2 * mm/percpu.c - percpu memory allocator
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 * Copyright (C) 2017 Facebook Inc.
8 * Copyright (C) 2017 Dennis Zhou <dennisszhou@gmail.com>
10 * This file is released under the GPLv2 license.
12 * The percpu allocator handles both static and dynamic areas. Percpu
13 * areas are allocated in chunks which are divided into units. There is
14 * a 1-to-1 mapping for units to possible cpus. These units are grouped
15 * based on NUMA properties of the machine.
18 * ------------------- ------------------- ------------
19 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
20 * ------------------- ...... ------------------- .... ------------
22 * Allocation is done by offsets into a unit's address space. Ie., an
23 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
24 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
25 * and even sparse. Access is handled by configuring percpu base
26 * registers according to the cpu to unit mappings and offsetting the
27 * base address using pcpu_unit_size.
29 * There is special consideration for the first chunk which must handle
30 * the static percpu variables in the kernel image as allocation services
31 * are not online yet. In short, the first chunk is structured like so:
33 * <Static | [Reserved] | Dynamic>
35 * The static data is copied from the original section managed by the
36 * linker. The reserved section, if non-zero, primarily manages static
37 * percpu variables from kernel modules. Finally, the dynamic section
38 * takes care of normal allocations.
40 * The allocator organizes chunks into lists according to free size and
41 * tries to allocate from the fullest chunk first. Each chunk is managed
42 * by a bitmap with metadata blocks. The allocation map is updated on
43 * every allocation and free to reflect the current state while the boundary
44 * map is only updated on allocation. Each metadata block contains
45 * information to help mitigate the need to iterate over large portions
46 * of the bitmap. The reverse mapping from page to chunk is stored in
47 * the page's index. Lastly, units are lazily backed and grow in unison.
49 * There is a unique conversion that goes on here between bytes and bits.
50 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
51 * tracks the number of pages it is responsible for in nr_pages. Helper
52 * functions are used to convert from between the bytes, bits, and blocks.
53 * All hints are managed in bits unless explicitly stated.
55 * To use this allocator, arch code should do the following:
57 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
58 * regular address to percpu pointer and back if they need to be
59 * different from the default
61 * - use pcpu_setup_first_chunk() during percpu area initialization to
62 * setup the first chunk containing the kernel static percpu area
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
67 #include <linux/bitmap.h>
68 #include <linux/bootmem.h>
69 #include <linux/err.h>
70 #include <linux/lcm.h>
71 #include <linux/list.h>
72 #include <linux/log2.h>
74 #include <linux/module.h>
75 #include <linux/mutex.h>
76 #include <linux/percpu.h>
77 #include <linux/pfn.h>
78 #include <linux/slab.h>
79 #include <linux/spinlock.h>
80 #include <linux/vmalloc.h>
81 #include <linux/workqueue.h>
82 #include <linux/kmemleak.h>
83 #include <linux/sched.h>
85 #include <asm/cacheflush.h>
86 #include <asm/sections.h>
87 #include <asm/tlbflush.h>
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/percpu.h>
93 #include "percpu-internal.h"
95 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
96 #define PCPU_SLOT_BASE_SHIFT 5
98 #define PCPU_EMPTY_POP_PAGES_LOW 2
99 #define PCPU_EMPTY_POP_PAGES_HIGH 4
102 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
103 #ifndef __addr_to_pcpu_ptr
104 #define __addr_to_pcpu_ptr(addr) \
105 (void __percpu *)((unsigned long)(addr) - \
106 (unsigned long)pcpu_base_addr + \
107 (unsigned long)__per_cpu_start)
109 #ifndef __pcpu_ptr_to_addr
110 #define __pcpu_ptr_to_addr(ptr) \
111 (void __force *)((unsigned long)(ptr) + \
112 (unsigned long)pcpu_base_addr - \
113 (unsigned long)__per_cpu_start)
115 #else /* CONFIG_SMP */
116 /* on UP, it's always identity mapped */
117 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
118 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
119 #endif /* CONFIG_SMP */
121 static int pcpu_unit_pages __ro_after_init
;
122 static int pcpu_unit_size __ro_after_init
;
123 static int pcpu_nr_units __ro_after_init
;
124 static int pcpu_atom_size __ro_after_init
;
125 int pcpu_nr_slots __ro_after_init
;
126 static size_t pcpu_chunk_struct_size __ro_after_init
;
128 /* cpus with the lowest and highest unit addresses */
129 static unsigned int pcpu_low_unit_cpu __ro_after_init
;
130 static unsigned int pcpu_high_unit_cpu __ro_after_init
;
132 /* the address of the first chunk which starts with the kernel static area */
133 void *pcpu_base_addr __ro_after_init
;
134 EXPORT_SYMBOL_GPL(pcpu_base_addr
);
136 static const int *pcpu_unit_map __ro_after_init
; /* cpu -> unit */
137 const unsigned long *pcpu_unit_offsets __ro_after_init
; /* cpu -> unit offset */
139 /* group information, used for vm allocation */
140 static int pcpu_nr_groups __ro_after_init
;
141 static const unsigned long *pcpu_group_offsets __ro_after_init
;
142 static const size_t *pcpu_group_sizes __ro_after_init
;
145 * The first chunk which always exists. Note that unlike other
146 * chunks, this one can be allocated and mapped in several different
147 * ways and thus often doesn't live in the vmalloc area.
149 struct pcpu_chunk
*pcpu_first_chunk __ro_after_init
;
152 * Optional reserved chunk. This chunk reserves part of the first
153 * chunk and serves it for reserved allocations. When the reserved
154 * region doesn't exist, the following variable is NULL.
156 struct pcpu_chunk
*pcpu_reserved_chunk __ro_after_init
;
158 DEFINE_SPINLOCK(pcpu_lock
); /* all internal data structures */
159 static DEFINE_MUTEX(pcpu_alloc_mutex
); /* chunk create/destroy, [de]pop, map ext */
161 struct list_head
*pcpu_slot __ro_after_init
; /* chunk list slots */
163 /* chunks which need their map areas extended, protected by pcpu_lock */
164 static LIST_HEAD(pcpu_map_extend_chunks
);
167 * The number of empty populated pages, protected by pcpu_lock. The
168 * reserved chunk doesn't contribute to the count.
170 int pcpu_nr_empty_pop_pages
;
173 * The number of populated pages in use by the allocator, protected by
174 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets
175 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
176 * and increments/decrements this count by 1).
178 static unsigned long pcpu_nr_populated
;
181 * Balance work is used to populate or destroy chunks asynchronously. We
182 * try to keep the number of populated free pages between
183 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
186 static void pcpu_balance_workfn(struct work_struct
*work
);
187 static DECLARE_WORK(pcpu_balance_work
, pcpu_balance_workfn
);
188 static bool pcpu_async_enabled __read_mostly
;
189 static bool pcpu_atomic_alloc_failed
;
191 static void pcpu_schedule_balance_work(void)
193 if (pcpu_async_enabled
)
194 schedule_work(&pcpu_balance_work
);
198 * pcpu_addr_in_chunk - check if the address is served from this chunk
199 * @chunk: chunk of interest
200 * @addr: percpu address
203 * True if the address is served from this chunk.
205 static bool pcpu_addr_in_chunk(struct pcpu_chunk
*chunk
, void *addr
)
207 void *start_addr
, *end_addr
;
212 start_addr
= chunk
->base_addr
+ chunk
->start_offset
;
213 end_addr
= chunk
->base_addr
+ chunk
->nr_pages
* PAGE_SIZE
-
216 return addr
>= start_addr
&& addr
< end_addr
;
219 static int __pcpu_size_to_slot(int size
)
221 int highbit
= fls(size
); /* size is in bytes */
222 return max(highbit
- PCPU_SLOT_BASE_SHIFT
+ 2, 1);
225 static int pcpu_size_to_slot(int size
)
227 if (size
== pcpu_unit_size
)
228 return pcpu_nr_slots
- 1;
229 return __pcpu_size_to_slot(size
);
232 static int pcpu_chunk_slot(const struct pcpu_chunk
*chunk
)
234 if (chunk
->free_bytes
< PCPU_MIN_ALLOC_SIZE
|| chunk
->contig_bits
== 0)
237 return pcpu_size_to_slot(chunk
->free_bytes
);
240 /* set the pointer to a chunk in a page struct */
241 static void pcpu_set_page_chunk(struct page
*page
, struct pcpu_chunk
*pcpu
)
243 page
->index
= (unsigned long)pcpu
;
246 /* obtain pointer to a chunk from a page struct */
247 static struct pcpu_chunk
*pcpu_get_page_chunk(struct page
*page
)
249 return (struct pcpu_chunk
*)page
->index
;
252 static int __maybe_unused
pcpu_page_idx(unsigned int cpu
, int page_idx
)
254 return pcpu_unit_map
[cpu
] * pcpu_unit_pages
+ page_idx
;
257 static unsigned long pcpu_unit_page_offset(unsigned int cpu
, int page_idx
)
259 return pcpu_unit_offsets
[cpu
] + (page_idx
<< PAGE_SHIFT
);
262 static unsigned long pcpu_chunk_addr(struct pcpu_chunk
*chunk
,
263 unsigned int cpu
, int page_idx
)
265 return (unsigned long)chunk
->base_addr
+
266 pcpu_unit_page_offset(cpu
, page_idx
);
269 static void pcpu_next_unpop(unsigned long *bitmap
, int *rs
, int *re
, int end
)
271 *rs
= find_next_zero_bit(bitmap
, end
, *rs
);
272 *re
= find_next_bit(bitmap
, end
, *rs
+ 1);
275 static void pcpu_next_pop(unsigned long *bitmap
, int *rs
, int *re
, int end
)
277 *rs
= find_next_bit(bitmap
, end
, *rs
);
278 *re
= find_next_zero_bit(bitmap
, end
, *rs
+ 1);
282 * Bitmap region iterators. Iterates over the bitmap between
283 * [@start, @end) in @chunk. @rs and @re should be integer variables
284 * and will be set to start and end index of the current free region.
286 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
287 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
289 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
291 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
292 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
294 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
297 * The following are helper functions to help access bitmaps and convert
298 * between bitmap offsets to address offsets.
300 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk
*chunk
, int index
)
302 return chunk
->alloc_map
+
303 (index
* PCPU_BITMAP_BLOCK_BITS
/ BITS_PER_LONG
);
306 static unsigned long pcpu_off_to_block_index(int off
)
308 return off
/ PCPU_BITMAP_BLOCK_BITS
;
311 static unsigned long pcpu_off_to_block_off(int off
)
313 return off
& (PCPU_BITMAP_BLOCK_BITS
- 1);
316 static unsigned long pcpu_block_off_to_off(int index
, int off
)
318 return index
* PCPU_BITMAP_BLOCK_BITS
+ off
;
322 * pcpu_next_md_free_region - finds the next hint free area
323 * @chunk: chunk of interest
324 * @bit_off: chunk offset
325 * @bits: size of free area
327 * Helper function for pcpu_for_each_md_free_region. It checks
328 * block->contig_hint and performs aggregation across blocks to find the
329 * next hint. It modifies bit_off and bits in-place to be consumed in the
332 static void pcpu_next_md_free_region(struct pcpu_chunk
*chunk
, int *bit_off
,
335 int i
= pcpu_off_to_block_index(*bit_off
);
336 int block_off
= pcpu_off_to_block_off(*bit_off
);
337 struct pcpu_block_md
*block
;
340 for (block
= chunk
->md_blocks
+ i
; i
< pcpu_chunk_nr_blocks(chunk
);
342 /* handles contig area across blocks */
344 *bits
+= block
->left_free
;
345 if (block
->left_free
== PCPU_BITMAP_BLOCK_BITS
)
351 * This checks three things. First is there a contig_hint to
352 * check. Second, have we checked this hint before by
353 * comparing the block_off. Third, is this the same as the
354 * right contig hint. In the last case, it spills over into
355 * the next block and should be handled by the contig area
356 * across blocks code.
