Preempt-RCU: Use softirq instead of tasklets for
[linux-2.6/btrfs-unstable.git] / kernel / sched_fair.c
blobdfa18d55561dbfbedaf1e7c3f4bc5cf5ccf2b2b0
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length
29 * and have no persistent notion like in traditional, time-slice
30 * based scheduling concepts.
32 * (to see the precise effective timeslice length of your workload,
33 * run vmstat and monitor the context-switches (cs) field)
35 unsigned int sysctl_sched_latency = 20000000ULL;
38 * Minimal preemption granularity for CPU-bound tasks:
39 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
41 unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
46 static unsigned int sched_nr_latency = 5;
49 * After fork, child runs first. (default) If set to 0 then
50 * parent will (try to) run first.
52 const_debug unsigned int sysctl_sched_child_runs_first = 1;
55 * sys_sched_yield() compat mode
57 * This option switches the agressive yield implementation of the
58 * old scheduler back on.
60 unsigned int __read_mostly sysctl_sched_compat_yield;
63 * SCHED_BATCH wake-up granularity.
64 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
66 * This option delays the preemption effects of decoupled workloads
67 * and reduces their over-scheduling. Synchronous workloads will still
68 * have immediate wakeup/sleep latencies.
70 unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
73 * SCHED_OTHER wake-up granularity.
74 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
80 unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
82 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
84 /**************************************************************
85 * CFS operations on generic schedulable entities:
88 #ifdef CONFIG_FAIR_GROUP_SCHED
90 /* cpu runqueue to which this cfs_rq is attached */
91 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
93 return cfs_rq->rq;
96 /* An entity is a task if it doesn't "own" a runqueue */
97 #define entity_is_task(se) (!se->my_q)
99 #else /* CONFIG_FAIR_GROUP_SCHED */
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
103 return container_of(cfs_rq, struct rq, cfs);
106 #define entity_is_task(se) 1
108 #endif /* CONFIG_FAIR_GROUP_SCHED */
110 static inline struct task_struct *task_of(struct sched_entity *se)
112 return container_of(se, struct task_struct, se);
116 /**************************************************************
117 * Scheduling class tree data structure manipulation methods:
120 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
122 s64 delta = (s64)(vruntime - min_vruntime);
123 if (delta > 0)
124 min_vruntime = vruntime;
126 return min_vruntime;
129 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
131 s64 delta = (s64)(vruntime - min_vruntime);
132 if (delta < 0)
133 min_vruntime = vruntime;
135 return min_vruntime;
138 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
140 return se->vruntime - cfs_rq->min_vruntime;
144 * Enqueue an entity into the rb-tree:
146 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
148 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
149 struct rb_node *parent = NULL;
150 struct sched_entity *entry;
151 s64 key = entity_key(cfs_rq, se);
152 int leftmost = 1;
155 * Find the right place in the rbtree:
157 while (*link) {
158 parent = *link;
159 entry = rb_entry(parent, struct sched_entity, run_node);
161 * We dont care about collisions. Nodes with
162 * the same key stay together.
164 if (key < entity_key(cfs_rq, entry)) {
165 link = &parent->rb_left;
166 } else {
167 link = &parent->rb_right;
168 leftmost = 0;
173 * Maintain a cache of leftmost tree entries (it is frequently
174 * used):
176 if (leftmost)
177 cfs_rq->rb_leftmost = &se->run_node;
179 rb_link_node(&se->run_node, parent, link);
180 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
183 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
185 if (cfs_rq->rb_leftmost == &se->run_node)
186 cfs_rq->rb_leftmost = rb_next(&se->run_node);
188 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
191 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
193 return cfs_rq->rb_leftmost;
196 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
198 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
201 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
203 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
204 struct sched_entity *se = NULL;
205 struct rb_node *parent;
207 while (*link) {
208 parent = *link;
209 se = rb_entry(parent, struct sched_entity, run_node);
210 link = &parent->rb_right;
213 return se;
216 /**************************************************************
217 * Scheduling class statistics methods:
220 #ifdef CONFIG_SCHED_DEBUG
221 int sched_nr_latency_handler(struct ctl_table *table, int write,
222 struct file *filp, void __user *buffer, size_t *lenp,
223 loff_t *ppos)
225 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
227 if (ret || !write)
228 return ret;
230 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
231 sysctl_sched_min_granularity);
233 return 0;
235 #endif
238 * The idea is to set a period in which each task runs once.
