sch_tbf: fix two null pointer dereferences on init failure
[linux-2.6/btrfs-unstable.git] / drivers / infiniband / hw / hfi1 / driver.c
bloba50870e455a30156a75c7527e4ec2b7646b8de9b
1 /*
2 * Copyright(c) 2015-2017 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
7 * GPL LICENSE SUMMARY
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * BSD LICENSE
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
50 #include <linux/io.h>
51 #include <linux/delay.h>
52 #include <linux/netdevice.h>
53 #include <linux/vmalloc.h>
54 #include <linux/module.h>
55 #include <linux/prefetch.h>
56 #include <rdma/ib_verbs.h>
58 #include "hfi.h"
59 #include "trace.h"
60 #include "qp.h"
61 #include "sdma.h"
62 #include "debugfs.h"
63 #include "vnic.h"
65 #undef pr_fmt
66 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
69 * The size has to be longer than this string, so we can append
70 * board/chip information to it in the initialization code.
72 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
74 DEFINE_SPINLOCK(hfi1_devs_lock);
75 LIST_HEAD(hfi1_dev_list);
76 DEFINE_MUTEX(hfi1_mutex); /* general driver use */
78 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
79 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
80 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
81 HFI1_DEFAULT_MAX_MTU));
83 unsigned int hfi1_cu = 1;
84 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
85 MODULE_PARM_DESC(cu, "Credit return units");
87 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
88 static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
89 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
90 static const struct kernel_param_ops cap_ops = {
91 .set = hfi1_caps_set,
92 .get = hfi1_caps_get
94 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
95 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
97 MODULE_LICENSE("Dual BSD/GPL");
98 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
99 MODULE_VERSION(HFI1_DRIVER_VERSION);
102 * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
104 #define MAX_PKT_RECV 64
106 * MAX_PKT_THREAD_RCV is the max # of packets processed before
107 * the qp_wait_list queue is flushed.
109 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
110 #define EGR_HEAD_UPDATE_THRESHOLD 16
112 struct hfi1_ib_stats hfi1_stats;
114 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
116 int ret = 0;
117 unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
118 cap_mask = *cap_mask_ptr, value, diff,
119 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
120 HFI1_CAP_WRITABLE_MASK);
122 ret = kstrtoul(val, 0, &value);
123 if (ret) {
124 pr_warn("Invalid module parameter value for 'cap_mask'\n");
125 goto done;
127 /* Get the changed bits (except the locked bit) */
128 diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
130 /* Remove any bits that are not allowed to change after driver load */
131 if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
132 pr_warn("Ignoring non-writable capability bits %#lx\n",
133 diff & ~write_mask);
134 diff &= write_mask;
137 /* Mask off any reserved bits */
138 diff &= ~HFI1_CAP_RESERVED_MASK;
139 /* Clear any previously set and changing bits */
140 cap_mask &= ~diff;
141 /* Update the bits with the new capability */
142 cap_mask |= (value & diff);
143 /* Check for any kernel/user restrictions */
144 diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
145 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
146 cap_mask &= ~diff;
147 /* Set the bitmask to the final set */
148 *cap_mask_ptr = cap_mask;
149 done:
150 return ret;
153 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
155 unsigned long cap_mask = *(unsigned long *)kp->arg;
157 cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
158 cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
160 return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
163 const char *get_unit_name(int unit)
165 static char iname[16];
167 snprintf(iname, sizeof(iname), DRIVER_NAME "_%u", unit);
168 return iname;
171 const char *get_card_name(struct rvt_dev_info *rdi)
173 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
174 struct hfi1_devdata *dd = container_of(ibdev,
175 struct hfi1_devdata, verbs_dev);
176 return get_unit_name(dd->unit);
179 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
181 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
182 struct hfi1_devdata *dd = container_of(ibdev,
183 struct hfi1_devdata, verbs_dev);
184 return dd->pcidev;
188 * Return count of units with at least one port ACTIVE.
190 int hfi1_count_active_units(void)
192 struct hfi1_devdata *dd;
193 struct hfi1_pportdata *ppd;
194 unsigned long flags;
195 int pidx, nunits_active = 0;
197 spin_lock_irqsave(&hfi1_devs_lock, flags);
198 list_for_each_entry(dd, &hfi1_dev_list, list) {
199 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase)
200 continue;
201 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
202 ppd = dd->pport + pidx;
203 if (ppd->lid && ppd->linkup) {
204 nunits_active++;
205 break;
209 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
210 return nunits_active;
214 * Get address of eager buffer from it's index (allocated in chunks, not
215 * contiguous).
217 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
218 u8 *update)
220 u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
222 *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
223 return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
224 (offset * RCV_BUF_BLOCK_SIZE));
228 * Validate and encode the a given RcvArray Buffer size.
229 * The function will check whether the given size falls within
230 * allowed size ranges for the respective type and, optionally,
231 * return the proper encoding.
