media: mmp-driver: add needed __iomem marks to power_regs
[linux-2.6/btrfs-unstable.git] / net / wireless / reg.c
blob16c7e4ef58207cc781b80ef9bb3242ead81001a0
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 Intel Corporation
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
24 /**
25 * DOC: Wireless regulatory infrastructure
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
70 #define REG_ENFORCE_GRACE_MS 60000
72 /**
73 * enum reg_request_treatment - regulatory request treatment
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
82 enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
89 static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
102 static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
121 static int reg_num_devs_support_basehint;
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
134 static void restore_regulatory_settings(bool reset_user);
136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 return rcu_dereference_rtnl(cfg80211_regdomain);
141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143 return rcu_dereference_rtnl(wiphy->regd);
146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148 switch (dfs_region) {
149 case NL80211_DFS_UNSET:
150 return "unset";
151 case NL80211_DFS_FCC:
152 return "FCC";
153 case NL80211_DFS_ETSI:
154 return "ETSI";
155 case NL80211_DFS_JP:
156 return "JP";
158 return "Unknown";
161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163 const struct ieee80211_regdomain *regd = NULL;
164 const struct ieee80211_regdomain *wiphy_regd = NULL;
166 regd = get_cfg80211_regdom();
167 if (!wiphy)
168 goto out;
170 wiphy_regd = get_wiphy_regdom(wiphy);
171 if (!wiphy_regd)
172 goto out;
174 if (wiphy_regd->dfs_region == regd->dfs_region)
175 goto out;
177 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
178 dev_name(&wiphy->dev),
179 reg_dfs_region_str(wiphy_regd->dfs_region),
180 reg_dfs_region_str(regd->dfs_region));
182 out:
183 return regd->dfs_region;
186 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188 if (!r)
189 return;
190 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
193 static struct regulatory_request *get_last_request(void)
195 return rcu_dereference_rtnl(last_request);
198 /* Used to queue up regulatory hints */
199 static LIST_HEAD(reg_requests_list);
200 static spinlock_t reg_requests_lock;
202 /* Used to queue up beacon hints for review */
203 static LIST_HEAD(reg_pending_beacons);
204 static spinlock_t reg_pending_beacons_lock;
206 /* Used to keep track of processed beacon hints */
207 static LIST_HEAD(reg_beacon_list);
209 struct reg_beacon {
210 struct list_head list;
211 struct ieee80211_channel chan;
214 static void reg_check_chans_work(struct work_struct *work);
215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217 static void reg_todo(struct work_struct *work);
218 static DECLARE_WORK(reg_work, reg_todo);
220 /* We keep a static world regulatory domain in case of the absence of CRDA */
221 static const struct ieee80211_regdomain world_regdom = {
222 .n_reg_rules = 8,
223 .alpha2 = "00",
224 .reg_rules = {
225 /* IEEE 802.11b/g, channels 1..11 */
226 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
227 /* IEEE 802.11b/g, channels 12..13. */
228 REG_RULE(2467-10, 2472+10, 20, 6, 20,
229 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
230 /* IEEE 802.11 channel 14 - Only JP enables
231 * this and for 802.11b only */
232 REG_RULE(2484-10, 2484+10, 20, 6, 20,
233 NL80211_RRF_NO_IR |
234 NL80211_RRF_NO_OFDM),
235 /* IEEE 802.11a, channel 36..48 */
236 REG_RULE(5180-10, 5240+10, 80, 6, 20,
237 NL80211_RRF_NO_IR |
238 NL80211_RRF_AUTO_BW),
240 /* IEEE 802.11a, channel 52..64 - DFS required */
241 REG_RULE(5260-10, 5320+10, 80, 6, 20,
242 NL80211_RRF_NO_IR |
243 NL80211_RRF_AUTO_BW |
244 NL80211_RRF_DFS),
246 /* IEEE 802.11a, channel 100..144 - DFS required */
247 REG_RULE(5500-10, 5720+10, 160, 6, 20,
248 NL80211_RRF_NO_IR |
249 NL80211_RRF_DFS),
251 /* IEEE 802.11a, channel 149..165 */
252 REG_RULE(5745-10, 5825+10, 80, 6, 20,
253 NL80211_RRF_NO_IR),
255 /* IEEE 802.11ad (60GHz), channels 1..3 */
256 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
260 /* protected by RTNL */
261 static const struct ieee80211_regdomain *cfg80211_world_regdom =
262 &world_regdom;
264 static char *ieee80211_regdom = "00";
265 static char user_alpha2[2];
267 module_param(ieee80211_regdom, charp, 0444);
268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
270 static void reg_free_request(struct regulatory_request *request)
272 if (request == &core_request_world)
273 return;
275 if (request != get_last_request())
276 kfree(request);
279 static void reg_free_last_request(void)
281 struct regulatory_request *lr = get_last_request();
283 if (lr != &core_request_world && lr)
284 kfree_rcu(lr, rcu_head);
287 static void reg_update_last_request(struct regulatory_request *request)
289 struct regulatory_request *lr;
291 lr = get_last_request();
292 if (lr == request)
293 return;
295 reg_free_last_request();
296 rcu_assign_pointer(last_request, request);
299 static void reset_regdomains(bool full_reset,
300 const struct ieee80211_regdomain *new_regdom)
302 const struct ieee80211_regdomain *r;
304 ASSERT_RTNL();
306 r = get_cfg80211_regdom();
308 /* avoid freeing static information or freeing something twice */
309 if (r == cfg80211_world_regdom)
310 r = NULL;
311 if (cfg80211_world_regdom == &world_regdom)
312 cfg80211_world_regdom = NULL;
313 if (r == &world_regdom)
314 r = NULL;
316 rcu_free_regdom(r);
317 rcu_free_regdom(cfg80211_world_regdom);
319 cfg80211_world_regdom = &world_regdom;
320 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
322 if (!full_reset)
323 return;
325 reg_update_last_request(&core_request_world);
329 * Dynamic world regulatory domain requested by the wireless
330 * core upon initialization
332 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
334 struct regulatory_request *lr;
336 lr = get_last_request();
338 WARN_ON(!lr);
340 reset_regdomains(false, rd);
342 cfg80211_world_regdom = rd;
345 bool is_world_regdom(const char *alpha2)
347 if (!alpha2)
348 return false;
349 return alpha2[0] == '0' && alpha2[1] == '0';
352 static bool is_alpha2_set(const char *alpha2)
354 if (!alpha2)
355 return false;
356 return alpha2[0] && alpha2[1];
359 static bool is_unknown_alpha2(const char *alpha2)
361 if (!alpha2)
362 return false;
364 * Special case where regulatory domain was built by driver
365 * but a specific alpha2 cannot be determined
367 return alpha2[0] == '9' && alpha2[1] == '9';
370 static bool is_intersected_alpha2(const char *alpha2)
372 if (!alpha2)
373 return false;
375 * Special case where regulatory domain is the
376 * result of an intersection between two regulatory domain
377 * structures
379 return alpha2[0] == '9' && alpha2[1] == '8';
382 static bool is_an_alpha2(const char *alpha2)
384 if (!alpha2)
385 return false;
386 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
391 if (!alpha2_x || !alpha2_y)
392 return false;
393 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396 static bool regdom_changes(const char *alpha2)
398 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
400 if (!r)
401 return true;
402 return !alpha2_equal(r->alpha2, alpha2);
406 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
407 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
408 * has ever been issued.
