x86/boot: Make the x86_init noop functions static
[linux-2.6/btrfs-unstable.git] / mm / khugepaged.c
blobb7e2268dfc9a15c64eced7bfb857e9a32fc128c1
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
26 enum scan_result {
27 SCAN_FAIL,
28 SCAN_SUCCEED,
29 SCAN_PMD_NULL,
30 SCAN_EXCEED_NONE_PTE,
31 SCAN_PTE_NON_PRESENT,
32 SCAN_PAGE_RO,
33 SCAN_LACK_REFERENCED_PAGE,
34 SCAN_PAGE_NULL,
35 SCAN_SCAN_ABORT,
36 SCAN_PAGE_COUNT,
37 SCAN_PAGE_LRU,
38 SCAN_PAGE_LOCK,
39 SCAN_PAGE_ANON,
40 SCAN_PAGE_COMPOUND,
41 SCAN_ANY_PROCESS,
42 SCAN_VMA_NULL,
43 SCAN_VMA_CHECK,
44 SCAN_ADDRESS_RANGE,
45 SCAN_SWAP_CACHE_PAGE,
46 SCAN_DEL_PAGE_LRU,
47 SCAN_ALLOC_HUGE_PAGE_FAIL,
48 SCAN_CGROUP_CHARGE_FAIL,
49 SCAN_EXCEED_SWAP_PTE,
50 SCAN_TRUNCATED,
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/huge_memory.h>
56 /* default scan 8*512 pte (or vmas) every 30 second */
57 static unsigned int khugepaged_pages_to_scan __read_mostly;
58 static unsigned int khugepaged_pages_collapsed;
59 static unsigned int khugepaged_full_scans;
60 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
61 /* during fragmentation poll the hugepage allocator once every minute */
62 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
63 static unsigned long khugepaged_sleep_expire;
64 static DEFINE_SPINLOCK(khugepaged_mm_lock);
65 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
67 * default collapse hugepages if there is at least one pte mapped like
68 * it would have happened if the vma was large enough during page
69 * fault.
71 static unsigned int khugepaged_max_ptes_none __read_mostly;
72 static unsigned int khugepaged_max_ptes_swap __read_mostly;
74 #define MM_SLOTS_HASH_BITS 10
75 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
77 static struct kmem_cache *mm_slot_cache __read_mostly;
79 /**
80 * struct mm_slot - hash lookup from mm to mm_slot
81 * @hash: hash collision list
82 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
83 * @mm: the mm that this information is valid for
85 struct mm_slot {
86 struct hlist_node hash;
87 struct list_head mm_node;
88 struct mm_struct *mm;
91 /**
92 * struct khugepaged_scan - cursor for scanning
93 * @mm_head: the head of the mm list to scan
94 * @mm_slot: the current mm_slot we are scanning
95 * @address: the next address inside that to be scanned
97 * There is only the one khugepaged_scan instance of this cursor structure.
99 struct khugepaged_scan {
100 struct list_head mm_head;
101 struct mm_slot *mm_slot;
102 unsigned long address;
105 static struct khugepaged_scan khugepaged_scan = {
106 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
109 #ifdef CONFIG_SYSFS
110 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
111 struct kobj_attribute *attr,
112 char *buf)
114 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
117 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
118 struct kobj_attribute *attr,
119 const char *buf, size_t count)
121 unsigned long msecs;
122 int err;
124 err = kstrtoul(buf, 10, &msecs);
125 if (err || msecs > UINT_MAX)
126 return -EINVAL;
128 khugepaged_scan_sleep_millisecs = msecs;
129 khugepaged_sleep_expire = 0;
130 wake_up_interruptible(&khugepaged_wait);
132 return count;
134 static struct kobj_attribute scan_sleep_millisecs_attr =
135 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
136 scan_sleep_millisecs_store);
138 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
139 struct kobj_attribute *attr,
140 char *buf)
142 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
145 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
146 struct kobj_attribute *attr,
147 const char *buf, size_t count)
149 unsigned long msecs;
150 int err;
152 err = kstrtoul(buf, 10, &msecs);
153 if (err || msecs > UINT_MAX)
154 return -EINVAL;
156 khugepaged_alloc_sleep_millisecs = msecs;
157 khugepaged_sleep_expire = 0;
158 wake_up_interruptible(&khugepaged_wait);
160 return count;
162 static struct kobj_attribute alloc_sleep_millisecs_attr =
163 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
164 alloc_sleep_millisecs_store);
166 static ssize_t pages_to_scan_show(struct kobject *kobj,
167 struct kobj_attribute *attr,
168 char *buf)
170 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
172 static ssize_t pages_to_scan_store(struct kobject *kobj,
173 struct kobj_attribute *attr,
174 const char *buf, size_t count)
176 int err;
177 unsigned long pages;
179 err = kstrtoul(buf, 10, &pages);
180 if (err || !pages || pages > UINT_MAX)
181 return -EINVAL;
183 khugepaged_pages_to_scan = pages;
185 return count;
187 static struct kobj_attribute pages_to_scan_attr =
188 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
189 pages_to_scan_store);
191 static ssize_t pages_collapsed_show(struct kobject *kobj,
192 struct kobj_attribute *attr,
193 char *buf)
195 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
197 static struct kobj_attribute pages_collapsed_attr =
198 __ATTR_RO(pages_collapsed);
200 static ssize_t full_scans_show(struct kobject *kobj,
201 struct kobj_attribute *attr,
202 char *buf)
204 return sprintf(buf, "%u\n", khugepaged_full_scans);
206 static struct kobj_attribute full_scans_attr =
207 __ATTR_RO(full_scans);
209 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
210 struct kobj_attribute *attr, char *buf)
212 return single_hugepage_flag_show(kobj, attr, buf,
213 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
215 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
216 struct kobj_attribute *attr,
217 const char *buf, size_t count)
219 return single_hugepage_flag_store(kobj, attr, buf, count,
220 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
222 static struct kobj_attribute khugepaged_defrag_attr =
223 __ATTR(defrag, 0644, khugepaged_defrag_show,
224 khugepaged_defrag_store);
227 * max_ptes_none controls if khugepaged should collapse hugepages over
228 * any unmapped ptes in turn potentially increasing the memory
229 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
230 * reduce the available free memory in the system as it
231 * runs. Increasing max_ptes_none will instead potentially reduce the
232 * free memory in the system during the khugepaged scan.
