (status->flag & RX_FLAG_80MHZ)
324 *pos++ = 4;
325 else if (status->flag & RX_FLAG_80P80MHZ)
326 *pos++ = 0; /* marked not known above */
327 else if (status->flag & RX_FLAG_160MHZ)
328 *pos++ = 11;
329 else if (status->flag & RX_FLAG_40MHZ)
330 *pos++ = 1;
331 else /* 20 MHz */
332 *pos++ = 0;
333 /* MCS/NSS */
334 *pos = (status->rate_idx << 4) | status->vht_nss;
335 pos += 4;
336 /* coding field */
337 pos++;
338 /* group ID */
339 pos++;
340 /* partial_aid */
341 pos += 2;
344 if (status->vendor_radiotap_len) {
345 /* ensure 2 byte alignment for the vendor field as required */
346 if ((pos - (u8 *)rthdr) & 1)
347 *pos++ = 0;
348 *pos++ = status->vendor_radiotap_oui[0];
349 *pos++ = status->vendor_radiotap_oui[1];
350 *pos++ = status->vendor_radiotap_oui[2];
351 *pos++ = status->vendor_radiotap_subns;
352 put_unaligned_le16(status->vendor_radiotap_len, pos);
353 pos += 2;
354 /* align the actual payload as requested */
355 while ((pos - (u8 *)rthdr) & (status->vendor_radiotap_align - 1))
356 *pos++ = 0;
361 * This function copies a received frame to all monitor interfaces and
362 * returns a cleaned-up SKB that no longer includes the FCS nor the
363 * radiotap header the driver might have added.
365 static struct sk_buff *
366 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
367 struct ieee80211_rate *rate)
369 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
370 struct ieee80211_sub_if_data *sdata;
371 int needed_headroom;
372 struct sk_buff *skb, *skb2;
373 struct net_device *prev_dev = NULL;
374 int present_fcs_len = 0;
377 * First, we may need to make a copy of the skb because
378 * (1) we need to modify it for radiotap (if not present), and
379 * (2) the other RX handlers will modify the skb we got.
381 * We don't need to, of course, if we aren't going to return
382 * the SKB because it has a bad FCS/PLCP checksum.
385 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
386 present_fcs_len = FCS_LEN;
388 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
389 if (!pskb_may_pull(origskb, 2 + status->vendor_radiotap_len)) {
390 dev_kfree_skb(origskb);
391 return NULL;
394 if (!local->monitors) {
395 if (should_drop_frame(origskb, present_fcs_len)) {
396 dev_kfree_skb(origskb);
397 return NULL;
400 return remove_monitor_info(local, origskb);
403 /* room for the radiotap header based on driver features */
404 needed_headroom = ieee80211_rx_radiotap_space(local, status);
406 if (should_drop_frame(origskb, present_fcs_len)) {
407 /* only need to expand headroom if necessary */
408 skb = origskb;
409 origskb = NULL;
412 * This shouldn't trigger often because most devices have an
413 * RX header they pull before we get here, and that should
414 * be big enough for our radiotap information. We should
415 * probably export the length to drivers so that we can have
416 * them allocate enough headroom to start with.
418 if (skb_headroom(skb) < needed_headroom &&
419 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
420 dev_kfree_skb(skb);
421 return NULL;
423 } else {
425 * Need to make a copy and possibly remove radiotap header
426 * and FCS from the original.
428 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
430 origskb = remove_monitor_info(local, origskb);
432 if (!skb)
433 return origskb;
436 /* prepend radiotap information */
437 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
438 true);
440 skb_reset_mac_header(skb);
441 skb->ip_summed = CHECKSUM_UNNECESSARY;
442 skb->pkt_type = PACKET_OTHERHOST;
443 skb->protocol = htons(ETH_P_802_2);
445 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
446 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
447 continue;
449 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
450 continue;
452 if (!ieee80211_sdata_running(sdata))
453 continue;
455 if (prev_dev) {
456 skb2 = skb_clone(skb, GFP_ATOMIC);
457 if (skb2) {
458 skb2->dev = prev_dev;
459 netif_receive_skb(skb2);
463 prev_dev = sdata->dev;
464 sdata->dev->stats.rx_packets++;
465 sdata->dev->stats.rx_bytes += skb->len;
468 if (prev_dev) {
469 skb->dev = prev_dev;
470 netif_receive_skb(skb);
471 } else
472 dev_kfree_skb(skb);
474 return origskb;
477 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
479 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
480 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
481 int tid, seqno_idx, security_idx;
483 /* does the frame have a qos control field? */
484 if (ieee80211_is_data_qos(hdr->frame_control)) {
485 u8 *qc = ieee80211_get_qos_ctl(hdr);
486 /* frame has qos control */
487 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
488 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
489 status->rx_flags |= IEEE80211_RX_AMSDU;
491 seqno_idx = tid;
492 security_idx = tid;
493 } else {
495 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
497 * Sequence numbers for management frames, QoS data
498 * frames with a broadcast/multicast address in the
499 * Address 1 field, and all non-QoS data frames sent
500 * by QoS STAs are assigned using an additional single
501 * modulo-4096 counter, [...]
503 * We also use that counter for non-QoS STAs.
505 seqno_idx = IEEE80211_NUM_TIDS;
506 security_idx = 0;
507 if (ieee80211_is_mgmt(hdr->frame_control))
508 security_idx = IEEE80211_NUM_TIDS;
509 tid = 0;
512 rx->seqno_idx = seqno_idx;
513 rx->security_idx = security_idx;
514 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
515 * For now, set skb->priority to 0 for other cases. */
516 rx->skb->priority = (tid > 7) ? 0 : tid;
520 * DOC: Packet alignment
522 * Drivers always need to pass packets that are aligned to two-byte boundaries
523 * to the stack.
525 * Additionally, should, if possible, align the payload data in a way that
526 * guarantees that the contained IP header is aligned to a four-byte
527 * boundary. In the case of regular frames, this simply means aligning the
528 * payload to a four-byte boundary (because either the IP header is directly
529 * contained, or IV/RFC1042 headers that have a length divisible by four are
530 * in front of it). If the payload data is not properly aligned and the
531 * architecture doesn't support efficient unaligned operations, mac80211
532 * will align the data.
534 * With A-MSDU frames, however, the payload data address must yield two modulo
535 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
536 * push the IP header further back to a multiple of four again. Thankfully, the
537 * specs were sane enough this time around to require padding each A-MSDU
538 * subframe to a length that is a multiple of four.
540 * Padding like Atheros hardware adds which is between the 802.11 header and
541 * the payload is not supported, the driver is required to move the 802.11
542 * header to be directly in front of the payload in that case.
544 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
546 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
547 WARN_ONCE((unsigned long)rx->skb->data & 1,
548 "unaligned packet at 0x%p\n", rx->skb->data);
549 #endif
553 /* rx handlers */
555 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
557 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
559 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
560 return 0;
562 return ieee80211_is_robust_mgmt_frame(hdr);
566 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
568 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
570 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
571 return 0;
573 return ieee80211_is_robust_mgmt_frame(hdr);
577 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
578 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
580 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
581 struct ieee80211_mmie *mmie;
583 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
584 return -1;
586 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
587 return -1; /* not a robust management frame */
589 mmie = (struct ieee80211_mmie *)
590 (skb->data + skb->len - sizeof(*mmie));
591 if (mmie->element_id != WLAN_EID_MMIE ||
592 mmie->length != sizeof(*mmie) - 2)
593 return -1;
595 return le16_to_cpu(mmie->key_id);
598 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
600 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
601 char *dev_addr = rx->sdata->vif.addr;
603 if (ieee80211_is_data(hdr->frame_control)) {
604 if (is_multicast_ether_addr(hdr->addr1)) {
605 if (ieee80211_has_tods(hdr->frame_control) ||
606 !ieee80211_has_fromds(hdr->frame_control))
607 return RX_DROP_MONITOR;
608 if (ether_addr_equal(hdr->addr3, dev_addr))
609 return RX_DROP_MONITOR;
610 } else {
611 if (!ieee80211_has_a4(hdr->frame_control))
612 return RX_DROP_MONITOR;
613 if (ether_addr_equal(hdr->addr4, dev_addr))
614 return RX_DROP_MONITOR;
618 /* If there is not an established peer link and this is not a peer link
619 * establisment frame, beacon or probe, drop the frame.
622 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
623 struct ieee80211_mgmt *mgmt;
625 if (!ieee80211_is_mgmt(hdr->frame_control))
626 return RX_DROP_MONITOR;
628 if (ieee80211_is_action(hdr->frame_control)) {
629 u8 category;
631 /* make sure category field is present */
632 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
633 return RX_DROP_MONITOR;
635 mgmt = (struct ieee80211_mgmt *)hdr;
636 category = mgmt->u.action.category;
637 if (category != WLAN_CATEGORY_MESH_ACTION &&
638 category != WLAN_CATEGORY_SELF_PROTECTED)
639 return RX_DROP_MONITOR;
640 return RX_CONTINUE;
643 if (ieee80211_is_probe_req(hdr->frame_control) ||
644 ieee80211_is_probe_resp(hdr->frame_control) ||
645 ieee80211_is_beacon(hdr->frame_control) ||
646 ieee80211_is_auth(hdr->frame_control))
647 return RX_CONTINUE;
649 return RX_DROP_MONITOR;
652 return RX_CONTINUE;
655 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
656 struct tid_ampdu_rx *tid_agg_rx,
657 int index,
658 struct sk_buff_head *frames)
660 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
661 struct ieee80211_rx_status *status;
663 lockdep_assert_held(&tid_agg_rx->reorder_lock);
665 if (!skb)
666 goto no_frame;
668 /* release the frame from the reorder ring buffer */
669 tid_agg_rx->stored_mpdu_num--;
670 tid_agg_rx->reorder_buf[index] = NULL;
671 status = IEEE80211_SKB_RXCB(skb);
672 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
673 __skb_queue_tail(frames, skb);
675 no_frame:
676 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
679 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
680 struct tid_ampdu_rx *tid_agg_rx,
681 u16 head_seq_num,
682 struct sk_buff_head *frames)
684 int index;
686 lockdep_assert_held(&tid_agg_rx->reorder_lock);
688 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
689 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
690 tid_agg_rx->ssn) %
691 tid_agg_rx->buf_size;
692 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
693 frames);
698 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
699 * the skb was added to the buffer longer than this time ago, the earlier
700 * frames that have not yet been received are assumed to be lost and the skb
701 * can be released for processing. This may also release other skb's from the
702 * reorder buffer if there are no additional gaps between the frames.