240 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
241 * this period because otherwise the slices get too small.
243 * p = (nr <= nl) ? l : l*nr/nl
245 static u64 __sched_period(unsigned long nr_running)
247 u64 period = sysctl_sched_latency;
248 unsigned long nr_latency = sched_nr_latency;
250 if (unlikely(nr_running > nr_latency)) {
251 period = sysctl_sched_min_granularity;
252 period *= nr_running;
255 return period;
259 * We calculate the wall-time slice from the period by taking a part
260 * proportional to the weight.
262 * s = p*w/rw
264 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
266 u64 slice = __sched_period(cfs_rq->nr_running);
268 slice *= se->load.weight;
269 do_div(slice, cfs_rq->load.weight);
271 return slice;
275 * We calculate the vruntime slice.
277 * vs = s/w = p/rw
279 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
281 u64 vslice = __sched_period(nr_running);
283 vslice *= NICE_0_LOAD;
284 do_div(vslice, rq_weight);
286 return vslice;
289 static u64 sched_vslice(struct cfs_rq *cfs_rq)
291 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
294 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
296 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
297 cfs_rq->nr_running + 1);
301 * Update the current task's runtime statistics. Skip current tasks that
302 * are not in our scheduling class.
304 static inline void
305 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
306 unsigned long delta_exec)
308 unsigned long delta_exec_weighted;
309 u64 vruntime;
311 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
313 curr->sum_exec_runtime += delta_exec;
314 schedstat_add(cfs_rq, exec_clock, delta_exec);
315 delta_exec_weighted = delta_exec;
316 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
317 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
318 &curr->load);
320 curr->vruntime += delta_exec_weighted;
323 * maintain cfs_rq->min_vruntime to be a monotonic increasing
324 * value tracking the leftmost vruntime in the tree.
326 if (first_fair(cfs_rq)) {
327 vruntime = min_vruntime(curr->vruntime,
328 __pick_next_entity(cfs_rq)->vruntime);
329 } else
330 vruntime = curr->vruntime;
332 cfs_rq->min_vruntime =
333 max_vruntime(cfs_rq->min_vruntime, vruntime);
336 static void update_curr(struct cfs_rq *cfs_rq)
338 struct sched_entity *curr = cfs_rq->curr;
339 u64 now = rq_of(cfs_rq)->clock;
340 unsigned long delta_exec;
342 if (unlikely(!curr))
343 return;
346 * Get the amount of time the current task was running
347 * since the last time we changed load (this cannot
348 * overflow on 32 bits):
350 delta_exec = (unsigned long)(now - curr->exec_start);
352 __update_curr(cfs_rq, curr, delta_exec);
353 curr->exec_start = now;
355 if (entity_is_task(curr)) {
356 struct task_struct *curtask = task_of(curr);
358 cpuacct_charge(curtask, delta_exec);
362 static inline void
363 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
365 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
369 * Task is being enqueued - update stats:
371 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
374 * Are we enqueueing a waiting task? (for current tasks
375 * a dequeue/enqueue event is a NOP)
377 if (se != cfs_rq->curr)
378 update_stats_wait_start(cfs_rq, se);
381 static void
382 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
384 schedstat_set(se->wait_max, max(se->wait_max,
385 rq_of(cfs_rq)->clock - se->wait_start));
386 schedstat_set(se->wait_start, 0);
389 static inline void
390 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
393 * Mark the end of the wait period if dequeueing a
394 * waiting task:
396 if (se != cfs_rq->curr)
397 update_stats_wait_end(cfs_rq, se);
401 * We are picking a new current task - update its stats:
403 static inline void
404 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
407 * We are starting a new run period:
409 se->exec_start = rq_of(cfs_rq)->clock;
412 /**************************************************
413 * Scheduling class queueing methods:
416 static void
417 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
