power: supply: bq24735-charger: optionally poll the ac-detect gpio
[linux-2.6/btrfs-unstable.git] / include / linux / seqlock.h
blobead97654c4e9afa7239e068cb37f6981d77ce6a3
1 #ifndef __LINUX_SEQLOCK_H
2 #define __LINUX_SEQLOCK_H
3 /*
4 * Reader/writer consistent mechanism without starving writers. This type of
5 * lock for data where the reader wants a consistent set of information
6 * and is willing to retry if the information changes. There are two types
7 * of readers:
8 * 1. Sequence readers which never block a writer but they may have to retry
9 * if a writer is in progress by detecting change in sequence number.
10 * Writers do not wait for a sequence reader.
11 * 2. Locking readers which will wait if a writer or another locking reader
12 * is in progress. A locking reader in progress will also block a writer
13 * from going forward. Unlike the regular rwlock, the read lock here is
14 * exclusive so that only one locking reader can get it.
16 * This is not as cache friendly as brlock. Also, this may not work well
17 * for data that contains pointers, because any writer could
18 * invalidate a pointer that a reader was following.
20 * Expected non-blocking reader usage:
21 * do {
22 * seq = read_seqbegin(&foo);
23 * ...
24 * } while (read_seqretry(&foo, seq));
27 * On non-SMP the spin locks disappear but the writer still needs
28 * to increment the sequence variables because an interrupt routine could
29 * change the state of the data.
31 * Based on x86_64 vsyscall gettimeofday
32 * by Keith Owens and Andrea Arcangeli
35 #include <linux/spinlock.h>
36 #include <linux/preempt.h>
37 #include <linux/lockdep.h>
38 #include <linux/compiler.h>
39 #include <asm/processor.h>
42 * Version using sequence counter only.
43 * This can be used when code has its own mutex protecting the
44 * updating starting before the write_seqcountbeqin() and ending
45 * after the write_seqcount_end().
47 typedef struct seqcount {
48 unsigned sequence;
49 #ifdef CONFIG_DEBUG_LOCK_ALLOC
50 struct lockdep_map dep_map;
51 #endif
52 } seqcount_t;
54 static inline void __seqcount_init(seqcount_t *s, const char *name,
55 struct lock_class_key *key)
58 * Make sure we are not reinitializing a held lock:
60 lockdep_init_map(&s->dep_map, name, key, 0);
61 s->sequence = 0;
64 #ifdef CONFIG_DEBUG_LOCK_ALLOC
65 # define SEQCOUNT_DEP_MAP_INIT(lockname) \
66 .dep_map = { .name = #lockname } \
68 # define seqcount_init(s) \
69 do { \
70 static struct lock_class_key __key; \
71 __seqcount_init((s), #s, &__key); \
72 } while (0)
74 static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
76 seqcount_t *l = (seqcount_t *)s;
77 unsigned long flags;
79 local_irq_save(flags);
80 seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_);
81 seqcount_release(&l->dep_map, 1, _RET_IP_);
82 local_irq_restore(flags);
85 #else
86 # define SEQCOUNT_DEP_MAP_INIT(lockname)
87 # define seqcount_init(s) __seqcount_init(s, NULL, NULL)
88 # define seqcount_lockdep_reader_access(x)
89 #endif
91 #define SEQCNT_ZERO(lockname) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(lockname)}
94 /**
95 * __read_seqcount_begin - begin a seq-read critical section (without barrier)
96 * @s: pointer to seqcount_t
97 * Returns: count to be passed to read_seqcount_retry
99 * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
100 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
101 * provided before actually loading any of the variables that are to be
102 * protected in this critical section.
104 * Use carefully, only in critical code, and comment how the barrier is
105 * provided.
107 static inline unsigned __read_seqcount_begin(const seqcount_t *s)
109 unsigned ret;
111 repeat:
112 ret = READ_ONCE(s->sequence);
113 if (unlikely(ret & 1)) {
114 cpu_relax();
115 goto repeat;
117 return ret;
121 * raw_read_seqcount - Read the raw seqcount
122 * @s: pointer to seqcount_t
123 * Returns: count to be passed to read_seqcount_retry
125 * raw_read_seqcount opens a read critical section of the given
126 * seqcount without any lockdep checking and without checking or
127 * masking the LSB. Calling code is responsible for handling that.
