mac80211: Allow a STA to join an IBSS with 80+80 MHz channel
[linux-2.6/btrfs-unstable.git] / net / bluetooth / hci_conn.c
blob2d334e07fd7735691aae5113cb09ad99e1637ba7
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
25 /* Bluetooth HCI connection handling. */
27 #include <linux/export.h>
28 #include <linux/debugfs.h>
30 #include <net/bluetooth/bluetooth.h>
31 #include <net/bluetooth/hci_core.h>
32 #include <net/bluetooth/l2cap.h>
34 #include "hci_request.h"
35 #include "smp.h"
36 #include "a2mp.h"
38 struct sco_param {
39 u16 pkt_type;
40 u16 max_latency;
41 u8 retrans_effort;
44 static const struct sco_param esco_param_cvsd[] = {
45 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */
46 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */
47 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */
48 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */
49 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */
52 static const struct sco_param sco_param_cvsd[] = {
53 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */
54 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */
57 static const struct sco_param esco_param_msbc[] = {
58 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */
59 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */
62 /* This function requires the caller holds hdev->lock */
63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn)
65 struct hci_conn_params *params;
66 struct hci_dev *hdev = conn->hdev;
67 struct smp_irk *irk;
68 bdaddr_t *bdaddr;
69 u8 bdaddr_type;
71 bdaddr = &conn->dst;
72 bdaddr_type = conn->dst_type;
74 /* Check if we need to convert to identity address */
75 irk = hci_get_irk(hdev, bdaddr, bdaddr_type);
76 if (irk) {
77 bdaddr = &irk->bdaddr;
78 bdaddr_type = irk->addr_type;
81 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr,
82 bdaddr_type);
83 if (!params || !params->explicit_connect)
84 return;
86 /* The connection attempt was doing scan for new RPA, and is
87 * in scan phase. If params are not associated with any other
88 * autoconnect action, remove them completely. If they are, just unmark
89 * them as waiting for connection, by clearing explicit_connect field.
91 params->explicit_connect = false;
93 list_del_init(&params->action);
95 switch (params->auto_connect) {
96 case HCI_AUTO_CONN_EXPLICIT:
97 hci_conn_params_del(hdev, bdaddr, bdaddr_type);
98 /* return instead of break to avoid duplicate scan update */
99 return;
100 case HCI_AUTO_CONN_DIRECT:
101 case HCI_AUTO_CONN_ALWAYS:
102 list_add(&params->action, &hdev->pend_le_conns);
103 break;
104 case HCI_AUTO_CONN_REPORT:
105 list_add(&params->action, &hdev->pend_le_reports);
106 break;
107 default:
108 break;
111 hci_update_background_scan(hdev);
114 static void hci_conn_cleanup(struct hci_conn *conn)
116 struct hci_dev *hdev = conn->hdev;
118 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags))
119 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type);
121 hci_chan_list_flush(conn);
123 hci_conn_hash_del(hdev, conn);
125 if (hdev->notify)
126 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL);
128 hci_conn_del_sysfs(conn);
130 debugfs_remove_recursive(conn->debugfs);
132 hci_dev_put(hdev);
134 hci_conn_put(conn);
137 static void le_scan_cleanup(struct work_struct *work)
139 struct hci_conn *conn = container_of(work, struct hci_conn,
140 le_scan_cleanup);
141 struct hci_dev *hdev = conn->hdev;
142 struct hci_conn *c = NULL;
144 BT_DBG("%s hcon %p", hdev->name, conn);
146 hci_dev_lock(hdev);
148 /* Check that the hci_conn is still around */
149 rcu_read_lock();
150 list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) {
151 if (c == conn)
152 break;
154 rcu_read_unlock();
156 if (c == conn) {
157 hci_connect_le_scan_cleanup(conn);
158 hci_conn_cleanup(conn);
161 hci_dev_unlock(hdev);
162 hci_dev_put(hdev);
163 hci_conn_put(conn);
166 static void hci_connect_le_scan_remove(struct hci_conn *conn)
168 BT_DBG("%s hcon %p", conn->hdev->name, conn);
170 /* We can't call hci_conn_del/hci_conn_cleanup here since that
171 * could deadlock with another hci_conn_del() call that's holding
172 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work).
173 * Instead, grab temporary extra references to the hci_dev and
174 * hci_conn and perform the necessary cleanup in a separate work
175 * callback.
178 hci_dev_hold(conn->hdev);
179 hci_conn_get(conn);
181 /* Even though we hold a reference to the hdev, many other
182 * things might get cleaned up meanwhile, including the hdev's
183 * own workqueue, so we can't use that for scheduling.