419 update_load_add(&cfs_rq->load, se->load.weight);
420 cfs_rq->nr_running++;
421 se->on_rq = 1;
424 static void
425 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
427 update_load_sub(&cfs_rq->load, se->load.weight);
428 cfs_rq->nr_running--;
429 se->on_rq = 0;
432 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
434 #ifdef CONFIG_SCHEDSTATS
435 if (se->sleep_start) {
436 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
438 if ((s64)delta < 0)
439 delta = 0;
441 if (unlikely(delta > se->sleep_max))
442 se->sleep_max = delta;
444 se->sleep_start = 0;
445 se->sum_sleep_runtime += delta;
447 if (se->block_start) {
448 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
450 if ((s64)delta < 0)
451 delta = 0;
453 if (unlikely(delta > se->block_max))
454 se->block_max = delta;
456 se->block_start = 0;
457 se->sum_sleep_runtime += delta;
460 * Blocking time is in units of nanosecs, so shift by 20 to
461 * get a milliseconds-range estimation of the amount of
462 * time that the task spent sleeping:
464 if (unlikely(prof_on == SLEEP_PROFILING)) {
465 struct task_struct *tsk = task_of(se);
467 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
468 delta >> 20);
471 #endif
474 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
476 #ifdef CONFIG_SCHED_DEBUG
477 s64 d = se->vruntime - cfs_rq->min_vruntime;
479 if (d < 0)
480 d = -d;
482 if (d > 3*sysctl_sched_latency)
483 schedstat_inc(cfs_rq, nr_spread_over);
484 #endif
487 static void
488 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
490 u64 vruntime;
492 vruntime = cfs_rq->min_vruntime;
494 if (sched_feat(TREE_AVG)) {
495 struct sched_entity *last = __pick_last_entity(cfs_rq);
496 if (last) {
497 vruntime += last->vruntime;
498 vruntime >>= 1;
500 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
501 vruntime += sched_vslice(cfs_rq)/2;
504 * The 'current' period is already promised to the current tasks,
505 * however the extra weight of the new task will slow them down a
506 * little, place the new task so that it fits in the slot that
507 * stays open at the end.
509 if (initial && sched_feat(START_DEBIT))
510 vruntime += sched_vslice_add(cfs_rq, se);
512 if (!initial) {
513 /* sleeps upto a single latency don't count. */
514 if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se))
515 vruntime -= sysctl_sched_latency;
517 /* ensure we never gain time by being placed backwards. */
518 vruntime = max_vruntime(se->vruntime, vruntime);
521 se->vruntime = vruntime;
524 static void
525 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
528 * Update run-time statistics of the 'current'.
530 update_curr(cfs_rq);
532 if (wakeup) {
533 place_entity(cfs_rq, se, 0);
534 enqueue_sleeper(cfs_rq, se);
537 update_stats_enqueue(cfs_rq, se);
538 check_spread(cfs_rq, se);
539 if (se != cfs_rq->curr)
540 __enqueue_entity(cfs_rq, se);
541 account_entity_enqueue(cfs_rq, se);
544 static void
545 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
548 * Update run-time statistics of the 'current'.
550 update_curr(cfs_rq);
552 update_stats_dequeue(cfs_rq, se);
553 if (sleep) {
554 #ifdef CONFIG_SCHEDSTATS
555 if (entity_is_task(se)) {
556 struct task_struct *tsk = task_of(se);
558 if (tsk->state & TASK_INTERRUPTIBLE)
559 se->sleep_start = rq_of(cfs_rq)->clock;
560 if (tsk->state & TASK_UNINTERRUPTIBLE)
561 se->block_start = rq_of(cfs_rq)->clock;
563 #endif
566 if (se != cfs_rq->curr)
567 __dequeue_entity(cfs_rq, se);
568 account_entity_dequeue(cfs_rq, se);
572 * Preempt the current task with a newly woken task if needed:
574 static void
575 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
577 unsigned long ideal_runtime, delta_exec;
579 ideal_runtime = sched_slice(cfs_rq, curr);
580 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
581 if (delta_exec > ideal_runtime)
582 resched_task(rq_of(cfs_rq)->curr);
585 static void
586 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
588 /* 'current' is not kept within the tree. */
589 if (se->on_rq) {
591 * Any task has to be enqueued before it get to execute on
592 * a CPU. So account for the time it spent waiting on the
593 * runqueue.