358 *bits
= block
->contig_hint
;
359 if (*bits
&& block
->contig_hint_start
>= block_off
&&
360 *bits
+ block
->contig_hint_start
< PCPU_BITMAP_BLOCK_BITS
) {
361 *bit_off
= pcpu_block_off_to_off(i
,
362 block
->contig_hint_start
);
365 /* reset to satisfy the second predicate above */
368 *bits
= block
->right_free
;
369 *bit_off
= (i
+ 1) * PCPU_BITMAP_BLOCK_BITS
- block
->right_free
;
374 * pcpu_next_fit_region - finds fit areas for a given allocation request
375 * @chunk: chunk of interest
376 * @alloc_bits: size of allocation
377 * @align: alignment of area (max PAGE_SIZE)
378 * @bit_off: chunk offset
379 * @bits: size of free area
381 * Finds the next free region that is viable for use with a given size and
382 * alignment. This only returns if there is a valid area to be used for this
383 * allocation. block->first_free is returned if the allocation request fits
384 * within the block to see if the request can be fulfilled prior to the contig
387 static void pcpu_next_fit_region(struct pcpu_chunk
*chunk
, int alloc_bits
,
388 int align
, int *bit_off
, int *bits
)
390 int i
= pcpu_off_to_block_index(*bit_off
);
391 int block_off
= pcpu_off_to_block_off(*bit_off
);
392 struct pcpu_block_md
*block
;
395 for (block
= chunk
->md_blocks
+ i
; i
< pcpu_chunk_nr_blocks(chunk
);
397 /* handles contig area across blocks */
399 *bits
+= block
->left_free
;
400 if (*bits
>= alloc_bits
)
402 if (block
->left_free
== PCPU_BITMAP_BLOCK_BITS
)
406 /* check block->contig_hint */
407 *bits
= ALIGN(block
->contig_hint_start
, align
) -
408 block
->contig_hint_start
;
410 * This uses the block offset to determine if this has been
411 * checked in the prior iteration.
413 if (block
->contig_hint
&&
414 block
->contig_hint_start
>= block_off
&&
415 block
->contig_hint
>= *bits
+ alloc_bits
) {
416 *bits
+= alloc_bits
+ block
->contig_hint_start
-
418 *bit_off
= pcpu_block_off_to_off(i
, block
->first_free
);
421 /* reset to satisfy the second predicate above */
424 *bit_off
= ALIGN(PCPU_BITMAP_BLOCK_BITS
- block
->right_free
,
426 *bits
= PCPU_BITMAP_BLOCK_BITS
- *bit_off
;
427 *bit_off
= pcpu_block_off_to_off(i
, *bit_off
);
428 if (*bits
>= alloc_bits
)
432 /* no valid offsets were found - fail condition */
433 *bit_off
= pcpu_chunk_map_bits(chunk
);
437 * Metadata free area iterators. These perform aggregation of free areas
438 * based on the metadata blocks and return the offset @bit_off and size in
439 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
440 * a fit is found for the allocation request.
442 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
443 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
444 (bit_off) < pcpu_chunk_map_bits((chunk)); \
445 (bit_off) += (bits) + 1, \
446 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
448 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
449 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
451 (bit_off) < pcpu_chunk_map_bits((chunk)); \
452 (bit_off) += (bits), \
453 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
457 * pcpu_mem_zalloc - allocate memory
458 * @size: bytes to allocate
459 * @gfp: allocation flags
461 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
462 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
463 * This is to facilitate passing through whitelisted flags. The
464 * returned memory is always zeroed.
467 * Pointer to the allocated area on success, NULL on failure.
469 static void *pcpu_mem_zalloc(size_t size
, gfp_t gfp
)
471 if (WARN_ON_ONCE(!slab_is_available()))
474 if (size
<= PAGE_SIZE
)
475 return kzalloc(size
, gfp
);
477 return __vmalloc(size
, gfp
| __GFP_ZERO
, PAGE_KERNEL
);
481 * pcpu_mem_free - free memory
482 * @ptr: memory to free
484 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
486 static void pcpu_mem_free(void *ptr
)
492 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
493 * @chunk: chunk of interest
494 * @oslot: the previous slot it was on
496 * This function is called after an allocation or free changed @chunk.
497 * New slot according to the changed state is determined and @chunk is
498 * moved to the slot. Note that the reserved chunk is never put on
504 static void pcpu_chunk_relocate(struct pcpu_chunk
*chunk
, int oslot
)
506 int nslot
= pcpu_chunk_slot(chunk
);
508 if (chunk
!= pcpu_reserved_chunk
&& oslot
!= nslot
) {
510 list_move(&chunk
->list
, &pcpu_slot
[nslot
]);
512 list_move_tail(&chunk
->list
, &pcpu_slot
[nslot
]);
517 * pcpu_cnt_pop_pages- counts populated backing pages in range
518 * @chunk: chunk of interest
519 * @bit_off: start offset
520 * @bits: size of area to check
522 * Calculates the number of populated pages in the region
523 * [page_start, page_end). This keeps track of how many empty populated
524 * pages are available and decide if async work should be scheduled.
527 * The nr of populated pages.
529 static inline int pcpu_cnt_pop_pages(struct pcpu_chunk
*chunk
, int bit_off
,
532 int page_start
= PFN_UP(bit_off
* PCPU_MIN_ALLOC_SIZE
);
533 int page_end
= PFN_DOWN((bit_off
+ bits
) * PCPU_MIN_ALLOC_SIZE
);
535 if (page_start
>= page_end
)
539 * bitmap_weight counts the number of bits set in a bitmap up to
540 * the specified number of bits. This is counting the populated
541 * pages up to page_end and then subtracting the populated pages
542 * up to page_start to count the populated pages in
543 * [page_start, page_end).
545 return bitmap_weight(chunk
->populated
, page_end
) -
546 bitmap_weight(chunk
->populated
, page_start
);
550 * pcpu_chunk_update - updates the chunk metadata given a free area
551 * @chunk: chunk of interest
552 * @bit_off: chunk offset
553 * @bits: size of free area
555 * This updates the chunk's contig hint and starting offset given a free area.
556 * Choose the best starting offset if the contig hint is equal.
558 static void pcpu_chunk_update(struct pcpu_chunk
*chunk
, int bit_off
, int bits
)
560 if (bits
> chunk
->contig_bits
) {
561 chunk
->contig_bits_start
= bit_off
;
562 chunk
->contig_bits
= bits
;
563 } else if (bits
== chunk
->contig_bits
&& chunk
->contig_bits_start
&&
565 __ffs(bit_off
) > __ffs(chunk
->contig_bits_start
))) {
566 /* use the start with the best alignment */
567 chunk
->contig_bits_start
= bit_off
;
572 * pcpu_chunk_refresh_hint - updates metadata about a chunk
573 * @chunk: chunk of interest
575 * Iterates over the metadata blocks to find the largest contig area.
576 * It also counts the populated pages and uses the delta to update the
581 * chunk->contig_bits_start
582 * nr_empty_pop_pages (chunk and global)
584 static void pcpu_chunk_refresh_hint(struct pcpu_chunk
*chunk
)
586 int bit_off
, bits
, nr_empty_pop_pages
;
589 chunk
->contig_bits
= 0;
591 bit_off
= chunk
->first_bit
;
592 bits
= nr_empty_pop_pages
= 0;
593 pcpu_for_each_md_free_region(chunk
, bit_off
, bits
) {
594 pcpu_chunk_update(chunk
, bit_off
, bits
);
596 nr_empty_pop_pages
+= pcpu_cnt_pop_pages(chunk
, bit_off
, bits
);
600 * Keep track of nr_empty_pop_pages.
602 * The chunk maintains the previous number of free pages it held,
603 * so the delta is used to update the global counter. The reserved
604 * chunk is not part of the free page count as they are populated
605 * at init and are special to serving reserved allocations.
607 if (chunk
!= pcpu_reserved_chunk
)
608 pcpu_nr_empty_pop_pages
+=
609 (nr_empty_pop_pages
- chunk
->nr_empty_pop_pages
);
611 chunk
->nr_empty_pop_pages
= nr_empty_pop_pages
;
615 * pcpu_block_update - updates a block given a free area
616 * @block: block of interest
617 * @start: start offset in block
618 * @end: end offset in block
620 * Updates a block given a known free area. The region [start, end) is
621 * expected to be the entirety of the free area within a block. Chooses
622 * the best starting offset if the contig hints are equal.
624 static void pcpu_block_update(struct pcpu_block_md
*block
, int start
, int end
)
626 int contig
= end
- start
;
628 block
->first_free
= min(block
->first_free
, start
);
630 block
->left_free
= contig
;
632 if (end
== PCPU_BITMAP_BLOCK_BITS
)
633 block
->right_free
= contig
;
635 if (contig
> block
->contig_hint
) {
636 block
->contig_hint_start
= start
;
637 block
->contig_hint
= contig
;
638 } else if (block
->contig_hint_start
&& contig
== block
->contig_hint
&&
639 (!start
|| __ffs(start
) > __ffs(block
->contig_hint_start
))) {
640 /* use the start with the best alignment */
641 block
->contig_hint_start
= start
;
646 * pcpu_block_refresh_hint
647 * @chunk: chunk of interest
648 * @index: index of the metadata block
650 * Scans over the block beginning at first_free and updates the block
651 * metadata accordingly.
653 static void pcpu_block_refresh_hint(struct pcpu_chunk
*chunk
, int index
)
655 struct pcpu_block_md
*block
= chunk
->md_blocks
+ index
;
656 unsigned long *alloc_map
= pcpu_index_alloc_map(chunk
, index
);
657 int rs
, re
; /* region start, region end */
660 block
->contig_hint
= 0;
661 block
->left_free
= block
->right_free
= 0;
663 /* iterate over free areas and update the contig hints */
664 pcpu_for_each_unpop_region(alloc_map
, rs
, re
, block
->first_free
,
665 PCPU_BITMAP_BLOCK_BITS
) {
666 pcpu_block_update(block
, rs
, re
);
671 * pcpu_block_update_hint_alloc - update hint on allocation path
672 * @chunk: chunk of interest
673 * @bit_off: chunk offset
674 * @bits: size of request
676 * Updates metadata for the allocation path. The metadata only has to be
677 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
678 * scans are required if the block's contig hint is broken.
680 static void pcpu_block_update_hint_alloc(struct pcpu_chunk
*chunk
, int bit_off
,
683 struct pcpu_block_md
*s_block
, *e_block
, *block
;
684 int s_index
, e_index
; /* block indexes of the freed allocation */
685 int s_off
, e_off
; /* block offsets of the freed allocation */
688 * Calculate per block offsets.
689 * The calculation uses an inclusive range, but the resulting offsets
690 * are [start, end). e_index always points to the last block in the
693 s_index
= pcpu_off_to_block_index(bit_off
);
694 e_index
= pcpu_off_to_block_index(bit_off
+ bits
- 1);
695 s_off
= pcpu_off_to_block_off(bit_off
);
696 e_off
= pcpu_off_to_block_off(bit_off
+ bits
- 1) + 1;
698 s_block
= chunk
->md_blocks
+ s_index
;
699 e_block
= chunk
->md_blocks
+ e_index
;
703 * block->first_free must be updated if the allocation takes its place.
704 * If the allocation breaks the contig_hint, a scan is required to
707 if (s_off
== s_block
->first_free
)
708 s_block
->first_free
= find_next_zero_bit(
709 pcpu_index_alloc_map(chunk
, s_index
),
710 PCPU_BITMAP_BLOCK_BITS
,
713 if (s_off
>= s_block
->contig_hint_start
&&
714 s_off
< s_block
->contig_hint_start
+ s_block
->contig_hint
) {
715 /* block contig hint is broken - scan to fix it */
716 pcpu_block_refresh_hint(chunk
, s_index
);
718 /* update left and right contig manually */
719 s_block
->left_free
= min(s_block
->left_free
, s_off
);
720 if (s_index
== e_index
)
721 s_block
->right_free
= min_t(int, s_block
->right_free
,
722 PCPU_BITMAP_BLOCK_BITS
- e_off
);
724 s_block
->right_free
= 0;
730 if (s_index
!= e_index
) {
732 * When the allocation is across blocks, the end is along
733 * the left part of the e_block.
