tcp: memset ca_priv data to 0 properly
[linux-2.6/btrfs-unstable.git] / fs / ext4 / file.c
blobcefa9835f275d9b062ae9b13765ea743edb53f64
1 /*
2 * linux/fs/ext4/file.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/file.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * ext4 fs regular file handling primitives
17 * 64-bit file support on 64-bit platforms by Jakub Jelinek
18 * (jj@sunsite.ms.mff.cuni.cz)
21 #include <linux/time.h>
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/path.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/pagevec.h>
28 #include <linux/uio.h>
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
34 #ifdef CONFIG_FS_DAX
35 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
37 struct inode *inode = file_inode(iocb->ki_filp);
38 ssize_t ret;
40 inode_lock_shared(inode);
42 * Recheck under inode lock - at this point we are sure it cannot
43 * change anymore
45 if (!IS_DAX(inode)) {
46 inode_unlock_shared(inode);
47 /* Fallback to buffered IO in case we cannot support DAX */
48 return generic_file_read_iter(iocb, to);
50 ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
51 inode_unlock_shared(inode);
53 file_accessed(iocb->ki_filp);
54 return ret;
56 #endif
58 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
60 if (unlikely(ext4_forced_shutdown(EXT4_SB(file_inode(iocb->ki_filp)->i_sb))))
61 return -EIO;
63 if (!iov_iter_count(to))
64 return 0; /* skip atime */
66 #ifdef CONFIG_FS_DAX
67 if (IS_DAX(file_inode(iocb->ki_filp)))
68 return ext4_dax_read_iter(iocb, to);
69 #endif
70 return generic_file_read_iter(iocb, to);
74 * Called when an inode is released. Note that this is different
75 * from ext4_file_open: open gets called at every open, but release
76 * gets called only when /all/ the files are closed.
78 static int ext4_release_file(struct inode *inode, struct file *filp)
80 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
81 ext4_alloc_da_blocks(inode);
82 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
84 /* if we are the last writer on the inode, drop the block reservation */
85 if ((filp->f_mode & FMODE_WRITE) &&
86 (atomic_read(&inode->i_writecount) == 1) &&
87 !EXT4_I(inode)->i_reserved_data_blocks)
89 down_write(&EXT4_I(inode)->i_data_sem);
90 ext4_discard_preallocations(inode);
91 up_write(&EXT4_I(inode)->i_data_sem);
93 if (is_dx(inode) && filp->private_data)
94 ext4_htree_free_dir_info(filp->private_data);
96 return 0;
99 static void ext4_unwritten_wait(struct inode *inode)
101 wait_queue_head_t *wq = ext4_ioend_wq(inode);
103 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
107 * This tests whether the IO in question is block-aligned or not.
108 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
109 * are converted to written only after the IO is complete. Until they are
110 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
111 * it needs to zero out portions of the start and/or end block. If 2 AIO
112 * threads are at work on the same unwritten block, they must be synchronized
113 * or one thread will zero the other's data, causing corruption.
115 static int
116 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
118 struct super_block *sb = inode->i_sb;
119 int blockmask = sb->s_blocksize - 1;
121 if (pos >= i_size_read(inode))
122 return 0;
124 if ((pos | iov_iter_alignment(from)) & blockmask)
125 return 1;
127 return 0;
130 /* Is IO overwriting allocated and initialized blocks? */
131 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
133 struct ext4_map_blocks map;
134 unsigned int blkbits = inode->i_blkbits;
135 int err, blklen;
137 if (pos + len > i_size_read(inode))
138 return false;
140 map.m_lblk = pos >> blkbits;
141 map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
142 blklen = map.m_len;
144 err = ext4_map_blocks(NULL, inode, &map, 0);
146 * 'err==len' means that all of the blocks have been preallocated,
147 * regardless of whether they have been initialized or not. To exclude
148 * unwritten extents, we need to check m_flags.
150 return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
153 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
155 struct inode *inode = file_inode(iocb->ki_filp);
156 ssize_t ret;
158 ret = generic_write_checks(iocb, from);
159 if (ret <= 0)
160 return ret;
162 * If we have encountered a bitmap-format file, the size limit
163 * is smaller than s_maxbytes, which is for extent-mapped files.