595 update_stats_wait_end(cfs_rq, se);
596 __dequeue_entity(cfs_rq, se);
599 update_stats_curr_start(cfs_rq, se);
600 cfs_rq->curr = se;
601 #ifdef CONFIG_SCHEDSTATS
603 * Track our maximum slice length, if the CPU's load is at
604 * least twice that of our own weight (i.e. dont track it
605 * when there are only lesser-weight tasks around):
607 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
608 se->slice_max = max(se->slice_max,
609 se->sum_exec_runtime - se->prev_sum_exec_runtime);
611 #endif
612 se->prev_sum_exec_runtime = se->sum_exec_runtime;
615 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
617 struct sched_entity *se = NULL;
619 if (first_fair(cfs_rq)) {
620 se = __pick_next_entity(cfs_rq);
621 set_next_entity(cfs_rq, se);
624 return se;
627 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
630 * If still on the runqueue then deactivate_task()
631 * was not called and update_curr() has to be done:
633 if (prev->on_rq)
634 update_curr(cfs_rq);
636 check_spread(cfs_rq, prev);
637 if (prev->on_rq) {
638 update_stats_wait_start(cfs_rq, prev);
639 /* Put 'current' back into the tree. */
640 __enqueue_entity(cfs_rq, prev);
642 cfs_rq->curr = NULL;
645 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
648 * Update run-time statistics of the 'current'.
650 update_curr(cfs_rq);
652 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
653 check_preempt_tick(cfs_rq, curr);
656 /**************************************************
657 * CFS operations on tasks:
660 #ifdef CONFIG_FAIR_GROUP_SCHED
662 /* Walk up scheduling entities hierarchy */
663 #define for_each_sched_entity(se) \
664 for (; se; se = se->parent)
666 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
668 return p->se.cfs_rq;
671 /* runqueue on which this entity is (to be) queued */
672 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
674 return se->cfs_rq;
677 /* runqueue "owned" by this group */
678 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
680 return grp->my_q;
683 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
684 * another cpu ('this_cpu')
686 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
688 return cfs_rq->tg->cfs_rq[this_cpu];
691 /* Iterate thr' all leaf cfs_rq's on a runqueue */
692 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
693 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
695 /* Do the two (enqueued) entities belong to the same group ? */
696 static inline int
697 is_same_group(struct sched_entity *se, struct sched_entity *pse)
699 if (se->cfs_rq == pse->cfs_rq)
700 return 1;
702 return 0;
705 static inline struct sched_entity *parent_entity(struct sched_entity *se)
707 return se->parent;
710 #define GROUP_IMBALANCE_PCT 20
712 #else /* CONFIG_FAIR_GROUP_SCHED */
714 #define for_each_sched_entity(se) \
715 for (; se; se = NULL)
717 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
719 return &task_rq(p)->cfs;
722 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
724 struct task_struct *p = task_of(se);
725 struct rq *rq = task_rq(p);
727 return &rq->cfs;
730 /* runqueue "owned" by this group */
731 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
733 return NULL;
736 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
738 return &cpu_rq(this_cpu)->cfs;
741 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
742 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
744 static inline int
745 is_same_group(struct sched_entity *se, struct sched_entity *pse)
747 return 1;
750 static inline struct sched_entity *parent_entity(struct sched_entity *se)
752 return NULL;
755 #endif /* CONFIG_FAIR_GROUP_SCHED */
758 * The enqueue_task method is called before nr_running is
759 * increased. Here we update the fair scheduling stats and
760 * then put the task into the rbtree:
762 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
764 struct cfs_rq *cfs_rq;
765 struct sched_entity *se = &p->se,
766 *topse = NULL; /* Highest schedulable entity */
767 int incload = 1;
769 for_each_sched_entity(se) {
770 topse = se;
771 if (se->on_rq) {
772 incload = 0;
773 break;
775 cfs_rq = cfs_rq_of(se);
776 enqueue_entity(cfs_rq, se, wakeup);
777 wakeup = 1;
779 /* Increment cpu load if we just enqueued the first task of a group on
780 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
781 * at the highest grouping level.