233 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
235 if (unlikely(!PAGE_ALIGNED(size)))
236 return 0;
237 if (unlikely(size < MIN_EAGER_BUFFER))
238 return 0;
239 if (size >
240 (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
241 return 0;
242 if (encoded)
243 *encoded = ilog2(size / PAGE_SIZE) + 1;
244 return 1;
247 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
248 struct hfi1_packet *packet)
250 struct ib_header *rhdr = packet->hdr;
251 u32 rte = rhf_rcv_type_err(packet->rhf);
252 int lnh = ib_get_lnh(rhdr);
253 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
254 struct hfi1_devdata *dd = ppd->dd;
255 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
257 if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR))
258 return;
260 if (packet->rhf & RHF_TID_ERR) {
261 /* For TIDERR and RC QPs preemptively schedule a NAK */
262 struct ib_other_headers *ohdr = NULL;
263 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
264 u16 lid = ib_get_dlid(rhdr);
265 u32 qp_num;
266 u32 rcv_flags = 0;
268 /* Sanity check packet */
269 if (tlen < 24)
270 goto drop;
272 /* Check for GRH */
273 if (lnh == HFI1_LRH_BTH) {
274 ohdr = &rhdr->u.oth;
275 } else if (lnh == HFI1_LRH_GRH) {
276 u32 vtf;
278 ohdr = &rhdr->u.l.oth;
279 if (rhdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
280 goto drop;
281 vtf = be32_to_cpu(rhdr->u.l.grh.version_tclass_flow);
282 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
283 goto drop;
284 rcv_flags |= HFI1_HAS_GRH;
285 } else {
286 goto drop;
288 /* Get the destination QP number. */
289 qp_num = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
290 if (lid < be16_to_cpu(IB_MULTICAST_LID_BASE)) {
291 struct rvt_qp *qp;
292 unsigned long flags;
294 rcu_read_lock();
295 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
296 if (!qp) {
297 rcu_read_unlock();
298 goto drop;
302 * Handle only RC QPs - for other QP types drop error
303 * packet.
305 spin_lock_irqsave(&qp->r_lock, flags);
307 /* Check for valid receive state. */
308 if (!(ib_rvt_state_ops[qp->state] &
309 RVT_PROCESS_RECV_OK)) {
310 ibp->rvp.n_pkt_drops++;
313 switch (qp->ibqp.qp_type) {
314 case IB_QPT_RC:
315 hfi1_rc_hdrerr(
316 rcd,
317 rhdr,
318 rcv_flags,
319 qp);
320 break;
321 default:
322 /* For now don't handle any other QP types */
323 break;
326 spin_unlock_irqrestore(&qp->r_lock, flags);
327 rcu_read_unlock();
328 } /* Unicast QP */
329 } /* Valid packet with TIDErr */
331 /* handle "RcvTypeErr" flags */
332 switch (rte) {
333 case RHF_RTE_ERROR_OP_CODE_ERR:
335 u32 opcode;
336 void *ebuf = NULL;
337 __be32 *bth = NULL;
339 if (rhf_use_egr_bfr(packet->rhf))
340 ebuf = packet->ebuf;
342 if (!ebuf)
343 goto drop; /* this should never happen */
345 if (lnh == HFI1_LRH_BTH)
346 bth = (__be32 *)ebuf;
347 else if (lnh == HFI1_LRH_GRH)
348 bth = (__be32 *)((char *)ebuf + sizeof(struct ib_grh));
349 else
350 goto drop;
352 opcode = be32_to_cpu(bth[0]) >> 24;
353 opcode &= 0xff;
355 if (opcode == IB_OPCODE_CNP) {
357 * Only in pre-B0 h/w is the CNP_OPCODE handled
358 * via this code path.
360 struct rvt_qp *qp = NULL;
361 u32 lqpn, rqpn;
362 u16 rlid;
363 u8 svc_type, sl, sc5;
365 sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
366 sl = ibp->sc_to_sl[sc5];
368 lqpn = be32_to_cpu(bth[1]) & RVT_QPN_MASK;
369 rcu_read_lock();
370 qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
371 if (!qp) {
372 rcu_read_unlock();
373 goto drop;
376 switch (qp->ibqp.qp_type) {
377 case IB_QPT_UD:
378 rlid = 0;
379 rqpn = 0;
380 svc_type = IB_CC_SVCTYPE_UD;
381 break;
382 case IB_QPT_UC:
383 rlid = ib_get_slid(rhdr);
384 rqpn = qp->remote_qpn;
385 svc_type = IB_CC_SVCTYPE_UC;
386 break;
387 default:
388 goto drop;
391 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
392 rcu_read_unlock();
395 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
396 break;
398 default:
399 break;
402 drop:
403 return;
406 static inline void init_packet(struct hfi1_ctxtdata *rcd,
407 struct hfi1_packet *packet)
409 packet->rsize = rcd->rcvhdrqentsize; /* words */
410 packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */
411 packet->rcd = rcd;
412 packet->updegr = 0;
413 packet->etail = -1;
414 packet->rhf_addr = get_rhf_addr(rcd);
415 packet->rhf = rhf_to_cpu(packet->rhf_addr);
416 packet->rhqoff = rcd->head;
417 packet->numpkt = 0;
418 packet->rcv_flags = 0;
421 void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
422 bool do_cnp)
424 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
425 struct ib_header *hdr = pkt->hdr;
426 struct ib_other_headers *ohdr = pkt->ohdr;
427 struct ib_grh *grh = NULL;
428 u32 rqpn = 0, bth1;
429 u16 rlid, dlid = ib_get_dlid(hdr);
430 u8 sc, svc_type;
431 bool is_mcast = false;
433 if (pkt->rcv_flags & HFI1_HAS_GRH)
434 grh = &hdr->u.l.grh;
436 switch (qp->ibqp.qp_type) {
437 case IB_QPT_SMI:
438 case IB_QPT_GSI:
439 case IB_QPT_UD:
440 rlid = ib_get_slid(hdr);