735 e_block
->first_free
= find_next_zero_bit(
736 pcpu_index_alloc_map(chunk
, e_index
),
737 PCPU_BITMAP_BLOCK_BITS
, e_off
);
739 if (e_off
== PCPU_BITMAP_BLOCK_BITS
) {
740 /* reset the block */
743 if (e_off
> e_block
->contig_hint_start
) {
744 /* contig hint is broken - scan to fix it */
745 pcpu_block_refresh_hint(chunk
, e_index
);
747 e_block
->left_free
= 0;
748 e_block
->right_free
=
749 min_t(int, e_block
->right_free
,
750 PCPU_BITMAP_BLOCK_BITS
- e_off
);
754 /* update in-between md_blocks */
755 for (block
= s_block
+ 1; block
< e_block
; block
++) {
756 block
->contig_hint
= 0;
757 block
->left_free
= 0;
758 block
->right_free
= 0;
763 * The only time a full chunk scan is required is if the chunk
764 * contig hint is broken. Otherwise, it means a smaller space
765 * was used and therefore the chunk contig hint is still correct.
767 if (bit_off
>= chunk
->contig_bits_start
&&
768 bit_off
< chunk
->contig_bits_start
+ chunk
->contig_bits
)
769 pcpu_chunk_refresh_hint(chunk
);
773 * pcpu_block_update_hint_free - updates the block hints on the free path
774 * @chunk: chunk of interest
775 * @bit_off: chunk offset
776 * @bits: size of request
778 * Updates metadata for the allocation path. This avoids a blind block
779 * refresh by making use of the block contig hints. If this fails, it scans
780 * forward and backward to determine the extent of the free area. This is
781 * capped at the boundary of blocks.
783 * A chunk update is triggered if a page becomes free, a block becomes free,
784 * or the free spans across blocks. This tradeoff is to minimize iterating
785 * over the block metadata to update chunk->contig_bits. chunk->contig_bits
786 * may be off by up to a page, but it will never be more than the available
787 * space. If the contig hint is contained in one block, it will be accurate.
789 static void pcpu_block_update_hint_free(struct pcpu_chunk
*chunk
, int bit_off
,
792 struct pcpu_block_md
*s_block
, *e_block
, *block
;
793 int s_index
, e_index
; /* block indexes of the freed allocation */
794 int s_off
, e_off
; /* block offsets of the freed allocation */
795 int start
, end
; /* start and end of the whole free area */
798 * Calculate per block offsets.
799 * The calculation uses an inclusive range, but the resulting offsets
800 * are [start, end). e_index always points to the last block in the
803 s_index
= pcpu_off_to_block_index(bit_off
);
804 e_index
= pcpu_off_to_block_index(bit_off
+ bits
- 1);
805 s_off
= pcpu_off_to_block_off(bit_off
);
806 e_off
= pcpu_off_to_block_off(bit_off
+ bits
- 1) + 1;
808 s_block
= chunk
->md_blocks
+ s_index
;
809 e_block
= chunk
->md_blocks
+ e_index
;
812 * Check if the freed area aligns with the block->contig_hint.
813 * If it does, then the scan to find the beginning/end of the
814 * larger free area can be avoided.
816 * start and end refer to beginning and end of the free area
817 * within each their respective blocks. This is not necessarily
818 * the entire free area as it may span blocks past the beginning
819 * or end of the block.
822 if (s_off
== s_block
->contig_hint
+ s_block
->contig_hint_start
) {
823 start
= s_block
->contig_hint_start
;
826 * Scan backwards to find the extent of the free area.
827 * find_last_bit returns the starting bit, so if the start bit
828 * is returned, that means there was no last bit and the
829 * remainder of the chunk is free.
831 int l_bit
= find_last_bit(pcpu_index_alloc_map(chunk
, s_index
),
833 start
= (start
== l_bit
) ? 0 : l_bit
+ 1;
837 if (e_off
== e_block
->contig_hint_start
)
838 end
= e_block
->contig_hint_start
+ e_block
->contig_hint
;
840 end
= find_next_bit(pcpu_index_alloc_map(chunk
, e_index
),
841 PCPU_BITMAP_BLOCK_BITS
, end
);
844 e_off
= (s_index
== e_index
) ? end
: PCPU_BITMAP_BLOCK_BITS
;
845 pcpu_block_update(s_block
, start
, e_off
);
847 /* freeing in the same block */
848 if (s_index
!= e_index
) {
850 pcpu_block_update(e_block
, 0, end
);
852 /* reset md_blocks in the middle */
853 for (block
= s_block
+ 1; block
< e_block
; block
++) {
854 block
->first_free
= 0;
855 block
->contig_hint_start
= 0;
856 block
->contig_hint
= PCPU_BITMAP_BLOCK_BITS
;
857 block
->left_free
= PCPU_BITMAP_BLOCK_BITS
;
858 block
->right_free
= PCPU_BITMAP_BLOCK_BITS
;
863 * Refresh chunk metadata when the free makes a page free, a block
864 * free, or spans across blocks. The contig hint may be off by up to
865 * a page, but if the hint is contained in a block, it will be accurate
866 * with the else condition below.
868 if ((ALIGN_DOWN(end
, min(PCPU_BITS_PER_PAGE
, PCPU_BITMAP_BLOCK_BITS
)) >
869 ALIGN(start
, min(PCPU_BITS_PER_PAGE
, PCPU_BITMAP_BLOCK_BITS
))) ||
871 pcpu_chunk_refresh_hint(chunk
);
873 pcpu_chunk_update(chunk
, pcpu_block_off_to_off(s_index
, start
),
874 s_block
->contig_hint
);
878 * pcpu_is_populated - determines if the region is populated
879 * @chunk: chunk of interest
880 * @bit_off: chunk offset
881 * @bits: size of area
882 * @next_off: return value for the next offset to start searching
884 * For atomic allocations, check if the backing pages are populated.
887 * Bool if the backing pages are populated.
888 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
890 static bool pcpu_is_populated(struct pcpu_chunk
*chunk
, int bit_off
, int bits
,
893 int page_start
, page_end
, rs
, re
;
895 page_start
= PFN_DOWN(bit_off
* PCPU_MIN_ALLOC_SIZE
);
896 page_end
= PFN_UP((bit_off
+ bits
) * PCPU_MIN_ALLOC_SIZE
);
899 pcpu_next_unpop(chunk
->populated
, &rs
, &re
, page_end
);
903 *next_off
= re
* PAGE_SIZE
/ PCPU_MIN_ALLOC_SIZE
;
908 * pcpu_find_block_fit - finds the block index to start searching
909 * @chunk: chunk of interest
910 * @alloc_bits: size of request in allocation units
911 * @align: alignment of area (max PAGE_SIZE bytes)
912 * @pop_only: use populated regions only
914 * Given a chunk and an allocation spec, find the offset to begin searching
915 * for a free region. This iterates over the bitmap metadata blocks to
916 * find an offset that will be guaranteed to fit the requirements. It is
917 * not quite first fit as if the allocation does not fit in the contig hint
918 * of a block or chunk, it is skipped. This errs on the side of caution
919 * to prevent excess iteration. Poor alignment can cause the allocator to
920 * skip over blocks and chunks that have valid free areas.
923 * The offset in the bitmap to begin searching.
924 * -1 if no offset is found.
926 static int pcpu_find_block_fit(struct pcpu_chunk
*chunk
, int alloc_bits
,
927 size_t align
, bool pop_only
)
929 int bit_off
, bits
, next_off
;
932 * Check to see if the allocation can fit in the chunk's contig hint.
933 * This is an optimization to prevent scanning by assuming if it
934 * cannot fit in the global hint, there is memory pressure and creating
935 * a new chunk would happen soon.
937 bit_off
= ALIGN(chunk
->contig_bits_start
, align
) -
938 chunk
->contig_bits_start
;
939 if (bit_off
+ alloc_bits
> chunk
->contig_bits
)
942 bit_off
= chunk
->first_bit
;
944 pcpu_for_each_fit_region(chunk
, alloc_bits
, align
, bit_off
, bits
) {
945 if (!pop_only
|| pcpu_is_populated(chunk
, bit_off
, bits
,
953 if (bit_off
== pcpu_chunk_map_bits(chunk
))
960 * pcpu_alloc_area - allocates an area from a pcpu_chunk
961 * @chunk: chunk of interest
962 * @alloc_bits: size of request in allocation units
963 * @align: alignment of area (max PAGE_SIZE)
964 * @start: bit_off to start searching
966 * This function takes in a @start offset to begin searching to fit an
967 * allocation of @alloc_bits with alignment @align. It needs to scan
968 * the allocation map because if it fits within the block's contig hint,
969 * @start will be block->first_free. This is an attempt to fill the
970 * allocation prior to breaking the contig hint. The allocation and
971 * boundary maps are updated accordingly if it confirms a valid
975 * Allocated addr offset in @chunk on success.
976 * -1 if no matching area is found.
978 static int pcpu_alloc_area(struct pcpu_chunk
*chunk
, int alloc_bits
,
979 size_t align
, int start
)
981 size_t align_mask
= (align
) ? (align
- 1) : 0;
982 int bit_off
, end
, oslot
;
984 lockdep_assert_held(&pcpu_lock
);
986 oslot
= pcpu_chunk_slot(chunk
);
989 * Search to find a fit.
991 end
= start
+ alloc_bits
+ PCPU_BITMAP_BLOCK_BITS
;
992 bit_off
= bitmap_find_next_zero_area(chunk
->alloc_map
, end
, start
,
993 alloc_bits
, align_mask
);
997 /* update alloc map */
998 bitmap_set(chunk
->alloc_map
, bit_off
, alloc_bits
);
1000 /* update boundary map */
1001 set_bit(bit_off
, chunk
->bound_map
);
1002 bitmap_clear(chunk
->bound_map
, bit_off
+ 1, alloc_bits
- 1);
1003 set_bit(bit_off
+ alloc_bits
, chunk
->bound_map
);
1005 chunk
->free_bytes
-= alloc_bits
* PCPU_MIN_ALLOC_SIZE
;
1007 /* update first free bit */
1008 if (bit_off
== chunk
->first_bit
)
1009 chunk
->first_bit
= find_next_zero_bit(
1011 pcpu_chunk_map_bits(chunk
),
1012 bit_off
+ alloc_bits
);
1014 pcpu_block_update_hint_alloc(chunk
, bit_off
, alloc_bits
);
1016 pcpu_chunk_relocate(chunk
, oslot
);
1018 return bit_off
* PCPU_MIN_ALLOC_SIZE
;
1022 * pcpu_free_area - frees the corresponding offset
1023 * @chunk: chunk of interest
1024 * @off: addr offset into chunk
1026 * This function determines the size of an allocation to free using
1027 * the boundary bitmap and clears the allocation map.
1029 static void pcpu_free_area(struct pcpu_chunk
*chunk
, int off
)
1031 int bit_off
, bits
, end
, oslot
;
1033 lockdep_assert_held(&pcpu_lock
);
1034 pcpu_stats_area_dealloc(chunk
);
1036 oslot
= pcpu_chunk_slot(chunk
);
1038 bit_off
= off
/ PCPU_MIN_ALLOC_SIZE
;
1040 /* find end index */
1041 end
= find_next_bit(chunk
->bound_map
, pcpu_chunk_map_bits(chunk
),
1043 bits
= end
- bit_off
;
1044 bitmap_clear(chunk
->alloc_map
, bit_off
, bits
);
1046 /* update metadata */
1047 chunk
->free_bytes
+= bits
* PCPU_MIN_ALLOC_SIZE
;
1049 /* update first free bit */
1050 chunk
->first_bit
= min(chunk
->first_bit
, bit_off
);
1052 pcpu_block_update_hint_free(chunk
, bit_off
, bits
);
1054 pcpu_chunk_relocate(chunk
, oslot
);
1057 static void pcpu_init_md_blocks(struct pcpu_chunk
*chunk
)
1059 struct pcpu_block_md
*md_block
;
1061 for (md_block
= chunk
->md_blocks
;
1062 md_block
!= chunk
->md_blocks
+ pcpu_chunk_nr_blocks(chunk
);
1064 md_block
->contig_hint
= PCPU_BITMAP_BLOCK_BITS
;
1065 md_block
->left_free
= PCPU_BITMAP_BLOCK_BITS
;
1066 md_block
->right_free
= PCPU_BITMAP_BLOCK_BITS
;
1071 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1072 * @tmp_addr: the start of the region served
1073 * @map_size: size of the region served
1075 * This is responsible for creating the chunks that serve the first chunk. The
1076 * base_addr is page aligned down of @tmp_addr while the region end is page
1077 * aligned up. Offsets are kept track of to determine the region served. All
1078 * this is done to appease the bitmap allocator in avoiding partial blocks.
