media: mmp-driver: add needed __iomem marks to power_regs
[linux-2.6/btrfs-unstable.git] / net / wireless / util.c
blobd112e9a89364518fbd9ac748f9391022601669b7
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Wireless utility functions
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 */
8 #include <linux/export.h>
9 #include <linux/bitops.h>
10 #include <linux/etherdevice.h>
11 #include <linux/slab.h>
12 #include <net/cfg80211.h>
13 #include <net/ip.h>
14 #include <net/dsfield.h>
15 #include <linux/if_vlan.h>
16 #include <linux/mpls.h>
17 #include <linux/gcd.h>
18 #include "core.h"
19 #include "rdev-ops.h"
22 struct ieee80211_rate *
23 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
24 u32 basic_rates, int bitrate)
26 struct ieee80211_rate *result = &sband->bitrates[0];
27 int i;
29 for (i = 0; i < sband->n_bitrates; i++) {
30 if (!(basic_rates & BIT(i)))
31 continue;
32 if (sband->bitrates[i].bitrate > bitrate)
33 continue;
34 result = &sband->bitrates[i];
37 return result;
39 EXPORT_SYMBOL(ieee80211_get_response_rate);
41 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
42 enum nl80211_bss_scan_width scan_width)
44 struct ieee80211_rate *bitrates;
45 u32 mandatory_rates = 0;
46 enum ieee80211_rate_flags mandatory_flag;
47 int i;
49 if (WARN_ON(!sband))
50 return 1;
52 if (sband->band == NL80211_BAND_2GHZ) {
53 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
54 scan_width == NL80211_BSS_CHAN_WIDTH_10)
55 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
56 else
57 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
58 } else {
59 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
62 bitrates = sband->bitrates;
63 for (i = 0; i < sband->n_bitrates; i++)
64 if (bitrates[i].flags & mandatory_flag)
65 mandatory_rates |= BIT(i);
66 return mandatory_rates;
68 EXPORT_SYMBOL(ieee80211_mandatory_rates);
70 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
72 /* see 802.11 17.3.8.3.2 and Annex J
73 * there are overlapping channel numbers in 5GHz and 2GHz bands */
74 if (chan <= 0)
75 return 0; /* not supported */
76 switch (band) {
77 case NL80211_BAND_2GHZ:
78 if (chan == 14)
79 return 2484;
80 else if (chan < 14)
81 return 2407 + chan * 5;
82 break;
83 case NL80211_BAND_5GHZ:
84 if (chan >= 182 && chan <= 196)
85 return 4000 + chan * 5;
86 else
87 return 5000 + chan * 5;
88 break;
89 case NL80211_BAND_60GHZ:
90 if (chan < 5)
91 return 56160 + chan * 2160;
92 break;
93 default:
96 return 0; /* not supported */
98 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
100 int ieee80211_frequency_to_channel(int freq)
102 /* see 802.11 17.3.8.3.2 and Annex J */
103 if (freq == 2484)
104 return 14;
105 else if (freq < 2484)
106 return (freq - 2407) / 5;
107 else if (freq >= 4910 && freq <= 4980)
108 return (freq - 4000) / 5;
109 else if (freq <= 45000) /* DMG band lower limit */
110 return (freq - 5000) / 5;
111 else if (freq >= 58320 && freq <= 64800)
112 return (freq - 56160) / 2160;
113 else
114 return 0;
116 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
118 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
120 enum nl80211_band band;
121 struct ieee80211_supported_band *sband;
122 int i;
124 for (band = 0; band < NUM_NL80211_BANDS; band++) {
125 sband = wiphy->bands[band];
127 if (!sband)
128 continue;
130 for (i = 0; i < sband->n_channels; i++) {
131 if (sband->channels[i].center_freq == freq)
132 return &sband->channels[i];
136 return NULL;
138 EXPORT_SYMBOL(ieee80211_get_channel);
140 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
142 int i, want;
144 switch (sband->band) {
145 case NL80211_BAND_5GHZ:
146 want = 3;
147 for (i = 0; i < sband->n_bitrates; i++) {
148 if (sband->bitrates[i].bitrate == 60 ||
149 sband->bitrates[i].bitrate == 120 ||
150 sband->bitrates[i].bitrate == 240) {
151 sband->bitrates[i].flags |=
152 IEEE80211_RATE_MANDATORY_A;
153 want--;
156 WARN_ON(want);
157 break;
158 case NL80211_BAND_2GHZ:
159 want = 7;
160 for (i = 0; i < sband->n_bitrates; i++) {
161 switch (sband->bitrates[i].bitrate) {
162 case 10:
163 case 20:
164 case 55:
165 case 110:
166 sband->bitrates[i].flags |=
167 IEEE80211_RATE_MANDATORY_B |
168 IEEE80211_RATE_MANDATORY_G;
169 want--;
170 break;
171 case 60:
172 case 120:
173 case 240:
174 sband->bitrates[i].flags |=
175 IEEE80211_RATE_MANDATORY_G;
176 want--;
177 /* fall through */
178 default:
179 sband->bitrates[i].flags |=
180 IEEE80211_RATE_ERP_G;
181 break;
184 WARN_ON(want != 0 && want != 3);
185 break;
186 case NL80211_BAND_60GHZ:
187 /* check for mandatory HT MCS 1..4 */
188 WARN_ON(!sband->ht_cap.ht_supported);
189 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
190 break;
191 case NUM_NL80211_BANDS:
192 default:
193 WARN_ON(1);
194 break;
198 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 enum nl80211_band band;
202 for (band = 0; band < NUM_NL80211_BANDS; band++)
203 if (wiphy->bands[band])
204 set_mandatory_flags_band(wiphy->bands[band]);
207 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 int i;
210 for (i = 0; i < wiphy->n_cipher_suites; i++)
211 if (cipher == wiphy->cipher_suites[i])
212 return true;
213 return false;
216 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
217 struct key_params *params, int key_idx,
218 bool pairwise, const u8 *mac_addr)
220 if (key_idx < 0 || key_idx > 5)