129 static inline unsigned raw_read_seqcount(const seqcount_t *s)
131 unsigned ret = READ_ONCE(s->sequence);
132 smp_rmb();
133 return ret;
137 * raw_read_seqcount_begin - start seq-read critical section w/o lockdep
138 * @s: pointer to seqcount_t
139 * Returns: count to be passed to read_seqcount_retry
141 * raw_read_seqcount_begin opens a read critical section of the given
142 * seqcount, but without any lockdep checking. Validity of the critical
143 * section is tested by checking read_seqcount_retry function.
145 static inline unsigned raw_read_seqcount_begin(const seqcount_t *s)
147 unsigned ret = __read_seqcount_begin(s);
148 smp_rmb();
149 return ret;
153 * read_seqcount_begin - begin a seq-read critical section
154 * @s: pointer to seqcount_t
155 * Returns: count to be passed to read_seqcount_retry
157 * read_seqcount_begin opens a read critical section of the given seqcount.
158 * Validity of the critical section is tested by checking read_seqcount_retry
159 * function.
161 static inline unsigned read_seqcount_begin(const seqcount_t *s)
163 seqcount_lockdep_reader_access(s);
164 return raw_read_seqcount_begin(s);
168 * raw_seqcount_begin - begin a seq-read critical section
169 * @s: pointer to seqcount_t
170 * Returns: count to be passed to read_seqcount_retry
172 * raw_seqcount_begin opens a read critical section of the given seqcount.
173 * Validity of the critical section is tested by checking read_seqcount_retry
174 * function.
176 * Unlike read_seqcount_begin(), this function will not wait for the count
177 * to stabilize. If a writer is active when we begin, we will fail the
178 * read_seqcount_retry() instead of stabilizing at the beginning of the
179 * critical section.
181 static inline unsigned raw_seqcount_begin(const seqcount_t *s)
183 unsigned ret = READ_ONCE(s->sequence);
184 smp_rmb();
185 return ret & ~1;
189 * __read_seqcount_retry - end a seq-read critical section (without barrier)
190 * @s: pointer to seqcount_t
191 * @start: count, from read_seqcount_begin
192 * Returns: 1 if retry is required, else 0
194 * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
195 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
196 * provided before actually loading any of the variables that are to be
197 * protected in this critical section.
199 * Use carefully, only in critical code, and comment how the barrier is
200 * provided.
202 static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start)
204 return unlikely(s->sequence != start);
208 * read_seqcount_retry - end a seq-read critical section
209 * @s: pointer to seqcount_t
210 * @start: count, from read_seqcount_begin
211 * Returns: 1 if retry is required, else 0
213 * read_seqcount_retry closes a read critical section of the given seqcount.
214 * If the critical section was invalid, it must be ignored (and typically
215 * retried).
217 static inline int read_seqcount_retry(const seqcount_t *s, unsigned start)
219 smp_rmb();
220 return __read_seqcount_retry(s, start);
225 static inline void raw_write_seqcount_begin(seqcount_t *s)
227 s->sequence++;
228 smp_wmb();
231 static inline void raw_write_seqcount_end(seqcount_t *s)
233 smp_wmb();
234 s->sequence++;
238 * raw_write_seqcount_barrier - do a seq write barrier
239 * @s: pointer to seqcount_t
241 * This can be used to provide an ordering guarantee instead of the
242 * usual consistency guarantee. It is one wmb cheaper, because we can
243 * collapse the two back-to-back wmb()s.
245 * seqcount_t seq;
246 * bool X = true, Y = false;
248 * void read(void)
250 * bool x, y;
252 * do {
253 * int s = read_seqcount_begin(&seq);
255 * x = X; y = Y;
257 * } while (read_seqcount_retry(&seq, s));
259 * BUG_ON(!x && !y);
262 * void write(void)
264 * Y = true;
266 * raw_write_seqcount_barrier(seq);
268 * X = false;
271 static inline void raw_write_seqcount_barrier(seqcount_t *s)
273 s->sequence++;
274 smp_wmb();
275 s->sequence++;
278 static inline int raw_read_seqcount_latch(seqcount_t *s)
280 int seq = READ_ONCE(s->sequence);
281 /* Pairs with the first smp_wmb() in raw_write_seqcount_latch() */
282 smp_read_barrier_depends();
283 return seq;
287 * raw_write_seqcount_latch - redirect readers to even/odd copy
288 * @s: pointer to seqcount_t
290 * The latch technique is a multiversion concurrency control method that allows
291 * queries during non-atomic modifications. If you can guarantee queries never
292 * interrupt the modification -- e.g. the concurrency is strictly between CPUs
293 * -- you most likely do not need this.