441 rqpn = be32_to_cpu(ohdr->u.ud.deth[1]) & RVT_QPN_MASK;
442 svc_type = IB_CC_SVCTYPE_UD;
443 is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
444 (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
445 break;
446 case IB_QPT_UC:
447 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
448 rqpn = qp->remote_qpn;
449 svc_type = IB_CC_SVCTYPE_UC;
450 break;
451 case IB_QPT_RC:
452 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
453 rqpn = qp->remote_qpn;
454 svc_type = IB_CC_SVCTYPE_RC;
455 break;
456 default:
457 return;
460 sc = hfi1_9B_get_sc5(hdr, pkt->rhf);
462 bth1 = be32_to_cpu(ohdr->bth[1]);
463 if (do_cnp && (bth1 & IB_FECN_SMASK)) {
464 u16 pkey = (u16)be32_to_cpu(ohdr->bth[0]);
466 return_cnp(ibp, qp, rqpn, pkey, dlid, rlid, sc, grh);
469 if (!is_mcast && (bth1 & IB_BECN_SMASK)) {
470 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
471 u32 lqpn = bth1 & RVT_QPN_MASK;
472 u8 sl = ibp->sc_to_sl[sc];
474 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
479 struct ps_mdata {
480 struct hfi1_ctxtdata *rcd;
481 u32 rsize;
482 u32 maxcnt;
483 u32 ps_head;
484 u32 ps_tail;
485 u32 ps_seq;
488 static inline void init_ps_mdata(struct ps_mdata *mdata,
489 struct hfi1_packet *packet)
491 struct hfi1_ctxtdata *rcd = packet->rcd;
493 mdata->rcd = rcd;
494 mdata->rsize = packet->rsize;
495 mdata->maxcnt = packet->maxcnt;
496 mdata->ps_head = packet->rhqoff;
498 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
499 mdata->ps_tail = get_rcvhdrtail(rcd);
500 if (rcd->ctxt == HFI1_CTRL_CTXT)
501 mdata->ps_seq = rcd->seq_cnt;
502 else
503 mdata->ps_seq = 0; /* not used with DMA_RTAIL */
504 } else {
505 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
506 mdata->ps_seq = rcd->seq_cnt;
510 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
511 struct hfi1_ctxtdata *rcd)
513 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
514 return mdata->ps_head == mdata->ps_tail;
515 return mdata->ps_seq != rhf_rcv_seq(rhf);
518 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
519 struct hfi1_ctxtdata *rcd)
522 * Control context can potentially receive an invalid rhf.
523 * Drop such packets.
525 if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
526 return mdata->ps_seq != rhf_rcv_seq(rhf);
528 return 0;
531 static inline void update_ps_mdata(struct ps_mdata *mdata,
532 struct hfi1_ctxtdata *rcd)
534 mdata->ps_head += mdata->rsize;
535 if (mdata->ps_head >= mdata->maxcnt)
536 mdata->ps_head = 0;
538 /* Control context must do seq counting */
539 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
540 (rcd->ctxt == HFI1_CTRL_CTXT)) {
541 if (++mdata->ps_seq > 13)
542 mdata->ps_seq = 1;
547 * prescan_rxq - search through the receive queue looking for packets
548 * containing Excplicit Congestion Notifications (FECNs, or BECNs).
549 * When an ECN is found, process the Congestion Notification, and toggle
550 * it off.
551 * This is declared as a macro to allow quick checking of the port to avoid
552 * the overhead of a function call if not enabled.
554 #define prescan_rxq(rcd, packet) \
555 do { \
556 if (rcd->ppd->cc_prescan) \
557 __prescan_rxq(packet); \
558 } while (0)
559 static void __prescan_rxq(struct hfi1_packet *packet)
561 struct hfi1_ctxtdata *rcd = packet->rcd;
562 struct ps_mdata mdata;
564 init_ps_mdata(&mdata, packet);
566 while (1) {
567 struct hfi1_devdata *dd = rcd->dd;
568 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
569 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
570 dd->rhf_offset;
571 struct rvt_qp *qp;
572 struct ib_header *hdr;
573 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
574 u64 rhf = rhf_to_cpu(rhf_addr);
575 u32 etype = rhf_rcv_type(rhf), qpn, bth1;
576 int is_ecn = 0;
577 u8 lnh;
579 if (ps_done(&mdata, rhf, rcd))
580 break;
582 if (ps_skip(&mdata, rhf, rcd))
583 goto next;
585 if (etype != RHF_RCV_TYPE_IB)
586 goto next;
588 packet->hdr = hfi1_get_msgheader(dd, rhf_addr);
589 hdr = packet->hdr;
590 lnh = ib_get_lnh(hdr);
592 if (lnh == HFI1_LRH_BTH) {
593 packet->ohdr = &hdr->u.oth;
594 } else if (lnh == HFI1_LRH_GRH) {
595 packet->ohdr = &hdr->u.l.oth;
596 packet->rcv_flags |= HFI1_HAS_GRH;
597 } else {
598 goto next; /* just in case */
601 bth1 = be32_to_cpu(packet->ohdr->bth[1]);
602 is_ecn = !!(bth1 & (IB_FECN_SMASK | IB_BECN_SMASK));
604 if (!is_ecn)
605 goto next;
607 qpn = bth1 & RVT_QPN_MASK;
608 rcu_read_lock();
609 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
611 if (!qp) {
612 rcu_read_unlock();
613 goto next;
616 process_ecn(qp, packet, true);
617 rcu_read_unlock();
619 /* turn off BECN, FECN */
620 bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
621 packet->ohdr->bth[1] = cpu_to_be32(bth1);
622 next:
623 update_ps_mdata(&mdata, rcd);
627 static void process_rcv_qp_work(struct hfi1_ctxtdata *rcd)
629 struct rvt_qp *qp, *nqp;
632 * Iterate over all QPs waiting to respond.