410 static bool is_user_regdom_saved(void)
412 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
413 return false;
415 /* This would indicate a mistake on the design */
416 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
417 "Unexpected user alpha2: %c%c\n",
418 user_alpha2[0], user_alpha2[1]))
419 return false;
421 return true;
424 static const struct ieee80211_regdomain *
425 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
427 struct ieee80211_regdomain *regd;
428 int size_of_regd, size_of_wmms;
429 unsigned int i;
430 struct ieee80211_wmm_rule *d_wmm, *s_wmm;
432 size_of_regd =
433 sizeof(struct ieee80211_regdomain) +
434 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
435 size_of_wmms = src_regd->n_wmm_rules *
436 sizeof(struct ieee80211_wmm_rule);
438 regd = kzalloc(size_of_regd + size_of_wmms, GFP_KERNEL);
439 if (!regd)
440 return ERR_PTR(-ENOMEM);
442 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
444 d_wmm = (struct ieee80211_wmm_rule *)((u8 *)regd + size_of_regd);
445 s_wmm = (struct ieee80211_wmm_rule *)((u8 *)src_regd + size_of_regd);
446 memcpy(d_wmm, s_wmm, size_of_wmms);
448 for (i = 0; i < src_regd->n_reg_rules; i++) {
449 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
450 sizeof(struct ieee80211_reg_rule));
451 if (!src_regd->reg_rules[i].wmm_rule)
452 continue;
454 regd->reg_rules[i].wmm_rule = d_wmm +
455 (src_regd->reg_rules[i].wmm_rule - s_wmm) /
456 sizeof(struct ieee80211_wmm_rule);
458 return regd;
461 struct reg_regdb_apply_request {
462 struct list_head list;
463 const struct ieee80211_regdomain *regdom;
466 static LIST_HEAD(reg_regdb_apply_list);
467 static DEFINE_MUTEX(reg_regdb_apply_mutex);
469 static void reg_regdb_apply(struct work_struct *work)
471 struct reg_regdb_apply_request *request;
473 rtnl_lock();
475 mutex_lock(&reg_regdb_apply_mutex);
476 while (!list_empty(&reg_regdb_apply_list)) {
477 request = list_first_entry(&reg_regdb_apply_list,
478 struct reg_regdb_apply_request,
479 list);
480 list_del(&request->list);
482 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
483 kfree(request);
485 mutex_unlock(&reg_regdb_apply_mutex);
487 rtnl_unlock();
490 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
492 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
494 struct reg_regdb_apply_request *request;
496 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
497 if (!request) {
498 kfree(regdom);
499 return -ENOMEM;
502 request->regdom = regdom;
504 mutex_lock(&reg_regdb_apply_mutex);
505 list_add_tail(&request->list, &reg_regdb_apply_list);
506 mutex_unlock(&reg_regdb_apply_mutex);
508 schedule_work(&reg_regdb_work);
509 return 0;
512 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
513 /* Max number of consecutive attempts to communicate with CRDA */
514 #define REG_MAX_CRDA_TIMEOUTS 10
516 static u32 reg_crda_timeouts;
518 static void crda_timeout_work(struct work_struct *work);
519 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
521 static void crda_timeout_work(struct work_struct *work)
523 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
524 rtnl_lock();
525 reg_crda_timeouts++;
526 restore_regulatory_settings(true);
527 rtnl_unlock();
530 static void cancel_crda_timeout(void)
532 cancel_delayed_work(&crda_timeout);
535 static void cancel_crda_timeout_sync(void)
537 cancel_delayed_work_sync(&crda_timeout);
540 static void reset_crda_timeouts(void)
542 reg_crda_timeouts = 0;
546 * This lets us keep regulatory code which is updated on a regulatory
547 * basis in userspace.
