cpufreq: s5pv210: use cpufreq_generic_init()
[linux-2.6/btrfs-unstable.git] / fs / aio.c
blob6b868f0e0c4c019c3b68712ca230deb979711a98
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #define pr_fmt(fmt) "%s: " fmt, __func__
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/anon_inodes.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
47 #include "internal.h"
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
52 struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head;
56 unsigned tail;
58 unsigned magic;
59 unsigned compat_features;
60 unsigned incompat_features;
61 unsigned header_length; /* size of aio_ring */
64 struct io_event io_events[0];
65 }; /* 128 bytes + ring size */
67 #define AIO_RING_PAGES 8
69 struct kioctx_table {
70 struct rcu_head rcu;
71 unsigned nr;
72 struct kioctx *table[];
75 struct kioctx_cpu {
76 unsigned reqs_available;
79 struct kioctx {
80 struct percpu_ref users;
81 atomic_t dead;
83 unsigned long user_id;
85 struct __percpu kioctx_cpu *cpu;
88 * For percpu reqs_available, number of slots we move to/from global
89 * counter at a time:
91 unsigned req_batch;
93 * This is what userspace passed to io_setup(), it's not used for
94 * anything but counting against the global max_reqs quota.
96 * The real limit is nr_events - 1, which will be larger (see
97 * aio_setup_ring())
99 unsigned max_reqs;
101 /* Size of ringbuffer, in units of struct io_event */
102 unsigned nr_events;
104 unsigned long mmap_base;
105 unsigned long mmap_size;
107 struct page **ring_pages;
108 long nr_pages;
110 struct rcu_head rcu_head;
111 struct work_struct free_work;
113 struct {
115 * This counts the number of available slots in the ringbuffer,
116 * so we avoid overflowing it: it's decremented (if positive)
117 * when allocating a kiocb and incremented when the resulting
118 * io_event is pulled off the ringbuffer.
120 * We batch accesses to it with a percpu version.
122 atomic_t reqs_available;
123 } ____cacheline_aligned_in_smp;
125 struct {
126 spinlock_t ctx_lock;
127 struct list_head active_reqs; /* used for cancellation */
128 } ____cacheline_aligned_in_smp;
130 struct {
131 struct mutex ring_lock;
132 wait_queue_head_t wait;
133 } ____cacheline_aligned_in_smp;
135 struct {
136 unsigned tail;
137 spinlock_t completion_lock;
138 } ____cacheline_aligned_in_smp;
140 struct page *internal_pages[AIO_RING_PAGES];
141 struct file *aio_ring_file;
143 unsigned id;
146 /*------ sysctl variables----*/
147 static DEFINE_SPINLOCK(aio_nr_lock);
148 unsigned long aio_nr; /* current system wide number of aio requests */
149 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
150 /*----end sysctl variables---*/
152 static struct kmem_cache *kiocb_cachep;
153 static struct kmem_cache *kioctx_cachep;
155 /* aio_setup
156 * Creates the slab caches used by the aio routines, panic on
157 * failure as this is done early during the boot sequence.
159 static int __init aio_setup(void)
161 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
162 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
164 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
166 return 0;
168 __initcall(aio_setup);
170 static void aio_free_ring(struct kioctx *ctx)
172 int i;
173 struct file *aio_ring_file = ctx->aio_ring_file;
175 for (i = 0; i < ctx->nr_pages; i++) {
176 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
177 page_count(ctx->ring_pages[i]));
178 put_page(ctx->ring_pages[i]);
181 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages)
182 kfree(ctx->ring_pages);
184 if (aio_ring_file) {
185 truncate_setsize(aio_ring_file->f_inode, 0);
186 fput(aio_ring_file);
187 ctx->aio_ring_file = NULL;
191 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
193 vma->vm_ops = &generic_file_vm_ops;
194 return 0;
197 static const struct file_operations aio_ring_fops = {
198 .mmap = aio_ring_mmap,
201 static int aio_set_page_dirty(struct page *page)
203 return 0;
206 #if IS_ENABLED(CONFIG_MIGRATION)
207 static int aio_migratepage(struct address_space *mapping, struct page *new,
208 struct page *old, enum migrate_mode mode)
210 struct kioctx *ctx = mapping->private_data;
211 unsigned long flags;
212 unsigned idx = old->index;
213 int rc;
215 /* Writeback must be complete */
216 BUG_ON(PageWriteback(old));
217 put_page(old);
219 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode);
220 if (rc != MIGRATEPAGE_SUCCESS) {
221 get_page(old);
222 return rc;
225 get_page(new);
227 spin_lock_irqsave(&ctx->completion_lock, flags);
228 migrate_page_copy(new, old);
229 ctx->ring_pages[idx] = new;
230 spin_unlock_irqrestore(&ctx->completion_lock, flags);
232 return rc;
234 #endif