234 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
235 struct kobj_attribute *attr,
236 char *buf)
238 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
240 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
241 struct kobj_attribute *attr,
242 const char *buf, size_t count)
244 int err;
245 unsigned long max_ptes_none;
247 err = kstrtoul(buf, 10, &max_ptes_none);
248 if (err || max_ptes_none > HPAGE_PMD_NR-1)
249 return -EINVAL;
251 khugepaged_max_ptes_none = max_ptes_none;
253 return count;
255 static struct kobj_attribute khugepaged_max_ptes_none_attr =
256 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
257 khugepaged_max_ptes_none_store);
259 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
260 struct kobj_attribute *attr,
261 char *buf)
263 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
266 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
267 struct kobj_attribute *attr,
268 const char *buf, size_t count)
270 int err;
271 unsigned long max_ptes_swap;
273 err = kstrtoul(buf, 10, &max_ptes_swap);
274 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
275 return -EINVAL;
277 khugepaged_max_ptes_swap = max_ptes_swap;
279 return count;
282 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
283 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
284 khugepaged_max_ptes_swap_store);
286 static struct attribute *khugepaged_attr[] = {
287 &khugepaged_defrag_attr.attr,
288 &khugepaged_max_ptes_none_attr.attr,
289 &pages_to_scan_attr.attr,
290 &pages_collapsed_attr.attr,
291 &full_scans_attr.attr,
292 &scan_sleep_millisecs_attr.attr,
293 &alloc_sleep_millisecs_attr.attr,
294 &khugepaged_max_ptes_swap_attr.attr,
295 NULL,
298 struct attribute_group khugepaged_attr_group = {
299 .attrs = khugepaged_attr,
300 .name = "khugepaged",
302 #endif /* CONFIG_SYSFS */
304 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
306 int hugepage_madvise(struct vm_area_struct *vma,
307 unsigned long *vm_flags, int advice)
309 switch (advice) {
310 case MADV_HUGEPAGE:
311 #ifdef CONFIG_S390
313 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
314 * can't handle this properly after s390_enable_sie, so we simply
315 * ignore the madvise to prevent qemu from causing a SIGSEGV.
317 if (mm_has_pgste(vma->vm_mm))
318 return 0;
319 #endif
320 *vm_flags &= ~VM_NOHUGEPAGE;
321 *vm_flags |= VM_HUGEPAGE;
323 * If the vma become good for khugepaged to scan,
324 * register it here without waiting a page fault that
325 * may not happen any time soon.
327 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
328 khugepaged_enter_vma_merge(vma, *vm_flags))
329 return -ENOMEM;
330 break;
331 case MADV_NOHUGEPAGE:
332 *vm_flags &= ~VM_HUGEPAGE;
333 *vm_flags |= VM_NOHUGEPAGE;
335 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
336 * this vma even if we leave the mm registered in khugepaged if
337 * it got registered before VM_NOHUGEPAGE was set.
339 break;
342 return 0;
345 int __init khugepaged_init(void)
347 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
348 sizeof(struct mm_slot),
349 __alignof__(struct mm_slot), 0, NULL);
350 if (!mm_slot_cache)
351 return -ENOMEM;
353 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
354 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
355 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
357 return 0;
360 void __init khugepaged_destroy(void)
362 kmem_cache_destroy(mm_slot_cache);
365 static inline struct mm_slot *alloc_mm_slot(void)
367 if (!mm_slot_cache) /* initialization failed */
368 return NULL;
369 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
372 static inline void free_mm_slot(struct mm_slot *mm_slot)
374 kmem_cache_free(mm_slot_cache, mm_slot);
377 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
379 struct mm_slot *mm_slot;
381 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
382 if (mm == mm_slot->mm)
383 return mm_slot;
385 return NULL;
388 static void insert_to_mm_slots_hash(struct mm_struct *mm,
389 struct mm_slot *mm_slot)
391 mm_slot->mm = mm;
392 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
395 static inline int khugepaged_test_exit(struct mm_struct *mm)
397 return atomic_read(&mm->mm_users) == 0;
400 int __khugepaged_enter(struct mm_struct *mm)
402 struct mm_slot *mm_slot;
403 int wakeup;
405 mm_slot = alloc_mm_slot();
406 if (!mm_slot)
407 return -ENOMEM;
409 /* __khugepaged_exit() must not run from under us */
410 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
411 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
412 free_mm_slot(mm_slot);
413 return 0;
416 spin_lock(&khugepaged_mm_lock);
417 insert_to_mm_slots_hash(mm, mm_slot);
419 * Insert just behind the scanning cursor, to let the area settle
420 * down a little.
422 wakeup = list_empty(&khugepaged_scan.mm_head);
423 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
424 spin_unlock(&khugepaged_mm_lock);
426 mmgrab(mm);
427 if (wakeup)
428 wake_up_interruptible(&khugepaged_wait);
430 return 0;
433 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
434 unsigned long vm_flags)
436 unsigned long hstart, hend;
437 if (!vma->anon_vma)
439 * Not yet faulted in so we will register later in the
440 * page fault if needed.
442 return 0;
443 if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
444 /* khugepaged not yet working on file or special mappings */
445 return 0;
446 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
447 hend = vma->vm_end & HPAGE_PMD_MASK;
448 if (hstart < hend)
449 return khugepaged_enter(vma, vm_flags);
450 return 0;
453 void __khugepaged_exit(struct mm_struct *mm)
455 struct mm_slot *mm_slot;
456 int free = 0;
458 spin_lock(&khugepaged_mm_lock);
459 mm_slot = get_mm_slot(mm);
460 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
461 hash_del(&mm_slot->hash);
462 list_del(&mm_slot->mm_node);
463 free = 1;
465 spin_unlock(&khugepaged_mm_lock);
467 if (free) {
468 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
469 free_mm_slot(mm_slot);
470 mmdrop(mm);
471 } else if (mm_slot) {
473 * This is required to serialize against
474 * khugepaged_test_exit() (which is guaranteed to run
475 * under mmap sem read mode). Stop here (after we
476 * return all pagetables will be destroyed) until
477 * khugepaged has finished working on the pagetables
478 * under the mmap_sem.
480 down_write(&mm->mmap_sem);
481 up_write(&mm->mmap_sem);
485 static void release_pte_page(struct page *page)
487 dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
488 unlock_page(page);
489 putback_lru_page(page);
492 static void release_pte_pages(pte_t *pte, pte_t *_pte)
494 while (--_pte >= pte) {
495 pte_t pteval = *_pte;
496 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
497 release_pte_page(pte_page(pteval));
501 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
502 unsigned long address,
503 pte_t *pte)
505 struct page *page = NULL;
506 pte_t *_pte;
507 int none_or_zero = 0, result = 0, referenced = 0;
508 bool writable = false;
510 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
511 _pte++, address += PAGE_SIZE) {
512 pte_t pteval = *_pte;
513 if (pte_none(pteval) || (pte_present(pteval) &&
514 is_zero_pfn(pte_pfn(pteval)))) {
515 if (!userfaultfd_armed(vma) &&
516 ++none_or_zero <= khugepaged_max_ptes_none) {
517 continue;
518 } else {
519 result = SCAN_EXCEED_NONE_PTE;
520 goto out;
523 if (!pte_present(pteval)) {
524 result = SCAN_PTE_NON_PRESENT;
525 goto out;
527 page = vm_normal_page(vma, address, pteval);
528 if (unlikely(!page)) {
529 result = SCAN_PAGE_NULL;
530 goto out;
533 VM_BUG_ON_PAGE(PageCompound(page), page);
534 VM_BUG_ON_PAGE(!PageAnon(page), page);
537 * We can do it before isolate_lru_page because the
538 * page can't be freed from under us. NOTE: PG_lock
539 * is needed to serialize against split_huge_page
540 * when invoked from the VM.