549 static int call_crda(const char *alpha2)
551 char country[12];
552 char *env[] = { country, NULL };
553 int ret;
555 snprintf(country, sizeof(country), "COUNTRY=%c%c",
556 alpha2[0], alpha2[1]);
558 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
559 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
560 return -EINVAL;
563 if (!is_world_regdom((char *) alpha2))
564 pr_debug("Calling CRDA for country: %c%c\n",
565 alpha2[0], alpha2[1]);
566 else
567 pr_debug("Calling CRDA to update world regulatory domain\n");
569 ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
570 if (ret)
571 return ret;
573 queue_delayed_work(system_power_efficient_wq,
574 &crda_timeout, msecs_to_jiffies(3142));
575 return 0;
577 #else
578 static inline void cancel_crda_timeout(void) {}
579 static inline void cancel_crda_timeout_sync(void) {}
580 static inline void reset_crda_timeouts(void) {}
581 static inline int call_crda(const char *alpha2)
583 return -ENODATA;
585 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
587 /* code to directly load a firmware database through request_firmware */
588 static const struct fwdb_header *regdb;
590 struct fwdb_country {
591 u8 alpha2[2];
592 __be16 coll_ptr;
593 /* this struct cannot be extended */
594 } __packed __aligned(4);
596 struct fwdb_collection {
597 u8 len;
598 u8 n_rules;
599 u8 dfs_region;
600 /* no optional data yet */
601 /* aligned to 2, then followed by __be16 array of rule pointers */
602 } __packed __aligned(4);
604 enum fwdb_flags {
605 FWDB_FLAG_NO_OFDM = BIT(0),
606 FWDB_FLAG_NO_OUTDOOR = BIT(1),
607 FWDB_FLAG_DFS = BIT(2),
608 FWDB_FLAG_NO_IR = BIT(3),
609 FWDB_FLAG_AUTO_BW = BIT(4),
612 struct fwdb_wmm_ac {
613 u8 ecw;
614 u8 aifsn;
615 __be16 cot;
616 } __packed;
618 struct fwdb_wmm_rule {
619 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
620 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
621 } __packed;
623 struct fwdb_rule {
624 u8 len;
625 u8 flags;
626 __be16 max_eirp;
627 __be32 start, end, max_bw;
628 /* start of optional data */
629 __be16 cac_timeout;
630 __be16 wmm_ptr;
631 } __packed __aligned(4);
633 #define FWDB_MAGIC 0x52474442
634 #define FWDB_VERSION 20
636 struct fwdb_header {
637 __be32 magic;
638 __be32 version;
639 struct fwdb_country country[];
640 } __packed __aligned(4);
642 static int ecw2cw(int ecw)
644 return (1 << ecw) - 1;
647 static bool valid_wmm(struct fwdb_wmm_rule *rule)
649 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
650 int i;
652 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
653 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
654 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
655 u8 aifsn = ac[i].aifsn;
657 if (cw_min >= cw_max)
658 return false;
660 if (aifsn < 1)
661 return false;
664 return true;
667 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
669 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
671 if ((u8 *)rule + sizeof(rule->len) > data + size)
672 return false;
674 /* mandatory fields */
675 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
676 return false;
677 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
678 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
679 struct fwdb_wmm_rule *wmm;
681 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
682 return false;
684 wmm = (void *)(data + wmm_ptr);
686 if (!valid_wmm(wmm))
687 return false;
689 return true;
692 static bool valid_country(const u8 *data, unsigned int size,
693 const struct fwdb_country *country)
695 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
696 struct fwdb_collection *coll = (void *)(data + ptr);
697 __be16 *rules_ptr;
698 unsigned int i;
700 /* make sure we can read len/n_rules */
701 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
702 return false;
704 /* make sure base struct and all rules fit */
705 if ((u8 *)coll + ALIGN(coll->len, 2) +
706 (coll->n_rules * 2) > data + size)
707 return false;
709 /* mandatory fields must exist */
710 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
711 return false;
713 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
715 for (i = 0; i < coll->n_rules; i++) {
716 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
718 if (!valid_rule(data, size, rule_ptr))
719 return false;
722 return true;
725 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
726 static struct key *builtin_regdb_keys;
728 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
730 const u8 *end = p + buflen;
731 size_t plen;
732 key_ref_t key;
734 while (p < end) {
735 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
736 * than 256 bytes in size.
738 if (end - p < 4)
739 goto dodgy_cert;
740 if (p[0] != 0x30 &&
741 p[1] != 0x82)
742 goto dodgy_cert;
743 plen = (p[2] << 8) | p[3];
744 plen += 4;
745 if (plen > end - p)
746 goto dodgy_cert;
748 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
749 "asymmetric", NULL, p, plen,
750 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
751 KEY_USR_VIEW | KEY_USR_READ),
752 KEY_ALLOC_NOT_IN_QUOTA |
753 KEY_ALLOC_BUILT_IN |
754 KEY_ALLOC_BYPASS_RESTRICTION);
755 if (IS_ERR(key)) {
756 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
757 PTR_ERR(key));
758 } else {
759 pr_notice("Loaded X.509 cert '%s'\n",
760 key_ref_to_ptr(key)->description);
761 key_ref_put(key);
763 p += plen;
766 return;
768 dodgy_cert:
769 pr_err("Problem parsing in-kernel X.509 certificate list\n");
772 static int __init load_builtin_regdb_keys(void)
774 builtin_regdb_keys =
775 keyring_alloc(".builtin_regdb_keys",
776 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
777 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
778 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
779 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
780 if (IS_ERR(builtin_regdb_keys))
781 return PTR_ERR(builtin_regdb_keys);