221 return -EINVAL;
223 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
224 return -EINVAL;
226 if (pairwise && !mac_addr)
227 return -EINVAL;
229 switch (params->cipher) {
230 case WLAN_CIPHER_SUITE_TKIP:
231 case WLAN_CIPHER_SUITE_CCMP:
232 case WLAN_CIPHER_SUITE_CCMP_256:
233 case WLAN_CIPHER_SUITE_GCMP:
234 case WLAN_CIPHER_SUITE_GCMP_256:
235 /* Disallow pairwise keys with non-zero index unless it's WEP
236 * or a vendor specific cipher (because current deployments use
237 * pairwise WEP keys with non-zero indices and for vendor
238 * specific ciphers this should be validated in the driver or
239 * hardware level - but 802.11i clearly specifies to use zero)
241 if (pairwise && key_idx)
242 return -EINVAL;
243 break;
244 case WLAN_CIPHER_SUITE_AES_CMAC:
245 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
246 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
247 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
248 /* Disallow BIP (group-only) cipher as pairwise cipher */
249 if (pairwise)
250 return -EINVAL;
251 if (key_idx < 4)
252 return -EINVAL;
253 break;
254 case WLAN_CIPHER_SUITE_WEP40:
255 case WLAN_CIPHER_SUITE_WEP104:
256 if (key_idx > 3)
257 return -EINVAL;
258 default:
259 break;
262 switch (params->cipher) {
263 case WLAN_CIPHER_SUITE_WEP40:
264 if (params->key_len != WLAN_KEY_LEN_WEP40)
265 return -EINVAL;
266 break;
267 case WLAN_CIPHER_SUITE_TKIP:
268 if (params->key_len != WLAN_KEY_LEN_TKIP)
269 return -EINVAL;
270 break;
271 case WLAN_CIPHER_SUITE_CCMP:
272 if (params->key_len != WLAN_KEY_LEN_CCMP)
273 return -EINVAL;
274 break;
275 case WLAN_CIPHER_SUITE_CCMP_256:
276 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
277 return -EINVAL;
278 break;
279 case WLAN_CIPHER_SUITE_GCMP:
280 if (params->key_len != WLAN_KEY_LEN_GCMP)
281 return -EINVAL;
282 break;
283 case WLAN_CIPHER_SUITE_GCMP_256:
284 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
285 return -EINVAL;
286 break;
287 case WLAN_CIPHER_SUITE_WEP104:
288 if (params->key_len != WLAN_KEY_LEN_WEP104)
289 return -EINVAL;
290 break;
291 case WLAN_CIPHER_SUITE_AES_CMAC:
292 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
293 return -EINVAL;
294 break;
295 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
296 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
297 return -EINVAL;
298 break;
299 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
300 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
301 return -EINVAL;
302 break;
303 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
304 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
305 return -EINVAL;
306 break;
307 default:
309 * We don't know anything about this algorithm,
310 * allow using it -- but the driver must check
311 * all parameters! We still check below whether
312 * or not the driver supports this algorithm,
313 * of course.
315 break;
318 if (params->seq) {
319 switch (params->cipher) {
320 case WLAN_CIPHER_SUITE_WEP40:
321 case WLAN_CIPHER_SUITE_WEP104:
322 /* These ciphers do not use key sequence */
323 return -EINVAL;
324 case WLAN_CIPHER_SUITE_TKIP:
325 case WLAN_CIPHER_SUITE_CCMP:
326 case WLAN_CIPHER_SUITE_CCMP_256:
327 case WLAN_CIPHER_SUITE_GCMP:
328 case WLAN_CIPHER_SUITE_GCMP_256:
329 case WLAN_CIPHER_SUITE_AES_CMAC:
330 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
331 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
332 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
333 if (params->seq_len != 6)
334 return -EINVAL;
335 break;
339 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
340 return -EINVAL;
342 return 0;
345 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
347 unsigned int hdrlen = 24;
349 if (ieee80211_is_data(fc)) {
350 if (ieee80211_has_a4(fc))
351 hdrlen = 30;
352 if (ieee80211_is_data_qos(fc)) {
353 hdrlen += IEEE80211_QOS_CTL_LEN;
354 if (ieee80211_has_order(fc))
355 hdrlen += IEEE80211_HT_CTL_LEN;
357 goto out;
360 if (ieee80211_is_mgmt(fc)) {
361 if (ieee80211_has_order(fc))
362 hdrlen += IEEE80211_HT_CTL_LEN;
363 goto out;
366 if (ieee80211_is_ctl(fc)) {
368 * ACK and CTS are 10 bytes, all others 16. To see how
369 * to get this condition consider
370 * subtype mask: 0b0000000011110000 (0x00F0)
371 * ACK subtype: 0b0000000011010000 (0x00D0)
372 * CTS subtype: 0b0000000011000000 (0x00C0)
373 * bits that matter: ^^^ (0x00E0)
374 * value of those: 0b0000000011000000 (0x00C0)
376 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
377 hdrlen = 10;
378 else
379 hdrlen = 16;
381 out:
382 return hdrlen;
384 EXPORT_SYMBOL(ieee80211_hdrlen);
386 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
388 const struct ieee80211_hdr *hdr =
389 (const struct ieee80211_hdr *)skb->data;
390 unsigned int hdrlen;
392 if (unlikely(skb->len < 10))
393 return 0;
394 hdrlen = ieee80211_hdrlen(hdr->frame_control);
395 if (unlikely(hdrlen > skb->len))
396 return 0;
397 return hdrlen;
399 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
401 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
403 int ae = flags & MESH_FLAGS_AE;
404 /* 802.11-2012, 8.2.4.7.3 */
405 switch (ae) {
406 default:
407 case 0:
408 return 6;
409 case MESH_FLAGS_AE_A4:
410 return 12;
411 case MESH_FLAGS_AE_A5_A6:
412 return 18;
416 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