542 if (!trylock_page(page)) {
543 result = SCAN_PAGE_LOCK;
544 goto out;
548 * cannot use mapcount: can't collapse if there's a gup pin.
549 * The page must only be referenced by the scanned process
550 * and page swap cache.
552 if (page_count(page) != 1 + PageSwapCache(page)) {
553 unlock_page(page);
554 result = SCAN_PAGE_COUNT;
555 goto out;
557 if (pte_write(pteval)) {
558 writable = true;
559 } else {
560 if (PageSwapCache(page) &&
561 !reuse_swap_page(page, NULL)) {
562 unlock_page(page);
563 result = SCAN_SWAP_CACHE_PAGE;
564 goto out;
567 * Page is not in the swap cache. It can be collapsed
568 * into a THP.
573 * Isolate the page to avoid collapsing an hugepage
574 * currently in use by the VM.
576 if (isolate_lru_page(page)) {
577 unlock_page(page);
578 result = SCAN_DEL_PAGE_LRU;
579 goto out;
581 inc_node_page_state(page,
582 NR_ISOLATED_ANON + page_is_file_cache(page));
583 VM_BUG_ON_PAGE(!PageLocked(page), page);
584 VM_BUG_ON_PAGE(PageLRU(page), page);
586 /* There should be enough young pte to collapse the page */
587 if (pte_young(pteval) ||
588 page_is_young(page) || PageReferenced(page) ||
589 mmu_notifier_test_young(vma->vm_mm, address))
590 referenced++;
592 if (likely(writable)) {
593 if (likely(referenced)) {
594 result = SCAN_SUCCEED;
595 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
596 referenced, writable, result);
597 return 1;
599 } else {
600 result = SCAN_PAGE_RO;
603 out:
604 release_pte_pages(pte, _pte);
605 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
606 referenced, writable, result);
607 return 0;
610 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
611 struct vm_area_struct *vma,
612 unsigned long address,
613 spinlock_t *ptl)
615 pte_t *_pte;
616 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
617 _pte++, page++, address += PAGE_SIZE) {
618 pte_t pteval = *_pte;
619 struct page *src_page;
621 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
622 clear_user_highpage(page, address);
623 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
624 if (is_zero_pfn(pte_pfn(pteval))) {
626 * ptl mostly unnecessary.
628 spin_lock(ptl);
630 * paravirt calls inside pte_clear here are
631 * superfluous.
633 pte_clear(vma->vm_mm, address, _pte);
634 spin_unlock(ptl);
636 } else {
637 src_page = pte_page(pteval);
638 copy_user_highpage(page, src_page, address, vma);
639 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
640 release_pte_page(src_page);
642 * ptl mostly unnecessary, but preempt has to
643 * be disabled to update the per-cpu stats
644 * inside page_remove_rmap().
646 spin_lock(ptl);
648 * paravirt calls inside pte_clear here are
649 * superfluous.
651 pte_clear(vma->vm_mm, address, _pte);
652 page_remove_rmap(src_page, false);
653 spin_unlock(ptl);
654 free_page_and_swap_cache(src_page);
659 static void khugepaged_alloc_sleep(void)
661 DEFINE_WAIT(wait);
663 add_wait_queue(&khugepaged_wait, &wait);
664 freezable_schedule_timeout_interruptible(
665 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
666 remove_wait_queue(&khugepaged_wait, &wait);
669 static int khugepaged_node_load[MAX_NUMNODES];
671 static bool khugepaged_scan_abort(int nid)
673 int i;
676 * If node_reclaim_mode is disabled, then no extra effort is made to
677 * allocate memory locally.
679 if (!node_reclaim_mode)
680 return false;
682 /* If there is a count for this node already, it must be acceptable */
683 if (khugepaged_node_load[nid])
684 return false;
686 for (i = 0; i < MAX_NUMNODES; i++) {
687 if (!khugepaged_node_load[i])
688 continue;
689 if (node_distance(nid, i) > RECLAIM_DISTANCE)
690 return true;
692 return false;
695 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
696 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
698 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
701 #ifdef CONFIG_NUMA
702 static int khugepaged_find_target_node(void)
704 static int last_khugepaged_target_node = NUMA_NO_NODE;
705 int nid, target_node = 0, max_value = 0;
707 /* find first node with max normal pages hit */
708 for (nid = 0; nid < MAX_NUMNODES; nid++)
709 if (khugepaged_node_load[nid] > max_value) {
710 max_value = khugepaged_node_load[nid];
711 target_node = nid;
714 /* do some balance if several nodes have the same hit record */
715 if (target_node <= last_khugepaged_target_node)
716 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
717 nid++)
718 if (max_value == khugepaged_node_load[nid]) {
719 target_node = nid;
720 break;
723 last_khugepaged_target_node = target_node;
724 return target_node;
727 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
729 if (IS_ERR(*hpage)) {
730 if (!*wait)
731 return false;
733 *wait = false;
734 *hpage = NULL;
735 khugepaged_alloc_sleep();
736 } else if (*hpage) {
737 put_page(*hpage);
738 *hpage = NULL;
741 return true;
744 static struct page *
745 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
747 VM_BUG_ON_PAGE(*hpage, *hpage);
749 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
750 if (unlikely(!*hpage)) {
751 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
752 *hpage = ERR_PTR(-ENOMEM);
753 return NULL;
756 prep_transhuge_page(*hpage);
757 count_vm_event(THP_COLLAPSE_ALLOC);
758 return *hpage;
760 #else
761 static int khugepaged_find_target_node(void)
763 return 0;
766 static inline struct page *alloc_khugepaged_hugepage(void)
768 struct page *page;
770 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
771 HPAGE_PMD_ORDER);
772 if (page)
773 prep_transhuge_page(page);
774 return page;
777 static struct page *khugepaged_alloc_hugepage(bool *wait)
779 struct page *hpage;
781 do {
782 hpage = alloc_khugepaged_hugepage();
783 if (!hpage) {
784 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
785 if (!*wait)
786 return NULL;
788 *wait = false;
789 khugepaged_alloc_sleep();
790 } else
791 count_vm_event(THP_COLLAPSE_ALLOC);
792 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
794 return hpage;
797 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
799 if (!*hpage)
800 *hpage = khugepaged_alloc_hugepage(wait);
802 if (unlikely(!*hpage))
803 return false;
805 return true;
808 static struct page *
809 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
811 VM_BUG_ON(!*hpage);
813 return *hpage;
815 #endif
817 static bool hugepage_vma_check(struct vm_area_struct *vma)
819 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
820 (vma->vm_flags & VM_NOHUGEPAGE) ||
821 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
822 return false;
823 if (shmem_file(vma->vm_file)) {
824 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
825 return false;
826 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
827 HPAGE_PMD_NR);
829 if (!vma->anon_vma || vma->vm_ops)
830 return false;
831 if (is_vma_temporary_stack(vma))
832 return false;
833 return !(vma->vm_flags & VM_NO_KHUGEPAGED);
837 * If mmap_sem temporarily dropped, revalidate vma
838 * before taking mmap_sem.