783 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
785 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
786 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
787 #endif
788 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
789 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
790 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
791 #endif
793 return 0;
796 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
798 const struct firmware *sig;
799 bool result;
801 if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
802 return false;
804 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
805 builtin_regdb_keys,
806 VERIFYING_UNSPECIFIED_SIGNATURE,
807 NULL, NULL) == 0;
809 release_firmware(sig);
811 return result;
814 static void free_regdb_keyring(void)
816 key_put(builtin_regdb_keys);
818 #else
819 static int load_builtin_regdb_keys(void)
821 return 0;
824 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
826 return true;
829 static void free_regdb_keyring(void)
832 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
834 static bool valid_regdb(const u8 *data, unsigned int size)
836 const struct fwdb_header *hdr = (void *)data;
837 const struct fwdb_country *country;
839 if (size < sizeof(*hdr))
840 return false;
842 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
843 return false;
845 if (hdr->version != cpu_to_be32(FWDB_VERSION))
846 return false;
848 if (!regdb_has_valid_signature(data, size))
849 return false;
851 country = &hdr->country[0];
852 while ((u8 *)(country + 1) <= data + size) {
853 if (!country->coll_ptr)
854 break;
855 if (!valid_country(data, size, country))
856 return false;
857 country++;
860 return true;
863 static void set_wmm_rule(struct ieee80211_wmm_rule *rule,
864 struct fwdb_wmm_rule *wmm)
866 unsigned int i;
868 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
869 rule->client[i].cw_min =
870 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
871 rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
872 rule->client[i].aifsn = wmm->client[i].aifsn;
873 rule->client[i].cot = 1000 * be16_to_cpu(wmm->client[i].cot);
874 rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
875 rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
876 rule->ap[i].aifsn = wmm->ap[i].aifsn;
877 rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
881 static int __regdb_query_wmm(const struct fwdb_header *db,
882 const struct fwdb_country *country, int freq,
883 u32 *dbptr, struct ieee80211_wmm_rule *rule)
885 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
886 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
887 int i;
889 for (i = 0; i < coll->n_rules; i++) {
890 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
891 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
892 struct fwdb_rule *rrule = (void *)((u8 *)db + rule_ptr);
893 struct fwdb_wmm_rule *wmm;
894 unsigned int wmm_ptr;
896 if (rrule->len < offsetofend(struct fwdb_rule, wmm_ptr))
897 continue;
899 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rrule->start)) &&
900 freq <= KHZ_TO_MHZ(be32_to_cpu(rrule->end))) {
901 wmm_ptr = be16_to_cpu(rrule->wmm_ptr) << 2;
902 wmm = (void *)((u8 *)db + wmm_ptr);
903 set_wmm_rule(rule, wmm);
904 if (dbptr)
905 *dbptr = wmm_ptr;
906 return 0;
910 return -ENODATA;
913 int reg_query_regdb_wmm(char *alpha2, int freq, u32 *dbptr,
914 struct ieee80211_wmm_rule *rule)
916 const struct fwdb_header *hdr = regdb;
917 const struct fwdb_country *country;
919 if (IS_ERR(regdb))
920 return PTR_ERR(regdb);
922 country = &hdr->country[0];
923 while (country->coll_ptr) {
924 if (alpha2_equal(alpha2, country->alpha2))
925 return __regdb_query_wmm(regdb, country, freq, dbptr,
926 rule);
928 country++;
931 return -ENODATA;
933 EXPORT_SYMBOL(reg_query_regdb_wmm);
935 struct wmm_ptrs {
936 struct ieee80211_wmm_rule *rule;
937 u32 ptr;
940 static struct ieee80211_wmm_rule *find_wmm_ptr(struct wmm_ptrs *wmm_ptrs,
941 u32 wmm_ptr, int n_wmms)
943 int i;
945 for (i = 0; i < n_wmms; i++) {
946 if (wmm_ptrs[i].ptr == wmm_ptr)
947 return wmm_ptrs[i].rule;
949 return NULL;
952 static int regdb_query_country(const struct fwdb_header *db,
953 const struct fwdb_country *country)
955 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
956 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
957 struct ieee80211_regdomain *regdom;
958 struct ieee80211_regdomain *tmp_rd;
959 unsigned int size_of_regd, i, n_wmms = 0;
960 struct wmm_ptrs *wmm_ptrs;
962 size_of_regd = sizeof(struct ieee80211_regdomain) +
963 coll->n_rules * sizeof(struct ieee80211_reg_rule);
965 regdom = kzalloc(size_of_regd, GFP_KERNEL);
966 if (!regdom)
967 return -ENOMEM;
969 wmm_ptrs = kcalloc(coll->n_rules, sizeof(*wmm_ptrs), GFP_KERNEL);
970 if (!wmm_ptrs) {
971 kfree(regdom);
972 return -ENOMEM;
975 regdom->n_reg_rules = coll->n_rules;
976 regdom->alpha2[0] = country->alpha2[0];
977 regdom->alpha2[1] = country->alpha2[1];
978 regdom->dfs_region = coll->dfs_region;
980 for (i = 0; i < regdom->n_reg_rules; i++) {
981 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
982 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
983 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
984 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
986 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
987 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
988 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
990 rrule->power_rule.max_antenna_gain = 0;
991 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
993 rrule->flags = 0;
994 if (rule->flags & FWDB_FLAG_NO_OFDM)
995 rrule->flags |= NL80211_RRF_NO_OFDM;
996 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
997 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
998 if (rule->flags & FWDB_FLAG_DFS)
999 rrule->flags |= NL80211_RRF_DFS;