418 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
420 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
422 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
423 const u8 *addr, enum nl80211_iftype iftype,
424 u8 data_offset)
426 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
427 struct {
428 u8 hdr[ETH_ALEN] __aligned(2);
429 __be16 proto;
430 } payload;
431 struct ethhdr tmp;
432 u16 hdrlen;
433 u8 mesh_flags = 0;
435 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
436 return -1;
438 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
439 if (skb->len < hdrlen + 8)
440 return -1;
442 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
443 * header
444 * IEEE 802.11 address fields:
445 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
446 * 0 0 DA SA BSSID n/a
447 * 0 1 DA BSSID SA n/a
448 * 1 0 BSSID SA DA n/a
449 * 1 1 RA TA DA SA
451 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
452 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
454 if (iftype == NL80211_IFTYPE_MESH_POINT)
455 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
457 mesh_flags &= MESH_FLAGS_AE;
459 switch (hdr->frame_control &
460 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
461 case cpu_to_le16(IEEE80211_FCTL_TODS):
462 if (unlikely(iftype != NL80211_IFTYPE_AP &&
463 iftype != NL80211_IFTYPE_AP_VLAN &&
464 iftype != NL80211_IFTYPE_P2P_GO))
465 return -1;
466 break;
467 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
468 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
469 iftype != NL80211_IFTYPE_MESH_POINT &&
470 iftype != NL80211_IFTYPE_AP_VLAN &&
471 iftype != NL80211_IFTYPE_STATION))
472 return -1;
473 if (iftype == NL80211_IFTYPE_MESH_POINT) {
474 if (mesh_flags == MESH_FLAGS_AE_A4)
475 return -1;
476 if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
477 skb_copy_bits(skb, hdrlen +
478 offsetof(struct ieee80211s_hdr, eaddr1),
479 tmp.h_dest, 2 * ETH_ALEN);
481 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
483 break;
484 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
485 if ((iftype != NL80211_IFTYPE_STATION &&
486 iftype != NL80211_IFTYPE_P2P_CLIENT &&
487 iftype != NL80211_IFTYPE_MESH_POINT) ||
488 (is_multicast_ether_addr(tmp.h_dest) &&
489 ether_addr_equal(tmp.h_source, addr)))
490 return -1;
491 if (iftype == NL80211_IFTYPE_MESH_POINT) {
492 if (mesh_flags == MESH_FLAGS_AE_A5_A6)
493 return -1;
494 if (mesh_flags == MESH_FLAGS_AE_A4)
495 skb_copy_bits(skb, hdrlen +
496 offsetof(struct ieee80211s_hdr, eaddr1),
497 tmp.h_source, ETH_ALEN);
498 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
500 break;
501 case cpu_to_le16(0):
502 if (iftype != NL80211_IFTYPE_ADHOC &&
503 iftype != NL80211_IFTYPE_STATION &&
504 iftype != NL80211_IFTYPE_OCB)
505 return -1;
506 break;
509 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
510 tmp.h_proto = payload.proto;
512 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
513 tmp.h_proto != htons(ETH_P_AARP) &&
514 tmp.h_proto != htons(ETH_P_IPX)) ||
515 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
516 /* remove RFC1042 or Bridge-Tunnel encapsulation and
517 * replace EtherType */
518 hdrlen += ETH_ALEN + 2;
519 else
520 tmp.h_proto = htons(skb->len - hdrlen);
522 pskb_pull(skb, hdrlen);
524 if (!ehdr)
525 ehdr = skb_push(skb, sizeof(struct ethhdr));
526 memcpy(ehdr, &tmp, sizeof(tmp));
528 return 0;
530 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
532 static void
533 __frame_add_frag(struct sk_buff *skb, struct page *page,
534 void *ptr, int len, int size)
536 struct skb_shared_info *sh = skb_shinfo(skb);
537 int page_offset;
539 page_ref_inc(page);
540 page_offset = ptr - page_address(page);
541 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
544 static void
545 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
546 int offset, int len)
548 struct skb_shared_info *sh = skb_shinfo(skb);
549 const skb_frag_t *frag = &sh->frags[0];
550 struct page *frag_page;
551 void *frag_ptr;
552 int frag_len, frag_size;
553 int head_size = skb->len - skb->data_len;
554 int cur_len;
556 frag_page = virt_to_head_page(skb->head);
557 frag_ptr = skb->data;
558 frag_size = head_size;
560 while (offset >= frag_size) {
561 offset -= frag_size;
562 frag_page = skb_frag_page(frag);
563 frag_ptr = skb_frag_address(frag);
564 frag_size = skb_frag_size(frag);
565 frag++;
568 frag_ptr += offset;
569 frag_len = frag_size - offset;
571 cur_len = min(len, frag_len);
573 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
574 len -= cur_len;
576 while (len > 0) {
577 frag_len = skb_frag_size(frag);
578 cur_len = min(len, frag_len);
579 __frame_add_frag(frame, skb_frag_page(frag),
580 skb_frag_address(frag), cur_len, frag_len);
581 len -= cur_len;
582 frag++;
586 static struct sk_buff *
587 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
588 int offset, int len, bool reuse_frag)
590 struct sk_buff *frame;
591 int cur_len = len;
593 if (skb->len - offset < len)
594 return NULL;
597 * When reusing framents, copy some data to the head to simplify
598 * ethernet header handling and speed up protocol header processing
599 * in the stack later.
601 if (reuse_frag)
602 cur_len = min_t(int, len, 32);
605 * Allocate and reserve two bytes more for payload
606 * alignment since sizeof(struct ethhdr) is 14.