185 schedule_work(&conn->le_scan_cleanup);
188 static void hci_acl_create_connection(struct hci_conn *conn)
190 struct hci_dev *hdev = conn->hdev;
191 struct inquiry_entry *ie;
192 struct hci_cp_create_conn cp;
194 BT_DBG("hcon %p", conn);
196 conn->state = BT_CONNECT;
197 conn->out = true;
198 conn->role = HCI_ROLE_MASTER;
200 conn->attempt++;
202 conn->link_policy = hdev->link_policy;
204 memset(&cp, 0, sizeof(cp));
205 bacpy(&cp.bdaddr, &conn->dst);
206 cp.pscan_rep_mode = 0x02;
208 ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
209 if (ie) {
210 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) {
211 cp.pscan_rep_mode = ie->data.pscan_rep_mode;
212 cp.pscan_mode = ie->data.pscan_mode;
213 cp.clock_offset = ie->data.clock_offset |
214 cpu_to_le16(0x8000);
217 memcpy(conn->dev_class, ie->data.dev_class, 3);
218 if (ie->data.ssp_mode > 0)
219 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
222 cp.pkt_type = cpu_to_le16(conn->pkt_type);
223 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER))
224 cp.role_switch = 0x01;
225 else
226 cp.role_switch = 0x00;
228 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp);
231 int hci_disconnect(struct hci_conn *conn, __u8 reason)
233 BT_DBG("hcon %p", conn);
235 /* When we are master of an established connection and it enters
236 * the disconnect timeout, then go ahead and try to read the
237 * current clock offset. Processing of the result is done
238 * within the event handling and hci_clock_offset_evt function.
240 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER &&
241 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) {
242 struct hci_dev *hdev = conn->hdev;
243 struct hci_cp_read_clock_offset clkoff_cp;
245 clkoff_cp.handle = cpu_to_le16(conn->handle);
246 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp),
247 &clkoff_cp);
250 return hci_abort_conn(conn, reason);
253 static void hci_add_sco(struct hci_conn *conn, __u16 handle)
255 struct hci_dev *hdev = conn->hdev;
256 struct hci_cp_add_sco cp;
258 BT_DBG("hcon %p", conn);
260 conn->state = BT_CONNECT;
261 conn->out = true;
263 conn->attempt++;
265 cp.handle = cpu_to_le16(handle);
266 cp.pkt_type = cpu_to_le16(conn->pkt_type);
268 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp);
271 bool hci_setup_sync(struct hci_conn *conn, __u16 handle)
273 struct hci_dev *hdev = conn->hdev;
274 struct hci_cp_setup_sync_conn cp;
275 const struct sco_param *param;
277 BT_DBG("hcon %p", conn);
279 conn->state = BT_CONNECT;
280 conn->out = true;
282 conn->attempt++;
284 cp.handle = cpu_to_le16(handle);
286 cp.tx_bandwidth = cpu_to_le32(0x00001f40);
287 cp.rx_bandwidth = cpu_to_le32(0x00001f40);
288 cp.voice_setting = cpu_to_le16(conn->setting);
290 switch (conn->setting & SCO_AIRMODE_MASK) {
291 case SCO_AIRMODE_TRANSP:
292 if (conn->attempt > ARRAY_SIZE(esco_param_msbc))
293 return false;
294 param = &esco_param_msbc[conn->attempt - 1];
295 break;
296 case SCO_AIRMODE_CVSD:
297 if (lmp_esco_capable(conn->link)) {
298 if (conn->attempt > ARRAY_SIZE(esco_param_cvsd))
299 return false;
300 param = &esco_param_cvsd[conn->attempt - 1];
301 } else {
302 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
303 return false;
304 param = &sco_param_cvsd[conn->attempt - 1];
306 break;
307 default:
308 return false;
311 cp.retrans_effort = param->retrans_effort;
312 cp.pkt_type = __cpu_to_le16(param->pkt_type);
313 cp.max_latency = __cpu_to_le16(param->max_latency);
315 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
316 return false;
318 return true;
321 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
322 u16 to_multiplier)
324 struct hci_dev *hdev = conn->hdev;
325 struct hci_conn_params *params;
326 struct hci_cp_le_conn_update cp;
328 hci_dev_lock(hdev);
330 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
331 if (params) {
332 params->conn_min_interval = min;
333 params->conn_max_interval = max;
334 params->conn_latency = latency;
335 params->supervision_timeout = to_multiplier;
338 hci_dev_unlock(hdev);
340 memset(&cp, 0, sizeof(cp));
341 cp.handle = cpu_to_le16(conn->handle);
342 cp.conn_interval_min = cpu_to_le16(min);
343 cp.conn_interval_max = cpu_to_le16(max);
344 cp.conn_latency = cpu_to_le16(latency);
345 cp.supervision_timeout = cpu_to_le16(to_multiplier);
346 cp.min_ce_len = cpu_to_le16(0x0000);
347 cp.max_ce_len = cpu_to_le16(0x0000);
349 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp);
351 if (params)
352 return 0x01;
354 return 0x00;
357 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
358 __u8 ltk[16], __u8 key_size)
360 struct hci_dev *hdev = conn->hdev;
361 struct hci_cp_le_start_enc cp;
363 BT_DBG("hcon %p", conn);
365 memset(&cp, 0, sizeof(cp));
367 cp.handle = cpu_to_le16(conn->handle);
368 cp.rand = rand;
369 cp.ediv = ediv;
370 memcpy(cp.ltk, ltk, key_size);
372 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp);
375 /* Device _must_ be locked */
376 void hci_sco_setup(struct hci_conn *conn, __u8 status)
378 struct hci_conn *sco = conn->link;
380 if (!sco)
381 return;
383 BT_DBG("hcon %p", conn);
385 if (!status) {
386 if (lmp_esco_capable(conn->hdev))
387 hci_setup_sync(sco, conn->handle);
388 else
389 hci_add_sco(sco, conn->handle);
390 } else {
391 hci_connect_cfm(sco, status);
392 hci_conn_del(sco);
396 static void hci_conn_timeout(struct work_struct *work)
398 struct hci_conn *conn = container_of(work, struct hci_conn,
399 disc_work.work);
400 int refcnt = atomic_read(&conn->refcnt);
402 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state));
404 WARN_ON(refcnt < 0);
406 /* FIXME: It was observed that in pairing failed scenario, refcnt
407 * drops below 0. Probably this is because l2cap_conn_del calls
408 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is
409 * dropped. After that loop hci_chan_del is called which also drops
410 * conn. For now make sure that ACL is alive if refcnt is higher then 0,
411 * otherwise drop it.