704 * Callers must hold tid_agg_rx->reorder_lock.
706 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
708 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
709 struct tid_ampdu_rx *tid_agg_rx,
710 struct sk_buff_head *frames)
712 int index, j;
714 lockdep_assert_held(&tid_agg_rx->reorder_lock);
716 /* release the buffer until next missing frame */
717 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
718 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
719 if (!tid_agg_rx->reorder_buf[index] &&
720 tid_agg_rx->stored_mpdu_num) {
722 * No buffers ready to be released, but check whether any
723 * frames in the reorder buffer have timed out.
725 int skipped = 1;
726 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
727 j = (j + 1) % tid_agg_rx->buf_size) {
728 if (!tid_agg_rx->reorder_buf[j]) {
729 skipped++;
730 continue;
732 if (skipped &&
733 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
734 HT_RX_REORDER_BUF_TIMEOUT))
735 goto set_release_timer;
737 ht_dbg_ratelimited(sdata,
738 "release an RX reorder frame due to timeout on earlier frames\n");
739 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
740 frames);
743 * Increment the head seq# also for the skipped slots.
745 tid_agg_rx->head_seq_num =
746 (tid_agg_rx->head_seq_num +
747 skipped) & IEEE80211_SN_MASK;
748 skipped = 0;
750 } else while (tid_agg_rx->reorder_buf[index]) {
751 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
752 frames);
753 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
754 tid_agg_rx->ssn) %
755 tid_agg_rx->buf_size;
758 if (tid_agg_rx->stored_mpdu_num) {
759 j = index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
760 tid_agg_rx->ssn) %
761 tid_agg_rx->buf_size;
763 for (; j != (index - 1) % tid_agg_rx->buf_size;
764 j = (j + 1) % tid_agg_rx->buf_size) {
765 if (tid_agg_rx->reorder_buf[j])
766 break;
769 set_release_timer:
771 mod_timer(&tid_agg_rx->reorder_timer,
772 tid_agg_rx->reorder_time[j] + 1 +
773 HT_RX_REORDER_BUF_TIMEOUT);
774 } else {
775 del_timer(&tid_agg_rx->reorder_timer);
780 * As this function belongs to the RX path it must be under
781 * rcu_read_lock protection. It returns false if the frame
782 * can be processed immediately, true if it was consumed.
784 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
785 struct tid_ampdu_rx *tid_agg_rx,
786 struct sk_buff *skb,
787 struct sk_buff_head *frames)
789 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
790 u16 sc = le16_to_cpu(hdr->seq_ctrl);
791 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
792 u16 head_seq_num, buf_size;
793 int index;
794 bool ret = true;
796 spin_lock(&tid_agg_rx->reorder_lock);
798 buf_size = tid_agg_rx->buf_size;
799 head_seq_num = tid_agg_rx->head_seq_num;
801 /* frame with out of date sequence number */
802 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
803 dev_kfree_skb(skb);
804 goto out;
808 * If frame the sequence number exceeds our buffering window
809 * size release some previous frames to make room for this one.
811 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
812 head_seq_num = ieee80211_sn_inc(
813 ieee80211_sn_sub(mpdu_seq_num, buf_size));
814 /* release stored frames up to new head to stack */
815 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
816 head_seq_num, frames);
819 /* Now the new frame is always in the range of the reordering buffer */
821 index = ieee80211_sn_sub(mpdu_seq_num,
822 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
824 /* check if we already stored this frame */
825 if (tid_agg_rx->reorder_buf[index]) {
826 dev_kfree_skb(skb);
827 goto out;
831 * If the current MPDU is in the right order and nothing else
832 * is stored we can process it directly, no need to buffer it.
833 * If it is first but there's something stored, we may be able
834 * to release frames after this one.
836 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
837 tid_agg_rx->stored_mpdu_num == 0) {
838 tid_agg_rx->head_seq_num =
839 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
840 ret = false;
841 goto out;
844 /* put the frame in the reordering buffer */
845 tid_agg_rx->reorder_buf[index] = skb;
846 tid_agg_rx->reorder_time[index] = jiffies;
847 tid_agg_rx->stored_mpdu_num++;
848 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
850 out:
851 spin_unlock(&tid_agg_rx->reorder_lock);
852 return ret;
856 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
857 * true if the MPDU was buffered, false if it should be processed.
859 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
860 struct sk_buff_head *frames)
862 struct sk_buff *skb = rx->skb;
863 struct ieee80211_local *local = rx->local;
864 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
865 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
866 struct sta_info *sta = rx->sta;
867 struct tid_ampdu_rx *tid_agg_rx;
868 u16 sc;
869 u8 tid, ack_policy;
871 if (!ieee80211_is_data_qos(hdr->frame_control))
872 goto dont_reorder;
875 * filter the QoS data rx stream according to
876 * STA/TID and check if this STA/TID is on aggregation
879 if (!sta)
880 goto dont_reorder;
882 ack_policy = *ieee80211_get_qos_ctl(hdr) &
883 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
884 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
886 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
887 if (!tid_agg_rx)
888 goto dont_reorder;
890 /* qos null data frames are excluded */
891 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
892 goto dont_reorder;
894 /* not part of a BA session */
895 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
896 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
897 goto dont_reorder;
899 /* not actually part of this BA session */
900 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
901 goto dont_reorder;
903 /* new, potentially un-ordered, ampdu frame - process it */
905 /* reset session timer */
906 if (tid_agg_rx->timeout)
907 tid_agg_rx->last_rx = jiffies;
909 /* if this mpdu is fragmented - terminate rx aggregation session */
910 sc = le16_to_cpu(hdr->seq_ctrl);
911 if (sc & IEEE80211_SCTL_FRAG) {
912 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
913 skb_queue_tail(&rx->sdata->skb_queue, skb);
914 ieee80211_queue_work(&local->hw, &rx->sdata->work);
915 return;
919 * No locking needed -- we will only ever process one
920 * RX packet at a time, and thus own tid_agg_rx. All
921 * other code manipulating it needs to (and does) make
922 * sure that we cannot get to it any more before doing
923 * anything with it.
925 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
926 frames))
927 return;
929 dont_reorder:
930 __skb_queue_tail(frames, skb);
933 static ieee80211_rx_result debug_noinline
934 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
936 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
937 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
940 * Drop duplicate 802.11 retransmissions
941 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
943 if (rx->skb->len >= 24 && rx->sta &&
944 !ieee80211_is_ctl(hdr->frame_control) &&
945 !ieee80211_is_qos_nullfunc(hdr->frame_control) &&
946 !is_multicast_ether_addr(hdr->addr1)) {
947 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
948 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
949 hdr->seq_ctrl)) {
950 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
951 rx->local->dot11FrameDuplicateCount++;
952 rx->sta->num_duplicates++;
954 return RX_DROP_UNUSABLE;
955 } else
956 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
959 if (unlikely(rx->skb->len < 16)) {
960 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
961 return RX_DROP_MONITOR;
964 /* Drop disallowed frame classes based on STA auth/assoc state;
965 * IEEE 802.11, Chap 5.5.
967 * mac80211 filters only based on association state, i.e. it drops
968 * Class 3 frames from not associated stations. hostapd sends
969 * deauth/disassoc frames when needed. In addition, hostapd is
970 * responsible for filtering on both auth and assoc states.
973 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
974 return ieee80211_rx_mesh_check(rx);
976 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
977 ieee80211_is_pspoll(hdr->frame_control)) &&
978 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
979 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
980 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
982 * accept port control frames from the AP even when it's not
983 * yet marked ASSOC to prevent a race where we don't set the
984 * assoc bit quickly enough before it sends the first frame
986 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
987 ieee80211_is_data_present(hdr->frame_control)) {
988 unsigned int hdrlen;
989 __be16 ethertype;
991 hdrlen = ieee80211_hdrlen(hdr->frame_control);
993 if (rx->skb->len < hdrlen + 8)
994 return RX_DROP_MONITOR;
996 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
997 if (ethertype == rx->sdata->control_port_protocol)
998 return RX_CONTINUE;
1001 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1002 cfg80211_rx_spurious_frame(rx->sdata->dev,
1003 hdr->addr2,
1004 GFP_ATOMIC))
1005 return RX_DROP_UNUSABLE;
1007 return RX_DROP_MONITOR;
1010 return RX_CONTINUE;
1014 static ieee80211_rx_result debug_noinline
1015 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1017 struct sk_buff *skb = rx->skb;
1018 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1019 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1020 int keyidx;
1021 int hdrlen;
1022 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1023 struct ieee80211_key *sta_ptk = NULL;
1024 int mmie_keyidx = -1;
1025 __le16 fc;
1028 * Key selection 101
1030 * There are four types of keys:
1031 * - GTK (group keys)
1032 * - IGTK (group keys for management frames)
1033 * - PTK (pairwise keys)
1034 * - STK (station-to-station pairwise keys)
1036 * When selecting a key, we have to distinguish between multicast
1037 * (including broadcast) and unicast frames, the latter can only
1038 * use PTKs and STKs while the former always use GTKs and IGTKs.
1039 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1040 * unicast frames can also use key indices like GTKs. Hence, if we
1041 * don't have a PTK/STK we check the key index for a WEP key.
1043 * Note that in a regular BSS, multicast frames are sent by the
1044 * AP only, associated stations unicast the frame to the AP first
1045 * which then multicasts it on their behalf.
1047 * There is also a slight problem in IBSS mode: GTKs are negotiated
1048 * with each station, that is something we don't currently handle.
1049 * The spec seems to expect that one negotiates the same key with
1050 * every station but there's no such requirement; VLANs could be
1051 * possible.
1055 * No point in finding a key and decrypting if the frame is neither
1056 * addressed to us nor a multicast frame.