165 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
166 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
168 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
169 return -EFBIG;
170 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
172 return iov_iter_count(from);
175 #ifdef CONFIG_FS_DAX
176 static ssize_t
177 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
179 struct inode *inode = file_inode(iocb->ki_filp);
180 ssize_t ret;
182 inode_lock(inode);
183 ret = ext4_write_checks(iocb, from);
184 if (ret <= 0)
185 goto out;
186 ret = file_remove_privs(iocb->ki_filp);
187 if (ret)
188 goto out;
189 ret = file_update_time(iocb->ki_filp);
190 if (ret)
191 goto out;
193 ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
194 out:
195 inode_unlock(inode);
196 if (ret > 0)
197 ret = generic_write_sync(iocb, ret);
198 return ret;
200 #endif
202 static ssize_t
203 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
205 struct inode *inode = file_inode(iocb->ki_filp);
206 int o_direct = iocb->ki_flags & IOCB_DIRECT;
207 int unaligned_aio = 0;
208 int overwrite = 0;
209 ssize_t ret;
211 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
212 return -EIO;
214 #ifdef CONFIG_FS_DAX
215 if (IS_DAX(inode))
216 return ext4_dax_write_iter(iocb, from);
217 #endif
219 inode_lock(inode);
220 ret = ext4_write_checks(iocb, from);
221 if (ret <= 0)
222 goto out;
225 * Unaligned direct AIO must be serialized among each other as zeroing
226 * of partial blocks of two competing unaligned AIOs can result in data
227 * corruption.
229 if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
230 !is_sync_kiocb(iocb) &&
231 ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
232 unaligned_aio = 1;
233 ext4_unwritten_wait(inode);
236 iocb->private = &overwrite;
237 /* Check whether we do a DIO overwrite or not */
238 if (o_direct && ext4_should_dioread_nolock(inode) && !unaligned_aio &&
239 ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from)))
240 overwrite = 1;
242 ret = __generic_file_write_iter(iocb, from);
243 inode_unlock(inode);
245 if (ret > 0)
246 ret = generic_write_sync(iocb, ret);
248 return ret;
250 out:
251 inode_unlock(inode);
252 return ret;
255 #ifdef CONFIG_FS_DAX
256 static int ext4_dax_huge_fault(struct vm_fault *vmf,
257 enum page_entry_size pe_size)
259 int result;
260 struct inode *inode = file_inode(vmf->vma->vm_file);
261 struct super_block *sb = inode->i_sb;
262 bool write = vmf->flags & FAULT_FLAG_WRITE;
264 if (write) {
265 sb_start_pagefault(sb);
266 file_update_time(vmf->vma->vm_file);
268 down_read(&EXT4_I(inode)->i_mmap_sem);
269 result = dax_iomap_fault(vmf, pe_size, &ext4_iomap_ops);
270 up_read(&EXT4_I(inode)->i_mmap_sem);
271 if (write)
272 sb_end_pagefault(sb);
274 return result;
277 static int ext4_dax_fault(struct vm_fault *vmf)
279 return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
283 * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
284 * handler we check for races agaist truncate. Note that since we cycle through
285 * i_mmap_sem, we are sure that also any hole punching that began before we
286 * were called is finished by now and so if it included part of the file we
287 * are working on, our pte will get unmapped and the check for pte_same() in
288 * wp_pfn_shared() fails. Thus fault gets retried and things work out as
289 * desired.