236 static const struct address_space_operations aio_ctx_aops = {
237 .set_page_dirty = aio_set_page_dirty,
238 #if IS_ENABLED(CONFIG_MIGRATION)
239 .migratepage = aio_migratepage,
240 #endif
243 static int aio_setup_ring(struct kioctx *ctx)
245 struct aio_ring *ring;
246 unsigned nr_events = ctx->max_reqs;
247 struct mm_struct *mm = current->mm;
248 unsigned long size, populate;
249 int nr_pages;
250 int i;
251 struct file *file;
253 /* Compensate for the ring buffer's head/tail overlap entry */
254 nr_events += 2; /* 1 is required, 2 for good luck */
256 size = sizeof(struct aio_ring);
257 size += sizeof(struct io_event) * nr_events;
259 nr_pages = PFN_UP(size);
260 if (nr_pages < 0)
261 return -EINVAL;
263 file = anon_inode_getfile_private("[aio]", &aio_ring_fops, ctx, O_RDWR);
264 if (IS_ERR(file)) {
265 ctx->aio_ring_file = NULL;
266 return -EAGAIN;
269 file->f_inode->i_mapping->a_ops = &aio_ctx_aops;
270 file->f_inode->i_mapping->private_data = ctx;
271 file->f_inode->i_size = PAGE_SIZE * (loff_t)nr_pages;
273 for (i = 0; i < nr_pages; i++) {
274 struct page *page;
275 page = find_or_create_page(file->f_inode->i_mapping,
276 i, GFP_HIGHUSER | __GFP_ZERO);
277 if (!page)
278 break;
279 pr_debug("pid(%d) page[%d]->count=%d\n",
280 current->pid, i, page_count(page));
281 SetPageUptodate(page);
282 SetPageDirty(page);
283 unlock_page(page);
285 ctx->aio_ring_file = file;
286 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
287 / sizeof(struct io_event);
289 ctx->ring_pages = ctx->internal_pages;
290 if (nr_pages > AIO_RING_PAGES) {
291 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
292 GFP_KERNEL);
293 if (!ctx->ring_pages)
294 return -ENOMEM;
297 ctx->mmap_size = nr_pages * PAGE_SIZE;
298 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
300 down_write(&mm->mmap_sem);
301 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
302 PROT_READ | PROT_WRITE,
303 MAP_SHARED | MAP_POPULATE, 0, &populate);
304 if (IS_ERR((void *)ctx->mmap_base)) {
305 up_write(&mm->mmap_sem);
306 ctx->mmap_size = 0;
307 aio_free_ring(ctx);
308 return -EAGAIN;
311 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
313 /* We must do this while still holding mmap_sem for write, as we
314 * need to be protected against userspace attempting to mremap()
315 * or munmap() the ring buffer.
317 ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages,
318 1, 0, ctx->ring_pages, NULL);
320 /* Dropping the reference here is safe as the page cache will hold
321 * onto the pages for us. It is also required so that page migration
322 * can unmap the pages and get the right reference count.
324 for (i = 0; i < ctx->nr_pages; i++)
325 put_page(ctx->ring_pages[i]);
327 up_write(&mm->mmap_sem);
329 if (unlikely(ctx->nr_pages != nr_pages)) {
330 aio_free_ring(ctx);
331 return -EAGAIN;
334 ctx->user_id = ctx->mmap_base;
335 ctx->nr_events = nr_events; /* trusted copy */
337 ring = kmap_atomic(ctx->ring_pages[0]);
338 ring->nr = nr_events; /* user copy */
339 ring->id = ~0U;
340 ring->head = ring->tail = 0;
341 ring->magic = AIO_RING_MAGIC;
342 ring->compat_features = AIO_RING_COMPAT_FEATURES;
343 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
344 ring->header_length = sizeof(struct aio_ring);
345 kunmap_atomic(ring);
346 flush_dcache_page(ctx->ring_pages[0]);
348 return 0;
351 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
352 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
353 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
355 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
357 struct kioctx *ctx = req->ki_ctx;
358 unsigned long flags;
360 spin_lock_irqsave(&ctx->ctx_lock, flags);
362 if (!req->ki_list.next)
363 list_add(&req->ki_list, &ctx->active_reqs);
365 req->ki_cancel = cancel;
367 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
369 EXPORT_SYMBOL(kiocb_set_cancel_fn);
371 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb)
373 kiocb_cancel_fn *old, *cancel;
376 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
377 * actually has a cancel function, hence the cmpxchg()
380 cancel = ACCESS_ONCE(kiocb->ki_cancel);
381 do {
382 if (!cancel || cancel == KIOCB_CANCELLED)
383 return -EINVAL;
385 old = cancel;
386 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
387 } while (cancel != old);
389 return cancel(kiocb);
392 static void free_ioctx_rcu(struct rcu_head *head)
394 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
396 free_percpu(ctx->cpu);
397 kmem_cache_free(kioctx_cachep, ctx);
401 * When this function runs, the kioctx has been removed from the "hash table"
402 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
403 * now it's safe to cancel any that need to be.