1058 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1059 return RX_CONTINUE;
1061 /* start without a key */
1062 rx->key = NULL;
1064 if (rx->sta)
1065 sta_ptk = rcu_dereference(rx->sta->ptk);
1067 fc = hdr->frame_control;
1069 if (!ieee80211_has_protected(fc))
1070 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1072 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1073 rx->key = sta_ptk;
1074 if ((status->flag & RX_FLAG_DECRYPTED) &&
1075 (status->flag & RX_FLAG_IV_STRIPPED))
1076 return RX_CONTINUE;
1077 /* Skip decryption if the frame is not protected. */
1078 if (!ieee80211_has_protected(fc))
1079 return RX_CONTINUE;
1080 } else if (mmie_keyidx >= 0) {
1081 /* Broadcast/multicast robust management frame / BIP */
1082 if ((status->flag & RX_FLAG_DECRYPTED) &&
1083 (status->flag & RX_FLAG_IV_STRIPPED))
1084 return RX_CONTINUE;
1086 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1087 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1088 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1089 if (rx->sta)
1090 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1091 if (!rx->key)
1092 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1093 } else if (!ieee80211_has_protected(fc)) {
1095 * The frame was not protected, so skip decryption. However, we
1096 * need to set rx->key if there is a key that could have been
1097 * used so that the frame may be dropped if encryption would
1098 * have been expected.
1100 struct ieee80211_key *key = NULL;
1101 struct ieee80211_sub_if_data *sdata = rx->sdata;
1102 int i;
1104 if (ieee80211_is_mgmt(fc) &&
1105 is_multicast_ether_addr(hdr->addr1) &&
1106 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1107 rx->key = key;
1108 else {
1109 if (rx->sta) {
1110 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1111 key = rcu_dereference(rx->sta->gtk[i]);
1112 if (key)
1113 break;
1116 if (!key) {
1117 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1118 key = rcu_dereference(sdata->keys[i]);
1119 if (key)
1120 break;
1123 if (key)
1124 rx->key = key;
1126 return RX_CONTINUE;
1127 } else {
1128 u8 keyid;
1130 * The device doesn't give us the IV so we won't be
1131 * able to look up the key. That's ok though, we
1132 * don't need to decrypt the frame, we just won't
1133 * be able to keep statistics accurate.
1134 * Except for key threshold notifications, should
1135 * we somehow allow the driver to tell us which key
1136 * the hardware used if this flag is set?
1138 if ((status->flag & RX_FLAG_DECRYPTED) &&
1139 (status->flag & RX_FLAG_IV_STRIPPED))
1140 return RX_CONTINUE;
1142 hdrlen = ieee80211_hdrlen(fc);
1144 if (rx->skb->len < 8 + hdrlen)
1145 return RX_DROP_UNUSABLE; /* TODO: count this? */
1148 * no need to call ieee80211_wep_get_keyidx,
1149 * it verifies a bunch of things we've done already
1151 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1152 keyidx = keyid >> 6;
1154 /* check per-station GTK first, if multicast packet */
1155 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1156 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1158 /* if not found, try default key */
1159 if (!rx->key) {
1160 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1163 * RSNA-protected unicast frames should always be
1164 * sent with pairwise or station-to-station keys,
1165 * but for WEP we allow using a key index as well.
1167 if (rx->key &&
1168 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1169 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1170 !is_multicast_ether_addr(hdr->addr1))
1171 rx->key = NULL;
1175 if (rx->key) {
1176 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1177 return RX_DROP_MONITOR;
1179 rx->key->tx_rx_count++;
1180 /* TODO: add threshold stuff again */
1181 } else {
1182 return RX_DROP_MONITOR;
1185 switch (rx->key->conf.cipher) {
1186 case WLAN_CIPHER_SUITE_WEP40:
1187 case WLAN_CIPHER_SUITE_WEP104:
1188 result = ieee80211_crypto_wep_decrypt(rx);
1189 break;
1190 case WLAN_CIPHER_SUITE_TKIP:
1191 result = ieee80211_crypto_tkip_decrypt(rx);
1192 break;
1193 case WLAN_CIPHER_SUITE_CCMP:
1194 result = ieee80211_crypto_ccmp_decrypt(rx);
1195 break;
1196 case WLAN_CIPHER_SUITE_AES_CMAC:
1197 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1198 break;
1199 default:
1201 * We can reach here only with HW-only algorithms
1202 * but why didn't it decrypt the frame?!
1204 return RX_DROP_UNUSABLE;
1207 /* the hdr variable is invalid after the decrypt handlers */
1209 /* either the frame has been decrypted or will be dropped */
1210 status->flag |= RX_FLAG_DECRYPTED;
1212 return result;
1215 static ieee80211_rx_result debug_noinline
1216 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1218 struct ieee80211_local *local;
1219 struct ieee80211_hdr *hdr;
1220 struct sk_buff *skb;
1222 local = rx->local;
1223 skb = rx->skb;
1224 hdr = (struct ieee80211_hdr *) skb->data;
1226 if (!local->pspolling)
1227 return RX_CONTINUE;
1229 if (!ieee80211_has_fromds(hdr->frame_control))
1230 /* this is not from AP */
1231 return RX_CONTINUE;
1233 if (!ieee80211_is_data(hdr->frame_control))
1234 return RX_CONTINUE;
1236 if (!ieee80211_has_moredata(hdr->frame_control)) {
1237 /* AP has no more frames buffered for us */
1238 local->pspolling = false;
1239 return RX_CONTINUE;
1242 /* more data bit is set, let's request a new frame from the AP */
1243 ieee80211_send_pspoll(local, rx->sdata);
1245 return RX_CONTINUE;
1248 static void sta_ps_start(struct sta_info *sta)
1250 struct ieee80211_sub_if_data *sdata = sta->sdata;
1251 struct ieee80211_local *local = sdata->local;
1252 struct ps_data *ps;
1254 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1255 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1256 ps = &sdata->bss->ps;
1257 else
1258 return;
1260 atomic_inc(&ps->num_sta_ps);
1261 set_sta_flag(sta, WLAN_STA_PS_STA);
1262 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1263 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1264 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1265 sta->sta.addr, sta->sta.aid);
1268 static void sta_ps_end(struct sta_info *sta)
1270 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1271 sta->sta.addr, sta->sta.aid);
1273 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1274 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1275 sta->sta.addr, sta->sta.aid);
1276 return;
1279 ieee80211_sta_ps_deliver_wakeup(sta);
1282 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1284 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1285 bool in_ps;
1287 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1289 /* Don't let the same PS state be set twice */
1290 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1291 if ((start && in_ps) || (!start && !in_ps))
1292 return -EINVAL;
1294 if (start)
1295 sta_ps_start(sta_inf);
1296 else
1297 sta_ps_end(sta_inf);
1299 return 0;
1301 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1303 static ieee80211_rx_result debug_noinline
1304 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1306 struct ieee80211_sub_if_data *sdata = rx->sdata;
1307 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1308 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1309 int tid, ac;
1311 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1312 return RX_CONTINUE;
1314 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1315 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1316 return RX_CONTINUE;
1319 * The device handles station powersave, so don't do anything about
1320 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1321 * it to mac80211 since they're handled.)
1323 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1324 return RX_CONTINUE;
1327 * Don't do anything if the station isn't already asleep. In
1328 * the uAPSD case, the station will probably be marked asleep,
1329 * in the PS-Poll case the station must be confused ...
1331 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1332 return RX_CONTINUE;
1334 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1335 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1336 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1337 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1338 else
1339 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1342 /* Free PS Poll skb here instead of returning RX_DROP that would
1343 * count as an dropped frame. */
1344 dev_kfree_skb(rx->skb);
1346 return RX_QUEUED;
1347 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1348 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1349 ieee80211_has_pm(hdr->frame_control) &&
1350 (ieee80211_is_data_qos(hdr->frame_control) ||
1351 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1352 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1353 ac = ieee802_1d_to_ac[tid & 7];
1356 * If this AC is not trigger-enabled do nothing.
1358 * NB: This could/should check a separate bitmap of trigger-
1359 * enabled queues, but for now we only implement uAPSD w/o
1360 * TSPEC changes to the ACs, so they're always the same.
1362 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1363 return RX_CONTINUE;
1365 /* if we are in a service period, do nothing */
1366 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1367 return RX_CONTINUE;
1369 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1370 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1371 else
1372 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1375 return RX_CONTINUE;
1378 static ieee80211_rx_result debug_noinline
1379 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1381 struct sta_info *sta = rx->sta;
1382 struct sk_buff *skb = rx->skb;
1383 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1384 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1385 int i;
1387 if (!sta)
1388 return RX_CONTINUE;
1391 * Update last_rx only for IBSS packets which are for the current
1392 * BSSID and for station already AUTHORIZED to avoid keeping the
1393 * current IBSS network alive in cases where other STAs start
1394 * using different BSSID. This will also give the station another
1395 * chance to restart the authentication/authorization in case
1396 * something went wrong the first time.
1398 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1399 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1400 NL80211_IFTYPE_ADHOC);
1401 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1402 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1403 sta->last_rx = jiffies;
1404 if (ieee80211_is_data(hdr->frame_control)) {
1405 sta->last_rx_rate_idx = status->rate_idx;
1406 sta->last_rx_rate_flag = status->flag;
1407 sta->last_rx_rate_vht_nss = status->vht_nss;
1410 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1412 * Mesh beacons will update last_rx when if they are found to
1413 * match the current local configuration when processed.
1415 sta->last_rx = jiffies;
1416 if (ieee80211_is_data(hdr->frame_control)) {
1417 sta->last_rx_rate_idx = status->rate_idx;
1418 sta->last_rx_rate_flag = status->flag;
1419 sta->last_rx_rate_vht_nss = status->vht_nss;
1423 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1424 return RX_CONTINUE;
1426 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1427 ieee80211_sta_rx_notify(rx->sdata, hdr);
1429 sta->rx_fragments++;
1430 sta->rx_bytes += rx->skb->len;
1431 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1432 sta->last_signal = status->signal;
1433 ewma_add(&sta->avg_signal, -status->signal);
1436 if (status->chains) {
1437 sta->chains = status->chains;
1438 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1439 int signal = status->chain_signal[i];
1441 if (!(status->chains & BIT(i)))
1442 continue;
1444 sta->chain_signal_last[i] = signal;
1445 ewma_add(&sta->chain_signal_avg[i], -signal);
1450 * Change STA power saving mode only at the end of a frame
1451 * exchange sequence.
1453 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1454 !ieee80211_has_morefrags(hdr->frame_control) &&
1455 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1456 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1457 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1458 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1460 * Ignore doze->wake transitions that are
1461 * indicated by non-data frames, the standard
1462 * is unclear here, but for example going to
1463 * PS mode and then scanning would cause a
1464 * doze->wake transition for the probe request,
1465 * and that is clearly undesirable.