413 if (refcnt > 0)
414 return;
416 /* LE connections in scanning state need special handling */
417 if (conn->state == BT_CONNECT && conn->type == LE_LINK &&
418 test_bit(HCI_CONN_SCANNING, &conn->flags)) {
419 hci_connect_le_scan_remove(conn);
420 return;
423 hci_abort_conn(conn, hci_proto_disconn_ind(conn));
426 /* Enter sniff mode */
427 static void hci_conn_idle(struct work_struct *work)
429 struct hci_conn *conn = container_of(work, struct hci_conn,
430 idle_work.work);
431 struct hci_dev *hdev = conn->hdev;
433 BT_DBG("hcon %p mode %d", conn, conn->mode);
435 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn))
436 return;
438 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF))
439 return;
441 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) {
442 struct hci_cp_sniff_subrate cp;
443 cp.handle = cpu_to_le16(conn->handle);
444 cp.max_latency = cpu_to_le16(0);
445 cp.min_remote_timeout = cpu_to_le16(0);
446 cp.min_local_timeout = cpu_to_le16(0);
447 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp);
450 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
451 struct hci_cp_sniff_mode cp;
452 cp.handle = cpu_to_le16(conn->handle);
453 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval);
454 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval);
455 cp.attempt = cpu_to_le16(4);
456 cp.timeout = cpu_to_le16(1);
457 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp);
461 static void hci_conn_auto_accept(struct work_struct *work)
463 struct hci_conn *conn = container_of(work, struct hci_conn,
464 auto_accept_work.work);
466 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst),
467 &conn->dst);
470 static void le_conn_timeout(struct work_struct *work)
472 struct hci_conn *conn = container_of(work, struct hci_conn,
473 le_conn_timeout.work);
474 struct hci_dev *hdev = conn->hdev;
476 BT_DBG("");
478 /* We could end up here due to having done directed advertising,
479 * so clean up the state if necessary. This should however only
480 * happen with broken hardware or if low duty cycle was used
481 * (which doesn't have a timeout of its own).
483 if (conn->role == HCI_ROLE_SLAVE) {
484 u8 enable = 0x00;
485 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
486 &enable);
487 hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT);
488 return;
491 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM);
494 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
495 u8 role)
497 struct hci_conn *conn;
499 BT_DBG("%s dst %pMR", hdev->name, dst);
501 conn = kzalloc(sizeof(*conn), GFP_KERNEL);
502 if (!conn)
503 return NULL;
505 bacpy(&conn->dst, dst);
506 bacpy(&conn->src, &hdev->bdaddr);
507 conn->hdev = hdev;
508 conn->type = type;
509 conn->role = role;
510 conn->mode = HCI_CM_ACTIVE;
511 conn->state = BT_OPEN;
512 conn->auth_type = HCI_AT_GENERAL_BONDING;
513 conn->io_capability = hdev->io_capability;
514 conn->remote_auth = 0xff;
515 conn->key_type = 0xff;
516 conn->rssi = HCI_RSSI_INVALID;
517 conn->tx_power = HCI_TX_POWER_INVALID;
518 conn->max_tx_power = HCI_TX_POWER_INVALID;
520 set_bit(HCI_CONN_POWER_SAVE, &conn->flags);
521 conn->disc_timeout = HCI_DISCONN_TIMEOUT;
523 if (conn->role == HCI_ROLE_MASTER)
524 conn->out = true;
526 switch (type) {
527 case ACL_LINK:
528 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK;
529 break;
530 case LE_LINK:
531 /* conn->src should reflect the local identity address */
532 hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
533 break;
534 case SCO_LINK:
535 if (lmp_esco_capable(hdev))
536 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) |
537 (hdev->esco_type & EDR_ESCO_MASK);
538 else
539 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK;
540 break;
541 case ESCO_LINK:
542 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK;
543 break;
546 skb_queue_head_init(&conn->data_q);
548 INIT_LIST_HEAD(&conn->chan_list);
550 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout);
551 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept);
552 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle);
553 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout);
554 INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup);
556 atomic_set(&conn->refcnt, 0);
558 hci_dev_hold(hdev);
560 hci_conn_hash_add(hdev, conn);
561 if (hdev->notify)
562 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD);
564 hci_conn_init_sysfs(conn);
566 return conn;
569 int hci_conn_del(struct hci_conn *conn)
571 struct hci_dev *hdev = conn->hdev;
573 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle);
575 cancel_delayed_work_sync(&conn->disc_work);
576 cancel_delayed_work_sync(&conn->auto_accept_work);
577 cancel_delayed_work_sync(&conn->idle_work);
579 if (conn->type == ACL_LINK) {
580 struct hci_conn *sco = conn->link;
581 if (sco)
582 sco->link = NULL;
584 /* Unacked frames */
585 hdev->acl_cnt += conn->sent;
586 } else if (conn->type == LE_LINK) {
587 cancel_delayed_work(&conn->le_conn_timeout);
589 if (hdev->le_pkts)
590 hdev->le_cnt += conn->sent;
591 else
592 hdev->acl_cnt += conn->sent;
593 } else {
594 struct hci_conn *acl = conn->link;
595 if (acl) {
596 acl->link = NULL;
597 hci_conn_drop(acl);
601 if (conn->amp_mgr)
602 amp_mgr_put(conn->amp_mgr);
604 skb_queue_purge(&conn->data_q);
606 /* Remove the connection from the list and cleanup its remaining
607 * state. This is a separate function since for some cases like
608 * BT_CONNECT_SCAN we *only* want the cleanup part without the
609 * rest of hci_conn_del.