839 * Return 0 if succeeds, otherwise return none-zero
840 * value (scan code).
843 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
844 struct vm_area_struct **vmap)
846 struct vm_area_struct *vma;
847 unsigned long hstart, hend;
849 if (unlikely(khugepaged_test_exit(mm)))
850 return SCAN_ANY_PROCESS;
852 *vmap = vma = find_vma(mm, address);
853 if (!vma)
854 return SCAN_VMA_NULL;
856 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
857 hend = vma->vm_end & HPAGE_PMD_MASK;
858 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
859 return SCAN_ADDRESS_RANGE;
860 if (!hugepage_vma_check(vma))
861 return SCAN_VMA_CHECK;
862 return 0;
866 * Bring missing pages in from swap, to complete THP collapse.
867 * Only done if khugepaged_scan_pmd believes it is worthwhile.
869 * Called and returns without pte mapped or spinlocks held,
870 * but with mmap_sem held to protect against vma changes.
873 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
874 struct vm_area_struct *vma,
875 unsigned long address, pmd_t *pmd,
876 int referenced)
878 int swapped_in = 0, ret = 0;
879 struct vm_fault vmf = {
880 .vma = vma,
881 .address = address,
882 .flags = FAULT_FLAG_ALLOW_RETRY,
883 .pmd = pmd,
884 .pgoff = linear_page_index(vma, address),
887 /* we only decide to swapin, if there is enough young ptes */
888 if (referenced < HPAGE_PMD_NR/2) {
889 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
890 return false;
892 vmf.pte = pte_offset_map(pmd, address);
893 for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
894 vmf.pte++, vmf.address += PAGE_SIZE) {
895 vmf.orig_pte = *vmf.pte;
896 if (!is_swap_pte(vmf.orig_pte))
897 continue;
898 swapped_in++;
899 ret = do_swap_page(&vmf);
901 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
902 if (ret & VM_FAULT_RETRY) {
903 down_read(&mm->mmap_sem);
904 if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
905 /* vma is no longer available, don't continue to swapin */
906 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
907 return false;
909 /* check if the pmd is still valid */
910 if (mm_find_pmd(mm, address) != pmd) {
911 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
912 return false;
915 if (ret & VM_FAULT_ERROR) {
916 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
917 return false;
919 /* pte is unmapped now, we need to map it */
920 vmf.pte = pte_offset_map(pmd, vmf.address);
922 vmf.pte--;
923 pte_unmap(vmf.pte);
924 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
925 return true;
928 static void collapse_huge_page(struct mm_struct *mm,
929 unsigned long address,
930 struct page **hpage,
931 int node, int referenced)
933 pmd_t *pmd, _pmd;
934 pte_t *pte;
935 pgtable_t pgtable;
936 struct page *new_page;
937 spinlock_t *pmd_ptl, *pte_ptl;
938 int isolated = 0, result = 0;
939 struct mem_cgroup *memcg;
940 struct vm_area_struct *vma;
941 unsigned long mmun_start; /* For mmu_notifiers */
942 unsigned long mmun_end; /* For mmu_notifiers */
943 gfp_t gfp;
945 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
947 /* Only allocate from the target node */
948 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
951 * Before allocating the hugepage, release the mmap_sem read lock.
952 * The allocation can take potentially a long time if it involves
953 * sync compaction, and we do not need to hold the mmap_sem during
954 * that. We will recheck the vma after taking it again in write mode.
956 up_read(&mm->mmap_sem);
957 new_page = khugepaged_alloc_page(hpage, gfp, node);
958 if (!new_page) {
959 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
960 goto out_nolock;
963 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
964 result = SCAN_CGROUP_CHARGE_FAIL;
965 goto out_nolock;
968 down_read(&mm->mmap_sem);
969 result = hugepage_vma_revalidate(mm, address, &vma);
970 if (result) {
971 mem_cgroup_cancel_charge(new_page, memcg, true);
972 up_read(&mm->mmap_sem);
973 goto out_nolock;
976 pmd = mm_find_pmd(mm, address);
977 if (!pmd) {
978 result = SCAN_PMD_NULL;
979 mem_cgroup_cancel_charge(new_page, memcg, true);
980 up_read(&mm->mmap_sem);
981 goto out_nolock;
985 * __collapse_huge_page_swapin always returns with mmap_sem locked.
986 * If it fails, we release mmap_sem and jump out_nolock.
987 * Continuing to collapse causes inconsistency.
989 if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
990 mem_cgroup_cancel_charge(new_page, memcg, true);
991 up_read(&mm->mmap_sem);
992 goto out_nolock;
995 up_read(&mm->mmap_sem);
997 * Prevent all access to pagetables with the exception of
998 * gup_fast later handled by the ptep_clear_flush and the VM
999 * handled by the anon_vma lock + PG_lock.
1001 down_write(&mm->mmap_sem);
1002 result = hugepage_vma_revalidate(mm, address, &vma);
1003 if (result)
1004 goto out;
1005 /* check if the pmd is still valid */
1006 if (mm_find_pmd(mm, address) != pmd)
1007 goto out;
1009 anon_vma_lock_write(vma->anon_vma);
1011 pte = pte_offset_map(pmd, address);
1012 pte_ptl = pte_lockptr(mm, pmd);
1014 mmun_start = address;
1015 mmun_end = address + HPAGE_PMD_SIZE;
1016 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1017 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1019 * After this gup_fast can't run anymore. This also removes
1020 * any huge TLB entry from the CPU so we won't allow
1021 * huge and small TLB entries for the same virtual address
1022 * to avoid the risk of CPU bugs in that area.