1000 if (rule->flags & FWDB_FLAG_NO_IR)
1001 rrule->flags |= NL80211_RRF_NO_IR;
1002 if (rule->flags & FWDB_FLAG_AUTO_BW)
1003 rrule->flags |= NL80211_RRF_AUTO_BW;
1005 rrule->dfs_cac_ms = 0;
1007 /* handle optional data */
1008 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1009 rrule->dfs_cac_ms =
1010 1000 * be16_to_cpu(rule->cac_timeout);
1011 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
1012 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
1013 struct ieee80211_wmm_rule *wmm_pos =
1014 find_wmm_ptr(wmm_ptrs, wmm_ptr, n_wmms);
1015 struct fwdb_wmm_rule *wmm;
1016 struct ieee80211_wmm_rule *wmm_rule;
1018 if (wmm_pos) {
1019 rrule->wmm_rule = wmm_pos;
1020 continue;
1022 wmm = (void *)((u8 *)db + wmm_ptr);
1023 tmp_rd = krealloc(regdom, size_of_regd + (n_wmms + 1) *
1024 sizeof(struct ieee80211_wmm_rule),
1025 GFP_KERNEL);
1027 if (!tmp_rd) {
1028 kfree(regdom);
1029 return -ENOMEM;
1031 regdom = tmp_rd;
1033 wmm_rule = (struct ieee80211_wmm_rule *)
1034 ((u8 *)regdom + size_of_regd + n_wmms *
1035 sizeof(struct ieee80211_wmm_rule));
1037 set_wmm_rule(wmm_rule, wmm);
1038 wmm_ptrs[n_wmms].ptr = wmm_ptr;
1039 wmm_ptrs[n_wmms++].rule = wmm_rule;
1042 kfree(wmm_ptrs);
1044 return reg_schedule_apply(regdom);
1047 static int query_regdb(const char *alpha2)
1049 const struct fwdb_header *hdr = regdb;
1050 const struct fwdb_country *country;
1052 ASSERT_RTNL();
1054 if (IS_ERR(regdb))
1055 return PTR_ERR(regdb);
1057 country = &hdr->country[0];
1058 while (country->coll_ptr) {
1059 if (alpha2_equal(alpha2, country->alpha2))
1060 return regdb_query_country(regdb, country);
1061 country++;
1064 return -ENODATA;
1067 static void regdb_fw_cb(const struct firmware *fw, void *context)
1069 int set_error = 0;
1070 bool restore = true;
1071 void *db;
1073 if (!fw) {
1074 pr_info("failed to load regulatory.db\n");
1075 set_error = -ENODATA;
1076 } else if (!valid_regdb(fw->data, fw->size)) {
1077 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1078 set_error = -EINVAL;
1081 rtnl_lock();
1082 if (WARN_ON(regdb && !IS_ERR(regdb))) {
1083 /* just restore and free new db */
1084 } else if (set_error) {
1085 regdb = ERR_PTR(set_error);
1086 } else if (fw) {
1087 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1088 if (db) {
1089 regdb = db;
1090 restore = context && query_regdb(context);
1091 } else {
1092 restore = true;
1096 if (restore)
1097 restore_regulatory_settings(true);
1099 rtnl_unlock();
1101 kfree(context);
1103 release_firmware(fw);
1106 static int query_regdb_file(const char *alpha2)
1108 ASSERT_RTNL();
1110 if (regdb)
1111 return query_regdb(alpha2);
1113 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1114 if (!alpha2)
1115 return -ENOMEM;
1117 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1118 &reg_pdev->dev, GFP_KERNEL,
1119 (void *)alpha2, regdb_fw_cb);
1122 int reg_reload_regdb(void)
1124 const struct firmware *fw;
1125 void *db;
1126 int err;
1128 err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1129 if (err)
1130 return err;
1132 if (!valid_regdb(fw->data, fw->size)) {
1133 err = -ENODATA;
1134 goto out;
1137 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1138 if (!db) {
1139 err = -ENOMEM;
1140 goto out;
1143 rtnl_lock();
1144 if (!IS_ERR_OR_NULL(regdb))
1145 kfree(regdb);
1146 regdb = db;
1147 rtnl_unlock();
1149 out:
1150 release_firmware(fw);
1151 return err;
1154 static bool reg_query_database(struct regulatory_request *request)
1156 if (query_regdb_file(request->alpha2) == 0)
1157 return true;
1159 if (call_crda(request->alpha2) == 0)
1160 return true;
1162 return false;
1165 bool reg_is_valid_request(const char *alpha2)
1167 struct regulatory_request *lr = get_last_request();
1169 if (!lr || lr->processed)
1170 return false;
1172 return alpha2_equal(lr->alpha2, alpha2);
1175 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1177 struct regulatory_request *lr = get_last_request();
1180 * Follow the driver's regulatory domain, if present, unless a country
1181 * IE has been processed or a user wants to help complaince further
1183 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1184 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1185 wiphy->regd)
1186 return get_wiphy_regdom(wiphy);
1188 return get_cfg80211_regdom();
1191 static unsigned int
1192 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1193 const struct ieee80211_reg_rule *rule)
1195 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1196 const struct ieee80211_freq_range *freq_range_tmp;
1197 const struct ieee80211_reg_rule *tmp;
1198 u32 start_freq, end_freq, idx, no;
1200 for (idx = 0; idx < rd->n_reg_rules; idx++)
1201 if (rule == &rd->reg_rules[idx])
1202 break;
1204 if (idx == rd->n_reg_rules)
1205 return 0;
1207 /* get start_freq */
1208 no = idx;
1210 while (no) {
1211 tmp = &rd->reg_rules[--no];
1212 freq_range_tmp = &tmp->freq_range;
1214 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1215 break;
1217 freq_range = freq_range_tmp;
1220 start_freq = freq_range->start_freq_khz;
1222 /* get end_freq */
1223 freq_range = &rule->freq_range;
1224 no = idx;
1226 while (no < rd->n_reg_rules - 1) {
1227 tmp = &rd->reg_rules[++no];
1228 freq_range_tmp = &tmp->freq_range;
1230 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1231 break;
1233 freq_range = freq_range_tmp;
1236 end_freq = freq_range->end_freq_khz;
1238 return end_freq - start_freq;
1241 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1242 const struct ieee80211_reg_rule *rule)
1244 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1246 if (rule->flags & NL80211_RRF_NO_160MHZ)
1247 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1248 if (rule->flags & NL80211_RRF_NO_80MHZ)
1249 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1252 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1253 * are not allowed.