633 * The list won't change since the IRQ is only run on one CPU.
635 list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
636 list_del_init(&qp->rspwait);
637 if (qp->r_flags & RVT_R_RSP_NAK) {
638 qp->r_flags &= ~RVT_R_RSP_NAK;
639 hfi1_send_rc_ack(rcd, qp, 0);
641 if (qp->r_flags & RVT_R_RSP_SEND) {
642 unsigned long flags;
644 qp->r_flags &= ~RVT_R_RSP_SEND;
645 spin_lock_irqsave(&qp->s_lock, flags);
646 if (ib_rvt_state_ops[qp->state] &
647 RVT_PROCESS_OR_FLUSH_SEND)
648 hfi1_schedule_send(qp);
649 spin_unlock_irqrestore(&qp->s_lock, flags);
651 rvt_put_qp(qp);
655 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
657 if (thread) {
658 if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
659 /* allow defered processing */
660 process_rcv_qp_work(packet->rcd);
661 cond_resched();
662 return RCV_PKT_OK;
663 } else {
664 this_cpu_inc(*packet->rcd->dd->rcv_limit);
665 return RCV_PKT_LIMIT;
669 static inline int check_max_packet(struct hfi1_packet *packet, int thread)
671 int ret = RCV_PKT_OK;
673 if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
674 ret = max_packet_exceeded(packet, thread);
675 return ret;
678 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
680 int ret;
682 /* Set up for the next packet */
683 packet->rhqoff += packet->rsize;
684 if (packet->rhqoff >= packet->maxcnt)
685 packet->rhqoff = 0;
687 packet->numpkt++;
688 ret = check_max_packet(packet, thread);
690 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
691 packet->rcd->dd->rhf_offset;
692 packet->rhf = rhf_to_cpu(packet->rhf_addr);
694 return ret;
697 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
699 int ret;
701 packet->hdr = hfi1_get_msgheader(packet->rcd->dd,
702 packet->rhf_addr);
703 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
704 packet->etype = rhf_rcv_type(packet->rhf);
705 /* total length */
706 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
707 /* retrieve eager buffer details */
708 packet->ebuf = NULL;
709 if (rhf_use_egr_bfr(packet->rhf)) {
710 packet->etail = rhf_egr_index(packet->rhf);
711 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
712 &packet->updegr);
714 * Prefetch the contents of the eager buffer. It is
715 * OK to send a negative length to prefetch_range().
716 * The +2 is the size of the RHF.
718 prefetch_range(packet->ebuf,
719 packet->tlen - ((packet->rcd->rcvhdrqentsize -
720 (rhf_hdrq_offset(packet->rhf)
721 + 2)) * 4));
725 * Call a type specific handler for the packet. We
726 * should be able to trust that etype won't be beyond
727 * the range of valid indexes. If so something is really
728 * wrong and we can probably just let things come
729 * crashing down. There is no need to eat another
730 * comparison in this performance critical code.
732 packet->rcd->dd->rhf_rcv_function_map[packet->etype](packet);
733 packet->numpkt++;
735 /* Set up for the next packet */
736 packet->rhqoff += packet->rsize;
737 if (packet->rhqoff >= packet->maxcnt)
738 packet->rhqoff = 0;
740 ret = check_max_packet(packet, thread);
742 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
743 packet->rcd->dd->rhf_offset;
744 packet->rhf = rhf_to_cpu(packet->rhf_addr);
746 return ret;
749 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
752 * Update head regs etc., every 16 packets, if not last pkt,
753 * to help prevent rcvhdrq overflows, when many packets
754 * are processed and queue is nearly full.
755 * Don't request an interrupt for intermediate updates.
757 if (!last && !(packet->numpkt & 0xf)) {
758 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
759 packet->etail, 0, 0);
760 packet->updegr = 0;
762 packet->rcv_flags = 0;
765 static inline void finish_packet(struct hfi1_packet *packet)
768 * Nothing we need to free for the packet.
770 * The only thing we need to do is a final update and call for an
771 * interrupt
773 update_usrhead(packet->rcd, packet->rcd->head, packet->updegr,
774 packet->etail, rcv_intr_dynamic, packet->numpkt);
778 * Handle receive interrupts when using the no dma rtail option.