611 hci_conn_cleanup(conn);
613 return 0;
616 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src)
618 int use_src = bacmp(src, BDADDR_ANY);
619 struct hci_dev *hdev = NULL, *d;
621 BT_DBG("%pMR -> %pMR", src, dst);
623 read_lock(&hci_dev_list_lock);
625 list_for_each_entry(d, &hci_dev_list, list) {
626 if (!test_bit(HCI_UP, &d->flags) ||
627 hci_dev_test_flag(d, HCI_USER_CHANNEL) ||
628 d->dev_type != HCI_BREDR)
629 continue;
631 /* Simple routing:
632 * No source address - find interface with bdaddr != dst
633 * Source address - find interface with bdaddr == src
636 if (use_src) {
637 if (!bacmp(&d->bdaddr, src)) {
638 hdev = d; break;
640 } else {
641 if (bacmp(&d->bdaddr, dst)) {
642 hdev = d; break;
647 if (hdev)
648 hdev = hci_dev_hold(hdev);
650 read_unlock(&hci_dev_list_lock);
651 return hdev;
653 EXPORT_SYMBOL(hci_get_route);
655 /* This function requires the caller holds hdev->lock */
656 void hci_le_conn_failed(struct hci_conn *conn, u8 status)
658 struct hci_dev *hdev = conn->hdev;
659 struct hci_conn_params *params;
661 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst,
662 conn->dst_type);
663 if (params && params->conn) {
664 hci_conn_drop(params->conn);
665 hci_conn_put(params->conn);
666 params->conn = NULL;
669 conn->state = BT_CLOSED;
671 mgmt_connect_failed(hdev, &conn->dst, conn->type, conn->dst_type,
672 status);
674 hci_connect_cfm(conn, status);
676 hci_conn_del(conn);
678 /* Since we may have temporarily stopped the background scanning in
679 * favor of connection establishment, we should restart it.
681 hci_update_background_scan(hdev);
683 /* Re-enable advertising in case this was a failed connection
684 * attempt as a peripheral.
686 mgmt_reenable_advertising(hdev);
689 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
691 struct hci_conn *conn;
693 hci_dev_lock(hdev);
695 conn = hci_lookup_le_connect(hdev);
697 if (!status) {
698 hci_connect_le_scan_cleanup(conn);
699 goto done;
702 BT_ERR("HCI request failed to create LE connection: status 0x%2.2x",
703 status);
705 if (!conn)
706 goto done;
708 hci_le_conn_failed(conn, status);
710 done:
711 hci_dev_unlock(hdev);
714 static void hci_req_add_le_create_conn(struct hci_request *req,
715 struct hci_conn *conn)
717 struct hci_cp_le_create_conn cp;
718 struct hci_dev *hdev = conn->hdev;
719 u8 own_addr_type;
721 memset(&cp, 0, sizeof(cp));
723 /* Update random address, but set require_privacy to false so
724 * that we never connect with an non-resolvable address.
726 if (hci_update_random_address(req, false, &own_addr_type))
727 return;
729 cp.scan_interval = cpu_to_le16(hdev->le_scan_interval);
730 cp.scan_window = cpu_to_le16(hdev->le_scan_window);
731 bacpy(&cp.peer_addr, &conn->dst);
732 cp.peer_addr_type = conn->dst_type;
733 cp.own_address_type = own_addr_type;
734 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
735 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
736 cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
737 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
738 cp.min_ce_len = cpu_to_le16(0x0000);
739 cp.max_ce_len = cpu_to_le16(0x0000);
741 hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp);
743 conn->state = BT_CONNECT;
744 clear_bit(HCI_CONN_SCANNING, &conn->flags);
747 static void hci_req_directed_advertising(struct hci_request *req,
748 struct hci_conn *conn)
750 struct hci_dev *hdev = req->hdev;
751 struct hci_cp_le_set_adv_param cp;
752 u8 own_addr_type;
753 u8 enable;
755 /* Clear the HCI_LE_ADV bit temporarily so that the
756 * hci_update_random_address knows that it's safe to go ahead
757 * and write a new random address. The flag will be set back on
758 * as soon as the SET_ADV_ENABLE HCI command completes.
760 hci_dev_clear_flag(hdev, HCI_LE_ADV);
762 /* Set require_privacy to false so that the remote device has a
763 * chance of identifying us.