405 static void free_ioctx(struct work_struct *work)
407 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
408 struct aio_ring *ring;
409 struct kiocb *req;
410 unsigned cpu, avail;
411 DEFINE_WAIT(wait);
413 spin_lock_irq(&ctx->ctx_lock);
415 while (!list_empty(&ctx->active_reqs)) {
416 req = list_first_entry(&ctx->active_reqs,
417 struct kiocb, ki_list);
419 list_del_init(&req->ki_list);
420 kiocb_cancel(ctx, req);
423 spin_unlock_irq(&ctx->ctx_lock);
425 for_each_possible_cpu(cpu) {
426 struct kioctx_cpu *kcpu = per_cpu_ptr(ctx->cpu, cpu);
428 atomic_add(kcpu->reqs_available, &ctx->reqs_available);
429 kcpu->reqs_available = 0;
432 while (1) {
433 prepare_to_wait(&ctx->wait, &wait, TASK_UNINTERRUPTIBLE);
435 ring = kmap_atomic(ctx->ring_pages[0]);
436 avail = (ring->head <= ring->tail)
437 ? ring->tail - ring->head
438 : ctx->nr_events - ring->head + ring->tail;
440 atomic_add(avail, &ctx->reqs_available);
441 ring->head = ring->tail;
442 kunmap_atomic(ring);
444 if (atomic_read(&ctx->reqs_available) >= ctx->nr_events - 1)
445 break;
447 schedule();
449 finish_wait(&ctx->wait, &wait);
451 WARN_ON(atomic_read(&ctx->reqs_available) > ctx->nr_events - 1);
453 aio_free_ring(ctx);
455 pr_debug("freeing %p\n", ctx);
458 * Here the call_rcu() is between the wait_event() for reqs_active to
459 * hit 0, and freeing the ioctx.
461 * aio_complete() decrements reqs_active, but it has to touch the ioctx
462 * after to issue a wakeup so we use rcu.
464 call_rcu(&ctx->rcu_head, free_ioctx_rcu);
467 static void free_ioctx_ref(struct percpu_ref *ref)
469 struct kioctx *ctx = container_of(ref, struct kioctx, users);
471 INIT_WORK(&ctx->free_work, free_ioctx);
472 schedule_work(&ctx->free_work);
475 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
477 unsigned i, new_nr;
478 struct kioctx_table *table, *old;
479 struct aio_ring *ring;
481 spin_lock(&mm->ioctx_lock);
482 rcu_read_lock();
483 table = rcu_dereference(mm->ioctx_table);
485 while (1) {
486 if (table)
487 for (i = 0; i < table->nr; i++)
488 if (!table->table[i]) {
489 ctx->id = i;
490 table->table[i] = ctx;
491 rcu_read_unlock();
492 spin_unlock(&mm->ioctx_lock);
494 ring = kmap_atomic(ctx->ring_pages[0]);
495 ring->id = ctx->id;
496 kunmap_atomic(ring);
497 return 0;
500 new_nr = (table ? table->nr : 1) * 4;
502 rcu_read_unlock();
503 spin_unlock(&mm->ioctx_lock);
505 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
506 new_nr, GFP_KERNEL);
507 if (!table)
508 return -ENOMEM;
510 table->nr = new_nr;
512 spin_lock(&mm->ioctx_lock);
513 rcu_read_lock();
514 old = rcu_dereference(mm->ioctx_table);
516 if (!old) {
517 rcu_assign_pointer(mm->ioctx_table, table);
518 } else if (table->nr > old->nr) {
519 memcpy(table->table, old->table,
520 old->nr * sizeof(struct kioctx *));
522 rcu_assign_pointer(mm->ioctx_table, table);
523 kfree_rcu(old, rcu);
524 } else {
525 kfree(table);
526 table = old;
531 /* ioctx_alloc
532 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
534 static struct kioctx *ioctx_alloc(unsigned nr_events)
536 struct mm_struct *mm = current->mm;
537 struct kioctx *ctx;
538 int err = -ENOMEM;
541 * We keep track of the number of available ringbuffer slots, to prevent
542 * overflow (reqs_available), and we also use percpu counters for this.
544 * So since up to half the slots might be on other cpu's percpu counters
545 * and unavailable, double nr_events so userspace sees what they
546 * expected: additionally, we move req_batch slots to/from percpu
547 * counters at a time, so make sure that isn't 0:
549 nr_events = max(nr_events, num_possible_cpus() * 4);
550 nr_events *= 2;
552 /* Prevent overflows */
553 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
554 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
555 pr_debug("ENOMEM: nr_events too high\n");
556 return ERR_PTR(-EINVAL);
559 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
560 return ERR_PTR(-EAGAIN);
562 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
563 if (!ctx)
564 return ERR_PTR(-ENOMEM);
566 ctx->max_reqs = nr_events;
568 if (percpu_ref_init(&ctx->users, free_ioctx_ref))
569 goto out_freectx;
571 spin_lock_init(&ctx->ctx_lock);
572 spin_lock_init(&ctx->completion_lock);
573 mutex_init(&ctx->ring_lock);
574 init_waitqueue_head(&ctx->wait);
576 INIT_LIST_HEAD(&ctx->active_reqs);
578 ctx->cpu = alloc_percpu(struct kioctx_cpu);
579 if (!ctx->cpu)
580 goto out_freeref;
582 if (aio_setup_ring(ctx) < 0)
583 goto out_freepcpu;
585 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
586 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
587 if (ctx->req_batch < 1)
588 ctx->req_batch = 1;
590 /* limit the number of system wide aios */
591 spin_lock(&aio_nr_lock);
592 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
593 aio_nr + nr_events < aio_nr) {
594 spin_unlock(&aio_nr_lock);
595 goto out_cleanup;
597 aio_nr += ctx->max_reqs;
598 spin_unlock(&aio_nr_lock);
600 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
602 err = ioctx_add_table(ctx, mm);
603 if (err)
604 goto out_cleanup_put;
606 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
607 ctx, ctx->user_id, mm, ctx->nr_events);
608 return ctx;
610 out_cleanup_put:
611 percpu_ref_put(&ctx->users);
612 out_cleanup:
613 err = -EAGAIN;
614 aio_free_ring(ctx);
615 out_freepcpu:
616 free_percpu(ctx->cpu);
617 out_freeref:
618 free_percpu(ctx->users.pcpu_count);
619 out_freectx:
620 if (ctx->aio_ring_file)
621 fput(ctx->aio_ring_file);
622 kmem_cache_free(kioctx_cachep, ctx);
623 pr_debug("error allocating ioctx %d\n", err);
624 return ERR_PTR(err);
627 /* kill_ioctx
628 * Cancels all outstanding aio requests on an aio context. Used
629 * when the processes owning a context have all exited to encourage
630 * the rapid destruction of the kioctx.