1467 if (ieee80211_is_data(hdr->frame_control) &&
1468 !ieee80211_has_pm(hdr->frame_control))
1469 sta_ps_end(sta);
1470 } else {
1471 if (ieee80211_has_pm(hdr->frame_control))
1472 sta_ps_start(sta);
1476 /* mesh power save support */
1477 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1478 ieee80211_mps_rx_h_sta_process(sta, hdr);
1481 * Drop (qos-)data::nullfunc frames silently, since they
1482 * are used only to control station power saving mode.
1484 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1485 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1486 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1489 * If we receive a 4-addr nullfunc frame from a STA
1490 * that was not moved to a 4-addr STA vlan yet send
1491 * the event to userspace and for older hostapd drop
1492 * the frame to the monitor interface.
1494 if (ieee80211_has_a4(hdr->frame_control) &&
1495 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1496 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1497 !rx->sdata->u.vlan.sta))) {
1498 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1499 cfg80211_rx_unexpected_4addr_frame(
1500 rx->sdata->dev, sta->sta.addr,
1501 GFP_ATOMIC);
1502 return RX_DROP_MONITOR;
1505 * Update counter and free packet here to avoid
1506 * counting this as a dropped packed.
1508 sta->rx_packets++;
1509 dev_kfree_skb(rx->skb);
1510 return RX_QUEUED;
1513 return RX_CONTINUE;
1514 } /* ieee80211_rx_h_sta_process */
1516 static inline struct ieee80211_fragment_entry *
1517 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1518 unsigned int frag, unsigned int seq, int rx_queue,
1519 struct sk_buff **skb)
1521 struct ieee80211_fragment_entry *entry;
1523 entry = &sdata->fragments[sdata->fragment_next++];
1524 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1525 sdata->fragment_next = 0;
1527 if (!skb_queue_empty(&entry->skb_list))
1528 __skb_queue_purge(&entry->skb_list);
1530 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1531 *skb = NULL;
1532 entry->first_frag_time = jiffies;
1533 entry->seq = seq;
1534 entry->rx_queue = rx_queue;
1535 entry->last_frag = frag;
1536 entry->ccmp = 0;
1537 entry->extra_len = 0;
1539 return entry;
1542 static inline struct ieee80211_fragment_entry *
1543 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1544 unsigned int frag, unsigned int seq,
1545 int rx_queue, struct ieee80211_hdr *hdr)
1547 struct ieee80211_fragment_entry *entry;
1548 int i, idx;
1550 idx = sdata->fragment_next;
1551 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1552 struct ieee80211_hdr *f_hdr;
1554 idx--;
1555 if (idx < 0)
1556 idx = IEEE80211_FRAGMENT_MAX - 1;
1558 entry = &sdata->fragments[idx];
1559 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1560 entry->rx_queue != rx_queue ||
1561 entry->last_frag + 1 != frag)
1562 continue;
1564 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1567 * Check ftype and addresses are equal, else check next fragment
1569 if (((hdr->frame_control ^ f_hdr->frame_control) &
1570 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1571 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1572 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1573 continue;
1575 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1576 __skb_queue_purge(&entry->skb_list);
1577 continue;
1579 return entry;
1582 return NULL;
1585 static ieee80211_rx_result debug_noinline
1586 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1588 struct ieee80211_hdr *hdr;
1589 u16 sc;
1590 __le16 fc;
1591 unsigned int frag, seq;
1592 struct ieee80211_fragment_entry *entry;
1593 struct sk_buff *skb;
1594 struct ieee80211_rx_status *status;
1596 hdr = (struct ieee80211_hdr *)rx->skb->data;
1597 fc = hdr->frame_control;
1599 if (ieee80211_is_ctl(fc))
1600 return RX_CONTINUE;
1602 sc = le16_to_cpu(hdr->seq_ctrl);
1603 frag = sc & IEEE80211_SCTL_FRAG;
1605 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1606 is_multicast_ether_addr(hdr->addr1))) {
1607 /* not fragmented */
1608 goto out;
1610 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1612 if (skb_linearize(rx->skb))
1613 return RX_DROP_UNUSABLE;
1616 * skb_linearize() might change the skb->data and
1617 * previously cached variables (in this case, hdr) need to
1618 * be refreshed with the new data.
1620 hdr = (struct ieee80211_hdr *)rx->skb->data;
1621 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1623 if (frag == 0) {
1624 /* This is the first fragment of a new frame. */
1625 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1626 rx->seqno_idx, &(rx->skb));
1627 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1628 ieee80211_has_protected(fc)) {
1629 int queue = rx->security_idx;
1630 /* Store CCMP PN so that we can verify that the next
1631 * fragment has a sequential PN value. */
1632 entry->ccmp = 1;
1633 memcpy(entry->last_pn,
1634 rx->key->u.ccmp.rx_pn[queue],
1635 IEEE80211_CCMP_PN_LEN);
1637 return RX_QUEUED;
1640 /* This is a fragment for a frame that should already be pending in
1641 * fragment cache. Add this fragment to the end of the pending entry.
1643 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1644 rx->seqno_idx, hdr);
1645 if (!entry) {
1646 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1647 return RX_DROP_MONITOR;
1650 /* Verify that MPDUs within one MSDU have sequential PN values.
1651 * (IEEE 802.11i, 8.3.3.4.5) */
1652 if (entry->ccmp) {
1653 int i;
1654 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1655 int queue;
1656 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1657 return RX_DROP_UNUSABLE;
1658 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1659 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1660 pn[i]++;
1661 if (pn[i])
1662 break;
1664 queue = rx->security_idx;
1665 rpn = rx->key->u.ccmp.rx_pn[queue];
1666 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1667 return RX_DROP_UNUSABLE;
1668 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1671 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1672 __skb_queue_tail(&entry->skb_list, rx->skb);
1673 entry->last_frag = frag;
1674 entry->extra_len += rx->skb->len;
1675 if (ieee80211_has_morefrags(fc)) {
1676 rx->skb = NULL;
1677 return RX_QUEUED;
1680 rx->skb = __skb_dequeue(&entry->skb_list);
1681 if (skb_tailroom(rx->skb) < entry->extra_len) {
1682 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1683 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1684 GFP_ATOMIC))) {
1685 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1686 __skb_queue_purge(&entry->skb_list);
1687 return RX_DROP_UNUSABLE;
1690 while ((skb = __skb_dequeue(&entry->skb_list))) {
1691 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1692 dev_kfree_skb(skb);
1695 /* Complete frame has been reassembled - process it now */
1696 status = IEEE80211_SKB_RXCB(rx->skb);
1697 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1699 out:
1700 if (rx->sta)
1701 rx->sta->rx_packets++;
1702 if (is_multicast_ether_addr(hdr->addr1))
1703 rx->local->dot11MulticastReceivedFrameCount++;
1704 else
1705 ieee80211_led_rx(rx->local);
1706 return RX_CONTINUE;
1709 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1711 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1712 return -EACCES;
1714 return 0;
1717 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1719 struct sk_buff *skb = rx->skb;
1720 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1723 * Pass through unencrypted frames if the hardware has
1724 * decrypted them already.
1726 if (status->flag & RX_FLAG_DECRYPTED)
1727 return 0;
1729 /* Drop unencrypted frames if key is set. */
1730 if (unlikely(!ieee80211_has_protected(fc) &&
1731 !ieee80211_is_nullfunc(fc) &&
1732 ieee80211_is_data(fc) &&
1733 (rx->key || rx->sdata->drop_unencrypted)))
1734 return -EACCES;
1736 return 0;
1739 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1741 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1742 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1743 __le16 fc = hdr->frame_control;
1746 * Pass through unencrypted frames if the hardware has
1747 * decrypted them already.
1749 if (status->flag & RX_FLAG_DECRYPTED)
1750 return 0;
1752 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1753 if (unlikely(!ieee80211_has_protected(fc) &&
1754 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1755 rx->key)) {
1756 if (ieee80211_is_deauth(fc) ||
1757 ieee80211_is_disassoc(fc))
1758 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1759 rx->skb->data,
1760 rx->skb->len);
1761 return -EACCES;
1763 /* BIP does not use Protected field, so need to check MMIE */
1764 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1765 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1766 if (ieee80211_is_deauth(fc) ||
1767 ieee80211_is_disassoc(fc))
1768 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1769 rx->skb->data,
1770 rx->skb->len);
1771 return -EACCES;
1774 * When using MFP, Action frames are not allowed prior to
1775 * having configured keys.
1777 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1778 ieee80211_is_robust_mgmt_frame(
1779 (struct ieee80211_hdr *) rx->skb->data)))
1780 return -EACCES;
1783 return 0;
1786 static int
1787 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1789 struct ieee80211_sub_if_data *sdata = rx->sdata;
1790 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1791 bool check_port_control = false;
1792 struct ethhdr *ehdr;
1793 int ret;
1795 *port_control = false;
1796 if (ieee80211_has_a4(hdr->frame_control) &&
1797 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1798 return -1;
1800 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1801 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1803 if (!sdata->u.mgd.use_4addr)
1804 return -1;
1805 else
1806 check_port_control = true;
1809 if (is_multicast_ether_addr(hdr->addr1) &&
1810 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1811 return -1;
1813 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1814 if (ret < 0)
1815 return ret;
1817 ehdr = (struct ethhdr *) rx->skb->data;
1818 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1819 *port_control = true;
1820 else if (check_port_control)
1821 return -1;
1823 return 0;
1827 * requires that rx->skb is a frame with ethernet header
1829 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1831 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1832 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1833 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1836 * Allow EAPOL frames to us/the PAE group address regardless
1837 * of whether the frame was encrypted or not.
1839 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1840 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1841 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1842 return true;
1844 if (ieee80211_802_1x_port_control(rx) ||
1845 ieee80211_drop_unencrypted(rx, fc))
1846 return false;
1848 return true;
1852 * requires that rx->skb is a frame with ethernet header
1854 static void
1855 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1857 struct ieee80211_sub_if_data *sdata = rx->sdata;
1858 struct net_device *dev = sdata->dev;
1859 struct sk_buff *skb, *xmit_skb;
1860 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1861 struct sta_info *dsta;
1862 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1864 skb = rx->skb;
1865 xmit_skb = NULL;
1867 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1868 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1869 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1870 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1871 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1872 if (is_multicast_ether_addr(ehdr->h_dest)) {
1874 * send multicast frames both to higher layers in
1875 * local net stack and back to the wireless medium
1877 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1878 if (!xmit_skb)
1879 net_info_ratelimited("%s: failed to clone multicast frame\n",
1880 dev->name);
1881 } else {
1882 dsta = sta_info_get(sdata, skb->data);
1883 if (dsta) {
1885 * The destination station is associated to
1886 * this AP (in this VLAN), so send the frame
1887 * directly to it and do not pass it to local
1888 * net stack.