1024 _pmd = pmdp_collapse_flush(vma, address, pmd);
1025 spin_unlock(pmd_ptl);
1026 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1028 spin_lock(pte_ptl);
1029 isolated = __collapse_huge_page_isolate(vma, address, pte);
1030 spin_unlock(pte_ptl);
1032 if (unlikely(!isolated)) {
1033 pte_unmap(pte);
1034 spin_lock(pmd_ptl);
1035 BUG_ON(!pmd_none(*pmd));
1037 * We can only use set_pmd_at when establishing
1038 * hugepmds and never for establishing regular pmds that
1039 * points to regular pagetables. Use pmd_populate for that
1041 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1042 spin_unlock(pmd_ptl);
1043 anon_vma_unlock_write(vma->anon_vma);
1044 result = SCAN_FAIL;
1045 goto out;
1049 * All pages are isolated and locked so anon_vma rmap
1050 * can't run anymore.
1052 anon_vma_unlock_write(vma->anon_vma);
1054 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1055 pte_unmap(pte);
1056 __SetPageUptodate(new_page);
1057 pgtable = pmd_pgtable(_pmd);
1059 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1060 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1063 * spin_lock() below is not the equivalent of smp_wmb(), so
1064 * this is needed to avoid the copy_huge_page writes to become
1065 * visible after the set_pmd_at() write.
1067 smp_wmb();
1069 spin_lock(pmd_ptl);
1070 BUG_ON(!pmd_none(*pmd));
1071 page_add_new_anon_rmap(new_page, vma, address, true);
1072 mem_cgroup_commit_charge(new_page, memcg, false, true);
1073 lru_cache_add_active_or_unevictable(new_page, vma);
1074 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1075 set_pmd_at(mm, address, pmd, _pmd);
1076 update_mmu_cache_pmd(vma, address, pmd);
1077 spin_unlock(pmd_ptl);
1079 *hpage = NULL;
1081 khugepaged_pages_collapsed++;
1082 result = SCAN_SUCCEED;
1083 out_up_write:
1084 up_write(&mm->mmap_sem);
1085 out_nolock:
1086 trace_mm_collapse_huge_page(mm, isolated, result);
1087 return;
1088 out:
1089 mem_cgroup_cancel_charge(new_page, memcg, true);
1090 goto out_up_write;
1093 static int khugepaged_scan_pmd(struct mm_struct *mm,
1094 struct vm_area_struct *vma,
1095 unsigned long address,
1096 struct page **hpage)
1098 pmd_t *pmd;
1099 pte_t *pte, *_pte;
1100 int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1101 struct page *page = NULL;
1102 unsigned long _address;
1103 spinlock_t *ptl;
1104 int node = NUMA_NO_NODE, unmapped = 0;
1105 bool writable = false;
1107 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1109 pmd = mm_find_pmd(mm, address);
1110 if (!pmd) {
1111 result = SCAN_PMD_NULL;
1112 goto out;
1115 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1116 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1117 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1118 _pte++, _address += PAGE_SIZE) {
1119 pte_t pteval = *_pte;
1120 if (is_swap_pte(pteval)) {
1121 if (++unmapped <= khugepaged_max_ptes_swap) {
1122 continue;
1123 } else {
1124 result = SCAN_EXCEED_SWAP_PTE;
1125 goto out_unmap;
1128 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1129 if (!userfaultfd_armed(vma) &&
1130 ++none_or_zero <= khugepaged_max_ptes_none) {
1131 continue;
1132 } else {
1133 result = SCAN_EXCEED_NONE_PTE;
1134 goto out_unmap;
1137 if (!pte_present(pteval)) {
1138 result = SCAN_PTE_NON_PRESENT;
1139 goto out_unmap;
1141 if (pte_write(pteval))
1142 writable = true;
1144 page = vm_normal_page(vma, _address, pteval);
1145 if (unlikely(!page)) {
1146 result = SCAN_PAGE_NULL;
1147 goto out_unmap;
1150 /* TODO: teach khugepaged to collapse THP mapped with pte */
1151 if (PageCompound(page)) {
1152 result = SCAN_PAGE_COMPOUND;
1153 goto out_unmap;
1157 * Record which node the original page is from and save this
1158 * information to khugepaged_node_load[].
1159 * Khupaged will allocate hugepage from the node has the max
1160 * hit record.
1162 node = page_to_nid(page);
1163 if (khugepaged_scan_abort(node)) {
1164 result = SCAN_SCAN_ABORT;
1165 goto out_unmap;
1167 khugepaged_node_load[node]++;
1168 if (!PageLRU(page)) {
1169 result = SCAN_PAGE_LRU;
1170 goto out_unmap;
1172 if (PageLocked(page)) {
1173 result = SCAN_PAGE_LOCK;
1174 goto out_unmap;
1176 if (!PageAnon(page)) {
1177 result = SCAN_PAGE_ANON;
1178 goto out_unmap;
1182 * cannot use mapcount: can't collapse if there's a gup pin.
1183 * The page must only be referenced by the scanned process
1184 * and page swap cache.
1186 if (page_count(page) != 1 + PageSwapCache(page)) {
1187 result = SCAN_PAGE_COUNT;
1188 goto out_unmap;
1190 if (pte_young(pteval) ||
1191 page_is_young(page) || PageReferenced(page) ||
1192 mmu_notifier_test_young(vma->vm_mm, address))
1193 referenced++;
1195 if (writable) {
1196 if (referenced) {
1197 result = SCAN_SUCCEED;
1198 ret = 1;
1199 } else {
1200 result = SCAN_LACK_REFERENCED_PAGE;
1202 } else {
1203 result = SCAN_PAGE_RO;
1205 out_unmap:
1206 pte_unmap_unlock(pte, ptl);
1207 if (ret) {
1208 node = khugepaged_find_target_node();
1209 /* collapse_huge_page will return with the mmap_sem released */
1210 collapse_huge_page(mm, address, hpage, node, referenced);
1212 out:
1213 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1214 none_or_zero, result, unmapped);
1215 return ret;
1218 static void collect_mm_slot(struct mm_slot *mm_slot)
1220 struct mm_struct *mm = mm_slot->mm;
1222 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1224 if (khugepaged_test_exit(mm)) {
1225 /* free mm_slot */
1226 hash_del(&mm_slot->hash);
1227 list_del(&mm_slot->mm_node);
1230 * Not strictly needed because the mm exited already.
1232 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1235 /* khugepaged_mm_lock actually not necessary for the below */
1236 free_mm_slot(mm_slot);
1237 mmdrop(mm);
1241 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1242 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1244 struct vm_area_struct *vma;
1245 unsigned long addr;
1246 pmd_t *pmd, _pmd;
1248 i_mmap_lock_write(mapping);
1249 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1250 /* probably overkill */
1251 if (vma->anon_vma)
1252 continue;
1253 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1254 if (addr & ~HPAGE_PMD_MASK)
1255 continue;
1256 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1257 continue;
1258 pmd = mm_find_pmd(vma->vm_mm, addr);
1259 if (!pmd)
1260 continue;
1262 * We need exclusive mmap_sem to retract page table.