632 static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx)
634 if (!atomic_xchg(&ctx->dead, 1)) {
635 struct kioctx_table *table;
637 spin_lock(&mm->ioctx_lock);
638 rcu_read_lock();
639 table = rcu_dereference(mm->ioctx_table);
641 WARN_ON(ctx != table->table[ctx->id]);
642 table->table[ctx->id] = NULL;
643 rcu_read_unlock();
644 spin_unlock(&mm->ioctx_lock);
646 /* percpu_ref_kill() will do the necessary call_rcu() */
647 wake_up_all(&ctx->wait);
650 * It'd be more correct to do this in free_ioctx(), after all
651 * the outstanding kiocbs have finished - but by then io_destroy
652 * has already returned, so io_setup() could potentially return
653 * -EAGAIN with no ioctxs actually in use (as far as userspace
654 * could tell).
656 spin_lock(&aio_nr_lock);
657 BUG_ON(aio_nr - ctx->max_reqs > aio_nr);
658 aio_nr -= ctx->max_reqs;
659 spin_unlock(&aio_nr_lock);
661 if (ctx->mmap_size)
662 vm_munmap(ctx->mmap_base, ctx->mmap_size);
664 percpu_ref_kill(&ctx->users);
668 /* wait_on_sync_kiocb:
669 * Waits on the given sync kiocb to complete.
671 ssize_t wait_on_sync_kiocb(struct kiocb *req)
673 while (!req->ki_ctx) {
674 set_current_state(TASK_UNINTERRUPTIBLE);
675 if (req->ki_ctx)
676 break;
677 io_schedule();
679 __set_current_state(TASK_RUNNING);
680 return req->ki_user_data;
682 EXPORT_SYMBOL(wait_on_sync_kiocb);
685 * exit_aio: called when the last user of mm goes away. At this point, there is
686 * no way for any new requests to be submited or any of the io_* syscalls to be
687 * called on the context.
689 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
690 * them.
692 void exit_aio(struct mm_struct *mm)
694 struct kioctx_table *table;
695 struct kioctx *ctx;
696 unsigned i = 0;
698 while (1) {
699 rcu_read_lock();
700 table = rcu_dereference(mm->ioctx_table);
702 do {
703 if (!table || i >= table->nr) {
704 rcu_read_unlock();
705 rcu_assign_pointer(mm->ioctx_table, NULL);
706 if (table)
707 kfree(table);
708 return;
711 ctx = table->table[i++];
712 } while (!ctx);
714 rcu_read_unlock();
717 * We don't need to bother with munmap() here -
718 * exit_mmap(mm) is coming and it'll unmap everything.
719 * Since aio_free_ring() uses non-zero ->mmap_size
720 * as indicator that it needs to unmap the area,
721 * just set it to 0; aio_free_ring() is the only
722 * place that uses ->mmap_size, so it's safe.
724 ctx->mmap_size = 0;
726 kill_ioctx(mm, ctx);
730 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
732 struct kioctx_cpu *kcpu;
734 preempt_disable();
735 kcpu = this_cpu_ptr(ctx->cpu);
737 kcpu->reqs_available += nr;
738 while (kcpu->reqs_available >= ctx->req_batch * 2) {
739 kcpu->reqs_available -= ctx->req_batch;
740 atomic_add(ctx->req_batch, &ctx->reqs_available);
743 preempt_enable();
746 static bool get_reqs_available(struct kioctx *ctx)
748 struct kioctx_cpu *kcpu;
749 bool ret = false;
751 preempt_disable();
752 kcpu = this_cpu_ptr(ctx->cpu);
754 if (!kcpu->reqs_available) {
755 int old, avail = atomic_read(&ctx->reqs_available);
757 do {
758 if (avail < ctx->req_batch)
759 goto out;
761 old = avail;
762 avail = atomic_cmpxchg(&ctx->reqs_available,
763 avail, avail - ctx->req_batch);
764 } while (avail != old);
766 kcpu->reqs_available += ctx->req_batch;
769 ret = true;
770 kcpu->reqs_available--;
771 out:
772 preempt_enable();
773 return ret;
776 /* aio_get_req
777 * Allocate a slot for an aio request.