780 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
782 u32 seq;
783 int last = RCV_PKT_OK;
784 struct hfi1_packet packet;
786 init_packet(rcd, &packet);
787 seq = rhf_rcv_seq(packet.rhf);
788 if (seq != rcd->seq_cnt) {
789 last = RCV_PKT_DONE;
790 goto bail;
793 prescan_rxq(rcd, &packet);
795 while (last == RCV_PKT_OK) {
796 last = process_rcv_packet(&packet, thread);
797 seq = rhf_rcv_seq(packet.rhf);
798 if (++rcd->seq_cnt > 13)
799 rcd->seq_cnt = 1;
800 if (seq != rcd->seq_cnt)
801 last = RCV_PKT_DONE;
802 process_rcv_update(last, &packet);
804 process_rcv_qp_work(rcd);
805 rcd->head = packet.rhqoff;
806 bail:
807 finish_packet(&packet);
808 return last;
811 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
813 u32 hdrqtail;
814 int last = RCV_PKT_OK;
815 struct hfi1_packet packet;
817 init_packet(rcd, &packet);
818 hdrqtail = get_rcvhdrtail(rcd);
819 if (packet.rhqoff == hdrqtail) {
820 last = RCV_PKT_DONE;
821 goto bail;
823 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
825 prescan_rxq(rcd, &packet);
827 while (last == RCV_PKT_OK) {
828 last = process_rcv_packet(&packet, thread);
829 if (packet.rhqoff == hdrqtail)
830 last = RCV_PKT_DONE;
831 process_rcv_update(last, &packet);
833 process_rcv_qp_work(rcd);
834 rcd->head = packet.rhqoff;
835 bail:
836 finish_packet(&packet);
837 return last;
840 static inline void set_nodma_rtail(struct hfi1_devdata *dd, u8 ctxt)
842 int i;
845 * For dynamically allocated kernel contexts (like vnic) switch
846 * interrupt handler only for that context. Otherwise, switch
847 * interrupt handler for all statically allocated kernel contexts.
849 if (ctxt >= dd->first_dyn_alloc_ctxt) {
850 dd->rcd[ctxt]->do_interrupt =
851 &handle_receive_interrupt_nodma_rtail;
852 return;
855 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++)
856 dd->rcd[i]->do_interrupt =
857 &handle_receive_interrupt_nodma_rtail;
860 static inline void set_dma_rtail(struct hfi1_devdata *dd, u8 ctxt)
862 int i;
865 * For dynamically allocated kernel contexts (like vnic) switch
866 * interrupt handler only for that context. Otherwise, switch
867 * interrupt handler for all statically allocated kernel contexts.
869 if (ctxt >= dd->first_dyn_alloc_ctxt) {
870 dd->rcd[ctxt]->do_interrupt =
871 &handle_receive_interrupt_dma_rtail;
872 return;
875 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++)
876 dd->rcd[i]->do_interrupt =
877 &handle_receive_interrupt_dma_rtail;
880 void set_all_slowpath(struct hfi1_devdata *dd)
882 int i;
884 /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
885 for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
886 struct hfi1_ctxtdata *rcd = dd->rcd[i];
888 if ((i < dd->first_dyn_alloc_ctxt) ||
889 (rcd && rcd->sc && (rcd->sc->type == SC_KERNEL)))
890 rcd->do_interrupt = &handle_receive_interrupt;
894 static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd,
895 struct hfi1_packet *packet,
896 struct hfi1_devdata *dd)
898 struct work_struct *lsaw = &rcd->ppd->linkstate_active_work;
899 struct ib_header *hdr = hfi1_get_msgheader(packet->rcd->dd,
900 packet->rhf_addr);
901 u8 etype = rhf_rcv_type(packet->rhf);
903 if (etype == RHF_RCV_TYPE_IB &&
904 hfi1_9B_get_sc5(hdr, packet->rhf) != 0xf) {
905 int hwstate = read_logical_state(dd);
907 if (hwstate != LSTATE_ACTIVE) {
908 dd_dev_info(dd, "Unexpected link state %d\n", hwstate);
909 return 0;
912 queue_work(rcd->ppd->hfi1_wq, lsaw);
913 return 1;
915 return 0;
919 * handle_receive_interrupt - receive a packet
920 * @rcd: the context
922 * Called from interrupt handler for errors or receive interrupt.
923 * This is the slow path interrupt handler.
925 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
927 struct hfi1_devdata *dd = rcd->dd;
928 u32 hdrqtail;
929 int needset, last = RCV_PKT_OK;
930 struct hfi1_packet packet;
931 int skip_pkt = 0;
933 /* Control context will always use the slow path interrupt handler */
934 needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
936 init_packet(rcd, &packet);
938 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
939 u32 seq = rhf_rcv_seq(packet.rhf);
941 if (seq != rcd->seq_cnt) {
942 last = RCV_PKT_DONE;
943 goto bail;
945 hdrqtail = 0;
946 } else {
947 hdrqtail = get_rcvhdrtail(rcd);
948 if (packet.rhqoff == hdrqtail) {
949 last = RCV_PKT_DONE;
950 goto bail;
952 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
955 * Control context can potentially receive an invalid
956 * rhf. Drop such packets.