608 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
609 if (!frame)
610 return NULL;
612 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
613 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
615 len -= cur_len;
616 if (!len)
617 return frame;
619 offset += cur_len;
620 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
622 return frame;
625 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
626 const u8 *addr, enum nl80211_iftype iftype,
627 const unsigned int extra_headroom,
628 const u8 *check_da, const u8 *check_sa)
630 unsigned int hlen = ALIGN(extra_headroom, 4);
631 struct sk_buff *frame = NULL;
632 u16 ethertype;
633 u8 *payload;
634 int offset = 0, remaining;
635 struct ethhdr eth;
636 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
637 bool reuse_skb = false;
638 bool last = false;
640 while (!last) {
641 unsigned int subframe_len;
642 int len;
643 u8 padding;
645 skb_copy_bits(skb, offset, &eth, sizeof(eth));
646 len = ntohs(eth.h_proto);
647 subframe_len = sizeof(struct ethhdr) + len;
648 padding = (4 - subframe_len) & 0x3;
650 /* the last MSDU has no padding */
651 remaining = skb->len - offset;
652 if (subframe_len > remaining)
653 goto purge;
655 offset += sizeof(struct ethhdr);
656 last = remaining <= subframe_len + padding;
658 /* FIXME: should we really accept multicast DA? */
659 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
660 !ether_addr_equal(check_da, eth.h_dest)) ||
661 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
662 offset += len + padding;
663 continue;
666 /* reuse skb for the last subframe */
667 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
668 skb_pull(skb, offset);
669 frame = skb;
670 reuse_skb = true;
671 } else {
672 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
673 reuse_frag);
674 if (!frame)
675 goto purge;
677 offset += len + padding;
680 skb_reset_network_header(frame);
681 frame->dev = skb->dev;
682 frame->priority = skb->priority;
684 payload = frame->data;
685 ethertype = (payload[6] << 8) | payload[7];
686 if (likely((ether_addr_equal(payload, rfc1042_header) &&
687 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
688 ether_addr_equal(payload, bridge_tunnel_header))) {
689 eth.h_proto = htons(ethertype);
690 skb_pull(frame, ETH_ALEN + 2);
693 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
694 __skb_queue_tail(list, frame);
697 if (!reuse_skb)
698 dev_kfree_skb(skb);
700 return;
702 purge:
703 __skb_queue_purge(list);
704 dev_kfree_skb(skb);
706 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
708 /* Given a data frame determine the 802.1p/1d tag to use. */
709 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
710 struct cfg80211_qos_map *qos_map)
712 unsigned int dscp;
713 unsigned char vlan_priority;
715 /* skb->priority values from 256->263 are magic values to
716 * directly indicate a specific 802.1d priority. This is used
717 * to allow 802.1d priority to be passed directly in from VLAN
718 * tags, etc.
720 if (skb->priority >= 256 && skb->priority <= 263)
721 return skb->priority - 256;
723 if (skb_vlan_tag_present(skb)) {
724 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
725 >> VLAN_PRIO_SHIFT;
726 if (vlan_priority > 0)
727 return vlan_priority;
730 switch (skb->protocol) {
731 case htons(ETH_P_IP):
732 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
733 break;
734 case htons(ETH_P_IPV6):
735 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
736 break;
737 case htons(ETH_P_MPLS_UC):
738 case htons(ETH_P_MPLS_MC): {
739 struct mpls_label mpls_tmp, *mpls;
741 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
742 sizeof(*mpls), &mpls_tmp);
743 if (!mpls)
744 return 0;
746 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
747 >> MPLS_LS_TC_SHIFT;
749 case htons(ETH_P_80221):
750 /* 802.21 is always network control traffic */
751 return 7;
752 default:
753 return 0;
756 if (qos_map) {
757 unsigned int i, tmp_dscp = dscp >> 2;
759 for (i = 0; i < qos_map->num_des; i++) {
760 if (tmp_dscp == qos_map->dscp_exception[i].dscp)
761 return qos_map->dscp_exception[i].up;
764 for (i = 0; i < 8; i++) {
765 if (tmp_dscp >= qos_map->up[i].low &&
766 tmp_dscp <= qos_map->up[i].high)
767 return i;
771 return dscp >> 5;
773 EXPORT_SYMBOL(cfg80211_classify8021d);
775 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
777 const struct cfg80211_bss_ies *ies;
779 ies = rcu_dereference(bss->ies);
780 if (!ies)
781 return NULL;
783 return cfg80211_find_ie(ie, ies->data, ies->len);
785 EXPORT_SYMBOL(ieee80211_bss_get_ie);
787 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
789 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
790 struct net_device *dev = wdev->netdev;
791 int i;
793 if (!wdev->connect_keys)
794 return;
796 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
797 if (!wdev->connect_keys->params[i].cipher)
798 continue;
799 if (rdev_add_key(rdev, dev, i, false, NULL,
800 &wdev->connect_keys->params[i])) {
801 netdev_err(dev, "failed to set key %d\n", i);
802 continue;
804 if (wdev->connect_keys->def == i &&
805 rdev_set_default_key(rdev, dev, i, true, true)) {
806 netdev_err(dev, "failed to set defkey %d\n", i);
807 continue;
811 kzfree(wdev->connect_keys);
812 wdev->connect_keys = NULL;
815 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
817 struct cfg80211_event *ev;
818 unsigned long flags;
820 spin_lock_irqsave(&wdev->event_lock, flags);
821 while (!list_empty(&wdev->event_list)) {
822 ev = list_first_entry(&wdev->event_list,
823 struct cfg80211_event, list);
824 list_del(&ev->list);
825 spin_unlock_irqrestore(&wdev->event_lock, flags);
827 wdev_lock(wdev);