1263 * If trylock fails we would end up with pte-mapped THP after
1264 * re-fault. Not ideal, but it's more important to not disturb
1265 * the system too much.
1267 if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1268 spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1269 /* assume page table is clear */
1270 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1271 spin_unlock(ptl);
1272 up_write(&vma->vm_mm->mmap_sem);
1273 mm_dec_nr_ptes(vma->vm_mm);
1274 pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1277 i_mmap_unlock_write(mapping);
1281 * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1283 * Basic scheme is simple, details are more complex:
1284 * - allocate and freeze a new huge page;
1285 * - scan over radix tree replacing old pages the new one
1286 * + swap in pages if necessary;
1287 * + fill in gaps;
1288 * + keep old pages around in case if rollback is required;
1289 * - if replacing succeed:
1290 * + copy data over;
1291 * + free old pages;
1292 * + unfreeze huge page;
1293 * - if replacing failed;
1294 * + put all pages back and unfreeze them;
1295 * + restore gaps in the radix-tree;
1296 * + free huge page;
1298 static void collapse_shmem(struct mm_struct *mm,
1299 struct address_space *mapping, pgoff_t start,
1300 struct page **hpage, int node)
1302 gfp_t gfp;
1303 struct page *page, *new_page, *tmp;
1304 struct mem_cgroup *memcg;
1305 pgoff_t index, end = start + HPAGE_PMD_NR;
1306 LIST_HEAD(pagelist);
1307 struct radix_tree_iter iter;
1308 void **slot;
1309 int nr_none = 0, result = SCAN_SUCCEED;
1311 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1313 /* Only allocate from the target node */
1314 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1316 new_page = khugepaged_alloc_page(hpage, gfp, node);
1317 if (!new_page) {
1318 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1319 goto out;
1322 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1323 result = SCAN_CGROUP_CHARGE_FAIL;
1324 goto out;
1327 new_page->index = start;
1328 new_page->mapping = mapping;
1329 __SetPageSwapBacked(new_page);
1330 __SetPageLocked(new_page);
1331 BUG_ON(!page_ref_freeze(new_page, 1));
1335 * At this point the new_page is 'frozen' (page_count() is zero), locked
1336 * and not up-to-date. It's safe to insert it into radix tree, because
1337 * nobody would be able to map it or use it in other way until we
1338 * unfreeze it.
1341 index = start;
1342 spin_lock_irq(&mapping->tree_lock);
1343 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1344 int n = min(iter.index, end) - index;
1347 * Handle holes in the radix tree: charge it from shmem and
1348 * insert relevant subpage of new_page into the radix-tree.
1350 if (n && !shmem_charge(mapping->host, n)) {
1351 result = SCAN_FAIL;
1352 break;
1354 nr_none += n;
1355 for (; index < min(iter.index, end); index++) {
1356 radix_tree_insert(&mapping->page_tree, index,
1357 new_page + (index % HPAGE_PMD_NR));
1360 /* We are done. */
1361 if (index >= end)
1362 break;
1364 page = radix_tree_deref_slot_protected(slot,
1365 &mapping->tree_lock);
1366 if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
1367 spin_unlock_irq(&mapping->tree_lock);
1368 /* swap in or instantiate fallocated page */
1369 if (shmem_getpage(mapping->host, index, &page,
1370 SGP_NOHUGE)) {
1371 result = SCAN_FAIL;
1372 goto tree_unlocked;
1374 spin_lock_irq(&mapping->tree_lock);
1375 } else if (trylock_page(page)) {
1376 get_page(page);
1377 } else {
1378 result = SCAN_PAGE_LOCK;
1379 break;
1383 * The page must be locked, so we can drop the tree_lock
1384 * without racing with truncate.
1386 VM_BUG_ON_PAGE(!PageLocked(page), page);
1387 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1388 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1390 if (page_mapping(page) != mapping) {
1391 result = SCAN_TRUNCATED;
1392 goto out_unlock;
1394 spin_unlock_irq(&mapping->tree_lock);
1396 if (isolate_lru_page(page)) {
1397 result = SCAN_DEL_PAGE_LRU;
1398 goto out_isolate_failed;
1401 if (page_mapped(page))
1402 unmap_mapping_pages(mapping, index, 1, false);
1404 spin_lock_irq(&mapping->tree_lock);
1406 slot = radix_tree_lookup_slot(&mapping->page_tree, index);
1407 VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot,
1408 &mapping->tree_lock), page);
1409 VM_BUG_ON_PAGE(page_mapped(page), page);
1412 * The page is expected to have page_count() == 3:
1413 * - we hold a pin on it;
1414 * - one reference from radix tree;
1415 * - one from isolate_lru_page;
1417 if (!page_ref_freeze(page, 3)) {
1418 result = SCAN_PAGE_COUNT;
1419 goto out_lru;
1423 * Add the page to the list to be able to undo the collapse if
1424 * something go wrong.
1426 list_add_tail(&page->lru, &pagelist);
1428 /* Finally, replace with the new page. */
1429 radix_tree_replace_slot(&mapping->page_tree, slot,
1430 new_page + (index % HPAGE_PMD_NR));
1432 slot = radix_tree_iter_resume(slot, &iter);
1433 index++;
1434 continue;
1435 out_lru:
1436 spin_unlock_irq(&mapping->tree_lock);
1437 putback_lru_page(page);
1438 out_isolate_failed:
1439 unlock_page(page);
1440 put_page(page);
1441 goto tree_unlocked;
1442 out_unlock:
1443 unlock_page(page);
1444 put_page(page);
1445 break;
1449 * Handle hole in radix tree at the end of the range.
1450 * This code only triggers if there's nothing in radix tree
1451 * beyond 'end'.
1453 if (result == SCAN_SUCCEED && index < end) {
1454 int n = end - index;
1456 if (!shmem_charge(mapping->host, n)) {
1457 result = SCAN_FAIL;
1458 goto tree_locked;
1461 for (; index < end; index++) {
1462 radix_tree_insert(&mapping->page_tree, index,
1463 new_page + (index % HPAGE_PMD_NR));
1465 nr_none += n;
1468 tree_locked:
1469 spin_unlock_irq(&mapping->tree_lock);
1470 tree_unlocked:
1472 if (result == SCAN_SUCCEED) {
1473 unsigned long flags;
1474 struct zone *zone = page_zone(new_page);
1477 * Replacing old pages with new one has succeed, now we need to
1478 * copy the content and free old pages.