783 if (incload)
784 inc_cpu_load(rq, topse->load.weight);
788 * The dequeue_task method is called before nr_running is
789 * decreased. We remove the task from the rbtree and
790 * update the fair scheduling stats:
792 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
794 struct cfs_rq *cfs_rq;
795 struct sched_entity *se = &p->se,
796 *topse = NULL; /* Highest schedulable entity */
797 int decload = 1;
799 for_each_sched_entity(se) {
800 topse = se;
801 cfs_rq = cfs_rq_of(se);
802 dequeue_entity(cfs_rq, se, sleep);
803 /* Don't dequeue parent if it has other entities besides us */
804 if (cfs_rq->load.weight) {
805 if (parent_entity(se))
806 decload = 0;
807 break;
809 sleep = 1;
811 /* Decrement cpu load if we just dequeued the last task of a group on
812 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
813 * at the highest grouping level.
815 if (decload)
816 dec_cpu_load(rq, topse->load.weight);
820 * sched_yield() support is very simple - we dequeue and enqueue.
822 * If compat_yield is turned on then we requeue to the end of the tree.
824 static void yield_task_fair(struct rq *rq)
826 struct task_struct *curr = rq->curr;
827 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
828 struct sched_entity *rightmost, *se = &curr->se;
831 * Are we the only task in the tree?
833 if (unlikely(cfs_rq->nr_running == 1))
834 return;
836 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
837 __update_rq_clock(rq);
839 * Update run-time statistics of the 'current'.
841 update_curr(cfs_rq);
843 return;
846 * Find the rightmost entry in the rbtree:
848 rightmost = __pick_last_entity(cfs_rq);
850 * Already in the rightmost position?
852 if (unlikely(rightmost->vruntime < se->vruntime))
853 return;
856 * Minimally necessary key value to be last in the tree:
857 * Upon rescheduling, sched_class::put_prev_task() will place
858 * 'current' within the tree based on its new key value.
860 se->vruntime = rightmost->vruntime + 1;
864 * wake_idle() will wake a task on an idle cpu if task->cpu is
865 * not idle and an idle cpu is available. The span of cpus to
866 * search starts with cpus closest then further out as needed,
867 * so we always favor a closer, idle cpu.
869 * Returns the CPU we should wake onto.
871 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
872 static int wake_idle(int cpu, struct task_struct *p)
874 cpumask_t tmp;
875 struct sched_domain *sd;
876 int i;
879 * If it is idle, then it is the best cpu to run this task.
881 * This cpu is also the best, if it has more than one task already.
882 * Siblings must be also busy(in most cases) as they didn't already
883 * pickup the extra load from this cpu and hence we need not check
884 * sibling runqueue info. This will avoid the checks and cache miss
885 * penalities associated with that.
887 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
888 return cpu;
890 for_each_domain(cpu, sd) {
891 if (sd->flags & SD_WAKE_IDLE) {
892 cpus_and(tmp, sd->span, p->cpus_allowed);
893 for_each_cpu_mask(i, tmp) {
894 if (idle_cpu(i)) {
895 if (i != task_cpu(p)) {
896 schedstat_inc(p,
897 se.nr_wakeups_idle);
899 return i;
902 } else {
903 break;
906 return cpu;
908 #else
909 static inline int wake_idle(int cpu, struct task_struct *p)
911 return cpu;
913 #endif
915 #ifdef CONFIG_SMP
916 static int select_task_rq_fair(struct task_struct *p, int sync)
918 int cpu, this_cpu;
919 struct rq *rq;
920 struct sched_domain *sd, *this_sd = NULL;
921 int new_cpu;
923 cpu = task_cpu(p);
924 rq = task_rq(p);
925 this_cpu = smp_processor_id();
926 new_cpu = cpu;
928 if (cpu == this_cpu)
929 goto out_set_cpu;
931 for_each_domain(this_cpu, sd) {
932 if (cpu_isset(cpu, sd->span)) {
933 this_sd = sd;
934 break;
938 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
939 goto out_set_cpu;
942 * Check for affine wakeup and passive balancing possibilities.