828 switch (ev->type) {
829 case EVENT_CONNECT_RESULT:
830 __cfg80211_connect_result(
831 wdev->netdev,
832 &ev->cr,
833 ev->cr.status == WLAN_STATUS_SUCCESS);
834 break;
835 case EVENT_ROAMED:
836 __cfg80211_roamed(wdev, &ev->rm);
837 break;
838 case EVENT_DISCONNECTED:
839 __cfg80211_disconnected(wdev->netdev,
840 ev->dc.ie, ev->dc.ie_len,
841 ev->dc.reason,
842 !ev->dc.locally_generated);
843 break;
844 case EVENT_IBSS_JOINED:
845 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
846 ev->ij.channel);
847 break;
848 case EVENT_STOPPED:
849 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
850 break;
851 case EVENT_PORT_AUTHORIZED:
852 __cfg80211_port_authorized(wdev, ev->pa.bssid);
853 break;
855 wdev_unlock(wdev);
857 kfree(ev);
859 spin_lock_irqsave(&wdev->event_lock, flags);
861 spin_unlock_irqrestore(&wdev->event_lock, flags);
864 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
866 struct wireless_dev *wdev;
868 ASSERT_RTNL();
870 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
871 cfg80211_process_wdev_events(wdev);
874 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
875 struct net_device *dev, enum nl80211_iftype ntype,
876 struct vif_params *params)
878 int err;
879 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
881 ASSERT_RTNL();
883 /* don't support changing VLANs, you just re-create them */
884 if (otype == NL80211_IFTYPE_AP_VLAN)
885 return -EOPNOTSUPP;
887 /* cannot change into P2P device or NAN */
888 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
889 ntype == NL80211_IFTYPE_NAN)
890 return -EOPNOTSUPP;
892 if (!rdev->ops->change_virtual_intf ||
893 !(rdev->wiphy.interface_modes & (1 << ntype)))
894 return -EOPNOTSUPP;
896 /* if it's part of a bridge, reject changing type to station/ibss */
897 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
898 (ntype == NL80211_IFTYPE_ADHOC ||
899 ntype == NL80211_IFTYPE_STATION ||
900 ntype == NL80211_IFTYPE_P2P_CLIENT))
901 return -EBUSY;
903 if (ntype != otype) {
904 dev->ieee80211_ptr->use_4addr = false;
905 dev->ieee80211_ptr->mesh_id_up_len = 0;
906 wdev_lock(dev->ieee80211_ptr);
907 rdev_set_qos_map(rdev, dev, NULL);
908 wdev_unlock(dev->ieee80211_ptr);
910 switch (otype) {
911 case NL80211_IFTYPE_AP:
912 cfg80211_stop_ap(rdev, dev, true);
913 break;
914 case NL80211_IFTYPE_ADHOC:
915 cfg80211_leave_ibss(rdev, dev, false);
916 break;
917 case NL80211_IFTYPE_STATION:
918 case NL80211_IFTYPE_P2P_CLIENT:
919 wdev_lock(dev->ieee80211_ptr);
920 cfg80211_disconnect(rdev, dev,
921 WLAN_REASON_DEAUTH_LEAVING, true);
922 wdev_unlock(dev->ieee80211_ptr);
923 break;
924 case NL80211_IFTYPE_MESH_POINT:
925 /* mesh should be handled? */
926 break;
927 default:
928 break;
931 cfg80211_process_rdev_events(rdev);
934 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
936 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
938 if (!err && params && params->use_4addr != -1)
939 dev->ieee80211_ptr->use_4addr = params->use_4addr;
941 if (!err) {
942 dev->priv_flags &= ~IFF_DONT_BRIDGE;
943 switch (ntype) {
944 case NL80211_IFTYPE_STATION:
945 if (dev->ieee80211_ptr->use_4addr)
946 break;
947 /* fall through */
948 case NL80211_IFTYPE_OCB:
949 case NL80211_IFTYPE_P2P_CLIENT:
950 case NL80211_IFTYPE_ADHOC:
951 dev->priv_flags |= IFF_DONT_BRIDGE;
952 break;
953 case NL80211_IFTYPE_P2P_GO:
954 case NL80211_IFTYPE_AP:
955 case NL80211_IFTYPE_AP_VLAN:
956 case NL80211_IFTYPE_WDS:
957 case NL80211_IFTYPE_MESH_POINT:
958 /* bridging OK */
959 break;
960 case NL80211_IFTYPE_MONITOR:
961 /* monitor can't bridge anyway */
962 break;
963 case NL80211_IFTYPE_UNSPECIFIED:
964 case NUM_NL80211_IFTYPES:
965 /* not happening */
966 break;
967 case NL80211_IFTYPE_P2P_DEVICE:
968 case NL80211_IFTYPE_NAN:
969 WARN_ON(1);
970 break;
974 if (!err && ntype != otype && netif_running(dev)) {
975 cfg80211_update_iface_num(rdev, ntype, 1);
976 cfg80211_update_iface_num(rdev, otype, -1);
979 return err;
982 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
984 int modulation, streams, bitrate;
986 /* the formula below does only work for MCS values smaller than 32 */
987 if (WARN_ON_ONCE(rate->mcs >= 32))
988 return 0;
990 modulation = rate->mcs & 7;
991 streams = (rate->mcs >> 3) + 1;
993 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
995 if (modulation < 4)
996 bitrate *= (modulation + 1);
997 else if (modulation == 4)
998 bitrate *= (modulation + 2);
999 else
1000 bitrate *= (modulation + 3);
1002 bitrate *= streams;
1004 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1005 bitrate = (bitrate / 9) * 10;
1007 /* do NOT round down here */
1008 return (bitrate + 50000) / 100000;
1011 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1013 static const u32 __mcs2bitrate[] = {
1014 /* control PHY */
1015 [0] = 275,
1016 /* SC PHY */
1017 [1] = 3850,
1018 [2] = 7700,
1019 [3] = 9625,
1020 [4] = 11550,
1021 [5] = 12512, /* 1251.25 mbps */
1022 [6] = 15400,
1023 [7] = 19250,
1024 [8] = 23100,
1025 [9] = 25025,
1026 [10] = 30800,
1027 [11] = 38500,
1028 [12] = 46200,
1029 /* OFDM PHY */
1030 [13] = 6930,
1031 [14] = 8662, /* 866.25 mbps */
1032 [15] = 13860,
1033 [16] = 17325,
1034 [17] = 20790,
1035 [18] = 27720,
1036 [19] = 34650,
1037 [20] = 41580,
1038 [21] = 45045,
1039 [22] = 51975,
1040 [23] = 62370,
1041 [24] = 67568, /* 6756.75 mbps */
1042 /* LP-SC PHY */
1043 [25] = 6260,
1044 [26] = 8340,
1045 [27] = 11120,
1046 [28] = 12510,
1047 [29] = 16680,
1048 [30] = 22240,
1049 [31] = 25030,
1052 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1053 return 0;
1055 return __mcs2bitrate[rate->mcs];