1255 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1256 rule->flags & NL80211_RRF_NO_HT40PLUS)
1257 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1259 return bw;
1262 /* Sanity check on a regulatory rule */
1263 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1265 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1266 u32 freq_diff;
1268 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1269 return false;
1271 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1272 return false;
1274 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1276 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1277 freq_range->max_bandwidth_khz > freq_diff)
1278 return false;
1280 return true;
1283 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1285 const struct ieee80211_reg_rule *reg_rule = NULL;
1286 unsigned int i;
1288 if (!rd->n_reg_rules)
1289 return false;
1291 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1292 return false;
1294 for (i = 0; i < rd->n_reg_rules; i++) {
1295 reg_rule = &rd->reg_rules[i];
1296 if (!is_valid_reg_rule(reg_rule))
1297 return false;
1300 return true;
1304 * freq_in_rule_band - tells us if a frequency is in a frequency band
1305 * @freq_range: frequency rule we want to query
1306 * @freq_khz: frequency we are inquiring about
1308 * This lets us know if a specific frequency rule is or is not relevant to
1309 * a specific frequency's band. Bands are device specific and artificial
1310 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1311 * however it is safe for now to assume that a frequency rule should not be
1312 * part of a frequency's band if the start freq or end freq are off by more
1313 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
1314 * 60 GHz band.
1315 * This resolution can be lowered and should be considered as we add
1316 * regulatory rule support for other "bands".
1318 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1319 u32 freq_khz)
1321 #define ONE_GHZ_IN_KHZ 1000000
1323 * From 802.11ad: directional multi-gigabit (DMG):
1324 * Pertaining to operation in a frequency band containing a channel
1325 * with the Channel starting frequency above 45 GHz.
1327 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1328 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1329 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1330 return true;
1331 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1332 return true;
1333 return false;
1334 #undef ONE_GHZ_IN_KHZ
1338 * Later on we can perhaps use the more restrictive DFS
1339 * region but we don't have information for that yet so
1340 * for now simply disallow conflicts.
1342 static enum nl80211_dfs_regions
1343 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1344 const enum nl80211_dfs_regions dfs_region2)
1346 if (dfs_region1 != dfs_region2)
1347 return NL80211_DFS_UNSET;
1348 return dfs_region1;
1352 * Helper for regdom_intersect(), this does the real
1353 * mathematical intersection fun
1355 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1356 const struct ieee80211_regdomain *rd2,
1357 const struct ieee80211_reg_rule *rule1,
1358 const struct ieee80211_reg_rule *rule2,
1359 struct ieee80211_reg_rule *intersected_rule)
1361 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1362 struct ieee80211_freq_range *freq_range;
1363 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1364 struct ieee80211_power_rule *power_rule;
1365 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1367 freq_range1 = &rule1->freq_range;
1368 freq_range2 = &rule2->freq_range;
1369 freq_range = &intersected_rule->freq_range;
1371 power_rule1 = &rule1->power_rule;
1372 power_rule2 = &rule2->power_rule;
1373 power_rule = &intersected_rule->power_rule;
1375 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1376 freq_range2->start_freq_khz);
1377 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1378 freq_range2->end_freq_khz);
1380 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1381 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1383 if (rule1->flags & NL80211_RRF_AUTO_BW)
1384 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1385 if (rule2->flags & NL80211_RRF_AUTO_BW)
1386 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1388 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1390 intersected_rule->flags = rule1->flags | rule2->flags;
1393 * In case NL80211_RRF_AUTO_BW requested for both rules
1394 * set AUTO_BW in intersected rule also. Next we will
1395 * calculate BW correctly in handle_channel function.
1396 * In other case remove AUTO_BW flag while we calculate
1397 * maximum bandwidth correctly and auto calculation is
1398 * not required.
1400 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1401 (rule2->flags & NL80211_RRF_AUTO_BW))
1402 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1403 else
1404 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1406 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1407 if (freq_range->max_bandwidth_khz > freq_diff)
1408 freq_range->max_bandwidth_khz = freq_diff;
1410 power_rule->max_eirp = min(power_rule1->max_eirp,
1411 power_rule2->max_eirp);
1412 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1413 power_rule2->max_antenna_gain);
1415 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1416 rule2->dfs_cac_ms);
1418 if (!is_valid_reg_rule(intersected_rule))
1419 return -EINVAL;
1421 return 0;
1424 /* check whether old rule contains new rule */
1425 static bool rule_contains(struct ieee80211_reg_rule *r1,
1426 struct ieee80211_reg_rule *r2)
1428 /* for simplicity, currently consider only same flags */
1429 if (r1->flags != r2->flags)
1430 return false;
1432 /* verify r1 is more restrictive */
1433 if ((r1->power_rule.max_antenna_gain >
1434 r2->power_rule.max_antenna_gain) ||
1435 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1436 return false;
1438 /* make sure r2's range is contained within r1 */
1439 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1440 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1441 return false;
1443 /* and finally verify that r1.max_bw >= r2.max_bw */
1444 if (r1->freq_range.max_bandwidth_khz <
1445 r2->freq_range.max_bandwidth_khz)
1446 return false;
1448 return true;
1451 /* add or extend current rules. do nothing if rule is already contained */
1452 static void add_rule(struct ieee80211_reg_rule *rule,
1453 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1455 struct ieee80211_reg_rule *tmp_rule;
1456 int i;
1458 for (i = 0; i < *n_rules; i++) {
1459 tmp_rule = &reg_rules[i];
1460 /* rule is already contained - do nothing */
1461 if (rule_contains(tmp_rule, rule))
1462 return;
1464 /* extend rule if possible */
1465 if (rule_contains(rule, tmp_rule)) {
1466 memcpy(tmp_rule, rule, sizeof(*rule));
1467 return;
1471 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1472 (*n_rules)++;
1476 * regdom_intersect - do the intersection between two regulatory domains
1477 * @rd1: first regulatory domain
1478 * @rd2: second regulatory domain
1480 * Use this function to get the intersection between two regulatory domains.
1481 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1482 * as no one single alpha2 can represent this regulatory domain.
1484 * Returns a pointer to the regulatory domain structure which will hold the
1485 * resulting intersection of rules between rd1 and rd2. We will
1486 * kzalloc() this structure for you.