944 if (this_sd) {
945 int idx = this_sd->wake_idx;
946 unsigned int imbalance;
947 unsigned long load, this_load;
949 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
951 load = source_load(cpu, idx);
952 this_load = target_load(this_cpu, idx);
954 new_cpu = this_cpu; /* Wake to this CPU if we can */
956 if (this_sd->flags & SD_WAKE_AFFINE) {
957 unsigned long tl = this_load;
958 unsigned long tl_per_task;
961 * Attract cache-cold tasks on sync wakeups:
963 if (sync && !task_hot(p, rq->clock, this_sd))
964 goto out_set_cpu;
966 schedstat_inc(p, se.nr_wakeups_affine_attempts);
967 tl_per_task = cpu_avg_load_per_task(this_cpu);
970 * If sync wakeup then subtract the (maximum possible)
971 * effect of the currently running task from the load
972 * of the current CPU:
974 if (sync)
975 tl -= current->se.load.weight;
977 if ((tl <= load &&
978 tl + target_load(cpu, idx) <= tl_per_task) ||
979 100*(tl + p->se.load.weight) <= imbalance*load) {
981 * This domain has SD_WAKE_AFFINE and
982 * p is cache cold in this domain, and
983 * there is no bad imbalance.
985 schedstat_inc(this_sd, ttwu_move_affine);
986 schedstat_inc(p, se.nr_wakeups_affine);
987 goto out_set_cpu;
992 * Start passive balancing when half the imbalance_pct
993 * limit is reached.
995 if (this_sd->flags & SD_WAKE_BALANCE) {
996 if (imbalance*this_load <= 100*load) {
997 schedstat_inc(this_sd, ttwu_move_balance);
998 schedstat_inc(p, se.nr_wakeups_passive);
999 goto out_set_cpu;
1004 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1005 out_set_cpu:
1006 return wake_idle(new_cpu, p);
1008 #endif /* CONFIG_SMP */
1012 * Preempt the current task with a newly woken task if needed:
1014 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1016 struct task_struct *curr = rq->curr;
1017 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1018 struct sched_entity *se = &curr->se, *pse = &p->se;
1019 unsigned long gran;
1021 if (unlikely(rt_prio(p->prio))) {
1022 update_rq_clock(rq);
1023 update_curr(cfs_rq);
1024 resched_task(curr);
1025 return;
1028 * Batch tasks do not preempt (their preemption is driven by
1029 * the tick):
1031 if (unlikely(p->policy == SCHED_BATCH))
1032 return;
1034 if (!sched_feat(WAKEUP_PREEMPT))
1035 return;
1037 while (!is_same_group(se, pse)) {
1038 se = parent_entity(se);
1039 pse = parent_entity(pse);
1042 gran = sysctl_sched_wakeup_granularity;
1043 if (unlikely(se->load.weight != NICE_0_LOAD))
1044 gran = calc_delta_fair(gran, &se->load);
1046 if (pse->vruntime + gran < se->vruntime)
1047 resched_task(curr);
1050 static struct task_struct *pick_next_task_fair(struct rq *rq)
1052 struct cfs_rq *cfs_rq = &rq->cfs;
1053 struct sched_entity *se;
1055 if (unlikely(!cfs_rq->nr_running))
1056 return NULL;
1058 do {
1059 se = pick_next_entity(cfs_rq);
1060 cfs_rq = group_cfs_rq(se);
1061 } while (cfs_rq);
1063 return task_of(se);
1067 * Account for a descheduled task:
1069 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1071 struct sched_entity *se = &prev->se;
1072 struct cfs_rq *cfs_rq;
1074 for_each_sched_entity(se) {
1075 cfs_rq = cfs_rq_of(se);
1076 put_prev_entity(cfs_rq, se);
1080 #ifdef CONFIG_SMP
1081 /**************************************************
1082 * Fair scheduling class load-balancing methods:
1086 * Load-balancing iterator. Note: while the runqueue stays locked
1087 * during the whole iteration, the current task might be
1088 * dequeued so the iterator has to be dequeue-safe. Here we
1089 * achieve that by always pre-iterating before returning
1090 * the current task:
1092 static struct task_struct *
1093 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1095 struct task_struct *p;
1097 if (!curr)
1098 return NULL;
1100 p = rb_entry(curr, struct task_struct, se.run_node);
1101 cfs_rq->rb_load_balance_curr = rb_next(curr);
1103 return p;
1106 static struct task_struct *load_balance_start_fair(void *arg)
1108 struct cfs_rq *cfs_rq = arg;
1110 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1113 static struct task_struct *load_balance_next_fair(void *arg)