765 if (hci_update_random_address(req, false, &own_addr_type) < 0)
766 return;
768 memset(&cp, 0, sizeof(cp));
769 cp.type = LE_ADV_DIRECT_IND;
770 cp.own_address_type = own_addr_type;
771 cp.direct_addr_type = conn->dst_type;
772 bacpy(&cp.direct_addr, &conn->dst);
773 cp.channel_map = hdev->le_adv_channel_map;
775 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
777 enable = 0x01;
778 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
780 conn->state = BT_CONNECT;
783 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
784 u8 dst_type, u8 sec_level, u16 conn_timeout,
785 u8 role)
787 struct hci_conn_params *params;
788 struct hci_conn *conn;
789 struct smp_irk *irk;
790 struct hci_request req;
791 int err;
793 /* Let's make sure that le is enabled.*/
794 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
795 if (lmp_le_capable(hdev))
796 return ERR_PTR(-ECONNREFUSED);
798 return ERR_PTR(-EOPNOTSUPP);
801 /* Since the controller supports only one LE connection attempt at a
802 * time, we return -EBUSY if there is any connection attempt running.
804 if (hci_lookup_le_connect(hdev))
805 return ERR_PTR(-EBUSY);
807 /* If there's already a connection object but it's not in
808 * scanning state it means it must already be established, in
809 * which case we can't do anything else except report a failure
810 * to connect.
812 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
813 if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) {
814 return ERR_PTR(-EBUSY);
817 /* When given an identity address with existing identity
818 * resolving key, the connection needs to be established
819 * to a resolvable random address.
821 * Storing the resolvable random address is required here
822 * to handle connection failures. The address will later
823 * be resolved back into the original identity address
824 * from the connect request.
826 irk = hci_find_irk_by_addr(hdev, dst, dst_type);
827 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) {
828 dst = &irk->rpa;
829 dst_type = ADDR_LE_DEV_RANDOM;
832 if (conn) {
833 bacpy(&conn->dst, dst);
834 } else {
835 conn = hci_conn_add(hdev, LE_LINK, dst, role);
836 if (!conn)
837 return ERR_PTR(-ENOMEM);
838 hci_conn_hold(conn);
839 conn->pending_sec_level = sec_level;
842 conn->dst_type = dst_type;
843 conn->sec_level = BT_SECURITY_LOW;
844 conn->conn_timeout = conn_timeout;
846 hci_req_init(&req, hdev);
848 /* Disable advertising if we're active. For master role
849 * connections most controllers will refuse to connect if
850 * advertising is enabled, and for slave role connections we
851 * anyway have to disable it in order to start directed
852 * advertising.
854 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
855 u8 enable = 0x00;
856 hci_req_add(&req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
857 &enable);
860 /* If requested to connect as slave use directed advertising */
861 if (conn->role == HCI_ROLE_SLAVE) {
862 /* If we're active scanning most controllers are unable
863 * to initiate advertising. Simply reject the attempt.
865 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
866 hdev->le_scan_type == LE_SCAN_ACTIVE) {
867 skb_queue_purge(&req.cmd_q);
868 hci_conn_del(conn);
869 return ERR_PTR(-EBUSY);
872 hci_req_directed_advertising(&req, conn);
873 goto create_conn;
876 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
877 if (params) {
878 conn->le_conn_min_interval = params->conn_min_interval;
879 conn->le_conn_max_interval = params->conn_max_interval;
880 conn->le_conn_latency = params->conn_latency;
881 conn->le_supv_timeout = params->supervision_timeout;
882 } else {
883 conn->le_conn_min_interval = hdev->le_conn_min_interval;
884 conn->le_conn_max_interval = hdev->le_conn_max_interval;
885 conn->le_conn_latency = hdev->le_conn_latency;
886 conn->le_supv_timeout = hdev->le_supv_timeout;
889 /* If controller is scanning, we stop it since some controllers are
890 * not able to scan and connect at the same time. Also set the
891 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
892 * handler for scan disabling knows to set the correct discovery
893 * state.
895 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
896 hci_req_add_le_scan_disable(&req);
897 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
900 hci_req_add_le_create_conn(&req, conn);
902 create_conn:
903 err = hci_req_run(&req, create_le_conn_complete);
904 if (err) {
905 hci_conn_del(conn);
906 return ERR_PTR(err);
909 return conn;
912 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
914 struct hci_conn *conn;
916 conn = hci_conn_hash_lookup_le(hdev, addr, type);
917 if (!conn)
918 return false;
920 if (conn->state != BT_CONNECTED)
921 return false;
923 return true;
926 /* This function requires the caller holds hdev->lock */
927 static int hci_explicit_conn_params_set(struct hci_dev *hdev,
928 bdaddr_t *addr, u8 addr_type)
930 struct hci_conn_params *params;
932 if (is_connected(hdev, addr, addr_type))
933 return -EISCONN;
935 params = hci_conn_params_lookup(hdev, addr, addr_type);
936 if (!params) {
937 params = hci_conn_params_add(hdev, addr, addr_type);
938 if (!params)
939 return -ENOMEM;
941 /* If we created new params, mark them to be deleted in
942 * hci_connect_le_scan_cleanup. It's different case than
943 * existing disabled params, those will stay after cleanup.