1488 static struct ieee80211_regdomain *
1489 regdom_intersect(const struct ieee80211_regdomain *rd1,
1490 const struct ieee80211_regdomain *rd2)
1492 int r, size_of_regd;
1493 unsigned int x, y;
1494 unsigned int num_rules = 0;
1495 const struct ieee80211_reg_rule *rule1, *rule2;
1496 struct ieee80211_reg_rule intersected_rule;
1497 struct ieee80211_regdomain *rd;
1499 if (!rd1 || !rd2)
1500 return NULL;
1503 * First we get a count of the rules we'll need, then we actually
1504 * build them. This is to so we can malloc() and free() a
1505 * regdomain once. The reason we use reg_rules_intersect() here
1506 * is it will return -EINVAL if the rule computed makes no sense.
1507 * All rules that do check out OK are valid.
1510 for (x = 0; x < rd1->n_reg_rules; x++) {
1511 rule1 = &rd1->reg_rules[x];
1512 for (y = 0; y < rd2->n_reg_rules; y++) {
1513 rule2 = &rd2->reg_rules[y];
1514 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1515 &intersected_rule))
1516 num_rules++;
1520 if (!num_rules)
1521 return NULL;
1523 size_of_regd = sizeof(struct ieee80211_regdomain) +
1524 num_rules * sizeof(struct ieee80211_reg_rule);
1526 rd = kzalloc(size_of_regd, GFP_KERNEL);
1527 if (!rd)
1528 return NULL;
1530 for (x = 0; x < rd1->n_reg_rules; x++) {
1531 rule1 = &rd1->reg_rules[x];
1532 for (y = 0; y < rd2->n_reg_rules; y++) {
1533 rule2 = &rd2->reg_rules[y];
1534 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1535 &intersected_rule);
1537 * No need to memset here the intersected rule here as
1538 * we're not using the stack anymore
1540 if (r)
1541 continue;
1543 add_rule(&intersected_rule, rd->reg_rules,
1544 &rd->n_reg_rules);
1548 rd->alpha2[0] = '9';
1549 rd->alpha2[1] = '8';
1550 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1551 rd2->dfs_region);
1553 return rd;
1557 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1558 * want to just have the channel structure use these
1560 static u32 map_regdom_flags(u32 rd_flags)
1562 u32 channel_flags = 0;
1563 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1564 channel_flags |= IEEE80211_CHAN_NO_IR;
1565 if (rd_flags & NL80211_RRF_DFS)
1566 channel_flags |= IEEE80211_CHAN_RADAR;
1567 if (rd_flags & NL80211_RRF_NO_OFDM)
1568 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1569 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1570 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1571 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1572 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1573 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1574 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1575 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1576 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1577 if (rd_flags & NL80211_RRF_NO_80MHZ)
1578 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1579 if (rd_flags & NL80211_RRF_NO_160MHZ)
1580 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1581 return channel_flags;
1584 static const struct ieee80211_reg_rule *
1585 freq_reg_info_regd(u32 center_freq,
1586 const struct ieee80211_regdomain *regd, u32 bw)
1588 int i;
1589 bool band_rule_found = false;
1590 bool bw_fits = false;
1592 if (!regd)
1593 return ERR_PTR(-EINVAL);
1595 for (i = 0; i < regd->n_reg_rules; i++) {
1596 const struct ieee80211_reg_rule *rr;
1597 const struct ieee80211_freq_range *fr = NULL;
1599 rr = &regd->reg_rules[i];
1600 fr = &rr->freq_range;
1603 * We only need to know if one frequency rule was
1604 * was in center_freq's band, that's enough, so lets
1605 * not overwrite it once found
1607 if (!band_rule_found)
1608 band_rule_found = freq_in_rule_band(fr, center_freq);
1610 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1612 if (band_rule_found && bw_fits)
1613 return rr;
1616 if (!band_rule_found)
1617 return ERR_PTR(-ERANGE);
1619 return ERR_PTR(-EINVAL);
1622 static const struct ieee80211_reg_rule *
1623 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1625 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1626 const struct ieee80211_reg_rule *reg_rule = NULL;
1627 u32 bw;
1629 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1630 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1631 if (!IS_ERR(reg_rule))
1632 return reg_rule;
1635 return reg_rule;
1638 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1639 u32 center_freq)
1641 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1643 EXPORT_SYMBOL(freq_reg_info);
1645 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1647 switch (initiator) {
1648 case NL80211_REGDOM_SET_BY_CORE:
1649 return "core";
1650 case NL80211_REGDOM_SET_BY_USER:
1651 return "user";
1652 case NL80211_REGDOM_SET_BY_DRIVER:
1653 return "driver";
1654 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1655 return "country IE";
1656 default:
1657 WARN_ON(1);
1658 return "bug";
1661 EXPORT_SYMBOL(reg_initiator_name);
1663 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1664 const struct ieee80211_reg_rule *reg_rule,
1665 const struct ieee80211_channel *chan)
1667 const struct ieee80211_freq_range *freq_range = NULL;
1668 u32 max_bandwidth_khz, bw_flags = 0;
1670 freq_range = &reg_rule->freq_range;
1672 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1673 /* Check if auto calculation requested */
1674 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1675 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1677 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1678 if (!cfg80211_does_bw_fit_range(freq_range,
1679 MHZ_TO_KHZ(chan->center_freq),
1680 MHZ_TO_KHZ(10)))
1681 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1682 if (!cfg80211_does_bw_fit_range(freq_range,
1683 MHZ_TO_KHZ(chan->center_freq),
1684 MHZ_TO_KHZ(20)))
1685 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1687 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1688 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1689 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1690 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1691 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1692 bw_flags |= IEEE80211_CHAN_NO_HT40;
1693 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1694 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1695 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1696 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1697 return bw_flags;
1701 * Note that right now we assume the desired channel bandwidth
1702 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1703 * per channel, the primary and the extension channel).