1081 * Chunk serving the region at @tmp_addr of @map_size.
1083 static struct pcpu_chunk
* __init
pcpu_alloc_first_chunk(unsigned long tmp_addr
,
1086 struct pcpu_chunk
*chunk
;
1087 unsigned long aligned_addr
, lcm_align
;
1088 int start_offset
, offset_bits
, region_size
, region_bits
;
1090 /* region calculations */
1091 aligned_addr
= tmp_addr
& PAGE_MASK
;
1093 start_offset
= tmp_addr
- aligned_addr
;
1096 * Align the end of the region with the LCM of PAGE_SIZE and
1097 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1100 lcm_align
= lcm(PAGE_SIZE
, PCPU_BITMAP_BLOCK_SIZE
);
1101 region_size
= ALIGN(start_offset
+ map_size
, lcm_align
);
1103 /* allocate chunk */
1104 chunk
= memblock_virt_alloc(sizeof(struct pcpu_chunk
) +
1105 BITS_TO_LONGS(region_size
>> PAGE_SHIFT
),
1108 INIT_LIST_HEAD(&chunk
->list
);
1110 chunk
->base_addr
= (void *)aligned_addr
;
1111 chunk
->start_offset
= start_offset
;
1112 chunk
->end_offset
= region_size
- chunk
->start_offset
- map_size
;
1114 chunk
->nr_pages
= region_size
>> PAGE_SHIFT
;
1115 region_bits
= pcpu_chunk_map_bits(chunk
);
1117 chunk
->alloc_map
= memblock_virt_alloc(BITS_TO_LONGS(region_bits
) *
1118 sizeof(chunk
->alloc_map
[0]), 0);
1119 chunk
->bound_map
= memblock_virt_alloc(BITS_TO_LONGS(region_bits
+ 1) *
1120 sizeof(chunk
->bound_map
[0]), 0);
1121 chunk
->md_blocks
= memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk
) *
1122 sizeof(chunk
->md_blocks
[0]), 0);
1123 pcpu_init_md_blocks(chunk
);
1125 /* manage populated page bitmap */
1126 chunk
->immutable
= true;
1127 bitmap_fill(chunk
->populated
, chunk
->nr_pages
);
1128 chunk
->nr_populated
= chunk
->nr_pages
;
1129 chunk
->nr_empty_pop_pages
=
1130 pcpu_cnt_pop_pages(chunk
, start_offset
/ PCPU_MIN_ALLOC_SIZE
,
1131 map_size
/ PCPU_MIN_ALLOC_SIZE
);
1133 chunk
->contig_bits
= map_size
/ PCPU_MIN_ALLOC_SIZE
;
1134 chunk
->free_bytes
= map_size
;
1136 if (chunk
->start_offset
) {
1137 /* hide the beginning of the bitmap */
1138 offset_bits
= chunk
->start_offset
/ PCPU_MIN_ALLOC_SIZE
;
1139 bitmap_set(chunk
->alloc_map
, 0, offset_bits
);
1140 set_bit(0, chunk
->bound_map
);
1141 set_bit(offset_bits
, chunk
->bound_map
);
1143 chunk
->first_bit
= offset_bits
;
1145 pcpu_block_update_hint_alloc(chunk
, 0, offset_bits
);
1148 if (chunk
->end_offset
) {
1149 /* hide the end of the bitmap */
1150 offset_bits
= chunk
->end_offset
/ PCPU_MIN_ALLOC_SIZE
;
1151 bitmap_set(chunk
->alloc_map
,
1152 pcpu_chunk_map_bits(chunk
) - offset_bits
,
1154 set_bit((start_offset
+ map_size
) / PCPU_MIN_ALLOC_SIZE
,
1156 set_bit(region_bits
, chunk
->bound_map
);
1158 pcpu_block_update_hint_alloc(chunk
, pcpu_chunk_map_bits(chunk
)
1159 - offset_bits
, offset_bits
);
1165 static struct pcpu_chunk
*pcpu_alloc_chunk(gfp_t gfp
)
1167 struct pcpu_chunk
*chunk
;
1170 chunk
= pcpu_mem_zalloc(pcpu_chunk_struct_size
, gfp
);
1174 INIT_LIST_HEAD(&chunk
->list
);
1175 chunk
->nr_pages
= pcpu_unit_pages
;
1176 region_bits
= pcpu_chunk_map_bits(chunk
);
1178 chunk
->alloc_map
= pcpu_mem_zalloc(BITS_TO_LONGS(region_bits
) *
1179 sizeof(chunk
->alloc_map
[0]), gfp
);
1180 if (!chunk
->alloc_map
)
1181 goto alloc_map_fail
;
1183 chunk
->bound_map
= pcpu_mem_zalloc(BITS_TO_LONGS(region_bits
+ 1) *
1184 sizeof(chunk
->bound_map
[0]), gfp
);
1185 if (!chunk
->bound_map
)
1186 goto bound_map_fail
;
1188 chunk
->md_blocks
= pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk
) *
1189 sizeof(chunk
->md_blocks
[0]), gfp
);
1190 if (!chunk
->md_blocks
)
1191 goto md_blocks_fail
;
1193 pcpu_init_md_blocks(chunk
);
1196 chunk
->contig_bits
= region_bits
;
1197 chunk
->free_bytes
= chunk
->nr_pages
* PAGE_SIZE
;
1202 pcpu_mem_free(chunk
->bound_map
);
1204 pcpu_mem_free(chunk
->alloc_map
);
1206 pcpu_mem_free(chunk
);
1211 static void pcpu_free_chunk(struct pcpu_chunk
*chunk
)
1215 pcpu_mem_free(chunk
->bound_map
);
1216 pcpu_mem_free(chunk
->alloc_map
);
1217 pcpu_mem_free(chunk
);
1221 * pcpu_chunk_populated - post-population bookkeeping
1222 * @chunk: pcpu_chunk which got populated
1223 * @page_start: the start page
1224 * @page_end: the end page
1225 * @for_alloc: if this is to populate for allocation
1227 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1228 * the bookkeeping information accordingly. Must be called after each
1229 * successful population.
1231 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1232 * is to serve an allocation in that area.
1234 static void pcpu_chunk_populated(struct pcpu_chunk
*chunk
, int page_start
,
1235 int page_end
, bool for_alloc
)
1237 int nr
= page_end
- page_start
;
1239 lockdep_assert_held(&pcpu_lock
);
1241 bitmap_set(chunk
->populated
, page_start
, nr
);
1242 chunk
->nr_populated
+= nr
;
1243 pcpu_nr_populated
+= nr
;
1246 chunk
->nr_empty_pop_pages
+= nr
;
1247 pcpu_nr_empty_pop_pages
+= nr
;
1252 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1253 * @chunk: pcpu_chunk which got depopulated
1254 * @page_start: the start page
1255 * @page_end: the end page
1257 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1258 * Update the bookkeeping information accordingly. Must be called after
1259 * each successful depopulation.
1261 static void pcpu_chunk_depopulated(struct pcpu_chunk
*chunk
,
1262 int page_start
, int page_end
)
1264 int nr
= page_end
- page_start
;
1266 lockdep_assert_held(&pcpu_lock
);
1268 bitmap_clear(chunk
->populated
, page_start
, nr
);
1269 chunk
->nr_populated
-= nr
;
1270 chunk
->nr_empty_pop_pages
-= nr
;
1271 pcpu_nr_empty_pop_pages
-= nr
;
1272 pcpu_nr_populated
-= nr
;
1276 * Chunk management implementation.
1278 * To allow different implementations, chunk alloc/free and
1279 * [de]population are implemented in a separate file which is pulled
1280 * into this file and compiled together. The following functions
1281 * should be implemented.
1283 * pcpu_populate_chunk - populate the specified range of a chunk
1284 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1285 * pcpu_create_chunk - create a new chunk
1286 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1287 * pcpu_addr_to_page - translate address to physical address
1288 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
1290 static int pcpu_populate_chunk(struct pcpu_chunk
*chunk
,
1291 int page_start
, int page_end
, gfp_t gfp
);
1292 static void pcpu_depopulate_chunk(struct pcpu_chunk
*chunk
,
1293 int page_start
, int page_end
);
1294 static struct pcpu_chunk
*pcpu_create_chunk(gfp_t gfp
);
1295 static void pcpu_destroy_chunk(struct pcpu_chunk
*chunk
);
1296 static struct page
*pcpu_addr_to_page(void *addr
);
1297 static int __init
pcpu_verify_alloc_info(const struct pcpu_alloc_info
*ai
);
1299 #ifdef CONFIG_NEED_PER_CPU_KM
1300 #include "percpu-km.c"
1302 #include "percpu-vm.c"
1306 * pcpu_chunk_addr_search - determine chunk containing specified address
1307 * @addr: address for which the chunk needs to be determined.
1309 * This is an internal function that handles all but static allocations.
1310 * Static percpu address values should never be passed into the allocator.
1313 * The address of the found chunk.
1315 static struct pcpu_chunk
*pcpu_chunk_addr_search(void *addr
)
1317 /* is it in the dynamic region (first chunk)? */
1318 if (pcpu_addr_in_chunk(pcpu_first_chunk
, addr
))
1319 return pcpu_first_chunk
;
1321 /* is it in the reserved region? */
1322 if (pcpu_addr_in_chunk(pcpu_reserved_chunk
, addr
))
1323 return pcpu_reserved_chunk
;
1326 * The address is relative to unit0 which might be unused and
1327 * thus unmapped. Offset the address to the unit space of the
1328 * current processor before looking it up in the vmalloc
1329 * space. Note that any possible cpu id can be used here, so
1330 * there's no need to worry about preemption or cpu hotplug.
1332 addr
+= pcpu_unit_offsets
[raw_smp_processor_id()];
1333 return pcpu_get_page_chunk(pcpu_addr_to_page(addr
));
1337 * pcpu_alloc - the percpu allocator
1338 * @size: size of area to allocate in bytes
1339 * @align: alignment of area (max PAGE_SIZE)
1340 * @reserved: allocate from the reserved chunk if available
1341 * @gfp: allocation flags
1343 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1344 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1345 * then no warning will be triggered on invalid or failed allocation
1349 * Percpu pointer to the allocated area on success, NULL on failure.
1351 static void __percpu
*pcpu_alloc(size_t size
, size_t align
, bool reserved
,
1354 /* whitelisted flags that can be passed to the backing allocators */
1355 gfp_t pcpu_gfp
= gfp
& (GFP_KERNEL
| __GFP_NORETRY
| __GFP_NOWARN
);
1356 bool is_atomic
= (gfp
& GFP_KERNEL
) != GFP_KERNEL
;
1357 bool do_warn
= !(gfp
& __GFP_NOWARN
);
1358 static int warn_limit
= 10;
1359 struct pcpu_chunk
*chunk
;
1361 int slot
, off
, cpu
, ret
;
1362 unsigned long flags
;
1364 size_t bits
, bit_align
;
1367 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1368 * therefore alignment must be a minimum of that many bytes.