1058 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1060 static const u32 base[4][10] = {
1061 { 6500000,
1062 13000000,
1063 19500000,
1064 26000000,
1065 39000000,
1066 52000000,
1067 58500000,
1068 65000000,
1069 78000000,
1070 /* not in the spec, but some devices use this: */
1071 86500000,
1073 { 13500000,
1074 27000000,
1075 40500000,
1076 54000000,
1077 81000000,
1078 108000000,
1079 121500000,
1080 135000000,
1081 162000000,
1082 180000000,
1084 { 29300000,
1085 58500000,
1086 87800000,
1087 117000000,
1088 175500000,
1089 234000000,
1090 263300000,
1091 292500000,
1092 351000000,
1093 390000000,
1095 { 58500000,
1096 117000000,
1097 175500000,
1098 234000000,
1099 351000000,
1100 468000000,
1101 526500000,
1102 585000000,
1103 702000000,
1104 780000000,
1107 u32 bitrate;
1108 int idx;
1110 if (rate->mcs > 9)
1111 goto warn;
1113 switch (rate->bw) {
1114 case RATE_INFO_BW_160:
1115 idx = 3;
1116 break;
1117 case RATE_INFO_BW_80:
1118 idx = 2;
1119 break;
1120 case RATE_INFO_BW_40:
1121 idx = 1;
1122 break;
1123 case RATE_INFO_BW_5:
1124 case RATE_INFO_BW_10:
1125 default:
1126 goto warn;
1127 case RATE_INFO_BW_20:
1128 idx = 0;
1131 bitrate = base[idx][rate->mcs];
1132 bitrate *= rate->nss;
1134 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1135 bitrate = (bitrate / 9) * 10;
1137 /* do NOT round down here */
1138 return (bitrate + 50000) / 100000;
1139 warn:
1140 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1141 rate->bw, rate->mcs, rate->nss);
1142 return 0;
1145 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1147 if (rate->flags & RATE_INFO_FLAGS_MCS)
1148 return cfg80211_calculate_bitrate_ht(rate);
1149 if (rate->flags & RATE_INFO_FLAGS_60G)
1150 return cfg80211_calculate_bitrate_60g(rate);
1151 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1152 return cfg80211_calculate_bitrate_vht(rate);
1154 return rate->legacy;
1156 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1158 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1159 enum ieee80211_p2p_attr_id attr,
1160 u8 *buf, unsigned int bufsize)
1162 u8 *out = buf;
1163 u16 attr_remaining = 0;
1164 bool desired_attr = false;
1165 u16 desired_len = 0;
1167 while (len > 0) {
1168 unsigned int iedatalen;
1169 unsigned int copy;
1170 const u8 *iedata;
1172 if (len < 2)
1173 return -EILSEQ;
1174 iedatalen = ies[1];
1175 if (iedatalen + 2 > len)
1176 return -EILSEQ;
1178 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1179 goto cont;
1181 if (iedatalen < 4)
1182 goto cont;
1184 iedata = ies + 2;
1186 /* check WFA OUI, P2P subtype */
1187 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1188 iedata[2] != 0x9a || iedata[3] != 0x09)
1189 goto cont;
1191 iedatalen -= 4;
1192 iedata += 4;
1194 /* check attribute continuation into this IE */
1195 copy = min_t(unsigned int, attr_remaining, iedatalen);
1196 if (copy && desired_attr) {
1197 desired_len += copy;
1198 if (out) {
1199 memcpy(out, iedata, min(bufsize, copy));
1200 out += min(bufsize, copy);
1201 bufsize -= min(bufsize, copy);
1205 if (copy == attr_remaining)
1206 return desired_len;
1209 attr_remaining -= copy;
1210 if (attr_remaining)
1211 goto cont;
1213 iedatalen -= copy;
1214 iedata += copy;
1216 while (iedatalen > 0) {
1217 u16 attr_len;
1219 /* P2P attribute ID & size must fit */
1220 if (iedatalen < 3)
1221 return -EILSEQ;
1222 desired_attr = iedata[0] == attr;
1223 attr_len = get_unaligned_le16(iedata + 1);
1224 iedatalen -= 3;
1225 iedata += 3;
1227 copy = min_t(unsigned int, attr_len, iedatalen);
1229 if (desired_attr) {
1230 desired_len += copy;
1231 if (out) {
1232 memcpy(out, iedata, min(bufsize, copy));
1233 out += min(bufsize, copy);
1234 bufsize -= min(bufsize, copy);
1237 if (copy == attr_len)
1238 return desired_len;
1241 iedata += copy;
1242 iedatalen -= copy;
1243 attr_remaining = attr_len - copy;
1246 cont:
1247 len -= ies[1] + 2;
1248 ies += ies[1] + 2;
1251 if (attr_remaining && desired_attr)
1252 return -EILSEQ;
1254 return -ENOENT;
1256 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1258 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1260 int i;
1262 /* Make sure array values are legal */
1263 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1264 return false;
1266 i = 0;
1267 while (i < n_ids) {
1268 if (ids[i] == WLAN_EID_EXTENSION) {
1269 if (id_ext && (ids[i + 1] == id))
1270 return true;
1272 i += 2;
1273 continue;
1276 if (ids[i] == id && !id_ext)
1277 return true;
1279 i++;
1281 return false;
1284 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1286 /* we assume a validly formed IEs buffer */
1287 u8 len = ies[pos + 1];
1289 pos += 2 + len;
1291 /* the IE itself must have 255 bytes for fragments to follow */
1292 if (len < 255)
1293 return pos;
1295 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1296 len = ies[pos + 1];
1297 pos += 2 + len;
1300 return pos;
1303 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1304 const u8 *ids, int n_ids,
1305 const u8 *after_ric, int n_after_ric,
1306 size_t offset)
1308 size_t pos = offset;
1310 while (pos < ielen) {
1311 u8 ext = 0;
1313 if (ies[pos] == WLAN_EID_EXTENSION)
1314 ext = 2;
1315 if ((pos + ext) >= ielen)
1316 break;
1318 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1319 ies[pos] == WLAN_EID_EXTENSION))
1320 break;
1322 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1323 pos = skip_ie(ies, ielen, pos);
1325 while (pos < ielen) {
1326 if (ies[pos] == WLAN_EID_EXTENSION)
1327 ext = 2;
1328 else
1329 ext = 0;
1331 if ((pos + ext) >= ielen)
1332 break;
1334 if (!ieee80211_id_in_list(after_ric,
1335 n_after_ric,
1336 ies[pos + ext],
1337 ext == 2))
1338 pos = skip_ie(ies, ielen, pos);