291 static int ext4_dax_pfn_mkwrite(struct vm_fault *vmf)
293 struct inode *inode = file_inode(vmf->vma->vm_file);
294 struct super_block *sb = inode->i_sb;
295 loff_t size;
296 int ret;
298 sb_start_pagefault(sb);
299 file_update_time(vmf->vma->vm_file);
300 down_read(&EXT4_I(inode)->i_mmap_sem);
301 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
302 if (vmf->pgoff >= size)
303 ret = VM_FAULT_SIGBUS;
304 else
305 ret = dax_pfn_mkwrite(vmf);
306 up_read(&EXT4_I(inode)->i_mmap_sem);
307 sb_end_pagefault(sb);
309 return ret;
312 static const struct vm_operations_struct ext4_dax_vm_ops = {
313 .fault = ext4_dax_fault,
314 .huge_fault = ext4_dax_huge_fault,
315 .page_mkwrite = ext4_dax_fault,
316 .pfn_mkwrite = ext4_dax_pfn_mkwrite,
318 #else
319 #define ext4_dax_vm_ops ext4_file_vm_ops
320 #endif
322 static const struct vm_operations_struct ext4_file_vm_ops = {
323 .fault = ext4_filemap_fault,
324 .map_pages = filemap_map_pages,
325 .page_mkwrite = ext4_page_mkwrite,
328 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
330 struct inode *inode = file->f_mapping->host;
332 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
333 return -EIO;
335 if (ext4_encrypted_inode(inode)) {
336 int err = fscrypt_get_encryption_info(inode);
337 if (err)
338 return 0;
339 if (!fscrypt_has_encryption_key(inode))
340 return -ENOKEY;
342 file_accessed(file);
343 if (IS_DAX(file_inode(file))) {
344 vma->vm_ops = &ext4_dax_vm_ops;
345 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
346 } else {
347 vma->vm_ops = &ext4_file_vm_ops;
349 return 0;
352 static int ext4_file_open(struct inode * inode, struct file * filp)
354 struct super_block *sb = inode->i_sb;
355 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
356 struct vfsmount *mnt = filp->f_path.mnt;
357 struct dentry *dir;
358 struct path path;
359 char buf[64], *cp;
360 int ret;
362 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
363 return -EIO;
365 if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
366 !(sb->s_flags & MS_RDONLY))) {
367 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
369 * Sample where the filesystem has been mounted and
370 * store it in the superblock for sysadmin convenience
371 * when trying to sort through large numbers of block
372 * devices or filesystem images.
374 memset(buf, 0, sizeof(buf));
375 path.mnt = mnt;
376 path.dentry = mnt->mnt_root;
377 cp = d_path(&path, buf, sizeof(buf));
378 if (!IS_ERR(cp)) {
379 handle_t *handle;
380 int err;
382 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
383 if (IS_ERR(handle))
384 return PTR_ERR(handle);
385 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
386 err = ext4_journal_get_write_access(handle, sbi->s_sbh);
387 if (err) {
388 ext4_journal_stop(handle);
389 return err;
391 strlcpy(sbi->s_es->s_last_mounted, cp,
392 sizeof(sbi->s_es->s_last_mounted));
393 ext4_handle_dirty_super(handle, sb);
394 ext4_journal_stop(handle);
397 if (ext4_encrypted_inode(inode)) {
398 ret = fscrypt_get_encryption_info(inode);
399 if (ret)
400 return -EACCES;
401 if (!fscrypt_has_encryption_key(inode))
402 return -ENOKEY;
405 dir = dget_parent(file_dentry(filp));
406 if (ext4_encrypted_inode(d_inode(dir)) &&
407 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
408 ext4_warning(inode->i_sb,
409 "Inconsistent encryption contexts: %lu/%lu",
410 (unsigned long) d_inode(dir)->i_ino,
411 (unsigned long) inode->i_ino);
412 dput(dir);
413 return -EPERM;
415 dput(dir);
417 * Set up the jbd2_inode if we are opening the inode for
418 * writing and the journal is present
420 if (filp->f_mode & FMODE_WRITE) {
421 ret = ext4_inode_attach_jinode(inode);
422 if (ret < 0)
423 return ret;
425 return dquot_file_open(inode, filp);
429 * Here we use ext4_map_blocks() to get a block mapping for a extent-based
430 * file rather than ext4_ext_walk_space() because we can introduce
431 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
432 * function. When extent status tree has been fully implemented, it will
433 * track all extent status for a file and we can directly use it to
434 * retrieve the offset for SEEK_DATA/SEEK_HOLE.