1890 xmit_skb = skb;
1891 skb = NULL;
1896 if (skb) {
1897 int align __maybe_unused;
1899 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1901 * 'align' will only take the values 0 or 2 here
1902 * since all frames are required to be aligned
1903 * to 2-byte boundaries when being passed to
1904 * mac80211; the code here works just as well if
1905 * that isn't true, but mac80211 assumes it can
1906 * access fields as 2-byte aligned (e.g. for
1907 * compare_ether_addr)
1909 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1910 if (align) {
1911 if (WARN_ON(skb_headroom(skb) < 3)) {
1912 dev_kfree_skb(skb);
1913 skb = NULL;
1914 } else {
1915 u8 *data = skb->data;
1916 size_t len = skb_headlen(skb);
1917 skb->data -= align;
1918 memmove(skb->data, data, len);
1919 skb_set_tail_pointer(skb, len);
1922 #endif
1924 if (skb) {
1925 /* deliver to local stack */
1926 skb->protocol = eth_type_trans(skb, dev);
1927 memset(skb->cb, 0, sizeof(skb->cb));
1928 netif_receive_skb(skb);
1932 if (xmit_skb) {
1934 * Send to wireless media and increase priority by 256 to
1935 * keep the received priority instead of reclassifying
1936 * the frame (see cfg80211_classify8021d).
1938 xmit_skb->priority += 256;
1939 xmit_skb->protocol = htons(ETH_P_802_3);
1940 skb_reset_network_header(xmit_skb);
1941 skb_reset_mac_header(xmit_skb);
1942 dev_queue_xmit(xmit_skb);
1946 static ieee80211_rx_result debug_noinline
1947 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1949 struct net_device *dev = rx->sdata->dev;
1950 struct sk_buff *skb = rx->skb;
1951 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1952 __le16 fc = hdr->frame_control;
1953 struct sk_buff_head frame_list;
1954 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1956 if (unlikely(!ieee80211_is_data(fc)))
1957 return RX_CONTINUE;
1959 if (unlikely(!ieee80211_is_data_present(fc)))
1960 return RX_DROP_MONITOR;
1962 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1963 return RX_CONTINUE;
1965 if (ieee80211_has_a4(hdr->frame_control) &&
1966 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1967 !rx->sdata->u.vlan.sta)
1968 return RX_DROP_UNUSABLE;
1970 if (is_multicast_ether_addr(hdr->addr1) &&
1971 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1972 rx->sdata->u.vlan.sta) ||
1973 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1974 rx->sdata->u.mgd.use_4addr)))
1975 return RX_DROP_UNUSABLE;
1977 skb->dev = dev;
1978 __skb_queue_head_init(&frame_list);
1980 if (skb_linearize(skb))
1981 return RX_DROP_UNUSABLE;
1983 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1984 rx->sdata->vif.type,
1985 rx->local->hw.extra_tx_headroom, true);
1987 while (!skb_queue_empty(&frame_list)) {
1988 rx->skb = __skb_dequeue(&frame_list);
1990 if (!ieee80211_frame_allowed(rx, fc)) {
1991 dev_kfree_skb(rx->skb);
1992 continue;
1994 dev->stats.rx_packets++;
1995 dev->stats.rx_bytes += rx->skb->len;
1997 ieee80211_deliver_skb(rx);
2000 return RX_QUEUED;
2003 #ifdef CONFIG_MAC80211_MESH
2004 static ieee80211_rx_result
2005 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2007 struct ieee80211_hdr *fwd_hdr, *hdr;
2008 struct ieee80211_tx_info *info;
2009 struct ieee80211s_hdr *mesh_hdr;
2010 struct sk_buff *skb = rx->skb, *fwd_skb;
2011 struct ieee80211_local *local = rx->local;
2012 struct ieee80211_sub_if_data *sdata = rx->sdata;
2013 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2014 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2015 __le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD);
2016 u16 q, hdrlen;
2018 hdr = (struct ieee80211_hdr *) skb->data;
2019 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2021 /* make sure fixed part of mesh header is there, also checks skb len */
2022 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2023 return RX_DROP_MONITOR;
2025 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2027 /* make sure full mesh header is there, also checks skb len */
2028 if (!pskb_may_pull(rx->skb,
2029 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2030 return RX_DROP_MONITOR;
2032 /* reload pointers */
2033 hdr = (struct ieee80211_hdr *) skb->data;
2034 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2036 /* frame is in RMC, don't forward */
2037 if (ieee80211_is_data(hdr->frame_control) &&
2038 is_multicast_ether_addr(hdr->addr1) &&
2039 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2040 return RX_DROP_MONITOR;
2042 if (!ieee80211_is_data(hdr->frame_control) ||
2043 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2044 return RX_CONTINUE;
2046 if (!mesh_hdr->ttl)
2047 return RX_DROP_MONITOR;
2049 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2050 struct mesh_path *mppath;
2051 char *proxied_addr;
2052 char *mpp_addr;
2054 if (is_multicast_ether_addr(hdr->addr1)) {
2055 mpp_addr = hdr->addr3;
2056 proxied_addr = mesh_hdr->eaddr1;
2057 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2058 /* has_a4 already checked in ieee80211_rx_mesh_check */
2059 mpp_addr = hdr->addr4;
2060 proxied_addr = mesh_hdr->eaddr2;
2061 } else {
2062 return RX_DROP_MONITOR;
2065 rcu_read_lock();
2066 mppath = mpp_path_lookup(sdata, proxied_addr);
2067 if (!mppath) {
2068 mpp_path_add(sdata, proxied_addr, mpp_addr);
2069 } else {
2070 spin_lock_bh(&mppath->state_lock);
2071 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2072 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2073 spin_unlock_bh(&mppath->state_lock);
2075 rcu_read_unlock();
2078 /* Frame has reached destination. Don't forward */
2079 if (!is_multicast_ether_addr(hdr->addr1) &&
2080 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2081 return RX_CONTINUE;
2083 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2084 if (ieee80211_queue_stopped(&local->hw, q)) {
2085 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2086 return RX_DROP_MONITOR;
2088 skb_set_queue_mapping(skb, q);
2090 if (!--mesh_hdr->ttl) {
2091 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2092 goto out;
2095 if (!ifmsh->mshcfg.dot11MeshForwarding)
2096 goto out;
2098 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2099 if (!fwd_skb) {
2100 net_info_ratelimited("%s: failed to clone mesh frame\n",
2101 sdata->name);
2102 goto out;
2105 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2106 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2107 info = IEEE80211_SKB_CB(fwd_skb);
2108 memset(info, 0, sizeof(*info));
2109 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2110 info->control.vif = &rx->sdata->vif;
2111 info->control.jiffies = jiffies;
2112 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2113 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2114 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2115 /* update power mode indication when forwarding */
2116 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2117 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2118 /* mesh power mode flags updated in mesh_nexthop_lookup */
2119 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2120 } else {
2121 /* unable to resolve next hop */
2122 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2123 fwd_hdr->addr3, 0, reason, fwd_hdr->addr2);
2124 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2125 kfree_skb(fwd_skb);
2126 return RX_DROP_MONITOR;
2129 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2130 ieee80211_add_pending_skb(local, fwd_skb);
2131 out:
2132 if (is_multicast_ether_addr(hdr->addr1) ||
2133 sdata->dev->flags & IFF_PROMISC)
2134 return RX_CONTINUE;
2135 else
2136 return RX_DROP_MONITOR;
2138 #endif
2140 static ieee80211_rx_result debug_noinline
2141 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2143 struct ieee80211_sub_if_data *sdata = rx->sdata;
2144 struct ieee80211_local *local = rx->local;
2145 struct net_device *dev = sdata->dev;
2146 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2147 __le16 fc = hdr->frame_control;
2148 bool port_control;
2149 int err;
2151 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2152 return RX_CONTINUE;
2154 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2155 return RX_DROP_MONITOR;
2158 * Send unexpected-4addr-frame event to hostapd. For older versions,
2159 * also drop the frame to cooked monitor interfaces.
2161 if (ieee80211_has_a4(hdr->frame_control) &&
2162 sdata->vif.type == NL80211_IFTYPE_AP) {
2163 if (rx->sta &&
2164 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2165 cfg80211_rx_unexpected_4addr_frame(
2166 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2167 return RX_DROP_MONITOR;
2170 err = __ieee80211_data_to_8023(rx, &port_control);
2171 if (unlikely(err))
2172 return RX_DROP_UNUSABLE;
2174 if (!ieee80211_frame_allowed(rx, fc))
2175 return RX_DROP_MONITOR;
2177 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2178 unlikely(port_control) && sdata->bss) {
2179 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2180 u.ap);
2181 dev = sdata->dev;
2182 rx->sdata = sdata;
2185 rx->skb->dev = dev;
2187 dev->stats.rx_packets++;
2188 dev->stats.rx_bytes += rx->skb->len;
2190 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2191 !is_multicast_ether_addr(
2192 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2193 (!local->scanning &&
2194 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2195 mod_timer(&local->dynamic_ps_timer, jiffies +
2196 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2199 ieee80211_deliver_skb(rx);
2201 return RX_QUEUED;
2204 static ieee80211_rx_result debug_noinline
2205 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2207 struct sk_buff *skb = rx->skb;
2208 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2209 struct tid_ampdu_rx *tid_agg_rx;
2210 u16 start_seq_num;
2211 u16 tid;
2213 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2214 return RX_CONTINUE;
2216 if (ieee80211_is_back_req(bar->frame_control)) {
2217 struct {
2218 __le16 control, start_seq_num;
2219 } __packed bar_data;
2221 if (!rx->sta)
2222 return RX_DROP_MONITOR;
2224 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2225 &bar_data, sizeof(bar_data)))
2226 return RX_DROP_MONITOR;
2228 tid = le16_to_cpu(bar_data.control) >> 12;
2230 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2231 if (!tid_agg_rx)
2232 return RX_DROP_MONITOR;
2234 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2236 /* reset session timer */
2237 if (tid_agg_rx->timeout)
2238 mod_timer(&tid_agg_rx->session_timer,
2239 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2241 spin_lock(&tid_agg_rx->reorder_lock);
2242 /* release stored frames up to start of BAR */
2243 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2244 start_seq_num, frames);
2245 spin_unlock(&tid_agg_rx->reorder_lock);
2247 kfree_skb(skb);
2248 return RX_QUEUED;
2252 * After this point, we only want management frames,
2253 * so we can drop all remaining control frames to
2254 * cooked monitor interfaces.