1115 struct cfs_rq *cfs_rq = arg;
1117 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1120 static unsigned long
1121 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1122 unsigned long max_load_move,
1123 struct sched_domain *sd, enum cpu_idle_type idle,
1124 int *all_pinned, int *this_best_prio)
1126 struct cfs_rq *busy_cfs_rq;
1127 long rem_load_move = max_load_move;
1128 struct rq_iterator cfs_rq_iterator;
1129 unsigned long load_moved;
1131 cfs_rq_iterator.start = load_balance_start_fair;
1132 cfs_rq_iterator.next = load_balance_next_fair;
1134 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1135 #ifdef CONFIG_FAIR_GROUP_SCHED
1136 struct cfs_rq *this_cfs_rq = busy_cfs_rq->tg->cfs_rq[this_cpu];
1137 unsigned long maxload, task_load, group_weight;
1138 unsigned long thisload, per_task_load;
1139 struct sched_entity *se = busy_cfs_rq->tg->se[busiest->cpu];
1141 task_load = busy_cfs_rq->load.weight;
1142 group_weight = se->load.weight;
1145 * 'group_weight' is contributed by tasks of total weight
1146 * 'task_load'. To move 'rem_load_move' worth of weight only,
1147 * we need to move a maximum task load of:
1149 * maxload = (remload / group_weight) * task_load;
1151 maxload = (rem_load_move * task_load) / group_weight;
1153 if (!maxload || !task_load)
1154 continue;
1156 per_task_load = task_load / busy_cfs_rq->nr_running;
1158 * balance_tasks will try to forcibly move atleast one task if
1159 * possible (because of SCHED_LOAD_SCALE_FUZZ). Avoid that if
1160 * maxload is less than GROUP_IMBALANCE_FUZZ% the per_task_load.
1162 if (100 * maxload < GROUP_IMBALANCE_PCT * per_task_load)
1163 continue;
1165 /* Disable priority-based load balance */
1166 *this_best_prio = 0;
1167 thisload = this_cfs_rq->load.weight;
1168 #else
1169 # define maxload rem_load_move
1170 #endif
1172 * pass busy_cfs_rq argument into
1173 * load_balance_[start|next]_fair iterators
1175 cfs_rq_iterator.arg = busy_cfs_rq;
1176 load_moved = balance_tasks(this_rq, this_cpu, busiest,
1177 maxload, sd, idle, all_pinned,
1178 this_best_prio,
1179 &cfs_rq_iterator);
1181 #ifdef CONFIG_FAIR_GROUP_SCHED
1183 * load_moved holds the task load that was moved. The
1184 * effective (group) weight moved would be:
1185 * load_moved_eff = load_moved/task_load * group_weight;
1187 load_moved = (group_weight * load_moved) / task_load;
1189 /* Adjust shares on both cpus to reflect load_moved */
1190 group_weight -= load_moved;
1191 set_se_shares(se, group_weight);
1193 se = busy_cfs_rq->tg->se[this_cpu];
1194 if (!thisload)
1195 group_weight = load_moved;
1196 else
1197 group_weight = se->load.weight + load_moved;
1198 set_se_shares(se, group_weight);
1199 #endif
1201 rem_load_move -= load_moved;
1203 if (rem_load_move <= 0)
1204 break;
1207 return max_load_move - rem_load_move;
1210 static int
1211 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1212 struct sched_domain *sd, enum cpu_idle_type idle)
1214 struct cfs_rq *busy_cfs_rq;
1215 struct rq_iterator cfs_rq_iterator;
1217 cfs_rq_iterator.start = load_balance_start_fair;
1218 cfs_rq_iterator.next = load_balance_next_fair;
1220 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1222 * pass busy_cfs_rq argument into
1223 * load_balance_[start|next]_fair iterators
1225 cfs_rq_iterator.arg = busy_cfs_rq;
1226 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1227 &cfs_rq_iterator))
1228 return 1;
1231 return 0;
1233 #endif
1236 * scheduler tick hitting a task of our scheduling class:
1238 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1240 struct cfs_rq *cfs_rq;
1241 struct sched_entity *se = &curr->se;
1243 for_each_sched_entity(se) {
1244 cfs_rq = cfs_rq_of(se);
1245 entity_tick(cfs_rq, se);
1249 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1252 * Share the fairness runtime between parent and child, thus the
1253 * total amount of pressure for CPU stays equal - new tasks
1254 * get a chance to run but frequent forkers are not allowed to
1255 * monopolize the CPU. Note: the parent runqueue is locked,
1256 * the child is not running yet.