1340 } else {
1341 pos = skip_ie(ies, ielen, pos);
1345 return pos;
1347 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1349 bool ieee80211_operating_class_to_band(u8 operating_class,
1350 enum nl80211_band *band)
1352 switch (operating_class) {
1353 case 112:
1354 case 115 ... 127:
1355 case 128 ... 130:
1356 *band = NL80211_BAND_5GHZ;
1357 return true;
1358 case 81:
1359 case 82:
1360 case 83:
1361 case 84:
1362 *band = NL80211_BAND_2GHZ;
1363 return true;
1364 case 180:
1365 *band = NL80211_BAND_60GHZ;
1366 return true;
1369 return false;
1371 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1373 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1374 u8 *op_class)
1376 u8 vht_opclass;
1377 u16 freq = chandef->center_freq1;
1379 if (freq >= 2412 && freq <= 2472) {
1380 if (chandef->width > NL80211_CHAN_WIDTH_40)
1381 return false;
1383 /* 2.407 GHz, channels 1..13 */
1384 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1385 if (freq > chandef->chan->center_freq)
1386 *op_class = 83; /* HT40+ */
1387 else
1388 *op_class = 84; /* HT40- */
1389 } else {
1390 *op_class = 81;
1393 return true;
1396 if (freq == 2484) {
1397 if (chandef->width > NL80211_CHAN_WIDTH_40)
1398 return false;
1400 *op_class = 82; /* channel 14 */
1401 return true;
1404 switch (chandef->width) {
1405 case NL80211_CHAN_WIDTH_80:
1406 vht_opclass = 128;
1407 break;
1408 case NL80211_CHAN_WIDTH_160:
1409 vht_opclass = 129;
1410 break;
1411 case NL80211_CHAN_WIDTH_80P80:
1412 vht_opclass = 130;
1413 break;
1414 case NL80211_CHAN_WIDTH_10:
1415 case NL80211_CHAN_WIDTH_5:
1416 return false; /* unsupported for now */
1417 default:
1418 vht_opclass = 0;
1419 break;
1422 /* 5 GHz, channels 36..48 */
1423 if (freq >= 5180 && freq <= 5240) {
1424 if (vht_opclass) {
1425 *op_class = vht_opclass;
1426 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1427 if (freq > chandef->chan->center_freq)
1428 *op_class = 116;
1429 else
1430 *op_class = 117;
1431 } else {
1432 *op_class = 115;
1435 return true;
1438 /* 5 GHz, channels 52..64 */
1439 if (freq >= 5260 && freq <= 5320) {
1440 if (vht_opclass) {
1441 *op_class = vht_opclass;
1442 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1443 if (freq > chandef->chan->center_freq)
1444 *op_class = 119;
1445 else
1446 *op_class = 120;
1447 } else {
1448 *op_class = 118;
1451 return true;
1454 /* 5 GHz, channels 100..144 */
1455 if (freq >= 5500 && freq <= 5720) {
1456 if (vht_opclass) {
1457 *op_class = vht_opclass;
1458 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1459 if (freq > chandef->chan->center_freq)
1460 *op_class = 122;
1461 else
1462 *op_class = 123;
1463 } else {
1464 *op_class = 121;
1467 return true;
1470 /* 5 GHz, channels 149..169 */
1471 if (freq >= 5745 && freq <= 5845) {
1472 if (vht_opclass) {
1473 *op_class = vht_opclass;
1474 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1475 if (freq > chandef->chan->center_freq)
1476 *op_class = 126;
1477 else
1478 *op_class = 127;
1479 } else if (freq <= 5805) {
1480 *op_class = 124;
1481 } else {
1482 *op_class = 125;
1485 return true;
1488 /* 56.16 GHz, channel 1..4 */
1489 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1490 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1491 return false;
1493 *op_class = 180;
1494 return true;
1497 /* not supported yet */
1498 return false;
1500 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1502 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1503 u32 *beacon_int_gcd,
1504 bool *beacon_int_different)
1506 struct wireless_dev *wdev;
1508 *beacon_int_gcd = 0;
1509 *beacon_int_different = false;
1511 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1512 if (!wdev->beacon_interval)
1513 continue;
1515 if (!*beacon_int_gcd) {
1516 *beacon_int_gcd = wdev->beacon_interval;
1517 continue;
1520 if (wdev->beacon_interval == *beacon_int_gcd)
1521 continue;
1523 *beacon_int_different = true;
1524 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1527 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1528 if (*beacon_int_gcd)
1529 *beacon_int_different = true;
1530 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1534 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1535 enum nl80211_iftype iftype, u32 beacon_int)
1538 * This is just a basic pre-condition check; if interface combinations
1539 * are possible the driver must already be checking those with a call
1540 * to cfg80211_check_combinations(), in which case we'll validate more
1541 * through the cfg80211_calculate_bi_data() call and code in
1542 * cfg80211_iter_combinations().
1545 if (beacon_int < 10 || beacon_int > 10000)
1546 return -EINVAL;
1548 return 0;
1551 int cfg80211_iter_combinations(struct wiphy *wiphy,
1552 struct iface_combination_params *params,
1553 void (*iter)(const struct ieee80211_iface_combination *c,
1554 void *data),
1555 void *data)
1557 const struct ieee80211_regdomain *regdom;
1558 enum nl80211_dfs_regions region = 0;
1559 int i, j, iftype;
1560 int num_interfaces = 0;
1561 u32 used_iftypes = 0;
1562 u32 beacon_int_gcd;
1563 bool beacon_int_different;
1566 * This is a bit strange, since the iteration used to rely only on
1567 * the data given by the driver, but here it now relies on context,
1568 * in form of the currently operating interfaces.
1569 * This is OK for all current users, and saves us from having to
1570 * push the GCD calculations into all the drivers.
1571 * In the future, this should probably rely more on data that's in
1572 * cfg80211 already - the only thing not would appear to be any new
1573 * interfaces (while being brought up) and channel/radar data.