438 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
439 * lookup page cache to check whether or not there has some data between
440 * [startoff, endoff] because, if this range contains an unwritten extent,
441 * we determine this extent as a data or a hole according to whether the
442 * page cache has data or not.
444 static int ext4_find_unwritten_pgoff(struct inode *inode,
445 int whence,
446 ext4_lblk_t end_blk,
447 loff_t *offset)
449 struct pagevec pvec;
450 unsigned int blkbits;
451 pgoff_t index;
452 pgoff_t end;
453 loff_t endoff;
454 loff_t startoff;
455 loff_t lastoff;
456 int found = 0;
458 blkbits = inode->i_sb->s_blocksize_bits;
459 startoff = *offset;
460 lastoff = startoff;
461 endoff = (loff_t)end_blk << blkbits;
463 index = startoff >> PAGE_SHIFT;
464 end = endoff >> PAGE_SHIFT;
466 pagevec_init(&pvec, 0);
467 do {
468 int i, num;
469 unsigned long nr_pages;
471 num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
472 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
473 (pgoff_t)num);
474 if (nr_pages == 0) {
475 if (whence == SEEK_DATA)
476 break;
478 BUG_ON(whence != SEEK_HOLE);
480 * If this is the first time to go into the loop and
481 * offset is not beyond the end offset, it will be a
482 * hole at this offset
484 if (lastoff == startoff || lastoff < endoff)
485 found = 1;
486 break;
490 * If this is the first time to go into the loop and
491 * offset is smaller than the first page offset, it will be a
492 * hole at this offset.
494 if (lastoff == startoff && whence == SEEK_HOLE &&
495 lastoff < page_offset(pvec.pages[0])) {
496 found = 1;
497 break;
500 for (i = 0; i < nr_pages; i++) {
501 struct page *page = pvec.pages[i];
502 struct buffer_head *bh, *head;
505 * If the current offset is not beyond the end of given
506 * range, it will be a hole.
508 if (lastoff < endoff && whence == SEEK_HOLE &&
509 page->index > end) {
510 found = 1;
511 *offset = lastoff;
512 goto out;
515 lock_page(page);
517 if (unlikely(page->mapping != inode->i_mapping)) {
518 unlock_page(page);
519 continue;
522 if (!page_has_buffers(page)) {
523 unlock_page(page);
524 continue;
527 if (page_has_buffers(page)) {
528 lastoff = page_offset(page);
529 bh = head = page_buffers(page);
530 do {
531 if (buffer_uptodate(bh) ||
532 buffer_unwritten(bh)) {
533 if (whence == SEEK_DATA)
534 found = 1;
535 } else {
536 if (whence == SEEK_HOLE)
537 found = 1;
539 if (found) {
540 *offset = max_t(loff_t,
541 startoff, lastoff);
542 unlock_page(page);
543 goto out;
545 lastoff += bh->b_size;
546 bh = bh->b_this_page;
547 } while (bh != head);
550 lastoff = page_offset(page) + PAGE_SIZE;
551 unlock_page(page);
555 * The no. of pages is less than our desired, that would be a
556 * hole in there.
558 if (nr_pages < num && whence == SEEK_HOLE) {
559 found = 1;
560 *offset = lastoff;
561 break;
564 index = pvec.pages[i - 1]->index + 1;
565 pagevec_release(&pvec);
566 } while (index <= end);
568 out:
569 pagevec_release(&pvec);
570 return found;
574 * ext4_seek_data() retrieves the offset for SEEK_DATA.
576 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
578 struct inode *inode = file->f_mapping->host;
579 struct extent_status es;
580 ext4_lblk_t start, last, end;
581 loff_t dataoff, isize;
582 int blkbits;
583 int ret;
585 inode_lock(inode);
587 isize = i_size_read(inode);
588 if (offset >= isize) {
589 inode_unlock(inode);
590 return -ENXIO;
593 blkbits = inode->i_sb->s_blocksize_bits;
594 start = offset >> blkbits;
595 last = start;
596 end = isize >> blkbits;
597 dataoff = offset;
599 do {
600 ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
601 if (ret <= 0) {
602 /* No extent found -> no data */
603 if (ret == 0)
604 ret = -ENXIO;
605 inode_unlock(inode);
606 return ret;
609 last = es.es_lblk;
610 if (last != start)
611 dataoff = (loff_t)last << blkbits;
612 if (!ext4_es_is_unwritten(&es))
613 break;
616 * If there is a unwritten extent at this offset,
617 * it will be as a data or a hole according to page
618 * cache that has data or not.