778 * Returns NULL if no requests are free.
780 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
782 struct kiocb *req;
784 if (!get_reqs_available(ctx))
785 return NULL;
787 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
788 if (unlikely(!req))
789 goto out_put;
791 req->ki_ctx = ctx;
792 return req;
793 out_put:
794 put_reqs_available(ctx, 1);
795 return NULL;
798 static void kiocb_free(struct kiocb *req)
800 if (req->ki_filp)
801 fput(req->ki_filp);
802 if (req->ki_eventfd != NULL)
803 eventfd_ctx_put(req->ki_eventfd);
804 kmem_cache_free(kiocb_cachep, req);
807 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
809 struct aio_ring __user *ring = (void __user *)ctx_id;
810 struct mm_struct *mm = current->mm;
811 struct kioctx *ctx, *ret = NULL;
812 struct kioctx_table *table;
813 unsigned id;
815 if (get_user(id, &ring->id))
816 return NULL;
818 rcu_read_lock();
819 table = rcu_dereference(mm->ioctx_table);
821 if (!table || id >= table->nr)
822 goto out;
824 ctx = table->table[id];
825 if (ctx && ctx->user_id == ctx_id) {
826 percpu_ref_get(&ctx->users);
827 ret = ctx;
829 out:
830 rcu_read_unlock();
831 return ret;
834 /* aio_complete
835 * Called when the io request on the given iocb is complete.
837 void aio_complete(struct kiocb *iocb, long res, long res2)
839 struct kioctx *ctx = iocb->ki_ctx;
840 struct aio_ring *ring;
841 struct io_event *ev_page, *event;
842 unsigned long flags;
843 unsigned tail, pos;
846 * Special case handling for sync iocbs:
847 * - events go directly into the iocb for fast handling
848 * - the sync task with the iocb in its stack holds the single iocb
849 * ref, no other paths have a way to get another ref
850 * - the sync task helpfully left a reference to itself in the iocb
852 if (is_sync_kiocb(iocb)) {
853 iocb->ki_user_data = res;
854 smp_wmb();
855 iocb->ki_ctx = ERR_PTR(-EXDEV);
856 wake_up_process(iocb->ki_obj.tsk);
857 return;
861 * Take rcu_read_lock() in case the kioctx is being destroyed, as we
862 * need to issue a wakeup after incrementing reqs_available.
864 rcu_read_lock();
866 if (iocb->ki_list.next) {
867 unsigned long flags;
869 spin_lock_irqsave(&ctx->ctx_lock, flags);
870 list_del(&iocb->ki_list);
871 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
875 * Add a completion event to the ring buffer. Must be done holding
876 * ctx->completion_lock to prevent other code from messing with the tail
877 * pointer since we might be called from irq context.
879 spin_lock_irqsave(&ctx->completion_lock, flags);
881 tail = ctx->tail;
882 pos = tail + AIO_EVENTS_OFFSET;
884 if (++tail >= ctx->nr_events)
885 tail = 0;
887 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
888 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
890 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
891 event->data = iocb->ki_user_data;
892 event->res = res;
893 event->res2 = res2;
895 kunmap_atomic(ev_page);
896 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
898 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
899 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
900 res, res2);
902 /* after flagging the request as done, we
903 * must never even look at it again
905 smp_wmb(); /* make event visible before updating tail */
907 ctx->tail = tail;
909 ring = kmap_atomic(ctx->ring_pages[0]);
910 ring->tail = tail;
911 kunmap_atomic(ring);
912 flush_dcache_page(ctx->ring_pages[0]);
914 spin_unlock_irqrestore(&ctx->completion_lock, flags);
916 pr_debug("added to ring %p at [%u]\n", iocb, tail);
919 * Check if the user asked us to deliver the result through an
920 * eventfd. The eventfd_signal() function is safe to be called
921 * from IRQ context.
923 if (iocb->ki_eventfd != NULL)
924 eventfd_signal(iocb->ki_eventfd, 1);
926 /* everything turned out well, dispose of the aiocb. */
927 kiocb_free(iocb);
930 * We have to order our ring_info tail store above and test
931 * of the wait list below outside the wait lock. This is
932 * like in wake_up_bit() where clearing a bit has to be
933 * ordered with the unlocked test.