1369 * An allocation may have internal fragmentation from rounding up
1370 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1372 if (unlikely(align
< PCPU_MIN_ALLOC_SIZE
))
1373 align
= PCPU_MIN_ALLOC_SIZE
;
1375 size
= ALIGN(size
, PCPU_MIN_ALLOC_SIZE
);
1376 bits
= size
>> PCPU_MIN_ALLOC_SHIFT
;
1377 bit_align
= align
>> PCPU_MIN_ALLOC_SHIFT
;
1379 if (unlikely(!size
|| size
> PCPU_MIN_UNIT_SIZE
|| align
> PAGE_SIZE
||
1380 !is_power_of_2(align
))) {
1381 WARN(do_warn
, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1388 * pcpu_balance_workfn() allocates memory under this mutex,
1389 * and it may wait for memory reclaim. Allow current task
1390 * to become OOM victim, in case of memory pressure.
1392 if (gfp
& __GFP_NOFAIL
)
1393 mutex_lock(&pcpu_alloc_mutex
);
1394 else if (mutex_lock_killable(&pcpu_alloc_mutex
))
1398 spin_lock_irqsave(&pcpu_lock
, flags
);
1400 /* serve reserved allocations from the reserved chunk if available */
1401 if (reserved
&& pcpu_reserved_chunk
) {
1402 chunk
= pcpu_reserved_chunk
;
1404 off
= pcpu_find_block_fit(chunk
, bits
, bit_align
, is_atomic
);
1406 err
= "alloc from reserved chunk failed";
1410 off
= pcpu_alloc_area(chunk
, bits
, bit_align
, off
);
1414 err
= "alloc from reserved chunk failed";
1419 /* search through normal chunks */
1420 for (slot
= pcpu_size_to_slot(size
); slot
< pcpu_nr_slots
; slot
++) {
1421 list_for_each_entry(chunk
, &pcpu_slot
[slot
], list
) {
1422 off
= pcpu_find_block_fit(chunk
, bits
, bit_align
,
1427 off
= pcpu_alloc_area(chunk
, bits
, bit_align
, off
);
1434 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1437 * No space left. Create a new chunk. We don't want multiple
1438 * tasks to create chunks simultaneously. Serialize and create iff
1439 * there's still no empty chunk after grabbing the mutex.
1442 err
= "atomic alloc failed, no space left";
1446 if (list_empty(&pcpu_slot
[pcpu_nr_slots
- 1])) {
1447 chunk
= pcpu_create_chunk(pcpu_gfp
);
1449 err
= "failed to allocate new chunk";
1453 spin_lock_irqsave(&pcpu_lock
, flags
);
1454 pcpu_chunk_relocate(chunk
, -1);
1456 spin_lock_irqsave(&pcpu_lock
, flags
);
1462 pcpu_stats_area_alloc(chunk
, size
);
1463 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1465 /* populate if not all pages are already there */
1467 int page_start
, page_end
, rs
, re
;
1469 page_start
= PFN_DOWN(off
);
1470 page_end
= PFN_UP(off
+ size
);
1472 pcpu_for_each_unpop_region(chunk
->populated
, rs
, re
,
1473 page_start
, page_end
) {
1474 WARN_ON(chunk
->immutable
);
1476 ret
= pcpu_populate_chunk(chunk
, rs
, re
, pcpu_gfp
);
1478 spin_lock_irqsave(&pcpu_lock
, flags
);
1480 pcpu_free_area(chunk
, off
);
1481 err
= "failed to populate";
1484 pcpu_chunk_populated(chunk
, rs
, re
, true);
1485 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1488 mutex_unlock(&pcpu_alloc_mutex
);
1491 if (pcpu_nr_empty_pop_pages
< PCPU_EMPTY_POP_PAGES_LOW
)
1492 pcpu_schedule_balance_work();
1494 /* clear the areas and return address relative to base address */
1495 for_each_possible_cpu(cpu
)
1496 memset((void *)pcpu_chunk_addr(chunk
, cpu
, 0) + off
, 0, size
);
1498 ptr
= __addr_to_pcpu_ptr(chunk
->base_addr
+ off
);
1499 kmemleak_alloc_percpu(ptr
, size
, gfp
);
1501 trace_percpu_alloc_percpu(reserved
, is_atomic
, size
, align
,
1502 chunk
->base_addr
, off
, ptr
);
1507 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1509 trace_percpu_alloc_percpu_fail(reserved
, is_atomic
, size
, align
);
1511 if (!is_atomic
&& do_warn
&& warn_limit
) {
1512 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1513 size
, align
, is_atomic
, err
);
1516 pr_info("limit reached, disable warning\n");
1519 /* see the flag handling in pcpu_blance_workfn() */
1520 pcpu_atomic_alloc_failed
= true;
1521 pcpu_schedule_balance_work();
1523 mutex_unlock(&pcpu_alloc_mutex
);
1529 * __alloc_percpu_gfp - allocate dynamic percpu area
1530 * @size: size of area to allocate in bytes
1531 * @align: alignment of area (max PAGE_SIZE)
1532 * @gfp: allocation flags
1534 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1535 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1536 * be called from any context but is a lot more likely to fail. If @gfp
1537 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1538 * allocation requests.
1541 * Percpu pointer to the allocated area on success, NULL on failure.
1543 void __percpu
*__alloc_percpu_gfp(size_t size
, size_t align
, gfp_t gfp
)
1545 return pcpu_alloc(size
, align
, false, gfp
);
1547 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp
);
1550 * __alloc_percpu - allocate dynamic percpu area
1551 * @size: size of area to allocate in bytes
1552 * @align: alignment of area (max PAGE_SIZE)
1554 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1556 void __percpu
*__alloc_percpu(size_t size
, size_t align
)
1558 return pcpu_alloc(size
, align
, false, GFP_KERNEL
);
1560 EXPORT_SYMBOL_GPL(__alloc_percpu
);
1563 * __alloc_reserved_percpu - allocate reserved percpu area
1564 * @size: size of area to allocate in bytes
1565 * @align: alignment of area (max PAGE_SIZE)
1567 * Allocate zero-filled percpu area of @size bytes aligned at @align
1568 * from reserved percpu area if arch has set it up; otherwise,
1569 * allocation is served from the same dynamic area. Might sleep.
1570 * Might trigger writeouts.
1573 * Does GFP_KERNEL allocation.
1576 * Percpu pointer to the allocated area on success, NULL on failure.
1578 void __percpu
*__alloc_reserved_percpu(size_t size
, size_t align
)
1580 return pcpu_alloc(size
, align
, true, GFP_KERNEL
);
1584 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1587 * Reclaim all fully free chunks except for the first one. This is also
1588 * responsible for maintaining the pool of empty populated pages. However,
1589 * it is possible that this is called when physical memory is scarce causing
1590 * OOM killer to be triggered. We should avoid doing so until an actual
1591 * allocation causes the failure as it is possible that requests can be
1592 * serviced from already backed regions.
1594 static void pcpu_balance_workfn(struct work_struct
*work
)
1596 /* gfp flags passed to underlying allocators */
1597 const gfp_t gfp
= GFP_KERNEL
| __GFP_NORETRY
| __GFP_NOWARN
;
1599 struct list_head
*free_head
= &pcpu_slot
[pcpu_nr_slots
- 1];
1600 struct pcpu_chunk
*chunk
, *next
;
1601 int slot
, nr_to_pop
, ret
;
1604 * There's no reason to keep around multiple unused chunks and VM
1605 * areas can be scarce. Destroy all free chunks except for one.
1607 mutex_lock(&pcpu_alloc_mutex
);
1608 spin_lock_irq(&pcpu_lock
);
1610 list_for_each_entry_safe(chunk
, next
, free_head
, list
) {
1611 WARN_ON(chunk
->immutable
);
1613 /* spare the first one */
1614 if (chunk
== list_first_entry(free_head
, struct pcpu_chunk
, list
))
1617 list_move(&chunk
->list
, &to_free
);
1620 spin_unlock_irq(&pcpu_lock
);
1622 list_for_each_entry_safe(chunk
, next
, &to_free
, list
) {
1625 pcpu_for_each_pop_region(chunk
->populated
, rs
, re
, 0,
1627 pcpu_depopulate_chunk(chunk
, rs
, re
);
1628 spin_lock_irq(&pcpu_lock
);
1629 pcpu_chunk_depopulated(chunk
, rs
, re
);
1630 spin_unlock_irq(&pcpu_lock
);
1632 pcpu_destroy_chunk(chunk
);
1637 * Ensure there are certain number of free populated pages for
1638 * atomic allocs. Fill up from the most packed so that atomic
1639 * allocs don't increase fragmentation. If atomic allocation
1640 * failed previously, always populate the maximum amount. This
1641 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1642 * failing indefinitely; however, large atomic allocs are not
1643 * something we support properly and can be highly unreliable and
1647 if (pcpu_atomic_alloc_failed
) {
1648 nr_to_pop
= PCPU_EMPTY_POP_PAGES_HIGH
;
1649 /* best effort anyway, don't worry about synchronization */
1650 pcpu_atomic_alloc_failed
= false;
1652 nr_to_pop
= clamp(PCPU_EMPTY_POP_PAGES_HIGH
-
1653 pcpu_nr_empty_pop_pages
,
1654 0, PCPU_EMPTY_POP_PAGES_HIGH
);
1657 for (slot
= pcpu_size_to_slot(PAGE_SIZE
); slot
< pcpu_nr_slots
; slot
++) {
1658 int nr_unpop
= 0, rs
, re
;
1663 spin_lock_irq(&pcpu_lock
);
1664 list_for_each_entry(chunk
, &pcpu_slot
[slot
], list
) {
1665 nr_unpop
= chunk
->nr_pages
- chunk
->nr_populated
;
1669 spin_unlock_irq(&pcpu_lock
);
1674 /* @chunk can't go away while pcpu_alloc_mutex is held */
1675 pcpu_for_each_unpop_region(chunk
->populated
, rs
, re
, 0,
1677 int nr
= min(re
- rs
, nr_to_pop
);
1679 ret
= pcpu_populate_chunk(chunk
, rs
, rs
+ nr
, gfp
);
1682 spin_lock_irq(&pcpu_lock
);
1683 pcpu_chunk_populated(chunk
, rs
, rs
+ nr
, false);
1684 spin_unlock_irq(&pcpu_lock
);
1695 /* ran out of chunks to populate, create a new one and retry */
1696 chunk
= pcpu_create_chunk(gfp
);
1698 spin_lock_irq(&pcpu_lock
);
1699 pcpu_chunk_relocate(chunk
, -1);
1700 spin_unlock_irq(&pcpu_lock
);
1705 mutex_unlock(&pcpu_alloc_mutex
);
1709 * free_percpu - free percpu area
1710 * @ptr: pointer to area to free
1712 * Free percpu area @ptr.
1715 * Can be called from atomic context.
1717 void free_percpu(void __percpu
*ptr
)
1720 struct pcpu_chunk
*chunk
;
1721 unsigned long flags
;
1727 kmemleak_free_percpu(ptr
);
1729 addr
= __pcpu_ptr_to_addr(ptr
);
1731 spin_lock_irqsave(&pcpu_lock
, flags
);
1733 chunk
= pcpu_chunk_addr_search(addr
);
1734 off
= addr
- chunk
->base_addr
;
1736 pcpu_free_area(chunk
, off
);
1738 /* if there are more than one fully free chunks, wake up grim reaper */
1739 if (chunk
->free_bytes
== pcpu_unit_size
) {
1740 struct pcpu_chunk
*pos
;
1742 list_for_each_entry(pos
, &pcpu_slot
[pcpu_nr_slots
- 1], list
)
1744 pcpu_schedule_balance_work();
1749 trace_percpu_free_percpu(chunk
->base_addr
, off
, ptr
);
1751 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1753 EXPORT_SYMBOL_GPL(free_percpu
);
1755 bool __is_kernel_percpu_address(unsigned long addr
, unsigned long *can_addr
)
1758 const size_t static_size
= __per_cpu_end
- __per_cpu_start
;
1759 void __percpu
*base
= __addr_to_pcpu_ptr(pcpu_base_addr
);
1762 for_each_possible_cpu(cpu
) {
1763 void *start
= per_cpu_ptr(base
, cpu
);
1764 void *va
= (void *)addr
;
1766 if (va
>= start
&& va
< start
+ static_size
) {
1768 *can_addr
= (unsigned long) (va
- start
);
1769 *can_addr
+= (unsigned long)
1770 per_cpu_ptr(base
, get_boot_cpu_id());
1776 /* on UP, can't distinguish from other static vars, always false */
1781 * is_kernel_percpu_address - test whether address is from static percpu area
1782 * @addr: address to test
1784 * Test whether @addr belongs to in-kernel static percpu area. Module
1785 * static percpu areas are not considered. For those, use
1786 * is_module_percpu_address().