2256 return RX_DROP_MONITOR;
2259 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2260 struct ieee80211_mgmt *mgmt,
2261 size_t len)
2263 struct ieee80211_local *local = sdata->local;
2264 struct sk_buff *skb;
2265 struct ieee80211_mgmt *resp;
2267 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2268 /* Not to own unicast address */
2269 return;
2272 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2273 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2274 /* Not from the current AP or not associated yet. */
2275 return;
2278 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2279 /* Too short SA Query request frame */
2280 return;
2283 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2284 if (skb == NULL)
2285 return;
2287 skb_reserve(skb, local->hw.extra_tx_headroom);
2288 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2289 memset(resp, 0, 24);
2290 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2291 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2292 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2293 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2294 IEEE80211_STYPE_ACTION);
2295 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2296 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2297 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2298 memcpy(resp->u.action.u.sa_query.trans_id,
2299 mgmt->u.action.u.sa_query.trans_id,
2300 WLAN_SA_QUERY_TR_ID_LEN);
2302 ieee80211_tx_skb(sdata, skb);
2305 static ieee80211_rx_result debug_noinline
2306 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2308 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2309 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2312 * From here on, look only at management frames.
2313 * Data and control frames are already handled,
2314 * and unknown (reserved) frames are useless.
2316 if (rx->skb->len < 24)
2317 return RX_DROP_MONITOR;
2319 if (!ieee80211_is_mgmt(mgmt->frame_control))
2320 return RX_DROP_MONITOR;
2322 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2323 ieee80211_is_beacon(mgmt->frame_control) &&
2324 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2325 int sig = 0;
2327 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2328 sig = status->signal;
2330 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2331 rx->skb->data, rx->skb->len,
2332 status->freq, sig);
2333 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2336 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2337 return RX_DROP_MONITOR;
2339 if (ieee80211_drop_unencrypted_mgmt(rx))
2340 return RX_DROP_UNUSABLE;
2342 return RX_CONTINUE;
2345 static ieee80211_rx_result debug_noinline
2346 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2348 struct ieee80211_local *local = rx->local;
2349 struct ieee80211_sub_if_data *sdata = rx->sdata;
2350 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2351 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2352 int len = rx->skb->len;
2354 if (!ieee80211_is_action(mgmt->frame_control))
2355 return RX_CONTINUE;
2357 /* drop too small frames */
2358 if (len < IEEE80211_MIN_ACTION_SIZE)
2359 return RX_DROP_UNUSABLE;
2361 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2362 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED)
2363 return RX_DROP_UNUSABLE;
2365 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2366 return RX_DROP_UNUSABLE;
2368 switch (mgmt->u.action.category) {
2369 case WLAN_CATEGORY_HT:
2370 /* reject HT action frames from stations not supporting HT */
2371 if (!rx->sta->sta.ht_cap.ht_supported)
2372 goto invalid;
2374 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2375 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2376 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2377 sdata->vif.type != NL80211_IFTYPE_AP &&
2378 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2379 break;
2381 /* verify action & smps_control/chanwidth are present */
2382 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2383 goto invalid;
2385 switch (mgmt->u.action.u.ht_smps.action) {
2386 case WLAN_HT_ACTION_SMPS: {
2387 struct ieee80211_supported_band *sband;
2388 enum ieee80211_smps_mode smps_mode;
2390 /* convert to HT capability */
2391 switch (mgmt->u.action.u.ht_smps.smps_control) {
2392 case WLAN_HT_SMPS_CONTROL_DISABLED:
2393 smps_mode = IEEE80211_SMPS_OFF;
2394 break;
2395 case WLAN_HT_SMPS_CONTROL_STATIC:
2396 smps_mode = IEEE80211_SMPS_STATIC;
2397 break;
2398 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2399 smps_mode = IEEE80211_SMPS_DYNAMIC;
2400 break;
2401 default:
2402 goto invalid;
2405 /* if no change do nothing */
2406 if (rx->sta->sta.smps_mode == smps_mode)
2407 goto handled;
2408 rx->sta->sta.smps_mode = smps_mode;
2410 sband = rx->local->hw.wiphy->bands[status->band];
2412 rate_control_rate_update(local, sband, rx->sta,
2413 IEEE80211_RC_SMPS_CHANGED);
2414 goto handled;
2416 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2417 struct ieee80211_supported_band *sband;
2418 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2419 enum ieee80211_sta_rx_bandwidth new_bw;
2421 /* If it doesn't support 40 MHz it can't change ... */
2422 if (!(rx->sta->sta.ht_cap.cap &
2423 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2424 goto handled;
2426 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2427 new_bw = IEEE80211_STA_RX_BW_20;
2428 else
2429 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2431 if (rx->sta->sta.bandwidth == new_bw)
2432 goto handled;
2434 sband = rx->local->hw.wiphy->bands[status->band];
2436 rate_control_rate_update(local, sband, rx->sta,
2437 IEEE80211_RC_BW_CHANGED);
2438 goto handled;
2440 default:
2441 goto invalid;
2444 break;
2445 case WLAN_CATEGORY_PUBLIC:
2446 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2447 goto invalid;
2448 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2449 break;
2450 if (!rx->sta)
2451 break;
2452 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2453 break;
2454 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2455 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2456 break;
2457 if (len < offsetof(struct ieee80211_mgmt,
2458 u.action.u.ext_chan_switch.variable))
2459 goto invalid;
2460 goto queue;
2461 case WLAN_CATEGORY_VHT:
2462 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2463 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2464 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2465 sdata->vif.type != NL80211_IFTYPE_AP &&
2466 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2467 break;
2469 /* verify action code is present */
2470 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2471 goto invalid;
2473 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2474 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2475 u8 opmode;
2477 /* verify opmode is present */
2478 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2479 goto invalid;
2481 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2483 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2484 opmode, status->band,
2485 false);
2486 goto handled;
2488 default:
2489 break;
2491 break;
2492 case WLAN_CATEGORY_BACK:
2493 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2494 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2495 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2496 sdata->vif.type != NL80211_IFTYPE_AP &&
2497 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2498 break;
2500 /* verify action_code is present */
2501 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2502 break;
2504 switch (mgmt->u.action.u.addba_req.action_code) {
2505 case WLAN_ACTION_ADDBA_REQ:
2506 if (len < (IEEE80211_MIN_ACTION_SIZE +
2507 sizeof(mgmt->u.action.u.addba_req)))
2508 goto invalid;
2509 break;
2510 case WLAN_ACTION_ADDBA_RESP:
2511 if (len < (IEEE80211_MIN_ACTION_SIZE +
2512 sizeof(mgmt->u.action.u.addba_resp)))
2513 goto invalid;
2514 break;
2515 case WLAN_ACTION_DELBA:
2516 if (len < (IEEE80211_MIN_ACTION_SIZE +
2517 sizeof(mgmt->u.action.u.delba)))
2518 goto invalid;
2519 break;
2520 default:
2521 goto invalid;
2524 goto queue;
2525 case WLAN_CATEGORY_SPECTRUM_MGMT:
2526 if (status->band != IEEE80211_BAND_5GHZ)
2527 break;
2529 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2530 break;
2532 /* verify action_code is present */
2533 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2534 break;
2536 switch (mgmt->u.action.u.measurement.action_code) {
2537 case WLAN_ACTION_SPCT_MSR_REQ:
2538 if (len < (IEEE80211_MIN_ACTION_SIZE +
2539 sizeof(mgmt->u.action.u.measurement)))
2540 break;
2541 ieee80211_process_measurement_req(sdata, mgmt, len);
2542 goto handled;
2543 case WLAN_ACTION_SPCT_CHL_SWITCH:
2544 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2545 break;
2547 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2548 break;
2550 goto queue;
2552 break;
2553 case WLAN_CATEGORY_SA_QUERY:
2554 if (len < (IEEE80211_MIN_ACTION_SIZE +
2555 sizeof(mgmt->u.action.u.sa_query)))
2556 break;
2558 switch (mgmt->u.action.u.sa_query.action) {
2559 case WLAN_ACTION_SA_QUERY_REQUEST:
2560 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2561 break;
2562 ieee80211_process_sa_query_req(sdata, mgmt, len);
2563 goto handled;
2565 break;
2566 case WLAN_CATEGORY_SELF_PROTECTED:
2567 if (len < (IEEE80211_MIN_ACTION_SIZE +
2568 sizeof(mgmt->u.action.u.self_prot.action_code)))
2569 break;
2571 switch (mgmt->u.action.u.self_prot.action_code) {
2572 case WLAN_SP_MESH_PEERING_OPEN:
2573 case WLAN_SP_MESH_PEERING_CLOSE:
2574 case WLAN_SP_MESH_PEERING_CONFIRM:
2575 if (!ieee80211_vif_is_mesh(&sdata->vif))
2576 goto invalid;
2577 if (sdata->u.mesh.user_mpm)
2578 /* userspace handles this frame */
2579 break;
2580 goto queue;
2581 case WLAN_SP_MGK_INFORM:
2582 case WLAN_SP_MGK_ACK:
2583 if (!ieee80211_vif_is_mesh(&sdata->vif))
2584 goto invalid;
2585 break;
2587 break;
2588 case WLAN_CATEGORY_MESH_ACTION:
2589 if (len < (IEEE80211_MIN_ACTION_SIZE +
2590 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2591 break;
2593 if (!ieee80211_vif_is_mesh(&sdata->vif))
2594 break;
2595 if (mesh_action_is_path_sel(mgmt) &&
2596 !mesh_path_sel_is_hwmp(sdata))
2597 break;
2598 goto queue;
2601 return RX_CONTINUE;
2603 invalid:
2604 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2605 /* will return in the next handlers */
2606 return RX_CONTINUE;
2608 handled:
2609 if (rx->sta)
2610 rx->sta->rx_packets++;
2611 dev_kfree_skb(rx->skb);
2612 return RX_QUEUED;
2614 queue:
2615 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2616 skb_queue_tail(&sdata->skb_queue, rx->skb);
2617 ieee80211_queue_work(&local->hw, &sdata->work);
2618 if (rx->sta)
2619 rx->sta->rx_packets++;
2620 return RX_QUEUED;
2623 static ieee80211_rx_result debug_noinline
2624 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2626 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2627 int sig = 0;
2629 /* skip known-bad action frames and return them in the next handler */
2630 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2631 return RX_CONTINUE;
2634 * Getting here means the kernel doesn't know how to handle
2635 * it, but maybe userspace does ... include returned frames
2636 * so userspace can register for those to know whether ones
2637 * it transmitted were processed or returned.