620 if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
621 es.es_lblk + es.es_len, &dataoff))
622 break;
623 last += es.es_len;
624 dataoff = (loff_t)last << blkbits;
625 cond_resched();
626 } while (last <= end);
628 inode_unlock(inode);
630 if (dataoff > isize)
631 return -ENXIO;
633 return vfs_setpos(file, dataoff, maxsize);
637 * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
639 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
641 struct inode *inode = file->f_mapping->host;
642 struct extent_status es;
643 ext4_lblk_t start, last, end;
644 loff_t holeoff, isize;
645 int blkbits;
646 int ret;
648 inode_lock(inode);
650 isize = i_size_read(inode);
651 if (offset >= isize) {
652 inode_unlock(inode);
653 return -ENXIO;
656 blkbits = inode->i_sb->s_blocksize_bits;
657 start = offset >> blkbits;
658 last = start;
659 end = isize >> blkbits;
660 holeoff = offset;
662 do {
663 ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
664 if (ret < 0) {
665 inode_unlock(inode);
666 return ret;
668 /* Found a hole? */
669 if (ret == 0 || es.es_lblk > last) {
670 if (last != start)
671 holeoff = (loff_t)last << blkbits;
672 break;
675 * If there is a unwritten extent at this offset,
676 * it will be as a data or a hole according to page
677 * cache that has data or not.
679 if (ext4_es_is_unwritten(&es) &&
680 ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
681 last + es.es_len, &holeoff))
682 break;
684 last += es.es_len;
685 holeoff = (loff_t)last << blkbits;
686 cond_resched();
687 } while (last <= end);
689 inode_unlock(inode);
691 if (holeoff > isize)
692 holeoff = isize;
694 return vfs_setpos(file, holeoff, maxsize);
698 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
699 * by calling generic_file_llseek_size() with the appropriate maxbytes
700 * value for each.
702 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
704 struct inode *inode = file->f_mapping->host;
705 loff_t maxbytes;
707 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
708 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
709 else
710 maxbytes = inode->i_sb->s_maxbytes;
712 switch (whence) {
713 case SEEK_SET:
714 case SEEK_CUR:
715 case SEEK_END:
716 return generic_file_llseek_size(file, offset, whence,
717 maxbytes, i_size_read(inode));
718 case SEEK_DATA:
719 return ext4_seek_data(file, offset, maxbytes);
720 case SEEK_HOLE:
721 return ext4_seek_hole(file, offset, maxbytes);
724 return -EINVAL;
727 const struct file_operations ext4_file_operations = {
728 .llseek = ext4_llseek,
729 .read_iter = ext4_file_read_iter,
730 .write_iter = ext4_file_write_iter,
731 .unlocked_ioctl = ext4_ioctl,
732 #ifdef CONFIG_COMPAT
733 .compat_ioctl = ext4_compat_ioctl,
734 #endif
735 .mmap = ext4_file_mmap,
736 .open = ext4_file_open,
737 .release = ext4_release_file,
738 .fsync = ext4_sync_file,
739 .get_unmapped_area = thp_get_unmapped_area,
740 .splice_read = generic_file_splice_read,
741 .splice_write = iter_file_splice_write,
742 .fallocate = ext4_fallocate,
745 const struct inode_operations ext4_file_inode_operations = {
746 .setattr = ext4_setattr,
747 .getattr = ext4_file_getattr,
748 .listxattr = ext4_listxattr,
749 .get_acl = ext4_get_acl,
750 .set_acl = ext4_set_acl,
751 .fiemap = ext4_fiemap,