958 if (rcd->ctxt == HFI1_CTRL_CTXT) {
959 u32 seq = rhf_rcv_seq(packet.rhf);
961 if (seq != rcd->seq_cnt)
962 skip_pkt = 1;
966 prescan_rxq(rcd, &packet);
968 while (last == RCV_PKT_OK) {
969 if (unlikely(dd->do_drop &&
970 atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) ==
971 DROP_PACKET_ON)) {
972 dd->do_drop = 0;
974 /* On to the next packet */
975 packet.rhqoff += packet.rsize;
976 packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
977 packet.rhqoff +
978 dd->rhf_offset;
979 packet.rhf = rhf_to_cpu(packet.rhf_addr);
981 } else if (skip_pkt) {
982 last = skip_rcv_packet(&packet, thread);
983 skip_pkt = 0;
984 } else {
985 /* Auto activate link on non-SC15 packet receive */
986 if (unlikely(rcd->ppd->host_link_state ==
987 HLS_UP_ARMED) &&
988 set_armed_to_active(rcd, &packet, dd))
989 goto bail;
990 last = process_rcv_packet(&packet, thread);
993 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
994 u32 seq = rhf_rcv_seq(packet.rhf);
996 if (++rcd->seq_cnt > 13)
997 rcd->seq_cnt = 1;
998 if (seq != rcd->seq_cnt)
999 last = RCV_PKT_DONE;
1000 if (needset) {
1001 dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n");
1002 set_nodma_rtail(dd, rcd->ctxt);
1003 needset = 0;
1005 } else {
1006 if (packet.rhqoff == hdrqtail)
1007 last = RCV_PKT_DONE;
1009 * Control context can potentially receive an invalid
1010 * rhf. Drop such packets.
1012 if (rcd->ctxt == HFI1_CTRL_CTXT) {
1013 u32 seq = rhf_rcv_seq(packet.rhf);
1015 if (++rcd->seq_cnt > 13)
1016 rcd->seq_cnt = 1;
1017 if (!last && (seq != rcd->seq_cnt))
1018 skip_pkt = 1;
1021 if (needset) {
1022 dd_dev_info(dd,
1023 "Switching to DMA_RTAIL\n");
1024 set_dma_rtail(dd, rcd->ctxt);
1025 needset = 0;
1029 process_rcv_update(last, &packet);
1032 process_rcv_qp_work(rcd);
1033 rcd->head = packet.rhqoff;
1035 bail:
1037 * Always write head at end, and setup rcv interrupt, even
1038 * if no packets were processed.
1040 finish_packet(&packet);
1041 return last;
1045 * We may discover in the interrupt that the hardware link state has
1046 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1047 * and we need to update the driver's notion of the link state. We cannot
1048 * run set_link_state from interrupt context, so we queue this function on
1049 * a workqueue.
1051 * We delay the regular interrupt processing until after the state changes
1052 * so that the link will be in the correct state by the time any application
1053 * we wake up attempts to send a reply to any message it received.
1054 * (Subsequent receive interrupts may possibly force the wakeup before we
1055 * update the link state.)
1057 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1058 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1059 * so we're safe from use-after-free of the rcd.
1061 void receive_interrupt_work(struct work_struct *work)
1063 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1064 linkstate_active_work);
1065 struct hfi1_devdata *dd = ppd->dd;
1066 int i;
1068 /* Received non-SC15 packet implies neighbor_normal */
1069 ppd->neighbor_normal = 1;
1070 set_link_state(ppd, HLS_UP_ACTIVE);
1073 * Interrupt all statically allocated kernel contexts that could
1074 * have had an interrupt during auto activation.
1076 for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++)
1077 force_recv_intr(dd->rcd[i]);
1081 * Convert a given MTU size to the on-wire MAD packet enumeration.
1082 * Return -1 if the size is invalid.
1084 int mtu_to_enum(u32 mtu, int default_if_bad)
1086 switch (mtu) {
1087 case 0: return OPA_MTU_0;
1088 case 256: return OPA_MTU_256;
1089 case 512: return OPA_MTU_512;
1090 case 1024: return OPA_MTU_1024;
1091 case 2048: return OPA_MTU_2048;
1092 case 4096: return OPA_MTU_4096;
1093 case 8192: return OPA_MTU_8192;
1094 case 10240: return OPA_MTU_10240;
1096 return default_if_bad;
1099 u16 enum_to_mtu(int mtu)
1101 switch (mtu) {
1102 case OPA_MTU_0: return 0;
1103 case OPA_MTU_256: return 256;
1104 case OPA_MTU_512: return 512;
1105 case OPA_MTU_1024: return 1024;
1106 case OPA_MTU_2048: return 2048;
1107 case OPA_MTU_4096: return 4096;
1108 case OPA_MTU_8192: return 8192;
1109 case OPA_MTU_10240: return 10240;
1110 default: return 0xffff;
1115 * set_mtu - set the MTU
1116 * @ppd: the per port data
1118 * We can handle "any" incoming size, the issue here is whether we
1119 * need to restrict our outgoing size. We do not deal with what happens
1120 * to programs that are already running when the size changes.