945 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
948 /* We're trying to connect, so make sure params are at pend_le_conns */
949 if (params->auto_connect == HCI_AUTO_CONN_DISABLED ||
950 params->auto_connect == HCI_AUTO_CONN_REPORT ||
951 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) {
952 list_del_init(&params->action);
953 list_add(&params->action, &hdev->pend_le_conns);
956 params->explicit_connect = true;
958 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type,
959 params->auto_connect);
961 return 0;
964 /* This function requires the caller holds hdev->lock */
965 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
966 u8 dst_type, u8 sec_level,
967 u16 conn_timeout)
969 struct hci_conn *conn;
971 /* Let's make sure that le is enabled.*/
972 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
973 if (lmp_le_capable(hdev))
974 return ERR_PTR(-ECONNREFUSED);
976 return ERR_PTR(-EOPNOTSUPP);
979 /* Some devices send ATT messages as soon as the physical link is
980 * established. To be able to handle these ATT messages, the user-
981 * space first establishes the connection and then starts the pairing
982 * process.
984 * So if a hci_conn object already exists for the following connection
985 * attempt, we simply update pending_sec_level and auth_type fields
986 * and return the object found.
988 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
989 if (conn) {
990 if (conn->pending_sec_level < sec_level)
991 conn->pending_sec_level = sec_level;
992 goto done;
995 BT_DBG("requesting refresh of dst_addr");
997 conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER);
998 if (!conn)
999 return ERR_PTR(-ENOMEM);
1001 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0)
1002 return ERR_PTR(-EBUSY);
1004 conn->state = BT_CONNECT;
1005 set_bit(HCI_CONN_SCANNING, &conn->flags);
1006 conn->dst_type = dst_type;
1007 conn->sec_level = BT_SECURITY_LOW;
1008 conn->pending_sec_level = sec_level;
1009 conn->conn_timeout = conn_timeout;
1011 hci_update_background_scan(hdev);
1013 done:
1014 hci_conn_hold(conn);
1015 return conn;
1018 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
1019 u8 sec_level, u8 auth_type)
1021 struct hci_conn *acl;
1023 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1024 if (lmp_bredr_capable(hdev))
1025 return ERR_PTR(-ECONNREFUSED);
1027 return ERR_PTR(-EOPNOTSUPP);
1030 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst);
1031 if (!acl) {
1032 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER);
1033 if (!acl)
1034 return ERR_PTR(-ENOMEM);
1037 hci_conn_hold(acl);
1039 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) {
1040 acl->sec_level = BT_SECURITY_LOW;
1041 acl->pending_sec_level = sec_level;
1042 acl->auth_type = auth_type;
1043 hci_acl_create_connection(acl);
1046 return acl;
1049 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
1050 __u16 setting)
1052 struct hci_conn *acl;
1053 struct hci_conn *sco;
1055 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING);
1056 if (IS_ERR(acl))
1057 return acl;
1059 sco = hci_conn_hash_lookup_ba(hdev, type, dst);
1060 if (!sco) {
1061 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER);
1062 if (!sco) {
1063 hci_conn_drop(acl);
1064 return ERR_PTR(-ENOMEM);
1068 acl->link = sco;
1069 sco->link = acl;
1071 hci_conn_hold(sco);
1073 sco->setting = setting;
1075 if (acl->state == BT_CONNECTED &&
1076 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) {
1077 set_bit(HCI_CONN_POWER_SAVE, &acl->flags);
1078 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON);
1080 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) {
1081 /* defer SCO setup until mode change completed */
1082 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags);
1083 return sco;
1086 hci_sco_setup(acl, 0x00);
1089 return sco;
1092 /* Check link security requirement */
1093 int hci_conn_check_link_mode(struct hci_conn *conn)
1095 BT_DBG("hcon %p", conn);
1097 /* In Secure Connections Only mode, it is required that Secure
1098 * Connections is used and the link is encrypted with AES-CCM
1099 * using a P-256 authenticated combination key.
1101 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) {
1102 if (!hci_conn_sc_enabled(conn) ||
1103 !test_bit(HCI_CONN_AES_CCM, &conn->flags) ||
1104 conn->key_type != HCI_LK_AUTH_COMBINATION_P256)
1105 return 0;
1108 if (hci_conn_ssp_enabled(conn) &&
1109 !test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1110 return 0;
1112 return 1;
1115 /* Authenticate remote device */
1116 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type)
1118 BT_DBG("hcon %p", conn);
1120 if (conn->pending_sec_level > sec_level)
1121 sec_level = conn->pending_sec_level;
1123 if (sec_level > conn->sec_level)
1124 conn->pending_sec_level = sec_level;
1125 else if (test_bit(HCI_CONN_AUTH, &conn->flags))
1126 return 1;
1128 /* Make sure we preserve an existing MITM requirement*/
1129 auth_type |= (conn->auth_type & 0x01);
1131 conn->auth_type = auth_type;
1133 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
1134 struct hci_cp_auth_requested cp;
1136 cp.handle = cpu_to_le16(conn->handle);
1137 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED,
1138 sizeof(cp), &cp);
1140 /* If we're already encrypted set the REAUTH_PEND flag,
1141 * otherwise set the ENCRYPT_PEND.