2640 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2641 sig = status->signal;
2643 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2644 rx->skb->data, rx->skb->len,
2645 GFP_ATOMIC)) {
2646 if (rx->sta)
2647 rx->sta->rx_packets++;
2648 dev_kfree_skb(rx->skb);
2649 return RX_QUEUED;
2652 return RX_CONTINUE;
2655 static ieee80211_rx_result debug_noinline
2656 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2658 struct ieee80211_local *local = rx->local;
2659 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2660 struct sk_buff *nskb;
2661 struct ieee80211_sub_if_data *sdata = rx->sdata;
2662 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2664 if (!ieee80211_is_action(mgmt->frame_control))
2665 return RX_CONTINUE;
2668 * For AP mode, hostapd is responsible for handling any action
2669 * frames that we didn't handle, including returning unknown
2670 * ones. For all other modes we will return them to the sender,
2671 * setting the 0x80 bit in the action category, as required by
2672 * 802.11-2012 9.24.4.
2673 * Newer versions of hostapd shall also use the management frame
2674 * registration mechanisms, but older ones still use cooked
2675 * monitor interfaces so push all frames there.
2677 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2678 (sdata->vif.type == NL80211_IFTYPE_AP ||
2679 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2680 return RX_DROP_MONITOR;
2682 if (is_multicast_ether_addr(mgmt->da))
2683 return RX_DROP_MONITOR;
2685 /* do not return rejected action frames */
2686 if (mgmt->u.action.category & 0x80)
2687 return RX_DROP_UNUSABLE;
2689 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2690 GFP_ATOMIC);
2691 if (nskb) {
2692 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2694 nmgmt->u.action.category |= 0x80;
2695 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2696 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2698 memset(nskb->cb, 0, sizeof(nskb->cb));
2700 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2701 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2703 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2704 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2705 IEEE80211_TX_CTL_NO_CCK_RATE;
2706 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2707 info->hw_queue =
2708 local->hw.offchannel_tx_hw_queue;
2711 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2712 status->band);
2714 dev_kfree_skb(rx->skb);
2715 return RX_QUEUED;
2718 static ieee80211_rx_result debug_noinline
2719 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2721 struct ieee80211_sub_if_data *sdata = rx->sdata;
2722 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2723 __le16 stype;
2725 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2727 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2728 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2729 sdata->vif.type != NL80211_IFTYPE_STATION)
2730 return RX_DROP_MONITOR;
2732 switch (stype) {
2733 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2734 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2735 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2736 /* process for all: mesh, mlme, ibss */
2737 break;
2738 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2739 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2740 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2741 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2742 if (is_multicast_ether_addr(mgmt->da) &&
2743 !is_broadcast_ether_addr(mgmt->da))
2744 return RX_DROP_MONITOR;
2746 /* process only for station */
2747 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2748 return RX_DROP_MONITOR;
2749 break;
2750 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2751 /* process only for ibss and mesh */
2752 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2753 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2754 return RX_DROP_MONITOR;
2755 break;
2756 default:
2757 return RX_DROP_MONITOR;
2760 /* queue up frame and kick off work to process it */
2761 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2762 skb_queue_tail(&sdata->skb_queue, rx->skb);
2763 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2764 if (rx->sta)
2765 rx->sta->rx_packets++;
2767 return RX_QUEUED;
2770 /* TODO: use IEEE80211_RX_FRAGMENTED */
2771 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2772 struct ieee80211_rate *rate)
2774 struct ieee80211_sub_if_data *sdata;
2775 struct ieee80211_local *local = rx->local;
2776 struct sk_buff *skb = rx->skb, *skb2;
2777 struct net_device *prev_dev = NULL;
2778 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2779 int needed_headroom;
2782 * If cooked monitor has been processed already, then
2783 * don't do it again. If not, set the flag.
2785 if (rx->flags & IEEE80211_RX_CMNTR)
2786 goto out_free_skb;
2787 rx->flags |= IEEE80211_RX_CMNTR;
2789 /* If there are no cooked monitor interfaces, just free the SKB */
2790 if (!local->cooked_mntrs)
2791 goto out_free_skb;
2793 /* room for the radiotap header based on driver features */
2794 needed_headroom = ieee80211_rx_radiotap_space(local, status);
2796 if (skb_headroom(skb) < needed_headroom &&
2797 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2798 goto out_free_skb;
2800 /* prepend radiotap information */
2801 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2802 false);
2804 skb_set_mac_header(skb, 0);
2805 skb->ip_summed = CHECKSUM_UNNECESSARY;
2806 skb->pkt_type = PACKET_OTHERHOST;
2807 skb->protocol = htons(ETH_P_802_2);
2809 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2810 if (!ieee80211_sdata_running(sdata))
2811 continue;
2813 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2814 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2815 continue;
2817 if (prev_dev) {
2818 skb2 = skb_clone(skb, GFP_ATOMIC);
2819 if (skb2) {
2820 skb2->dev = prev_dev;
2821 netif_receive_skb(skb2);
2825 prev_dev = sdata->dev;
2826 sdata->dev->stats.rx_packets++;
2827 sdata->dev->stats.rx_bytes += skb->len;
2830 if (prev_dev) {
2831 skb->dev = prev_dev;
2832 netif_receive_skb(skb);
2833 return;
2836 out_free_skb:
2837 dev_kfree_skb(skb);
2840 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2841 ieee80211_rx_result res)
2843 switch (res) {
2844 case RX_DROP_MONITOR:
2845 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2846 if (rx->sta)
2847 rx->sta->rx_dropped++;
2848 /* fall through */
2849 case RX_CONTINUE: {
2850 struct ieee80211_rate *rate = NULL;
2851 struct ieee80211_supported_band *sband;
2852 struct ieee80211_rx_status *status;
2854 status = IEEE80211_SKB_RXCB((rx->skb));
2856 sband = rx->local->hw.wiphy->bands[status->band];
2857 if (!(status->flag & RX_FLAG_HT) &&
2858 !(status->flag & RX_FLAG_VHT))
2859 rate = &sband->bitrates[status->rate_idx];
2861 ieee80211_rx_cooked_monitor(rx, rate);
2862 break;
2864 case RX_DROP_UNUSABLE:
2865 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2866 if (rx->sta)
2867 rx->sta->rx_dropped++;
2868 dev_kfree_skb(rx->skb);
2869 break;
2870 case RX_QUEUED:
2871 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2872 break;
2876 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2877 struct sk_buff_head *frames)
2879 ieee80211_rx_result res = RX_DROP_MONITOR;
2880 struct sk_buff *skb;
2882 #define CALL_RXH(rxh) \
2883 do { \
2884 res = rxh(rx); \
2885 if (res != RX_CONTINUE) \
2886 goto rxh_next; \
2887 } while (0);
2889 spin_lock_bh(&rx->local->rx_path_lock);
2891 while ((skb = __skb_dequeue(frames))) {
2893 * all the other fields are valid across frames
2894 * that belong to an aMPDU since they are on the
2895 * same TID from the same station
2897 rx->skb = skb;
2899 CALL_RXH(ieee80211_rx_h_decrypt)
2900 CALL_RXH(ieee80211_rx_h_check_more_data)
2901 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2902 CALL_RXH(ieee80211_rx_h_sta_process)
2903 CALL_RXH(ieee80211_rx_h_defragment)
2904 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2905 /* must be after MMIC verify so header is counted in MPDU mic */
2906 #ifdef CONFIG_MAC80211_MESH
2907 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2908 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2909 #endif
2910 CALL_RXH(ieee80211_rx_h_amsdu)
2911 CALL_RXH(ieee80211_rx_h_data)
2913 /* special treatment -- needs the queue */
2914 res = ieee80211_rx_h_ctrl(rx, frames);
2915 if (res != RX_CONTINUE)
2916 goto rxh_next;
2918 CALL_RXH(ieee80211_rx_h_mgmt_check)
2919 CALL_RXH(ieee80211_rx_h_action)
2920 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2921 CALL_RXH(ieee80211_rx_h_action_return)
2922 CALL_RXH(ieee80211_rx_h_mgmt)
2924 rxh_next:
2925 ieee80211_rx_handlers_result(rx, res);
2927 #undef CALL_RXH
2930 spin_unlock_bh(&rx->local->rx_path_lock);
2933 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2935 struct sk_buff_head reorder_release;
2936 ieee80211_rx_result res = RX_DROP_MONITOR;
2938 __skb_queue_head_init(&reorder_release);
2940 #define CALL_RXH(rxh) \
2941 do { \
2942 res = rxh(rx); \
2943 if (res != RX_CONTINUE) \
2944 goto rxh_next; \
2945 } while (0);
2947 CALL_RXH(ieee80211_rx_h_check)
2949 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
2951 ieee80211_rx_handlers(rx, &reorder_release);
2952 return;
2954 rxh_next:
2955 ieee80211_rx_handlers_result(rx, res);
2957 #undef CALL_RXH
2961 * This function makes calls into the RX path, therefore
2962 * it has to be invoked under RCU read lock.