1122 int set_mtu(struct hfi1_pportdata *ppd)
1124 struct hfi1_devdata *dd = ppd->dd;
1125 int i, drain, ret = 0, is_up = 0;
1127 ppd->ibmtu = 0;
1128 for (i = 0; i < ppd->vls_supported; i++)
1129 if (ppd->ibmtu < dd->vld[i].mtu)
1130 ppd->ibmtu = dd->vld[i].mtu;
1131 ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1133 mutex_lock(&ppd->hls_lock);
1134 if (ppd->host_link_state == HLS_UP_INIT ||
1135 ppd->host_link_state == HLS_UP_ARMED ||
1136 ppd->host_link_state == HLS_UP_ACTIVE)
1137 is_up = 1;
1139 drain = !is_ax(dd) && is_up;
1141 if (drain)
1143 * MTU is specified per-VL. To ensure that no packet gets
1144 * stuck (due, e.g., to the MTU for the packet's VL being
1145 * reduced), empty the per-VL FIFOs before adjusting MTU.
1147 ret = stop_drain_data_vls(dd);
1149 if (ret) {
1150 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1151 __func__);
1152 goto err;
1155 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1157 if (drain)
1158 open_fill_data_vls(dd); /* reopen all VLs */
1160 err:
1161 mutex_unlock(&ppd->hls_lock);
1163 return ret;
1166 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1168 struct hfi1_devdata *dd = ppd->dd;
1170 ppd->lid = lid;
1171 ppd->lmc = lmc;
1172 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1174 dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1176 return 0;
1179 void shutdown_led_override(struct hfi1_pportdata *ppd)
1181 struct hfi1_devdata *dd = ppd->dd;
1184 * This pairs with the memory barrier in hfi1_start_led_override to
1185 * ensure that we read the correct state of LED beaconing represented
1186 * by led_override_timer_active
1188 smp_rmb();
1189 if (atomic_read(&ppd->led_override_timer_active)) {
1190 del_timer_sync(&ppd->led_override_timer);
1191 atomic_set(&ppd->led_override_timer_active, 0);
1192 /* Ensure the atomic_set is visible to all CPUs */
1193 smp_wmb();
1196 /* Hand control of the LED to the DC for normal operation */
1197 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1200 static void run_led_override(unsigned long opaque)
1202 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)opaque;
1203 struct hfi1_devdata *dd = ppd->dd;
1204 unsigned long timeout;
1205 int phase_idx;
1207 if (!(dd->flags & HFI1_INITTED))
1208 return;
1210 phase_idx = ppd->led_override_phase & 1;
1212 setextled(dd, phase_idx);
1214 timeout = ppd->led_override_vals[phase_idx];
1216 /* Set up for next phase */
1217 ppd->led_override_phase = !ppd->led_override_phase;
1219 mod_timer(&ppd->led_override_timer, jiffies + timeout);
1223 * To have the LED blink in a particular pattern, provide timeon and timeoff
1224 * in milliseconds.
1225 * To turn off custom blinking and return to normal operation, use
1226 * shutdown_led_override()
1228 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1229 unsigned int timeoff)
1231 if (!(ppd->dd->flags & HFI1_INITTED))
1232 return;
1234 /* Convert to jiffies for direct use in timer */
1235 ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1236 ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1238 /* Arbitrarily start from LED on phase */
1239 ppd->led_override_phase = 1;
1242 * If the timer has not already been started, do so. Use a "quick"
1243 * timeout so the handler will be called soon to look at our request.
1245 if (!timer_pending(&ppd->led_override_timer)) {
1246 setup_timer(&ppd->led_override_timer, run_led_override,
1247 (unsigned long)ppd);
1248 ppd->led_override_timer.expires = jiffies + 1;
1249 add_timer(&ppd->led_override_timer);
1250 atomic_set(&ppd->led_override_timer_active, 1);
1251 /* Ensure the atomic_set is visible to all CPUs */
1252 smp_wmb();
1257 * hfi1_reset_device - reset the chip if possible
1258 * @unit: the device to reset
1260 * Whether or not reset is successful, we attempt to re-initialize the chip
1261 * (that is, much like a driver unload/reload). We clear the INITTED flag
1262 * so that the various entry points will fail until we reinitialize. For
1263 * now, we only allow this if no user contexts are open that use chip resources
1265 int hfi1_reset_device(int unit)
1267 int ret, i;
1268 struct hfi1_devdata *dd = hfi1_lookup(unit);
1269 struct hfi1_pportdata *ppd;
1270 unsigned long flags;
1271 int pidx;
1273 if (!dd) {
1274 ret = -ENODEV;
1275 goto bail;
1278 dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1280 if (!dd->kregbase || !(dd->flags & HFI1_PRESENT)) {
1281 dd_dev_info(dd,
1282 "Invalid unit number %u or not initialized or not present\n",
1283 unit);
1284 ret = -ENXIO;
1285 goto bail;
1288 spin_lock_irqsave(&dd->uctxt_lock, flags);
1289 if (dd->rcd)
1290 for (i = dd->first_dyn_alloc_ctxt;
1291 i < dd->num_rcv_contexts; i++) {
1292 if (!dd->rcd[i])
1293 continue;
1294 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1295 ret = -EBUSY;
1296 goto bail;
1298 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1300 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1301 ppd = dd->pport + pidx;
1303 shutdown_led_override(ppd);
1305 if (dd->flags & HFI1_HAS_SEND_DMA)
1306 sdma_exit(dd);
1308 hfi1_reset_cpu_counters(dd);
1310 ret = hfi1_init(dd, 1);
1312 if (ret)
1313 dd_dev_err(dd,
1314 "Reinitialize unit %u after reset failed with %d\n",
1315 unit, ret);
1316 else
1317 dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1318 unit);
1320 bail:
1321 return ret;
1324 void handle_eflags(struct hfi1_packet *packet)
1326 struct hfi1_ctxtdata *rcd = packet->rcd;
1327 u32 rte = rhf_rcv_type_err(packet->rhf);
1329 rcv_hdrerr(rcd, rcd->ppd, packet);
1330 if (rhf_err_flags(packet->rhf))
1331 dd_dev_err(rcd->dd,
1332 "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n",
1333 rcd->ctxt, packet->rhf,
1334 packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1335 packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1336 packet->rhf & RHF_DC_ERR ? "dc " : "",
1337 packet->rhf & RHF_TID_ERR ? "tid " : "",
1338 packet->rhf & RHF_LEN_ERR ? "len " : "",
1339 packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1340 packet->rhf & RHF_VCRC_ERR ? "vcrc " : "",
1341 packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1342 rte);
1346 * The following functions are called by the interrupt handler. They are type
1347 * specific handlers for each packet type.