1143 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1144 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags);
1145 else
1146 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
1149 return 0;
1152 /* Encrypt the the link */
1153 static void hci_conn_encrypt(struct hci_conn *conn)
1155 BT_DBG("hcon %p", conn);
1157 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) {
1158 struct hci_cp_set_conn_encrypt cp;
1159 cp.handle = cpu_to_le16(conn->handle);
1160 cp.encrypt = 0x01;
1161 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
1162 &cp);
1166 /* Enable security */
1167 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
1168 bool initiator)
1170 BT_DBG("hcon %p", conn);
1172 if (conn->type == LE_LINK)
1173 return smp_conn_security(conn, sec_level);
1175 /* For sdp we don't need the link key. */
1176 if (sec_level == BT_SECURITY_SDP)
1177 return 1;
1179 /* For non 2.1 devices and low security level we don't need the link
1180 key. */
1181 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn))
1182 return 1;
1184 /* For other security levels we need the link key. */
1185 if (!test_bit(HCI_CONN_AUTH, &conn->flags))
1186 goto auth;
1188 /* An authenticated FIPS approved combination key has sufficient
1189 * security for security level 4. */
1190 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 &&
1191 sec_level == BT_SECURITY_FIPS)
1192 goto encrypt;
1194 /* An authenticated combination key has sufficient security for
1195 security level 3. */
1196 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 ||
1197 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) &&
1198 sec_level == BT_SECURITY_HIGH)
1199 goto encrypt;
1201 /* An unauthenticated combination key has sufficient security for
1202 security level 1 and 2. */
1203 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 ||
1204 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) &&
1205 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW))
1206 goto encrypt;
1208 /* A combination key has always sufficient security for the security
1209 levels 1 or 2. High security level requires the combination key
1210 is generated using maximum PIN code length (16).
1211 For pre 2.1 units. */
1212 if (conn->key_type == HCI_LK_COMBINATION &&
1213 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW ||
1214 conn->pin_length == 16))
1215 goto encrypt;
1217 auth:
1218 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1219 return 0;
1221 if (initiator)
1222 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags);
1224 if (!hci_conn_auth(conn, sec_level, auth_type))
1225 return 0;
1227 encrypt:
1228 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1229 return 1;
1231 hci_conn_encrypt(conn);
1232 return 0;
1234 EXPORT_SYMBOL(hci_conn_security);
1236 /* Check secure link requirement */
1237 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level)
1239 BT_DBG("hcon %p", conn);
1241 /* Accept if non-secure or higher security level is required */
1242 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS)
1243 return 1;
1245 /* Accept if secure or higher security level is already present */
1246 if (conn->sec_level == BT_SECURITY_HIGH ||
1247 conn->sec_level == BT_SECURITY_FIPS)
1248 return 1;
1250 /* Reject not secure link */
1251 return 0;
1253 EXPORT_SYMBOL(hci_conn_check_secure);
1255 /* Switch role */
1256 int hci_conn_switch_role(struct hci_conn *conn, __u8 role)
1258 BT_DBG("hcon %p", conn);
1260 if (role == conn->role)
1261 return 1;
1263 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) {
1264 struct hci_cp_switch_role cp;
1265 bacpy(&cp.bdaddr, &conn->dst);
1266 cp.role = role;
1267 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp);
1270 return 0;
1272 EXPORT_SYMBOL(hci_conn_switch_role);
1274 /* Enter active mode */
1275 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active)
1277 struct hci_dev *hdev = conn->hdev;
1279 BT_DBG("hcon %p mode %d", conn, conn->mode);
1281 if (conn->mode != HCI_CM_SNIFF)
1282 goto timer;
1284 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active)
1285 goto timer;
1287 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
1288 struct hci_cp_exit_sniff_mode cp;
1289 cp.handle = cpu_to_le16(conn->handle);
1290 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp);
1293 timer:
1294 if (hdev->idle_timeout > 0)
1295 queue_delayed_work(hdev->workqueue, &conn->idle_work,
1296 msecs_to_jiffies(hdev->idle_timeout));
1299 /* Drop all connection on the device */
1300 void hci_conn_hash_flush(struct hci_dev *hdev)
1302 struct hci_conn_hash *h = &hdev->conn_hash;
1303 struct hci_conn *c, *n;
1305 BT_DBG("hdev %s", hdev->name);
1307 list_for_each_entry_safe(c, n, &h->list, list) {
1308 c->state = BT_CLOSED;
1310 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM);
1311 hci_conn_del(c);
1315 /* Check pending connect attempts */
1316 void hci_conn_check_pending(struct hci_dev *hdev)