935 smp_mb();
937 if (waitqueue_active(&ctx->wait))
938 wake_up(&ctx->wait);
940 rcu_read_unlock();
942 EXPORT_SYMBOL(aio_complete);
944 /* aio_read_events
945 * Pull an event off of the ioctx's event ring. Returns the number of
946 * events fetched
948 static long aio_read_events_ring(struct kioctx *ctx,
949 struct io_event __user *event, long nr)
951 struct aio_ring *ring;
952 unsigned head, tail, pos;
953 long ret = 0;
954 int copy_ret;
956 mutex_lock(&ctx->ring_lock);
958 ring = kmap_atomic(ctx->ring_pages[0]);
959 head = ring->head;
960 tail = ring->tail;
961 kunmap_atomic(ring);
963 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
965 if (head == tail)
966 goto out;
968 while (ret < nr) {
969 long avail;
970 struct io_event *ev;
971 struct page *page;
973 avail = (head <= tail ? tail : ctx->nr_events) - head;
974 if (head == tail)
975 break;
977 avail = min(avail, nr - ret);
978 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
979 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
981 pos = head + AIO_EVENTS_OFFSET;
982 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
983 pos %= AIO_EVENTS_PER_PAGE;
985 ev = kmap(page);
986 copy_ret = copy_to_user(event + ret, ev + pos,
987 sizeof(*ev) * avail);
988 kunmap(page);
990 if (unlikely(copy_ret)) {
991 ret = -EFAULT;
992 goto out;
995 ret += avail;
996 head += avail;
997 head %= ctx->nr_events;
1000 ring = kmap_atomic(ctx->ring_pages[0]);
1001 ring->head = head;
1002 kunmap_atomic(ring);
1003 flush_dcache_page(ctx->ring_pages[0]);
1005 pr_debug("%li h%u t%u\n", ret, head, tail);
1007 put_reqs_available(ctx, ret);
1008 out:
1009 mutex_unlock(&ctx->ring_lock);
1011 return ret;
1014 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1015 struct io_event __user *event, long *i)
1017 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1019 if (ret > 0)
1020 *i += ret;
1022 if (unlikely(atomic_read(&ctx->dead)))
1023 ret = -EINVAL;
1025 if (!*i)
1026 *i = ret;
1028 return ret < 0 || *i >= min_nr;
1031 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1032 struct io_event __user *event,
1033 struct timespec __user *timeout)
1035 ktime_t until = { .tv64 = KTIME_MAX };
1036 long ret = 0;
1038 if (timeout) {
1039 struct timespec ts;
1041 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1042 return -EFAULT;
1044 until = timespec_to_ktime(ts);
1048 * Note that aio_read_events() is being called as the conditional - i.e.
1049 * we're calling it after prepare_to_wait() has set task state to
1050 * TASK_INTERRUPTIBLE.
1052 * But aio_read_events() can block, and if it blocks it's going to flip
1053 * the task state back to TASK_RUNNING.
1055 * This should be ok, provided it doesn't flip the state back to
1056 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1057 * will only happen if the mutex_lock() call blocks, and we then find
1058 * the ringbuffer empty. So in practice we should be ok, but it's
1059 * something to be aware of when touching this code.
1061 wait_event_interruptible_hrtimeout(ctx->wait,
1062 aio_read_events(ctx, min_nr, nr, event, &ret), until);
1064 if (!ret && signal_pending(current))
1065 ret = -EINTR;
1067 return ret;
1070 /* sys_io_setup:
1071 * Create an aio_context capable of receiving at least nr_events.
1072 * ctxp must not point to an aio_context that already exists, and
1073 * must be initialized to 0 prior to the call. On successful
1074 * creation of the aio_context, *ctxp is filled in with the resulting
1075 * handle. May fail with -EINVAL if *ctxp is not initialized,
1076 * if the specified nr_events exceeds internal limits. May fail
1077 * with -EAGAIN if the specified nr_events exceeds the user's limit
1078 * of available events. May fail with -ENOMEM if insufficient kernel
1079 * resources are available. May fail with -EFAULT if an invalid
1080 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1081 * implemented.
1083 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1085 struct kioctx *ioctx = NULL;
1086 unsigned long ctx;
1087 long ret;
1089 ret = get_user(ctx, ctxp);
1090 if (unlikely(ret))
1091 goto out;
1093 ret = -EINVAL;
1094 if (unlikely(ctx || nr_events == 0)) {
1095 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1096 ctx, nr_events);
1097 goto out;
1100 ioctx = ioctx_alloc(nr_events);
1101 ret = PTR_ERR(ioctx);
1102 if (!IS_ERR(ioctx)) {
1103 ret = put_user(ioctx->user_id, ctxp);
1104 if (ret)
1105 kill_ioctx(current->mm, ioctx);
1106 percpu_ref_put(&ioctx->users);
1109 out:
1110 return ret;
1113 /* sys_io_destroy:
1114 * Destroy the aio_context specified. May cancel any outstanding
1115 * AIOs and block on completion. Will fail with -ENOSYS if not
1116 * implemented. May fail with -EINVAL if the context pointed to
1117 * is invalid.
1119 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1121 struct kioctx *ioctx = lookup_ioctx(ctx);
1122 if (likely(NULL != ioctx)) {
1123 kill_ioctx(current->mm, ioctx);
1124 percpu_ref_put(&ioctx->users);
1125 return 0;
1127 pr_debug("EINVAL: io_destroy: invalid context id\n");
1128 return -EINVAL;
1131 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1132 unsigned long, loff_t);
1134 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1135 int rw, char __user *buf,
1136 unsigned long *nr_segs,
1137 struct iovec **iovec,
1138 bool compat)
1140 ssize_t ret;
1142 *nr_segs = kiocb->ki_nbytes;
1144 #ifdef CONFIG_COMPAT
1145 if (compat)
1146 ret = compat_rw_copy_check_uvector(rw,
1147 (struct compat_iovec __user *)buf,
1148 *nr_segs, 1, *iovec, iovec);
1149 else
1150 #endif
1151 ret = rw_copy_check_uvector(rw,
1152 (struct iovec __user *)buf,
1153 *nr_segs, 1, *iovec, iovec);
1154 if (ret < 0)
1155 return ret;
1157 /* ki_nbytes now reflect bytes instead of segs */
1158 kiocb->ki_nbytes = ret;
1159 return 0;
1162 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1163 int rw, char __user *buf,
1164 unsigned long *nr_segs,
1165 struct iovec *iovec)
1167 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1168 return -EFAULT;
1170 iovec->iov_base = buf;
1171 iovec->iov_len = kiocb->ki_nbytes;
1172 *nr_segs = 1;
1173 return 0;
1177 * aio_setup_iocb:
1178 * Performs the initial checks and aio retry method
1179 * setup for the kiocb at the time of io submission.