1349 int process_receive_ib(struct hfi1_packet *packet)
1351 if (unlikely(hfi1_dbg_fault_packet(packet)))
1352 return RHF_RCV_CONTINUE;
1354 trace_hfi1_rcvhdr(packet->rcd->ppd->dd,
1355 packet->rcd->ctxt,
1356 rhf_err_flags(packet->rhf),
1357 RHF_RCV_TYPE_IB,
1358 packet->hlen,
1359 packet->tlen,
1360 packet->updegr,
1361 rhf_egr_index(packet->rhf));
1363 if (unlikely(
1364 (hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1365 (packet->rhf & RHF_DC_ERR))))
1366 return RHF_RCV_CONTINUE;
1368 if (unlikely(rhf_err_flags(packet->rhf))) {
1369 handle_eflags(packet);
1370 return RHF_RCV_CONTINUE;
1373 hfi1_ib_rcv(packet);
1374 return RHF_RCV_CONTINUE;
1377 static inline bool hfi1_is_vnic_packet(struct hfi1_packet *packet)
1379 /* Packet received in VNIC context via RSM */
1380 if (packet->rcd->is_vnic)
1381 return true;
1383 if ((HFI1_GET_L2_TYPE(packet->ebuf) == OPA_VNIC_L2_TYPE) &&
1384 (HFI1_GET_L4_TYPE(packet->ebuf) == OPA_VNIC_L4_ETHR))
1385 return true;
1387 return false;
1390 int process_receive_bypass(struct hfi1_packet *packet)
1392 struct hfi1_devdata *dd = packet->rcd->dd;
1394 if (unlikely(rhf_err_flags(packet->rhf))) {
1395 handle_eflags(packet);
1396 } else if (hfi1_is_vnic_packet(packet)) {
1397 hfi1_vnic_bypass_rcv(packet);
1398 return RHF_RCV_CONTINUE;
1401 dd_dev_err(dd, "Unsupported bypass packet. Dropping\n");
1402 incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1403 if (!(dd->err_info_rcvport.status_and_code & OPA_EI_STATUS_SMASK)) {
1404 u64 *flits = packet->ebuf;
1406 if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1407 dd->err_info_rcvport.packet_flit1 = flits[0];
1408 dd->err_info_rcvport.packet_flit2 =
1409 packet->tlen > sizeof(flits[0]) ? flits[1] : 0;
1411 dd->err_info_rcvport.status_and_code |=
1412 (OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1414 return RHF_RCV_CONTINUE;
1417 int process_receive_error(struct hfi1_packet *packet)
1419 /* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1420 if (unlikely(
1421 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1422 rhf_rcv_type_err(packet->rhf) == 3))
1423 return RHF_RCV_CONTINUE;
1425 handle_eflags(packet);
1427 if (unlikely(rhf_err_flags(packet->rhf)))
1428 dd_dev_err(packet->rcd->dd,
1429 "Unhandled error packet received. Dropping.\n");
1431 return RHF_RCV_CONTINUE;
1434 int kdeth_process_expected(struct hfi1_packet *packet)
1436 if (unlikely(hfi1_dbg_fault_packet(packet)))
1437 return RHF_RCV_CONTINUE;
1438 if (unlikely(rhf_err_flags(packet->rhf)))
1439 handle_eflags(packet);
1441 dd_dev_err(packet->rcd->dd,
1442 "Unhandled expected packet received. Dropping.\n");
1443 return RHF_RCV_CONTINUE;
1446 int kdeth_process_eager(struct hfi1_packet *packet)
1448 if (unlikely(rhf_err_flags(packet->rhf)))
1449 handle_eflags(packet);
1450 if (unlikely(hfi1_dbg_fault_packet(packet)))
1451 return RHF_RCV_CONTINUE;
1453 dd_dev_err(packet->rcd->dd,
1454 "Unhandled eager packet received. Dropping.\n");
1455 return RHF_RCV_CONTINUE;
1458 int process_receive_invalid(struct hfi1_packet *packet)
1460 dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1461 rhf_rcv_type(packet->rhf));
1462 return RHF_RCV_CONTINUE;