1789 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1791 bool is_kernel_percpu_address(unsigned long addr
)
1793 return __is_kernel_percpu_address(addr
, NULL
);
1797 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1798 * @addr: the address to be converted to physical address
1800 * Given @addr which is dereferenceable address obtained via one of
1801 * percpu access macros, this function translates it into its physical
1802 * address. The caller is responsible for ensuring @addr stays valid
1803 * until this function finishes.
1805 * percpu allocator has special setup for the first chunk, which currently
1806 * supports either embedding in linear address space or vmalloc mapping,
1807 * and, from the second one, the backing allocator (currently either vm or
1808 * km) provides translation.
1810 * The addr can be translated simply without checking if it falls into the
1811 * first chunk. But the current code reflects better how percpu allocator
1812 * actually works, and the verification can discover both bugs in percpu
1813 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1817 * The physical address for @addr.
1819 phys_addr_t
per_cpu_ptr_to_phys(void *addr
)
1821 void __percpu
*base
= __addr_to_pcpu_ptr(pcpu_base_addr
);
1822 bool in_first_chunk
= false;
1823 unsigned long first_low
, first_high
;
1827 * The following test on unit_low/high isn't strictly
1828 * necessary but will speed up lookups of addresses which
1829 * aren't in the first chunk.
1831 * The address check is against full chunk sizes. pcpu_base_addr
1832 * points to the beginning of the first chunk including the
1833 * static region. Assumes good intent as the first chunk may
1834 * not be full (ie. < pcpu_unit_pages in size).
1836 first_low
= (unsigned long)pcpu_base_addr
+
1837 pcpu_unit_page_offset(pcpu_low_unit_cpu
, 0);
1838 first_high
= (unsigned long)pcpu_base_addr
+
1839 pcpu_unit_page_offset(pcpu_high_unit_cpu
, pcpu_unit_pages
);
1840 if ((unsigned long)addr
>= first_low
&&
1841 (unsigned long)addr
< first_high
) {
1842 for_each_possible_cpu(cpu
) {
1843 void *start
= per_cpu_ptr(base
, cpu
);
1845 if (addr
>= start
&& addr
< start
+ pcpu_unit_size
) {
1846 in_first_chunk
= true;
1852 if (in_first_chunk
) {
1853 if (!is_vmalloc_addr(addr
))
1856 return page_to_phys(vmalloc_to_page(addr
)) +
1857 offset_in_page(addr
);
1859 return page_to_phys(pcpu_addr_to_page(addr
)) +
1860 offset_in_page(addr
);
1864 * pcpu_alloc_alloc_info - allocate percpu allocation info
1865 * @nr_groups: the number of groups
1866 * @nr_units: the number of units
1868 * Allocate ai which is large enough for @nr_groups groups containing
1869 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1870 * cpu_map array which is long enough for @nr_units and filled with
1871 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1872 * pointer of other groups.
1875 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1878 struct pcpu_alloc_info
* __init
pcpu_alloc_alloc_info(int nr_groups
,
1881 struct pcpu_alloc_info
*ai
;
1882 size_t base_size
, ai_size
;
1886 base_size
= ALIGN(sizeof(*ai
) + nr_groups
* sizeof(ai
->groups
[0]),
1887 __alignof__(ai
->groups
[0].cpu_map
[0]));
1888 ai_size
= base_size
+ nr_units
* sizeof(ai
->groups
[0].cpu_map
[0]);
1890 ptr
= memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size
), PAGE_SIZE
);
1896 ai
->groups
[0].cpu_map
= ptr
;
1898 for (unit
= 0; unit
< nr_units
; unit
++)
1899 ai
->groups
[0].cpu_map
[unit
] = NR_CPUS
;
1901 ai
->nr_groups
= nr_groups
;
1902 ai
->__ai_size
= PFN_ALIGN(ai_size
);
1908 * pcpu_free_alloc_info - free percpu allocation info
1909 * @ai: pcpu_alloc_info to free
1911 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1913 void __init
pcpu_free_alloc_info(struct pcpu_alloc_info
*ai
)
1915 memblock_free_early(__pa(ai
), ai
->__ai_size
);
1919 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1921 * @ai: allocation info to dump
1923 * Print out information about @ai using loglevel @lvl.
1925 static void pcpu_dump_alloc_info(const char *lvl
,
1926 const struct pcpu_alloc_info
*ai
)
1928 int group_width
= 1, cpu_width
= 1, width
;
1929 char empty_str
[] = "--------";
1930 int alloc
= 0, alloc_end
= 0;
1932 int upa
, apl
; /* units per alloc, allocs per line */
1938 v
= num_possible_cpus();
1941 empty_str
[min_t(int, cpu_width
, sizeof(empty_str
) - 1)] = '\0';
1943 upa
= ai
->alloc_size
/ ai
->unit_size
;
1944 width
= upa
* (cpu_width
+ 1) + group_width
+ 3;
1945 apl
= rounddown_pow_of_two(max(60 / width
, 1));
1947 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1948 lvl
, ai
->static_size
, ai
->reserved_size
, ai
->dyn_size
,
1949 ai
->unit_size
, ai
->alloc_size
/ ai
->atom_size
, ai
->atom_size
);
1951 for (group
= 0; group
< ai
->nr_groups
; group
++) {
1952 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1953 int unit
= 0, unit_end
= 0;
1955 BUG_ON(gi
->nr_units
% upa
);
1956 for (alloc_end
+= gi
->nr_units
/ upa
;
1957 alloc
< alloc_end
; alloc
++) {
1958 if (!(alloc
% apl
)) {
1960 printk("%spcpu-alloc: ", lvl
);
1962 pr_cont("[%0*d] ", group_width
, group
);
1964 for (unit_end
+= upa
; unit
< unit_end
; unit
++)
1965 if (gi
->cpu_map
[unit
] != NR_CPUS
)
1967 cpu_width
, gi
->cpu_map
[unit
]);
1969 pr_cont("%s ", empty_str
);
1976 * pcpu_setup_first_chunk - initialize the first percpu chunk
1977 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1978 * @base_addr: mapped address
1980 * Initialize the first percpu chunk which contains the kernel static
1981 * perpcu area. This function is to be called from arch percpu area
1984 * @ai contains all information necessary to initialize the first
1985 * chunk and prime the dynamic percpu allocator.
1987 * @ai->static_size is the size of static percpu area.
1989 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1990 * reserve after the static area in the first chunk. This reserves
1991 * the first chunk such that it's available only through reserved
1992 * percpu allocation. This is primarily used to serve module percpu
1993 * static areas on architectures where the addressing model has
1994 * limited offset range for symbol relocations to guarantee module
1995 * percpu symbols fall inside the relocatable range.
1997 * @ai->dyn_size determines the number of bytes available for dynamic
1998 * allocation in the first chunk. The area between @ai->static_size +
1999 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2001 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2002 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2005 * @ai->atom_size is the allocation atom size and used as alignment
2008 * @ai->alloc_size is the allocation size and always multiple of
2009 * @ai->atom_size. This is larger than @ai->atom_size if
2010 * @ai->unit_size is larger than @ai->atom_size.
2012 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2013 * percpu areas. Units which should be colocated are put into the
2014 * same group. Dynamic VM areas will be allocated according to these
2015 * groupings. If @ai->nr_groups is zero, a single group containing
2016 * all units is assumed.
2018 * The caller should have mapped the first chunk at @base_addr and
2019 * copied static data to each unit.
2021 * The first chunk will always contain a static and a dynamic region.
2022 * However, the static region is not managed by any chunk. If the first
2023 * chunk also contains a reserved region, it is served by two chunks -
2024 * one for the reserved region and one for the dynamic region. They
2025 * share the same vm, but use offset regions in the area allocation map.
2026 * The chunk serving the dynamic region is circulated in the chunk slots
2027 * and available for dynamic allocation like any other chunk.
2030 * 0 on success, -errno on failure.
2032 int __init
pcpu_setup_first_chunk(const struct pcpu_alloc_info
*ai
,
2035 size_t size_sum
= ai
->static_size
+ ai
->reserved_size
+ ai
->dyn_size
;
2036 size_t static_size
, dyn_size
;
2037 struct pcpu_chunk
*chunk
;
2038 unsigned long *group_offsets
;
2039 size_t *group_sizes
;
2040 unsigned long *unit_off
;
2045 unsigned long tmp_addr
;
2047 #define PCPU_SETUP_BUG_ON(cond) do { \
2048 if (unlikely(cond)) { \
2049 pr_emerg("failed to initialize, %s\n", #cond); \
2050 pr_emerg("cpu_possible_mask=%*pb\n", \
2051 cpumask_pr_args(cpu_possible_mask)); \
2052 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2058 PCPU_SETUP_BUG_ON(ai
->nr_groups
<= 0);
2060 PCPU_SETUP_BUG_ON(!ai
->static_size
);
2061 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start
));
2063 PCPU_SETUP_BUG_ON(!base_addr
);
2064 PCPU_SETUP_BUG_ON(offset_in_page(base_addr
));
2065 PCPU_SETUP_BUG_ON(ai
->unit_size
< size_sum
);
2066 PCPU_SETUP_BUG_ON(offset_in_page(ai
->unit_size
));
2067 PCPU_SETUP_BUG_ON(ai
->unit_size
< PCPU_MIN_UNIT_SIZE
);
2068 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai
->unit_size
, PCPU_BITMAP_BLOCK_SIZE
));
2069 PCPU_SETUP_BUG_ON(ai
->dyn_size
< PERCPU_DYNAMIC_EARLY_SIZE
);
2070 PCPU_SETUP_BUG_ON(!ai
->dyn_size
);
2071 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai
->reserved_size
, PCPU_MIN_ALLOC_SIZE
));
2072 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE
, PAGE_SIZE
) ||
2073 IS_ALIGNED(PAGE_SIZE
, PCPU_BITMAP_BLOCK_SIZE
)));
2074 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai
) < 0);
2076 /* process group information and build config tables accordingly */
2077 group_offsets
= memblock_virt_alloc(ai
->nr_groups
*
2078 sizeof(group_offsets
[0]), 0);
2079 group_sizes
= memblock_virt_alloc(ai
->nr_groups
*
2080 sizeof(group_sizes
[0]), 0);
2081 unit_map
= memblock_virt_alloc(nr_cpu_ids
* sizeof(unit_map
[0]), 0);
2082 unit_off
= memblock_virt_alloc(nr_cpu_ids
* sizeof(unit_off
[0]), 0);
2084 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
++)
2085 unit_map
[cpu
] = UINT_MAX
;
2087 pcpu_low_unit_cpu
= NR_CPUS
;
2088 pcpu_high_unit_cpu
= NR_CPUS
;
2090 for (group
= 0, unit
= 0; group
< ai
->nr_groups
; group
++, unit
+= i
) {
2091 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
2093 group_offsets
[group
] = gi
->base_offset
;
2094 group_sizes
[group
] = gi
->nr_units
* ai
->unit_size
;
2096 for (i
= 0; i
< gi
->nr_units
; i
++) {
2097 cpu
= gi
->cpu_map
[i
];
2101 PCPU_SETUP_BUG_ON(cpu
>= nr_cpu_ids
);
2102 PCPU_SETUP_BUG_ON(!cpu_possible(cpu
));
2103 PCPU_SETUP_BUG_ON(unit_map
[cpu
] != UINT_MAX
);
2105 unit_map
[cpu
] = unit
+ i
;
2106 unit_off
[cpu
] = gi
->base_offset
+ i
* ai
->unit_size
;
2108 /* determine low/high unit_cpu */
2109 if (pcpu_low_unit_cpu
== NR_CPUS
||
2110 unit_off
[cpu
] < unit_off
[pcpu_low_unit_cpu
])
2111 pcpu_low_unit_cpu
= cpu
;
2112 if (pcpu_high_unit_cpu
== NR_CPUS
||
2113 unit_off
[cpu
] > unit_off
[pcpu_high_unit_cpu
])
2114 pcpu_high_unit_cpu
= cpu
;
2117 pcpu_nr_units
= unit
;
2119 for_each_possible_cpu(cpu
)
2120 PCPU_SETUP_BUG_ON(unit_map
[cpu
] == UINT_MAX
);
2122 /* we're done parsing the input, undefine BUG macro and dump config */
2123 #undef PCPU_SETUP_BUG_ON
2124 pcpu_dump_alloc_info(KERN_DEBUG
, ai
);
2126 pcpu_nr_groups
= ai
->nr_groups
;
2127 pcpu_group_offsets
= group_offsets
;
2128 pcpu_group_sizes
= group_sizes
;
2129 pcpu_unit_map
= unit_map
;
2130 pcpu_unit_offsets
= unit_off
;
2132 /* determine basic parameters */
2133 pcpu_unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
2134 pcpu_unit_size
= pcpu_unit_pages
<< PAGE_SHIFT
;
2135 pcpu_atom_size
= ai
->atom_size
;
2136 pcpu_chunk_struct_size
= sizeof(struct pcpu_chunk
) +
2137 BITS_TO_LONGS(pcpu_unit_pages
) * sizeof(unsigned long);
2139 pcpu_stats_save_ai(ai
);
2142 * Allocate chunk slots. The additional last slot is for
2145 pcpu_nr_slots
= __pcpu_size_to_slot(pcpu_unit_size
) + 2;
2146 pcpu_slot
= memblock_virt_alloc(
2147 pcpu_nr_slots
* sizeof(pcpu_slot
[0]), 0);
2148 for (i
= 0; i
< pcpu_nr_slots
; i
++)
2149 INIT_LIST_HEAD(&pcpu_slot
[i
]);
2152 * The end of the static region needs to be aligned with the
2153 * minimum allocation size as this offsets the reserved and
2154 * dynamic region. The first chunk ends page aligned by
2155 * expanding the dynamic region, therefore the dynamic region
2156 * can be shrunk to compensate while still staying above the
2159 static_size
= ALIGN(ai
->static_size
, PCPU_MIN_ALLOC_SIZE
);
2160 dyn_size
= ai
->dyn_size
- (static_size
- ai
->static_size
);
2163 * Initialize first chunk.