295 * Where the traditional RCU/lockless data structures rely on atomic
296 * modifications to ensure queries observe either the old or the new state the
297 * latch allows the same for non-atomic updates. The trade-off is doubling the
298 * cost of storage; we have to maintain two copies of the entire data
299 * structure.
301 * Very simply put: we first modify one copy and then the other. This ensures
302 * there is always one copy in a stable state, ready to give us an answer.
304 * The basic form is a data structure like:
306 * struct latch_struct {
307 * seqcount_t seq;
308 * struct data_struct data[2];
309 * };
311 * Where a modification, which is assumed to be externally serialized, does the
312 * following:
314 * void latch_modify(struct latch_struct *latch, ...)
316 * smp_wmb(); <- Ensure that the last data[1] update is visible
317 * latch->seq++;
318 * smp_wmb(); <- Ensure that the seqcount update is visible
320 * modify(latch->data[0], ...);
322 * smp_wmb(); <- Ensure that the data[0] update is visible
323 * latch->seq++;
324 * smp_wmb(); <- Ensure that the seqcount update is visible
326 * modify(latch->data[1], ...);
329 * The query will have a form like:
331 * struct entry *latch_query(struct latch_struct *latch, ...)
333 * struct entry *entry;
334 * unsigned seq, idx;
336 * do {
337 * seq = raw_read_seqcount_latch(&latch->seq);
339 * idx = seq & 0x01;
340 * entry = data_query(latch->data[idx], ...);
342 * smp_rmb();
343 * } while (seq != latch->seq);
345 * return entry;
348 * So during the modification, queries are first redirected to data[1]. Then we
349 * modify data[0]. When that is complete, we redirect queries back to data[0]
350 * and we can modify data[1].
352 * NOTE: The non-requirement for atomic modifications does _NOT_ include
353 * the publishing of new entries in the case where data is a dynamic
354 * data structure.
356 * An iteration might start in data[0] and get suspended long enough
357 * to miss an entire modification sequence, once it resumes it might
358 * observe the new entry.
360 * NOTE: When data is a dynamic data structure; one should use regular RCU
361 * patterns to manage the lifetimes of the objects within.
363 static inline void raw_write_seqcount_latch(seqcount_t *s)
365 smp_wmb(); /* prior stores before incrementing "sequence" */
366 s->sequence++;
367 smp_wmb(); /* increment "sequence" before following stores */
371 * Sequence counter only version assumes that callers are using their
372 * own mutexing.
374 static inline void write_seqcount_begin_nested(seqcount_t *s, int subclass)
376 raw_write_seqcount_begin(s);
377 seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_);
380 static inline void write_seqcount_begin(seqcount_t *s)
382 write_seqcount_begin_nested(s, 0);
385 static inline void write_seqcount_end(seqcount_t *s)
387 seqcount_release(&s->dep_map, 1, _RET_IP_);
388 raw_write_seqcount_end(s);
392 * write_seqcount_invalidate - invalidate in-progress read-side seq operations
393 * @s: pointer to seqcount_t
395 * After write_seqcount_invalidate, no read-side seq operations will complete
396 * successfully and see data older than this.
398 static inline void write_seqcount_invalidate(seqcount_t *s)
400 smp_wmb();
401 s->sequence+=2;
404 typedef struct {
405 struct seqcount seqcount;
406 spinlock_t lock;
407 } seqlock_t;
410 * These macros triggered gcc-3.x compile-time problems. We think these are
411 * OK now. Be cautious.
413 #define __SEQLOCK_UNLOCKED(lockname) \
415 .seqcount = SEQCNT_ZERO(lockname), \
416 .lock = __SPIN_LOCK_UNLOCKED(lockname) \
419 #define seqlock_init(x) \
420 do { \
421 seqcount_init(&(x)->seqcount); \
422 spin_lock_init(&(x)->lock); \
423 } while (0)
425 #define DEFINE_SEQLOCK(x) \
426 seqlock_t x = __SEQLOCK_UNLOCKED(x)
429 * Read side functions for starting and finalizing a read side section.