1181 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1182 char __user *buf, bool compat)
1184 struct file *file = req->ki_filp;
1185 ssize_t ret;
1186 unsigned long nr_segs;
1187 int rw;
1188 fmode_t mode;
1189 aio_rw_op *rw_op;
1190 struct iovec inline_vec, *iovec = &inline_vec;
1192 switch (opcode) {
1193 case IOCB_CMD_PREAD:
1194 case IOCB_CMD_PREADV:
1195 mode = FMODE_READ;
1196 rw = READ;
1197 rw_op = file->f_op->aio_read;
1198 goto rw_common;
1200 case IOCB_CMD_PWRITE:
1201 case IOCB_CMD_PWRITEV:
1202 mode = FMODE_WRITE;
1203 rw = WRITE;
1204 rw_op = file->f_op->aio_write;
1205 goto rw_common;
1206 rw_common:
1207 if (unlikely(!(file->f_mode & mode)))
1208 return -EBADF;
1210 if (!rw_op)
1211 return -EINVAL;
1213 ret = (opcode == IOCB_CMD_PREADV ||
1214 opcode == IOCB_CMD_PWRITEV)
1215 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1216 &iovec, compat)
1217 : aio_setup_single_vector(req, rw, buf, &nr_segs,
1218 iovec);
1219 if (ret)
1220 return ret;
1222 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1223 if (ret < 0) {
1224 if (iovec != &inline_vec)
1225 kfree(iovec);
1226 return ret;
1229 req->ki_nbytes = ret;
1231 /* XXX: move/kill - rw_verify_area()? */
1232 /* This matches the pread()/pwrite() logic */
1233 if (req->ki_pos < 0) {
1234 ret = -EINVAL;
1235 break;
1238 if (rw == WRITE)
1239 file_start_write(file);
1241 ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1243 if (rw == WRITE)
1244 file_end_write(file);
1245 break;
1247 case IOCB_CMD_FDSYNC:
1248 if (!file->f_op->aio_fsync)
1249 return -EINVAL;
1251 ret = file->f_op->aio_fsync(req, 1);
1252 break;
1254 case IOCB_CMD_FSYNC:
1255 if (!file->f_op->aio_fsync)
1256 return -EINVAL;
1258 ret = file->f_op->aio_fsync(req, 0);
1259 break;
1261 default:
1262 pr_debug("EINVAL: no operation provided\n");
1263 return -EINVAL;
1266 if (iovec != &inline_vec)
1267 kfree(iovec);
1269 if (ret != -EIOCBQUEUED) {
1271 * There's no easy way to restart the syscall since other AIO's
1272 * may be already running. Just fail this IO with EINTR.
1274 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1275 ret == -ERESTARTNOHAND ||
1276 ret == -ERESTART_RESTARTBLOCK))
1277 ret = -EINTR;
1278 aio_complete(req, ret, 0);
1281 return 0;
1284 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1285 struct iocb *iocb, bool compat)
1287 struct kiocb *req;
1288 ssize_t ret;
1290 /* enforce forwards compatibility on users */
1291 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1292 pr_debug("EINVAL: reserve field set\n");
1293 return -EINVAL;
1296 /* prevent overflows */
1297 if (unlikely(
1298 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1299 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1300 ((ssize_t)iocb->aio_nbytes < 0)
1301 )) {
1302 pr_debug("EINVAL: io_submit: overflow check\n");
1303 return -EINVAL;
1306 req = aio_get_req(ctx);
1307 if (unlikely(!req))
1308 return -EAGAIN;
1310 req->ki_filp = fget(iocb->aio_fildes);
1311 if (unlikely(!req->ki_filp)) {
1312 ret = -EBADF;
1313 goto out_put_req;
1316 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1318 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1319 * instance of the file* now. The file descriptor must be
1320 * an eventfd() fd, and will be signaled for each completed
1321 * event using the eventfd_signal() function.