2164 * If the reserved_size is non-zero, this initializes the reserved
2165 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2166 * and the dynamic region is initialized here. The first chunk,
2167 * pcpu_first_chunk, will always point to the chunk that serves
2168 * the dynamic region.
2170 tmp_addr
= (unsigned long)base_addr
+ static_size
;
2171 map_size
= ai
->reserved_size
?: dyn_size
;
2172 chunk
= pcpu_alloc_first_chunk(tmp_addr
, map_size
);
2174 /* init dynamic chunk if necessary */
2175 if (ai
->reserved_size
) {
2176 pcpu_reserved_chunk
= chunk
;
2178 tmp_addr
= (unsigned long)base_addr
+ static_size
+
2180 map_size
= dyn_size
;
2181 chunk
= pcpu_alloc_first_chunk(tmp_addr
, map_size
);
2184 /* link the first chunk in */
2185 pcpu_first_chunk
= chunk
;
2186 pcpu_nr_empty_pop_pages
= pcpu_first_chunk
->nr_empty_pop_pages
;
2187 pcpu_chunk_relocate(pcpu_first_chunk
, -1);
2189 /* include all regions of the first chunk */
2190 pcpu_nr_populated
+= PFN_DOWN(size_sum
);
2192 pcpu_stats_chunk_alloc();
2193 trace_percpu_create_chunk(base_addr
);
2196 pcpu_base_addr
= base_addr
;
2202 const char * const pcpu_fc_names
[PCPU_FC_NR
] __initconst
= {
2203 [PCPU_FC_AUTO
] = "auto",
2204 [PCPU_FC_EMBED
] = "embed",
2205 [PCPU_FC_PAGE
] = "page",
2208 enum pcpu_fc pcpu_chosen_fc __initdata
= PCPU_FC_AUTO
;
2210 static int __init
percpu_alloc_setup(char *str
)
2217 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2218 else if (!strcmp(str
, "embed"))
2219 pcpu_chosen_fc
= PCPU_FC_EMBED
;
2221 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2222 else if (!strcmp(str
, "page"))
2223 pcpu_chosen_fc
= PCPU_FC_PAGE
;
2226 pr_warn("unknown allocator %s specified\n", str
);
2230 early_param("percpu_alloc", percpu_alloc_setup
);
2233 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2234 * Build it if needed by the arch config or the generic setup is going
2237 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2238 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2239 #define BUILD_EMBED_FIRST_CHUNK
2242 /* build pcpu_page_first_chunk() iff needed by the arch config */
2243 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2244 #define BUILD_PAGE_FIRST_CHUNK
2247 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2248 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2250 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2251 * @reserved_size: the size of reserved percpu area in bytes
2252 * @dyn_size: minimum free size for dynamic allocation in bytes
2253 * @atom_size: allocation atom size
2254 * @cpu_distance_fn: callback to determine distance between cpus, optional
2256 * This function determines grouping of units, their mappings to cpus
2257 * and other parameters considering needed percpu size, allocation
2258 * atom size and distances between CPUs.
2260 * Groups are always multiples of atom size and CPUs which are of
2261 * LOCAL_DISTANCE both ways are grouped together and share space for
2262 * units in the same group. The returned configuration is guaranteed
2263 * to have CPUs on different nodes on different groups and >=75% usage
2264 * of allocated virtual address space.
2267 * On success, pointer to the new allocation_info is returned. On
2268 * failure, ERR_PTR value is returned.
2270 static struct pcpu_alloc_info
* __init
pcpu_build_alloc_info(
2271 size_t reserved_size
, size_t dyn_size
,
2273 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
)
2275 static int group_map
[NR_CPUS
] __initdata
;
2276 static int group_cnt
[NR_CPUS
] __initdata
;
2277 const size_t static_size
= __per_cpu_end
- __per_cpu_start
;
2278 int nr_groups
= 1, nr_units
= 0;
2279 size_t size_sum
, min_unit_size
, alloc_size
;
2280 int upa
, max_upa
, uninitialized_var(best_upa
); /* units_per_alloc */
2281 int last_allocs
, group
, unit
;
2282 unsigned int cpu
, tcpu
;
2283 struct pcpu_alloc_info
*ai
;
2284 unsigned int *cpu_map
;
2286 /* this function may be called multiple times */
2287 memset(group_map
, 0, sizeof(group_map
));
2288 memset(group_cnt
, 0, sizeof(group_cnt
));
2290 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2291 size_sum
= PFN_ALIGN(static_size
+ reserved_size
+
2292 max_t(size_t, dyn_size
, PERCPU_DYNAMIC_EARLY_SIZE
));
2293 dyn_size
= size_sum
- static_size
- reserved_size
;
2296 * Determine min_unit_size, alloc_size and max_upa such that
2297 * alloc_size is multiple of atom_size and is the smallest
2298 * which can accommodate 4k aligned segments which are equal to
2299 * or larger than min_unit_size.
2301 min_unit_size
= max_t(size_t, size_sum
, PCPU_MIN_UNIT_SIZE
);
2303 /* determine the maximum # of units that can fit in an allocation */
2304 alloc_size
= roundup(min_unit_size
, atom_size
);
2305 upa
= alloc_size
/ min_unit_size
;
2306 while (alloc_size
% upa
|| (offset_in_page(alloc_size
/ upa
)))
2310 /* group cpus according to their proximity */
2311 for_each_possible_cpu(cpu
) {
2314 for_each_possible_cpu(tcpu
) {
2317 if (group_map
[tcpu
] == group
&& cpu_distance_fn
&&
2318 (cpu_distance_fn(cpu
, tcpu
) > LOCAL_DISTANCE
||
2319 cpu_distance_fn(tcpu
, cpu
) > LOCAL_DISTANCE
)) {
2321 nr_groups
= max(nr_groups
, group
+ 1);
2325 group_map
[cpu
] = group
;
2330 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2331 * Expand the unit_size until we use >= 75% of the units allocated.
2332 * Related to atom_size, which could be much larger than the unit_size.
2334 last_allocs
= INT_MAX
;
2335 for (upa
= max_upa
; upa
; upa
--) {
2336 int allocs
= 0, wasted
= 0;
2338 if (alloc_size
% upa
|| (offset_in_page(alloc_size
/ upa
)))
2341 for (group
= 0; group
< nr_groups
; group
++) {
2342 int this_allocs
= DIV_ROUND_UP(group_cnt
[group
], upa
);
2343 allocs
+= this_allocs
;
2344 wasted
+= this_allocs
* upa
- group_cnt
[group
];
2348 * Don't accept if wastage is over 1/3. The
2349 * greater-than comparison ensures upa==1 always
2350 * passes the following check.
2352 if (wasted
> num_possible_cpus() / 3)
2355 /* and then don't consume more memory */
2356 if (allocs
> last_allocs
)
2358 last_allocs
= allocs
;
2363 /* allocate and fill alloc_info */
2364 for (group
= 0; group
< nr_groups
; group
++)
2365 nr_units
+= roundup(group_cnt
[group
], upa
);
2367 ai
= pcpu_alloc_alloc_info(nr_groups
, nr_units
);
2369 return ERR_PTR(-ENOMEM
);
2370 cpu_map
= ai
->groups
[0].cpu_map
;
2372 for (group
= 0; group
< nr_groups
; group
++) {
2373 ai
->groups
[group
].cpu_map
= cpu_map
;
2374 cpu_map
+= roundup(group_cnt
[group
], upa
);
2377 ai
->static_size
= static_size
;
2378 ai
->reserved_size
= reserved_size
;
2379 ai
->dyn_size
= dyn_size
;
2380 ai
->unit_size
= alloc_size
/ upa
;
2381 ai
->atom_size
= atom_size
;
2382 ai
->alloc_size
= alloc_size
;
2384 for (group
= 0, unit
= 0; group_cnt
[group
]; group
++) {
2385 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
2388 * Initialize base_offset as if all groups are located
2389 * back-to-back. The caller should update this to
2390 * reflect actual allocation.
2392 gi
->base_offset
= unit
* ai
->unit_size
;
2394 for_each_possible_cpu(cpu
)
2395 if (group_map
[cpu
] == group
)
2396 gi
->cpu_map
[gi
->nr_units
++] = cpu
;
2397 gi
->nr_units
= roundup(gi
->nr_units
, upa
);
2398 unit
+= gi
->nr_units
;
2400 BUG_ON(unit
!= nr_units
);
2404 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2406 #if defined(BUILD_EMBED_FIRST_CHUNK)
2408 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2409 * @reserved_size: the size of reserved percpu area in bytes
2410 * @dyn_size: minimum free size for dynamic allocation in bytes
2411 * @atom_size: allocation atom size
2412 * @cpu_distance_fn: callback to determine distance between cpus, optional
2413 * @alloc_fn: function to allocate percpu page
2414 * @free_fn: function to free percpu page
2416 * This is a helper to ease setting up embedded first percpu chunk and
2417 * can be called where pcpu_setup_first_chunk() is expected.
2419 * If this function is used to setup the first chunk, it is allocated
2420 * by calling @alloc_fn and used as-is without being mapped into
2421 * vmalloc area. Allocations are always whole multiples of @atom_size
2422 * aligned to @atom_size.
2424 * This enables the first chunk to piggy back on the linear physical
2425 * mapping which often uses larger page size. Please note that this
2426 * can result in very sparse cpu->unit mapping on NUMA machines thus
2427 * requiring large vmalloc address space. Don't use this allocator if
2428 * vmalloc space is not orders of magnitude larger than distances
2429 * between node memory addresses (ie. 32bit NUMA machines).