1318 struct hci_conn *conn;
1320 BT_DBG("hdev %s", hdev->name);
1322 hci_dev_lock(hdev);
1324 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2);
1325 if (conn)
1326 hci_acl_create_connection(conn);
1328 hci_dev_unlock(hdev);
1331 static u32 get_link_mode(struct hci_conn *conn)
1333 u32 link_mode = 0;
1335 if (conn->role == HCI_ROLE_MASTER)
1336 link_mode |= HCI_LM_MASTER;
1338 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1339 link_mode |= HCI_LM_ENCRYPT;
1341 if (test_bit(HCI_CONN_AUTH, &conn->flags))
1342 link_mode |= HCI_LM_AUTH;
1344 if (test_bit(HCI_CONN_SECURE, &conn->flags))
1345 link_mode |= HCI_LM_SECURE;
1347 if (test_bit(HCI_CONN_FIPS, &conn->flags))
1348 link_mode |= HCI_LM_FIPS;
1350 return link_mode;
1353 int hci_get_conn_list(void __user *arg)
1355 struct hci_conn *c;
1356 struct hci_conn_list_req req, *cl;
1357 struct hci_conn_info *ci;
1358 struct hci_dev *hdev;
1359 int n = 0, size, err;
1361 if (copy_from_user(&req, arg, sizeof(req)))
1362 return -EFAULT;
1364 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci))
1365 return -EINVAL;
1367 size = sizeof(req) + req.conn_num * sizeof(*ci);
1369 cl = kmalloc(size, GFP_KERNEL);
1370 if (!cl)
1371 return -ENOMEM;
1373 hdev = hci_dev_get(req.dev_id);
1374 if (!hdev) {
1375 kfree(cl);
1376 return -ENODEV;
1379 ci = cl->conn_info;
1381 hci_dev_lock(hdev);
1382 list_for_each_entry(c, &hdev->conn_hash.list, list) {
1383 bacpy(&(ci + n)->bdaddr, &c->dst);
1384 (ci + n)->handle = c->handle;
1385 (ci + n)->type = c->type;
1386 (ci + n)->out = c->out;
1387 (ci + n)->state = c->state;
1388 (ci + n)->link_mode = get_link_mode(c);
1389 if (++n >= req.conn_num)
1390 break;
1392 hci_dev_unlock(hdev);
1394 cl->dev_id = hdev->id;
1395 cl->conn_num = n;
1396 size = sizeof(req) + n * sizeof(*ci);
1398 hci_dev_put(hdev);
1400 err = copy_to_user(arg, cl, size);
1401 kfree(cl);
1403 return err ? -EFAULT : 0;
1406 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg)
1408 struct hci_conn_info_req req;
1409 struct hci_conn_info ci;
1410 struct hci_conn *conn;
1411 char __user *ptr = arg + sizeof(req);
1413 if (copy_from_user(&req, arg, sizeof(req)))
1414 return -EFAULT;
1416 hci_dev_lock(hdev);
1417 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr);
1418 if (conn) {
1419 bacpy(&ci.bdaddr, &conn->dst);
1420 ci.handle = conn->handle;
1421 ci.type = conn->type;
1422 ci.out = conn->out;
1423 ci.state = conn->state;
1424 ci.link_mode = get_link_mode(conn);
1426 hci_dev_unlock(hdev);
1428 if (!conn)
1429 return -ENOENT;
1431 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0;
1434 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg)
1436 struct hci_auth_info_req req;
1437 struct hci_conn *conn;
1439 if (copy_from_user(&req, arg, sizeof(req)))
1440 return -EFAULT;
1442 hci_dev_lock(hdev);
1443 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr);
1444 if (conn)
1445 req.type = conn->auth_type;
1446 hci_dev_unlock(hdev);
1448 if (!conn)
1449 return -ENOENT;
1451 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0;
1454 struct hci_chan *hci_chan_create(struct hci_conn *conn)
1456 struct hci_dev *hdev = conn->hdev;
1457 struct hci_chan *chan;
1459 BT_DBG("%s hcon %p", hdev->name, conn);
1461 if (test_bit(HCI_CONN_DROP, &conn->flags)) {
1462 BT_DBG("Refusing to create new hci_chan");
1463 return NULL;
1466 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1467 if (!chan)
1468 return NULL;
1470 chan->conn = hci_conn_get(conn);
1471 skb_queue_head_init(&chan->data_q);
1472 chan->state = BT_CONNECTED;
1474 list_add_rcu(&chan->list, &conn->chan_list);
1476 return chan;
1479 void hci_chan_del(struct hci_chan *chan)
1481 struct hci_conn *conn = chan->conn;
1482 struct hci_dev *hdev = conn->hdev;
1484 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan);
1486 list_del_rcu(&chan->list);
1488 synchronize_rcu();
1490 /* Prevent new hci_chan's to be created for this hci_conn */
1491 set_bit(HCI_CONN_DROP, &conn->flags);
1493 hci_conn_put(conn);
1495 skb_queue_purge(&chan->data_q);
1496 kfree(chan);
1499 void hci_chan_list_flush(struct hci_conn *conn)
1501 struct hci_chan *chan, *n;
1503 BT_DBG("hcon %p", conn);
1505 list_for_each_entry_safe(chan, n, &conn->chan_list, list)
1506 hci_chan_del(chan);
1509 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon,
1510 __u16 handle)
1512 struct hci_chan *hchan;
1514 list_for_each_entry(hchan, &hcon->chan_list, list) {
1515 if (hchan->handle == handle)
1516 return hchan;
1519 return NULL;
1522 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle)
1524 struct hci_conn_hash *h = &hdev->conn_hash;
1525 struct hci_conn *hcon;
1526 struct hci_chan *hchan = NULL;
1528 rcu_read_lock();
1530 list_for_each_entry_rcu(hcon, &h->list, list) {
1531 hchan = __hci_chan_lookup_handle(hcon, handle);
1532 if (hchan)
1533 break;
1536 rcu_read_unlock();
1538 return hchan;