1323 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1324 if (IS_ERR(req->ki_eventfd)) {
1325 ret = PTR_ERR(req->ki_eventfd);
1326 req->ki_eventfd = NULL;
1327 goto out_put_req;
1331 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1332 if (unlikely(ret)) {
1333 pr_debug("EFAULT: aio_key\n");
1334 goto out_put_req;
1337 req->ki_obj.user = user_iocb;
1338 req->ki_user_data = iocb->aio_data;
1339 req->ki_pos = iocb->aio_offset;
1340 req->ki_nbytes = iocb->aio_nbytes;
1342 ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1343 (char __user *)(unsigned long)iocb->aio_buf,
1344 compat);
1345 if (ret)
1346 goto out_put_req;
1348 return 0;
1349 out_put_req:
1350 put_reqs_available(ctx, 1);
1351 kiocb_free(req);
1352 return ret;
1355 long do_io_submit(aio_context_t ctx_id, long nr,
1356 struct iocb __user *__user *iocbpp, bool compat)
1358 struct kioctx *ctx;
1359 long ret = 0;
1360 int i = 0;
1361 struct blk_plug plug;
1363 if (unlikely(nr < 0))
1364 return -EINVAL;
1366 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1367 nr = LONG_MAX/sizeof(*iocbpp);
1369 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1370 return -EFAULT;
1372 ctx = lookup_ioctx(ctx_id);
1373 if (unlikely(!ctx)) {
1374 pr_debug("EINVAL: invalid context id\n");
1375 return -EINVAL;
1378 blk_start_plug(&plug);
1381 * AKPM: should this return a partial result if some of the IOs were
1382 * successfully submitted?
1384 for (i=0; i<nr; i++) {
1385 struct iocb __user *user_iocb;
1386 struct iocb tmp;
1388 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1389 ret = -EFAULT;
1390 break;
1393 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1394 ret = -EFAULT;
1395 break;
1398 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1399 if (ret)
1400 break;
1402 blk_finish_plug(&plug);
1404 percpu_ref_put(&ctx->users);
1405 return i ? i : ret;
1408 /* sys_io_submit:
1409 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1410 * the number of iocbs queued. May return -EINVAL if the aio_context
1411 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1412 * *iocbpp[0] is not properly initialized, if the operation specified
1413 * is invalid for the file descriptor in the iocb. May fail with
1414 * -EFAULT if any of the data structures point to invalid data. May
1415 * fail with -EBADF if the file descriptor specified in the first
1416 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1417 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1418 * fail with -ENOSYS if not implemented.
1420 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1421 struct iocb __user * __user *, iocbpp)
1423 return do_io_submit(ctx_id, nr, iocbpp, 0);
1426 /* lookup_kiocb
1427 * Finds a given iocb for cancellation.
1429 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1430 u32 key)
1432 struct list_head *pos;
1434 assert_spin_locked(&ctx->ctx_lock);
1436 if (key != KIOCB_KEY)
1437 return NULL;
1439 /* TODO: use a hash or array, this sucks. */
1440 list_for_each(pos, &ctx->active_reqs) {
1441 struct kiocb *kiocb = list_kiocb(pos);
1442 if (kiocb->ki_obj.user == iocb)
1443 return kiocb;
1445 return NULL;
1448 /* sys_io_cancel:
1449 * Attempts to cancel an iocb previously passed to io_submit. If
1450 * the operation is successfully cancelled, the resulting event is
1451 * copied into the memory pointed to by result without being placed
1452 * into the completion queue and 0 is returned. May fail with
1453 * -EFAULT if any of the data structures pointed to are invalid.
1454 * May fail with -EINVAL if aio_context specified by ctx_id is
1455 * invalid. May fail with -EAGAIN if the iocb specified was not
1456 * cancelled. Will fail with -ENOSYS if not implemented.
1458 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1459 struct io_event __user *, result)
1461 struct kioctx *ctx;
1462 struct kiocb *kiocb;
1463 u32 key;
1464 int ret;
1466 ret = get_user(key, &iocb->aio_key);
1467 if (unlikely(ret))
1468 return -EFAULT;
1470 ctx = lookup_ioctx(ctx_id);
1471 if (unlikely(!ctx))
1472 return -EINVAL;
1474 spin_lock_irq(&ctx->ctx_lock);
1476 kiocb = lookup_kiocb(ctx, iocb, key);
1477 if (kiocb)
1478 ret = kiocb_cancel(ctx, kiocb);
1479 else
1480 ret = -EINVAL;
1482 spin_unlock_irq(&ctx->ctx_lock);
1484 if (!ret) {
1486 * The result argument is no longer used - the io_event is
1487 * always delivered via the ring buffer. -EINPROGRESS indicates
1488 * cancellation is progress:
1490 ret = -EINPROGRESS;
1493 percpu_ref_put(&ctx->users);
1495 return ret;
1498 /* io_getevents:
1499 * Attempts to read at least min_nr events and up to nr events from
1500 * the completion queue for the aio_context specified by ctx_id. If
1501 * it succeeds, the number of read events is returned. May fail with
1502 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1503 * out of range, if timeout is out of range. May fail with -EFAULT
1504 * if any of the memory specified is invalid. May return 0 or
1505 * < min_nr if the timeout specified by timeout has elapsed
1506 * before sufficient events are available, where timeout == NULL
1507 * specifies an infinite timeout. Note that the timeout pointed to by
1508 * timeout is relative. Will fail with -ENOSYS if not implemented.
1510 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1511 long, min_nr,
1512 long, nr,
1513 struct io_event __user *, events,
1514 struct timespec __user *, timeout)
1516 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1517 long ret = -EINVAL;
1519 if (likely(ioctx)) {
1520 if (likely(min_nr <= nr && min_nr >= 0))
1521 ret = read_events(ioctx, min_nr, nr, events, timeout);
1522 percpu_ref_put(&ioctx->users);
1524 return ret;