2964 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2966 struct sk_buff_head frames;
2967 struct ieee80211_rx_data rx = {
2968 .sta = sta,
2969 .sdata = sta->sdata,
2970 .local = sta->local,
2971 /* This is OK -- must be QoS data frame */
2972 .security_idx = tid,
2973 .seqno_idx = tid,
2974 .flags = 0,
2976 struct tid_ampdu_rx *tid_agg_rx;
2978 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2979 if (!tid_agg_rx)
2980 return;
2982 __skb_queue_head_init(&frames);
2984 spin_lock(&tid_agg_rx->reorder_lock);
2985 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
2986 spin_unlock(&tid_agg_rx->reorder_lock);
2988 ieee80211_rx_handlers(&rx, &frames);
2991 /* main receive path */
2993 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2994 struct ieee80211_hdr *hdr)
2996 struct ieee80211_sub_if_data *sdata = rx->sdata;
2997 struct sk_buff *skb = rx->skb;
2998 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2999 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3000 int multicast = is_multicast_ether_addr(hdr->addr1);
3002 switch (sdata->vif.type) {
3003 case NL80211_IFTYPE_STATION:
3004 if (!bssid && !sdata->u.mgd.use_4addr)
3005 return 0;
3006 if (!multicast &&
3007 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3008 if (!(sdata->dev->flags & IFF_PROMISC) ||
3009 sdata->u.mgd.use_4addr)
3010 return 0;
3011 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3013 break;
3014 case NL80211_IFTYPE_ADHOC:
3015 if (!bssid)
3016 return 0;
3017 if (ieee80211_is_beacon(hdr->frame_control)) {
3018 return 1;
3019 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3020 return 0;
3021 } else if (!multicast &&
3022 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3023 if (!(sdata->dev->flags & IFF_PROMISC))
3024 return 0;
3025 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3026 } else if (!rx->sta) {
3027 int rate_idx;
3028 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3029 rate_idx = 0; /* TODO: HT/VHT rates */
3030 else
3031 rate_idx = status->rate_idx;
3032 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3033 BIT(rate_idx));
3035 break;
3036 case NL80211_IFTYPE_MESH_POINT:
3037 if (!multicast &&
3038 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3039 if (!(sdata->dev->flags & IFF_PROMISC))
3040 return 0;
3042 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3044 break;
3045 case NL80211_IFTYPE_AP_VLAN:
3046 case NL80211_IFTYPE_AP:
3047 if (!bssid) {
3048 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3049 return 0;
3050 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3052 * Accept public action frames even when the
3053 * BSSID doesn't match, this is used for P2P
3054 * and location updates. Note that mac80211
3055 * itself never looks at these frames.
3057 if (!multicast &&
3058 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3059 return 0;
3060 if (ieee80211_is_public_action(hdr, skb->len))
3061 return 1;
3062 if (!ieee80211_is_beacon(hdr->frame_control))
3063 return 0;
3064 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3066 break;
3067 case NL80211_IFTYPE_WDS:
3068 if (bssid || !ieee80211_is_data(hdr->frame_control))
3069 return 0;
3070 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3071 return 0;
3072 break;
3073 case NL80211_IFTYPE_P2P_DEVICE:
3074 if (!ieee80211_is_public_action(hdr, skb->len) &&
3075 !ieee80211_is_probe_req(hdr->frame_control) &&
3076 !ieee80211_is_probe_resp(hdr->frame_control) &&
3077 !ieee80211_is_beacon(hdr->frame_control))
3078 return 0;
3079 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3080 !multicast)
3081 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3082 break;
3083 default:
3084 /* should never get here */
3085 WARN_ON_ONCE(1);
3086 break;
3089 return 1;
3093 * This function returns whether or not the SKB
3094 * was destined for RX processing or not, which,
3095 * if consume is true, is equivalent to whether
3096 * or not the skb was consumed.
3098 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3099 struct sk_buff *skb, bool consume)
3101 struct ieee80211_local *local = rx->local;
3102 struct ieee80211_sub_if_data *sdata = rx->sdata;
3103 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3104 struct ieee80211_hdr *hdr = (void *)skb->data;
3105 int prepares;
3107 rx->skb = skb;
3108 status->rx_flags |= IEEE80211_RX_RA_MATCH;
3109 prepares = prepare_for_handlers(rx, hdr);
3111 if (!prepares)
3112 return false;
3114 if (!consume) {
3115 skb = skb_copy(skb, GFP_ATOMIC);
3116 if (!skb) {
3117 if (net_ratelimit())
3118 wiphy_debug(local->hw.wiphy,
3119 "failed to copy skb for %s\n",
3120 sdata->name);
3121 return true;
3124 rx->skb = skb;
3127 ieee80211_invoke_rx_handlers(rx);
3128 return true;
3132 * This is the actual Rx frames handler. as it blongs to Rx path it must
3133 * be called with rcu_read_lock protection.
3135 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3136 struct sk_buff *skb)
3138 struct ieee80211_local *local = hw_to_local(hw);
3139 struct ieee80211_sub_if_data *sdata;
3140 struct ieee80211_hdr *hdr;
3141 __le16 fc;
3142 struct ieee80211_rx_data rx;
3143 struct ieee80211_sub_if_data *prev;
3144 struct sta_info *sta, *tmp, *prev_sta;
3145 int err = 0;
3147 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3148 memset(&rx, 0, sizeof(rx));
3149 rx.skb = skb;
3150 rx.local = local;
3152 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3153 local->dot11ReceivedFragmentCount++;
3155 if (ieee80211_is_mgmt(fc)) {
3156 /* drop frame if too short for header */
3157 if (skb->len < ieee80211_hdrlen(fc))
3158 err = -ENOBUFS;
3159 else
3160 err = skb_linearize(skb);
3161 } else {
3162 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3165 if (err) {
3166 dev_kfree_skb(skb);
3167 return;
3170 hdr = (struct ieee80211_hdr *)skb->data;
3171 ieee80211_parse_qos(&rx);
3172 ieee80211_verify_alignment(&rx);
3174 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3175 ieee80211_is_beacon(hdr->frame_control)))
3176 ieee80211_scan_rx(local, skb);
3178 if (ieee80211_is_data(fc)) {
3179 prev_sta = NULL;
3181 for_each_sta_info(local, hdr->addr2, sta, tmp) {
3182 if (!prev_sta) {
3183 prev_sta = sta;
3184 continue;
3187 rx.sta = prev_sta;
3188 rx.sdata = prev_sta->sdata;
3189 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3191 prev_sta = sta;
3194 if (prev_sta) {
3195 rx.sta = prev_sta;
3196 rx.sdata = prev_sta->sdata;
3198 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3199 return;
3200 goto out;
3204 prev = NULL;
3206 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3207 if (!ieee80211_sdata_running(sdata))
3208 continue;
3210 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3211 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3212 continue;
3215 * frame is destined for this interface, but if it's
3216 * not also for the previous one we handle that after
3217 * the loop to avoid copying the SKB once too much
3220 if (!prev) {
3221 prev = sdata;
3222 continue;
3225 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3226 rx.sdata = prev;
3227 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3229 prev = sdata;
3232 if (prev) {
3233 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3234 rx.sdata = prev;
3236 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3237 return;
3240 out:
3241 dev_kfree_skb(skb);
3245 * This is the receive path handler. It is called by a low level driver when an
3246 * 802.11 MPDU is received from the hardware.
3248 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3250 struct ieee80211_local *local = hw_to_local(hw);
3251 struct ieee80211_rate *rate = NULL;
3252 struct ieee80211_supported_band *sband;
3253 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3255 WARN_ON_ONCE(softirq_count() == 0);
3257 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3258 goto drop;
3260 sband = local->hw.wiphy->bands[status->band];
3261 if (WARN_ON(!sband))
3262 goto drop;
3265 * If we're suspending, it is possible although not too likely
3266 * that we'd be receiving frames after having already partially
3267 * quiesced the stack. We can't process such frames then since
3268 * that might, for example, cause stations to be added or other
3269 * driver callbacks be invoked.
3271 if (unlikely(local->quiescing || local->suspended))
3272 goto drop;
3274 /* We might be during a HW reconfig, prevent Rx for the same reason */
3275 if (unlikely(local->in_reconfig))
3276 goto drop;
3279 * The same happens when we're not even started,
3280 * but that's worth a warning.
3282 if (WARN_ON(!local->started))
3283 goto drop;
3285 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3287 * Validate the rate, unless a PLCP error means that
3288 * we probably can't have a valid rate here anyway.
3291 if (status->flag & RX_FLAG_HT) {
3293 * rate_idx is MCS index, which can be [0-76]
3294 * as documented on:
3296 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3298 * Anything else would be some sort of driver or
3299 * hardware error. The driver should catch hardware
3300 * errors.
3302 if (WARN(status->rate_idx > 76,
3303 "Rate marked as an HT rate but passed "
3304 "status->rate_idx is not "
3305 "an MCS index [0-76]: %d (0x%02x)\n",
3306 status->rate_idx,
3307 status->rate_idx))
3308 goto drop;
3309 } else if (status->flag & RX_FLAG_VHT) {
3310 if (WARN_ONCE(status->rate_idx > 9 ||
3311 !status->vht_nss ||
3312 status->vht_nss > 8,
3313 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3314 status->rate_idx, status->vht_nss))
3315 goto drop;
3316 } else {
3317 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3318 goto drop;
3319 rate = &sband->bitrates[status->rate_idx];
3323 status->rx_flags = 0;
3326 * key references and virtual interfaces are protected using RCU
3327 * and this requires that we are in a read-side RCU section during
3328 * receive processing
3330 rcu_read_lock();
3333 * Frames with failed FCS/PLCP checksum are not returned,
3334 * all other frames are returned without radiotap header
3335 * if it was previously present.
3336 * Also, frames with less than 16 bytes are dropped.
3338 skb = ieee80211_rx_monitor(local, skb, rate);
3339 if (!skb) {
3340 rcu_read_unlock();
3341 return;
3344 ieee80211_tpt_led_trig_rx(local,
3345 ((struct ieee80211_hdr *)skb->data)->frame_control,
3346 skb->len);
3347 __ieee80211_rx_handle_packet(hw, skb);
3349 rcu_read_unlock();
3351 return;
3352 drop:
3353 kfree_skb(skb);
3355 EXPORT_SYMBOL(ieee80211_rx);
3357 /* This is a version of the rx handler that can be called from hard irq
3358 * context. Post the skb on the queue and schedule the tasklet */
3359 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3361 struct ieee80211_local *local = hw_to_local(hw);
3363 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3365 skb->pkt_type = IEEE80211_RX_MSG;
3366 skb_queue_tail(&local->skb_queue, skb);
3367 tasklet_schedule(&local->tasklet);
3369 EXPORT_SYMBOL(ieee80211_rx_irqsafe);