431 static inline unsigned read_seqbegin(const seqlock_t *sl)
433 return read_seqcount_begin(&sl->seqcount);
436 static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
438 return read_seqcount_retry(&sl->seqcount, start);
442 * Lock out other writers and update the count.
443 * Acts like a normal spin_lock/unlock.
444 * Don't need preempt_disable() because that is in the spin_lock already.
446 static inline void write_seqlock(seqlock_t *sl)
448 spin_lock(&sl->lock);
449 write_seqcount_begin(&sl->seqcount);
452 static inline void write_sequnlock(seqlock_t *sl)
454 write_seqcount_end(&sl->seqcount);
455 spin_unlock(&sl->lock);
458 static inline void write_seqlock_bh(seqlock_t *sl)
460 spin_lock_bh(&sl->lock);
461 write_seqcount_begin(&sl->seqcount);
464 static inline void write_sequnlock_bh(seqlock_t *sl)
466 write_seqcount_end(&sl->seqcount);
467 spin_unlock_bh(&sl->lock);
470 static inline void write_seqlock_irq(seqlock_t *sl)
472 spin_lock_irq(&sl->lock);
473 write_seqcount_begin(&sl->seqcount);
476 static inline void write_sequnlock_irq(seqlock_t *sl)
478 write_seqcount_end(&sl->seqcount);
479 spin_unlock_irq(&sl->lock);
482 static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
484 unsigned long flags;
486 spin_lock_irqsave(&sl->lock, flags);
487 write_seqcount_begin(&sl->seqcount);
488 return flags;
491 #define write_seqlock_irqsave(lock, flags) \
492 do { flags = __write_seqlock_irqsave(lock); } while (0)
494 static inline void
495 write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
497 write_seqcount_end(&sl->seqcount);
498 spin_unlock_irqrestore(&sl->lock, flags);
502 * A locking reader exclusively locks out other writers and locking readers,
503 * but doesn't update the sequence number. Acts like a normal spin_lock/unlock.
504 * Don't need preempt_disable() because that is in the spin_lock already.
506 static inline void read_seqlock_excl(seqlock_t *sl)
508 spin_lock(&sl->lock);
511 static inline void read_sequnlock_excl(seqlock_t *sl)
513 spin_unlock(&sl->lock);
517 * read_seqbegin_or_lock - begin a sequence number check or locking block
518 * @lock: sequence lock
519 * @seq : sequence number to be checked
521 * First try it once optimistically without taking the lock. If that fails,
522 * take the lock. The sequence number is also used as a marker for deciding
523 * whether to be a reader (even) or writer (odd).
524 * N.B. seq must be initialized to an even number to begin with.
526 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
528 if (!(*seq & 1)) /* Even */
529 *seq = read_seqbegin(lock);
530 else /* Odd */
531 read_seqlock_excl(lock);
534 static inline int need_seqretry(seqlock_t *lock, int seq)
536 return !(seq & 1) && read_seqretry(lock, seq);
539 static inline void done_seqretry(seqlock_t *lock, int seq)
541 if (seq & 1)
542 read_sequnlock_excl(lock);
545 static inline void read_seqlock_excl_bh(seqlock_t *sl)
547 spin_lock_bh(&sl->lock);
550 static inline void read_sequnlock_excl_bh(seqlock_t *sl)
552 spin_unlock_bh(&sl->lock);
555 static inline void read_seqlock_excl_irq(seqlock_t *sl)
557 spin_lock_irq(&sl->lock);
560 static inline void read_sequnlock_excl_irq(seqlock_t *sl)
562 spin_unlock_irq(&sl->lock);
565 static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
567 unsigned long flags;
569 spin_lock_irqsave(&sl->lock, flags);
570 return flags;
573 #define read_seqlock_excl_irqsave(lock, flags) \
574 do { flags = __read_seqlock_excl_irqsave(lock); } while (0)
576 static inline void
577 read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
579 spin_unlock_irqrestore(&sl->lock, flags);
582 static inline unsigned long
583 read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq)
585 unsigned long flags = 0;
587 if (!(*seq & 1)) /* Even */
588 *seq = read_seqbegin(lock);
589 else /* Odd */
590 read_seqlock_excl_irqsave(lock, flags);
592 return flags;
595 static inline void
596 done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags)
598 if (seq & 1)
599 read_sequnlock_excl_irqrestore(lock, flags);
601 #endif /* __LINUX_SEQLOCK_H */