1575 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1576 &beacon_int_gcd, &beacon_int_different);
1578 if (params->radar_detect) {
1579 rcu_read_lock();
1580 regdom = rcu_dereference(cfg80211_regdomain);
1581 if (regdom)
1582 region = regdom->dfs_region;
1583 rcu_read_unlock();
1586 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1587 num_interfaces += params->iftype_num[iftype];
1588 if (params->iftype_num[iftype] > 0 &&
1589 !(wiphy->software_iftypes & BIT(iftype)))
1590 used_iftypes |= BIT(iftype);
1593 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1594 const struct ieee80211_iface_combination *c;
1595 struct ieee80211_iface_limit *limits;
1596 u32 all_iftypes = 0;
1598 c = &wiphy->iface_combinations[i];
1600 if (num_interfaces > c->max_interfaces)
1601 continue;
1602 if (params->num_different_channels > c->num_different_channels)
1603 continue;
1605 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1606 GFP_KERNEL);
1607 if (!limits)
1608 return -ENOMEM;
1610 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1611 if (wiphy->software_iftypes & BIT(iftype))
1612 continue;
1613 for (j = 0; j < c->n_limits; j++) {
1614 all_iftypes |= limits[j].types;
1615 if (!(limits[j].types & BIT(iftype)))
1616 continue;
1617 if (limits[j].max < params->iftype_num[iftype])
1618 goto cont;
1619 limits[j].max -= params->iftype_num[iftype];
1623 if (params->radar_detect !=
1624 (c->radar_detect_widths & params->radar_detect))
1625 goto cont;
1627 if (params->radar_detect && c->radar_detect_regions &&
1628 !(c->radar_detect_regions & BIT(region)))
1629 goto cont;
1631 /* Finally check that all iftypes that we're currently
1632 * using are actually part of this combination. If they
1633 * aren't then we can't use this combination and have
1634 * to continue to the next.
1636 if ((all_iftypes & used_iftypes) != used_iftypes)
1637 goto cont;
1639 if (beacon_int_gcd) {
1640 if (c->beacon_int_min_gcd &&
1641 beacon_int_gcd < c->beacon_int_min_gcd)
1642 goto cont;
1643 if (!c->beacon_int_min_gcd && beacon_int_different)
1644 goto cont;
1647 /* This combination covered all interface types and
1648 * supported the requested numbers, so we're good.
1651 (*iter)(c, data);
1652 cont:
1653 kfree(limits);
1656 return 0;
1658 EXPORT_SYMBOL(cfg80211_iter_combinations);
1660 static void
1661 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1662 void *data)
1664 int *num = data;
1665 (*num)++;
1668 int cfg80211_check_combinations(struct wiphy *wiphy,
1669 struct iface_combination_params *params)
1671 int err, num = 0;
1673 err = cfg80211_iter_combinations(wiphy, params,
1674 cfg80211_iter_sum_ifcombs, &num);
1675 if (err)
1676 return err;
1677 if (num == 0)
1678 return -EBUSY;
1680 return 0;
1682 EXPORT_SYMBOL(cfg80211_check_combinations);
1684 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1685 const u8 *rates, unsigned int n_rates,
1686 u32 *mask)
1688 int i, j;
1690 if (!sband)
1691 return -EINVAL;
1693 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1694 return -EINVAL;
1696 *mask = 0;
1698 for (i = 0; i < n_rates; i++) {
1699 int rate = (rates[i] & 0x7f) * 5;
1700 bool found = false;
1702 for (j = 0; j < sband->n_bitrates; j++) {
1703 if (sband->bitrates[j].bitrate == rate) {
1704 found = true;
1705 *mask |= BIT(j);
1706 break;
1709 if (!found)
1710 return -EINVAL;
1714 * mask must have at least one bit set here since we
1715 * didn't accept a 0-length rates array nor allowed
1716 * entries in the array that didn't exist
1719 return 0;
1722 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1724 enum nl80211_band band;
1725 unsigned int n_channels = 0;
1727 for (band = 0; band < NUM_NL80211_BANDS; band++)
1728 if (wiphy->bands[band])
1729 n_channels += wiphy->bands[band]->n_channels;
1731 return n_channels;
1733 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1735 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1736 struct station_info *sinfo)
1738 struct cfg80211_registered_device *rdev;
1739 struct wireless_dev *wdev;
1741 wdev = dev->ieee80211_ptr;
1742 if (!wdev)
1743 return -EOPNOTSUPP;
1745 rdev = wiphy_to_rdev(wdev->wiphy);
1746 if (!rdev->ops->get_station)
1747 return -EOPNOTSUPP;
1749 return rdev_get_station(rdev, dev, mac_addr, sinfo);
1751 EXPORT_SYMBOL(cfg80211_get_station);
1753 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1755 int i;
1757 if (!f)
1758 return;
1760 kfree(f->serv_spec_info);
1761 kfree(f->srf_bf);
1762 kfree(f->srf_macs);
1763 for (i = 0; i < f->num_rx_filters; i++)
1764 kfree(f->rx_filters[i].filter);
1766 for (i = 0; i < f->num_tx_filters; i++)
1767 kfree(f->tx_filters[i].filter);
1769 kfree(f->rx_filters);
1770 kfree(f->tx_filters);
1771 kfree(f);
1773 EXPORT_SYMBOL(cfg80211_free_nan_func);
1775 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1776 u32 center_freq_khz, u32 bw_khz)
1778 u32 start_freq_khz, end_freq_khz;
1780 start_freq_khz = center_freq_khz - (bw_khz / 2);
1781 end_freq_khz = center_freq_khz + (bw_khz / 2);
1783 if (start_freq_khz >= freq_range->start_freq_khz &&
1784 end_freq_khz <= freq_range->end_freq_khz)
1785 return true;
1787 return false;
1790 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1791 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1792 const unsigned char rfc1042_header[] __aligned(2) =
1793 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1794 EXPORT_SYMBOL(rfc1042_header);
1796 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1797 const unsigned char bridge_tunnel_header[] __aligned(2) =
1798 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1799 EXPORT_SYMBOL(bridge_tunnel_header);