1258 static void task_new_fair(struct rq *rq, struct task_struct *p)
1260 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1261 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1262 int this_cpu = smp_processor_id();
1264 sched_info_queued(p);
1266 update_curr(cfs_rq);
1267 place_entity(cfs_rq, se, 1);
1269 /* 'curr' will be NULL if the child belongs to a different group */
1270 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1271 curr && curr->vruntime < se->vruntime) {
1273 * Upon rescheduling, sched_class::put_prev_task() will place
1274 * 'current' within the tree based on its new key value.
1276 swap(curr->vruntime, se->vruntime);
1279 enqueue_task_fair(rq, p, 0);
1280 resched_task(rq->curr);
1284 * Priority of the task has changed. Check to see if we preempt
1285 * the current task.
1287 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1288 int oldprio, int running)
1291 * Reschedule if we are currently running on this runqueue and
1292 * our priority decreased, or if we are not currently running on
1293 * this runqueue and our priority is higher than the current's
1295 if (running) {
1296 if (p->prio > oldprio)
1297 resched_task(rq->curr);
1298 } else
1299 check_preempt_curr(rq, p);
1303 * We switched to the sched_fair class.
1305 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1306 int running)
1309 * We were most likely switched from sched_rt, so
1310 * kick off the schedule if running, otherwise just see
1311 * if we can still preempt the current task.
1313 if (running)
1314 resched_task(rq->curr);
1315 else
1316 check_preempt_curr(rq, p);
1319 /* Account for a task changing its policy or group.
1321 * This routine is mostly called to set cfs_rq->curr field when a task
1322 * migrates between groups/classes.
1324 static void set_curr_task_fair(struct rq *rq)
1326 struct sched_entity *se = &rq->curr->se;
1328 for_each_sched_entity(se)
1329 set_next_entity(cfs_rq_of(se), se);
1333 * All the scheduling class methods:
1335 static const struct sched_class fair_sched_class = {
1336 .next = &idle_sched_class,
1337 .enqueue_task = enqueue_task_fair,
1338 .dequeue_task = dequeue_task_fair,
1339 .yield_task = yield_task_fair,
1340 #ifdef CONFIG_SMP
1341 .select_task_rq = select_task_rq_fair,
1342 #endif /* CONFIG_SMP */
1344 .check_preempt_curr = check_preempt_wakeup,
1346 .pick_next_task = pick_next_task_fair,
1347 .put_prev_task = put_prev_task_fair,
1349 #ifdef CONFIG_SMP
1350 .load_balance = load_balance_fair,
1351 .move_one_task = move_one_task_fair,
1352 #endif
1354 .set_curr_task = set_curr_task_fair,
1355 .task_tick = task_tick_fair,
1356 .task_new = task_new_fair,
1358 .prio_changed = prio_changed_fair,
1359 .switched_to = switched_to_fair,
1362 #ifdef CONFIG_SCHED_DEBUG
1363 static void print_cfs_stats(struct seq_file *m, int cpu)
1365 struct cfs_rq *cfs_rq;
1367 #ifdef CONFIG_FAIR_GROUP_SCHED
1368 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1369 #endif
1370 lock_task_group_list();
1371 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1372 print_cfs_rq(m, cpu, cfs_rq);
1373 unlock_task_group_list();
1375 #endif