1480 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1481 copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1482 page);
1483 list_del(&page->lru);
1484 unlock_page(page);
1485 page_ref_unfreeze(page, 1);
1486 page->mapping = NULL;
1487 ClearPageActive(page);
1488 ClearPageUnevictable(page);
1489 put_page(page);
1492 local_irq_save(flags);
1493 __inc_node_page_state(new_page, NR_SHMEM_THPS);
1494 if (nr_none) {
1495 __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1496 __mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
1498 local_irq_restore(flags);
1501 * Remove pte page tables, so we can re-faulti
1502 * the page as huge.
1504 retract_page_tables(mapping, start);
1506 /* Everything is ready, let's unfreeze the new_page */
1507 set_page_dirty(new_page);
1508 SetPageUptodate(new_page);
1509 page_ref_unfreeze(new_page, HPAGE_PMD_NR);
1510 mem_cgroup_commit_charge(new_page, memcg, false, true);
1511 lru_cache_add_anon(new_page);
1512 unlock_page(new_page);
1514 *hpage = NULL;
1515 } else {
1516 /* Something went wrong: rollback changes to the radix-tree */
1517 shmem_uncharge(mapping->host, nr_none);
1518 spin_lock_irq(&mapping->tree_lock);
1519 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
1520 start) {
1521 if (iter.index >= end)
1522 break;
1523 page = list_first_entry_or_null(&pagelist,
1524 struct page, lru);
1525 if (!page || iter.index < page->index) {
1526 if (!nr_none)
1527 break;
1528 nr_none--;
1529 /* Put holes back where they were */
1530 radix_tree_delete(&mapping->page_tree,
1531 iter.index);
1532 continue;
1535 VM_BUG_ON_PAGE(page->index != iter.index, page);
1537 /* Unfreeze the page. */
1538 list_del(&page->lru);
1539 page_ref_unfreeze(page, 2);
1540 radix_tree_replace_slot(&mapping->page_tree,
1541 slot, page);
1542 slot = radix_tree_iter_resume(slot, &iter);
1543 spin_unlock_irq(&mapping->tree_lock);
1544 putback_lru_page(page);
1545 unlock_page(page);
1546 spin_lock_irq(&mapping->tree_lock);
1548 VM_BUG_ON(nr_none);
1549 spin_unlock_irq(&mapping->tree_lock);
1551 /* Unfreeze new_page, caller would take care about freeing it */
1552 page_ref_unfreeze(new_page, 1);
1553 mem_cgroup_cancel_charge(new_page, memcg, true);
1554 unlock_page(new_page);
1555 new_page->mapping = NULL;
1557 out:
1558 VM_BUG_ON(!list_empty(&pagelist));
1559 /* TODO: tracepoints */
1562 static void khugepaged_scan_shmem(struct mm_struct *mm,
1563 struct address_space *mapping,
1564 pgoff_t start, struct page **hpage)
1566 struct page *page = NULL;
1567 struct radix_tree_iter iter;
1568 void **slot;
1569 int present, swap;
1570 int node = NUMA_NO_NODE;
1571 int result = SCAN_SUCCEED;
1573 present = 0;
1574 swap = 0;
1575 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1576 rcu_read_lock();
1577 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1578 if (iter.index >= start + HPAGE_PMD_NR)
1579 break;
1581 page = radix_tree_deref_slot(slot);
1582 if (radix_tree_deref_retry(page)) {
1583 slot = radix_tree_iter_retry(&iter);
1584 continue;
1587 if (radix_tree_exception(page)) {
1588 if (++swap > khugepaged_max_ptes_swap) {
1589 result = SCAN_EXCEED_SWAP_PTE;
1590 break;
1592 continue;
1595 if (PageTransCompound(page)) {
1596 result = SCAN_PAGE_COMPOUND;
1597 break;
1600 node = page_to_nid(page);
1601 if (khugepaged_scan_abort(node)) {
1602 result = SCAN_SCAN_ABORT;
1603 break;
1605 khugepaged_node_load[node]++;
1607 if (!PageLRU(page)) {
1608 result = SCAN_PAGE_LRU;
1609 break;
1612 if (page_count(page) != 1 + page_mapcount(page)) {
1613 result = SCAN_PAGE_COUNT;
1614 break;
1618 * We probably should check if the page is referenced here, but
1619 * nobody would transfer pte_young() to PageReferenced() for us.
1620 * And rmap walk here is just too costly...
1623 present++;
1625 if (need_resched()) {
1626 slot = radix_tree_iter_resume(slot, &iter);
1627 cond_resched_rcu();
1630 rcu_read_unlock();
1632 if (result == SCAN_SUCCEED) {
1633 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1634 result = SCAN_EXCEED_NONE_PTE;
1635 } else {
1636 node = khugepaged_find_target_node();
1637 collapse_shmem(mm, mapping, start, hpage, node);
1641 /* TODO: tracepoints */
1643 #else
1644 static void khugepaged_scan_shmem(struct mm_struct *mm,
1645 struct address_space *mapping,
1646 pgoff_t start, struct page **hpage)
1648 BUILD_BUG();
1650 #endif
1652 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1653 struct page **hpage)
1654 __releases(&khugepaged_mm_lock)
1655 __acquires(&khugepaged_mm_lock)
1657 struct mm_slot *mm_slot;
1658 struct mm_struct *mm;
1659 struct vm_area_struct *vma;
1660 int progress = 0;
1662 VM_BUG_ON(!pages);
1663 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1665 if (khugepaged_scan.mm_slot)
1666 mm_slot = khugepaged_scan.mm_slot;
1667 else {
1668 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1669 struct mm_slot, mm_node);
1670 khugepaged_scan.address = 0;
1671 khugepaged_scan.mm_slot = mm_slot;
1673 spin_unlock(&khugepaged_mm_lock);
1675 mm = mm_slot->mm;
1677 * Don't wait for semaphore (to avoid long wait times). Just move to
1678 * the next mm on the list.