2431 * @dyn_size specifies the minimum dynamic area size.
2433 * If the needed size is smaller than the minimum or specified unit
2434 * size, the leftover is returned using @free_fn.
2437 * 0 on success, -errno on failure.
2439 int __init
pcpu_embed_first_chunk(size_t reserved_size
, size_t dyn_size
,
2441 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
,
2442 pcpu_fc_alloc_fn_t alloc_fn
,
2443 pcpu_fc_free_fn_t free_fn
)
2445 void *base
= (void *)ULONG_MAX
;
2446 void **areas
= NULL
;
2447 struct pcpu_alloc_info
*ai
;
2448 size_t size_sum
, areas_size
;
2449 unsigned long max_distance
;
2450 int group
, i
, highest_group
, rc
;
2452 ai
= pcpu_build_alloc_info(reserved_size
, dyn_size
, atom_size
,
2457 size_sum
= ai
->static_size
+ ai
->reserved_size
+ ai
->dyn_size
;
2458 areas_size
= PFN_ALIGN(ai
->nr_groups
* sizeof(void *));
2460 areas
= memblock_virt_alloc_nopanic(areas_size
, 0);
2466 /* allocate, copy and determine base address & max_distance */
2468 for (group
= 0; group
< ai
->nr_groups
; group
++) {
2469 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
2470 unsigned int cpu
= NR_CPUS
;
2473 for (i
= 0; i
< gi
->nr_units
&& cpu
== NR_CPUS
; i
++)
2474 cpu
= gi
->cpu_map
[i
];
2475 BUG_ON(cpu
== NR_CPUS
);
2477 /* allocate space for the whole group */
2478 ptr
= alloc_fn(cpu
, gi
->nr_units
* ai
->unit_size
, atom_size
);
2481 goto out_free_areas
;
2483 /* kmemleak tracks the percpu allocations separately */
2487 base
= min(ptr
, base
);
2488 if (ptr
> areas
[highest_group
])
2489 highest_group
= group
;
2491 max_distance
= areas
[highest_group
] - base
;
2492 max_distance
+= ai
->unit_size
* ai
->groups
[highest_group
].nr_units
;
2494 /* warn if maximum distance is further than 75% of vmalloc space */
2495 if (max_distance
> VMALLOC_TOTAL
* 3 / 4) {
2496 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2497 max_distance
, VMALLOC_TOTAL
);
2498 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2499 /* and fail if we have fallback */
2501 goto out_free_areas
;
2506 * Copy data and free unused parts. This should happen after all
2507 * allocations are complete; otherwise, we may end up with
2508 * overlapping groups.
2510 for (group
= 0; group
< ai
->nr_groups
; group
++) {
2511 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
2512 void *ptr
= areas
[group
];
2514 for (i
= 0; i
< gi
->nr_units
; i
++, ptr
+= ai
->unit_size
) {
2515 if (gi
->cpu_map
[i
] == NR_CPUS
) {
2516 /* unused unit, free whole */
2517 free_fn(ptr
, ai
->unit_size
);
2520 /* copy and return the unused part */
2521 memcpy(ptr
, __per_cpu_load
, ai
->static_size
);
2522 free_fn(ptr
+ size_sum
, ai
->unit_size
- size_sum
);
2526 /* base address is now known, determine group base offsets */
2527 for (group
= 0; group
< ai
->nr_groups
; group
++) {
2528 ai
->groups
[group
].base_offset
= areas
[group
] - base
;
2531 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2532 PFN_DOWN(size_sum
), base
, ai
->static_size
, ai
->reserved_size
,
2533 ai
->dyn_size
, ai
->unit_size
);
2535 rc
= pcpu_setup_first_chunk(ai
, base
);
2539 for (group
= 0; group
< ai
->nr_groups
; group
++)
2541 free_fn(areas
[group
],
2542 ai
->groups
[group
].nr_units
* ai
->unit_size
);
2544 pcpu_free_alloc_info(ai
);
2546 memblock_free_early(__pa(areas
), areas_size
);
2549 #endif /* BUILD_EMBED_FIRST_CHUNK */
2551 #ifdef BUILD_PAGE_FIRST_CHUNK
2553 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2554 * @reserved_size: the size of reserved percpu area in bytes
2555 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2556 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2557 * @populate_pte_fn: function to populate pte
2559 * This is a helper to ease setting up page-remapped first percpu
2560 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2562 * This is the basic allocator. Static percpu area is allocated
2563 * page-by-page into vmalloc area.
2566 * 0 on success, -errno on failure.
2568 int __init
pcpu_page_first_chunk(size_t reserved_size
,
2569 pcpu_fc_alloc_fn_t alloc_fn
,
2570 pcpu_fc_free_fn_t free_fn
,
2571 pcpu_fc_populate_pte_fn_t populate_pte_fn
)
2573 static struct vm_struct vm
;
2574 struct pcpu_alloc_info
*ai
;
2578 struct page
**pages
;
2583 snprintf(psize_str
, sizeof(psize_str
), "%luK", PAGE_SIZE
>> 10);
2585 ai
= pcpu_build_alloc_info(reserved_size
, 0, PAGE_SIZE
, NULL
);
2588 BUG_ON(ai
->nr_groups
!= 1);
2589 upa
= ai
->alloc_size
/ai
->unit_size
;
2590 nr_g0_units
= roundup(num_possible_cpus(), upa
);
2591 if (unlikely(WARN_ON(ai
->groups
[0].nr_units
!= nr_g0_units
))) {
2592 pcpu_free_alloc_info(ai
);
2596 unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
2598 /* unaligned allocations can't be freed, round up to page size */
2599 pages_size
= PFN_ALIGN(unit_pages
* num_possible_cpus() *
2601 pages
= memblock_virt_alloc(pages_size
, 0);
2603 /* allocate pages */
2605 for (unit
= 0; unit
< num_possible_cpus(); unit
++) {
2606 unsigned int cpu
= ai
->groups
[0].cpu_map
[unit
];
2607 for (i
= 0; i
< unit_pages
; i
++) {
2610 ptr
= alloc_fn(cpu
, PAGE_SIZE
, PAGE_SIZE
);
2612 pr_warn("failed to allocate %s page for cpu%u\n",
2616 /* kmemleak tracks the percpu allocations separately */
2618 pages
[j
++] = virt_to_page(ptr
);
2622 /* allocate vm area, map the pages and copy static data */
2623 vm
.flags
= VM_ALLOC
;
2624 vm
.size
= num_possible_cpus() * ai
->unit_size
;
2625 vm_area_register_early(&vm
, PAGE_SIZE
);
2627 for (unit
= 0; unit
< num_possible_cpus(); unit
++) {
2628 unsigned long unit_addr
=
2629 (unsigned long)vm
.addr
+ unit
* ai
->unit_size
;
2631 for (i
= 0; i
< unit_pages
; i
++)
2632 populate_pte_fn(unit_addr
+ (i
<< PAGE_SHIFT
));
2634 /* pte already populated, the following shouldn't fail */
2635 rc
= __pcpu_map_pages(unit_addr
, &pages
[unit
* unit_pages
],
2638 panic("failed to map percpu area, err=%d\n", rc
);
2641 * FIXME: Archs with virtual cache should flush local
2642 * cache for the linear mapping here - something
2643 * equivalent to flush_cache_vmap() on the local cpu.
2644 * flush_cache_vmap() can't be used as most supporting
2645 * data structures are not set up yet.
2648 /* copy static data */
2649 memcpy((void *)unit_addr
, __per_cpu_load
, ai
->static_size
);
2652 /* we're ready, commit */
2653 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2654 unit_pages
, psize_str
, vm
.addr
, ai
->static_size
,
2655 ai
->reserved_size
, ai
->dyn_size
);
2657 rc
= pcpu_setup_first_chunk(ai
, vm
.addr
);
2662 free_fn(page_address(pages
[j
]), PAGE_SIZE
);
2665 memblock_free_early(__pa(pages
), pages_size
);
2666 pcpu_free_alloc_info(ai
);
2669 #endif /* BUILD_PAGE_FIRST_CHUNK */
2671 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2673 * Generic SMP percpu area setup.
2675 * The embedding helper is used because its behavior closely resembles
2676 * the original non-dynamic generic percpu area setup. This is
2677 * important because many archs have addressing restrictions and might
2678 * fail if the percpu area is located far away from the previous
2679 * location. As an added bonus, in non-NUMA cases, embedding is
2680 * generally a good idea TLB-wise because percpu area can piggy back
2681 * on the physical linear memory mapping which uses large page
2682 * mappings on applicable archs.
2684 unsigned long __per_cpu_offset
[NR_CPUS
] __read_mostly
;
2685 EXPORT_SYMBOL(__per_cpu_offset
);
2687 static void * __init
pcpu_dfl_fc_alloc(unsigned int cpu
, size_t size
,
2690 return memblock_virt_alloc_from_nopanic(
2691 size
, align
, __pa(MAX_DMA_ADDRESS
));
2694 static void __init
pcpu_dfl_fc_free(void *ptr
, size_t size
)
2696 memblock_free_early(__pa(ptr
), size
);
2699 void __init
setup_per_cpu_areas(void)
2701 unsigned long delta
;
2706 * Always reserve area for module percpu variables. That's
2707 * what the legacy allocator did.
2709 rc
= pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE
,
2710 PERCPU_DYNAMIC_RESERVE
, PAGE_SIZE
, NULL
,
2711 pcpu_dfl_fc_alloc
, pcpu_dfl_fc_free
);
2713 panic("Failed to initialize percpu areas.");
2715 delta
= (unsigned long)pcpu_base_addr
- (unsigned long)__per_cpu_start
;
2716 for_each_possible_cpu(cpu
)
2717 __per_cpu_offset
[cpu
] = delta
+ pcpu_unit_offsets
[cpu
];
2719 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2721 #else /* CONFIG_SMP */
2724 * UP percpu area setup.
2726 * UP always uses km-based percpu allocator with identity mapping.
2727 * Static percpu variables are indistinguishable from the usual static
2728 * variables and don't require any special preparation.
2730 void __init
setup_per_cpu_areas(void)
2732 const size_t unit_size
=
2733 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE
,
2734 PERCPU_DYNAMIC_RESERVE
));
2735 struct pcpu_alloc_info
*ai
;
2738 ai
= pcpu_alloc_alloc_info(1, 1);
2739 fc
= memblock_virt_alloc_from_nopanic(unit_size
,
2741 __pa(MAX_DMA_ADDRESS
));
2743 panic("Failed to allocate memory for percpu areas.");
2744 /* kmemleak tracks the percpu allocations separately */
2747 ai
->dyn_size
= unit_size
;
2748 ai
->unit_size
= unit_size
;
2749 ai
->atom_size
= unit_size
;
2750 ai
->alloc_size
= unit_size
;
2751 ai
->groups
[0].nr_units
= 1;
2752 ai
->groups
[0].cpu_map
[0] = 0;
2754 if (pcpu_setup_first_chunk(ai
, fc
) < 0)
2755 panic("Failed to initialize percpu areas.");
2756 pcpu_free_alloc_info(ai
);
2759 #endif /* CONFIG_SMP */
2762 * pcpu_nr_pages - calculate total number of populated backing pages
2764 * This reflects the number of pages populated to back chunks. Metadata is
2765 * excluded in the number exposed in meminfo as the number of backing pages
2766 * scales with the number of cpus and can quickly outweigh the memory used for
2767 * metadata. It also keeps this calculation nice and simple.
2770 * Total number of populated backing pages in use by the allocator.
2772 unsigned long pcpu_nr_pages(void)
2774 return pcpu_nr_populated
* pcpu_nr_units
;
2778 * Percpu allocator is initialized early during boot when neither slab or
2779 * workqueue is available. Plug async management until everything is up
2782 static int __init
percpu_enable_async(void)
2784 pcpu_async_enabled
= true;
2787 subsys_initcall(percpu_enable_async
);