1680 vma = NULL;
1681 if (unlikely(!down_read_trylock(&mm->mmap_sem)))
1682 goto breakouterloop_mmap_sem;
1683 if (likely(!khugepaged_test_exit(mm)))
1684 vma = find_vma(mm, khugepaged_scan.address);
1686 progress++;
1687 for (; vma; vma = vma->vm_next) {
1688 unsigned long hstart, hend;
1690 cond_resched();
1691 if (unlikely(khugepaged_test_exit(mm))) {
1692 progress++;
1693 break;
1695 if (!hugepage_vma_check(vma)) {
1696 skip:
1697 progress++;
1698 continue;
1700 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1701 hend = vma->vm_end & HPAGE_PMD_MASK;
1702 if (hstart >= hend)
1703 goto skip;
1704 if (khugepaged_scan.address > hend)
1705 goto skip;
1706 if (khugepaged_scan.address < hstart)
1707 khugepaged_scan.address = hstart;
1708 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1710 while (khugepaged_scan.address < hend) {
1711 int ret;
1712 cond_resched();
1713 if (unlikely(khugepaged_test_exit(mm)))
1714 goto breakouterloop;
1716 VM_BUG_ON(khugepaged_scan.address < hstart ||
1717 khugepaged_scan.address + HPAGE_PMD_SIZE >
1718 hend);
1719 if (shmem_file(vma->vm_file)) {
1720 struct file *file;
1721 pgoff_t pgoff = linear_page_index(vma,
1722 khugepaged_scan.address);
1723 if (!shmem_huge_enabled(vma))
1724 goto skip;
1725 file = get_file(vma->vm_file);
1726 up_read(&mm->mmap_sem);
1727 ret = 1;
1728 khugepaged_scan_shmem(mm, file->f_mapping,
1729 pgoff, hpage);
1730 fput(file);
1731 } else {
1732 ret = khugepaged_scan_pmd(mm, vma,
1733 khugepaged_scan.address,
1734 hpage);
1736 /* move to next address */
1737 khugepaged_scan.address += HPAGE_PMD_SIZE;
1738 progress += HPAGE_PMD_NR;
1739 if (ret)
1740 /* we released mmap_sem so break loop */
1741 goto breakouterloop_mmap_sem;
1742 if (progress >= pages)
1743 goto breakouterloop;
1746 breakouterloop:
1747 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1748 breakouterloop_mmap_sem:
1750 spin_lock(&khugepaged_mm_lock);
1751 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1753 * Release the current mm_slot if this mm is about to die, or
1754 * if we scanned all vmas of this mm.
1756 if (khugepaged_test_exit(mm) || !vma) {
1758 * Make sure that if mm_users is reaching zero while
1759 * khugepaged runs here, khugepaged_exit will find
1760 * mm_slot not pointing to the exiting mm.
1762 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1763 khugepaged_scan.mm_slot = list_entry(
1764 mm_slot->mm_node.next,
1765 struct mm_slot, mm_node);
1766 khugepaged_scan.address = 0;
1767 } else {
1768 khugepaged_scan.mm_slot = NULL;
1769 khugepaged_full_scans++;
1772 collect_mm_slot(mm_slot);
1775 return progress;
1778 static int khugepaged_has_work(void)
1780 return !list_empty(&khugepaged_scan.mm_head) &&
1781 khugepaged_enabled();
1784 static int khugepaged_wait_event(void)
1786 return !list_empty(&khugepaged_scan.mm_head) ||
1787 kthread_should_stop();
1790 static void khugepaged_do_scan(void)
1792 struct page *hpage = NULL;
1793 unsigned int progress = 0, pass_through_head = 0;
1794 unsigned int pages = khugepaged_pages_to_scan;
1795 bool wait = true;
1797 barrier(); /* write khugepaged_pages_to_scan to local stack */
1799 while (progress < pages) {
1800 if (!khugepaged_prealloc_page(&hpage, &wait))
1801 break;
1803 cond_resched();
1805 if (unlikely(kthread_should_stop() || try_to_freeze()))
1806 break;
1808 spin_lock(&khugepaged_mm_lock);
1809 if (!khugepaged_scan.mm_slot)
1810 pass_through_head++;
1811 if (khugepaged_has_work() &&
1812 pass_through_head < 2)
1813 progress += khugepaged_scan_mm_slot(pages - progress,
1814 &hpage);
1815 else
1816 progress = pages;
1817 spin_unlock(&khugepaged_mm_lock);
1820 if (!IS_ERR_OR_NULL(hpage))
1821 put_page(hpage);
1824 static bool khugepaged_should_wakeup(void)
1826 return kthread_should_stop() ||
1827 time_after_eq(jiffies, khugepaged_sleep_expire);
1830 static void khugepaged_wait_work(void)
1832 if (khugepaged_has_work()) {
1833 const unsigned long scan_sleep_jiffies =
1834 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1836 if (!scan_sleep_jiffies)
1837 return;
1839 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1840 wait_event_freezable_timeout(khugepaged_wait,
1841 khugepaged_should_wakeup(),
1842 scan_sleep_jiffies);
1843 return;
1846 if (khugepaged_enabled())
1847 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1850 static int khugepaged(void *none)
1852 struct mm_slot *mm_slot;
1854 set_freezable();
1855 set_user_nice(current, MAX_NICE);
1857 while (!kthread_should_stop()) {
1858 khugepaged_do_scan();
1859 khugepaged_wait_work();
1862 spin_lock(&khugepaged_mm_lock);
1863 mm_slot = khugepaged_scan.mm_slot;
1864 khugepaged_scan.mm_slot = NULL;
1865 if (mm_slot)
1866 collect_mm_slot(mm_slot);
1867 spin_unlock(&khugepaged_mm_lock);
1868 return 0;
1871 static void set_recommended_min_free_kbytes(void)
1873 struct zone *zone;
1874 int nr_zones = 0;
1875 unsigned long recommended_min;
1877 for_each_populated_zone(zone)
1878 nr_zones++;
1880 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1881 recommended_min = pageblock_nr_pages * nr_zones * 2;
1884 * Make sure that on average at least two pageblocks are almost free
1885 * of another type, one for a migratetype to fall back to and a
1886 * second to avoid subsequent fallbacks of other types There are 3
1887 * MIGRATE_TYPES we care about.
1889 recommended_min += pageblock_nr_pages * nr_zones *
1890 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1892 /* don't ever allow to reserve more than 5% of the lowmem */
1893 recommended_min = min(recommended_min,
1894 (unsigned long) nr_free_buffer_pages() / 20);
1895 recommended_min <<= (PAGE_SHIFT-10);
1897 if (recommended_min > min_free_kbytes) {
1898 if (user_min_free_kbytes >= 0)
1899 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1900 min_free_kbytes, recommended_min);
1902 min_free_kbytes = recommended_min;
1904 setup_per_zone_wmarks();
1907 int start_stop_khugepaged(void)
1909 static struct task_struct *khugepaged_thread __read_mostly;
1910 static DEFINE_MUTEX(khugepaged_mutex);
1911 int err = 0;
1913 mutex_lock(&khugepaged_mutex);
1914 if (khugepaged_enabled()) {
1915 if (!khugepaged_thread)
1916 khugepaged_thread = kthread_run(khugepaged, NULL,
1917 "khugepaged");
1918 if (IS_ERR(khugepaged_thread)) {
1919 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1920 err = PTR_ERR(khugepaged_thread);
1921 khugepaged_thread = NULL;
1922 goto fail;
1925 if (!list_empty(&khugepaged_scan.mm_head))
1926 wake_up_interruptible(&khugepaged_wait);
1928 set_recommended_min_free_kbytes();
1929 } else if (khugepaged_thread) {
1930 kthread_stop(khugepaged_thread);
1931 khugepaged_thread = NULL;
1933 fail:
1934 mutex_unlock(&khugepaged_mutex);
1935 return err;