1705 static void handle_channel(struct wiphy *wiphy,
1706 enum nl80211_reg_initiator initiator,
1707 struct ieee80211_channel *chan)
1709 u32 flags, bw_flags = 0;
1710 const struct ieee80211_reg_rule *reg_rule = NULL;
1711 const struct ieee80211_power_rule *power_rule = NULL;
1712 struct wiphy *request_wiphy = NULL;
1713 struct regulatory_request *lr = get_last_request();
1714 const struct ieee80211_regdomain *regd;
1716 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1718 flags = chan->orig_flags;
1720 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1721 if (IS_ERR(reg_rule)) {
1723 * We will disable all channels that do not match our
1724 * received regulatory rule unless the hint is coming
1725 * from a Country IE and the Country IE had no information
1726 * about a band. The IEEE 802.11 spec allows for an AP
1727 * to send only a subset of the regulatory rules allowed,
1728 * so an AP in the US that only supports 2.4 GHz may only send
1729 * a country IE with information for the 2.4 GHz band
1730 * while 5 GHz is still supported.
1732 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1733 PTR_ERR(reg_rule) == -ERANGE)
1734 return;
1736 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1737 request_wiphy && request_wiphy == wiphy &&
1738 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1739 pr_debug("Disabling freq %d MHz for good\n",
1740 chan->center_freq);
1741 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1742 chan->flags = chan->orig_flags;
1743 } else {
1744 pr_debug("Disabling freq %d MHz\n",
1745 chan->center_freq);
1746 chan->flags |= IEEE80211_CHAN_DISABLED;
1748 return;
1751 regd = reg_get_regdomain(wiphy);
1753 power_rule = &reg_rule->power_rule;
1754 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1756 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1757 request_wiphy && request_wiphy == wiphy &&
1758 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1760 * This guarantees the driver's requested regulatory domain
1761 * will always be used as a base for further regulatory
1762 * settings
1764 chan->flags = chan->orig_flags =
1765 map_regdom_flags(reg_rule->flags) | bw_flags;
1766 chan->max_antenna_gain = chan->orig_mag =
1767 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1768 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1769 (int) MBM_TO_DBM(power_rule->max_eirp);
1771 if (chan->flags & IEEE80211_CHAN_RADAR) {
1772 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1773 if (reg_rule->dfs_cac_ms)
1774 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1777 return;
1780 chan->dfs_state = NL80211_DFS_USABLE;
1781 chan->dfs_state_entered = jiffies;
1783 chan->beacon_found = false;
1784 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1785 chan->max_antenna_gain =
1786 min_t(int, chan->orig_mag,
1787 MBI_TO_DBI(power_rule->max_antenna_gain));
1788 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1790 if (chan->flags & IEEE80211_CHAN_RADAR) {
1791 if (reg_rule->dfs_cac_ms)
1792 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1793 else
1794 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1797 if (chan->orig_mpwr) {
1799 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1800 * will always follow the passed country IE power settings.
1802 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1803 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1804 chan->max_power = chan->max_reg_power;
1805 else
1806 chan->max_power = min(chan->orig_mpwr,
1807 chan->max_reg_power);
1808 } else
1809 chan->max_power = chan->max_reg_power;
1812 static void handle_band(struct wiphy *wiphy,
1813 enum nl80211_reg_initiator initiator,
1814 struct ieee80211_supported_band *sband)
1816 unsigned int i;
1818 if (!sband)
1819 return;
1821 for (i = 0; i < sband->n_channels; i++)
1822 handle_channel(wiphy, initiator, &sband->channels[i]);
1825 static bool reg_request_cell_base(struct regulatory_request *request)
1827 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1828 return false;
1829 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1832 bool reg_last_request_cell_base(void)
1834 return reg_request_cell_base(get_last_request());
1837 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1838 /* Core specific check */
1839 static enum reg_request_treatment
1840 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1842 struct regulatory_request *lr = get_last_request();
1844 if (!reg_num_devs_support_basehint)
1845 return REG_REQ_IGNORE;
1847 if (reg_request_cell_base(lr) &&
1848 !regdom_changes(pending_request->alpha2))
1849 return REG_REQ_ALREADY_SET;
1851 return REG_REQ_OK;
1854 /* Device specific check */
1855 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1857 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1859 #else
1860 static enum reg_request_treatment
1861 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1863 return REG_REQ_IGNORE;
1866 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1868 return true;
1870 #endif
1872 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1874 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1875 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1876 return true;
1877 return false;
1880 static bool ignore_reg_update(struct wiphy *wiphy,
1881 enum nl80211_reg_initiator initiator)
1883 struct regulatory_request *lr = get_last_request();
1885 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1886 return true;
1888 if (!lr) {
1889 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1890 reg_initiator_name(initiator));
1891 return true;
1894 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1895 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1896 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1897 reg_initiator_name(initiator));
1898 return true;
1902 * wiphy->regd will be set once the device has its own
1903 * desired regulatory domain set
1905 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1906 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1907 !is_world_regdom(lr->alpha2)) {
1908 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1909 reg_initiator_name(initiator));
1910 return true;
1913 if (reg_request_cell_base(lr))
1914 return reg_dev_ignore_cell_hint(wiphy);
1916 return false;
1919 static bool reg_is_world_roaming(struct wiphy *wiphy)
1921 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1922 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1923 struct regulatory_request *lr = get_last_request();
1925 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1926 return true;
1928 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1929 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1930 return true;
1932 return false;
1935 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1936 struct reg_beacon *reg_beacon)
1938 struct ieee80211_supported_band *sband;
1939 struct ieee80211_channel *chan;
1940 bool channel_changed = false;
1941 struct ieee80211_channel chan_before;
1943 sband = wiphy->bands[reg_beacon->chan.band];
1944 chan = &sband->channels[chan_idx];
1946 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1947 return;
1949 if (chan->beacon_found)
1950 return;
1952 chan->beacon_found = true;
1954 if (!reg_is_world_roaming(wiphy))
1955 return;
1957 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1958 return;
1960 chan_before = *chan;
1962 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1963 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1964 channel_changed = true;
1967 if (channel_changed)
1968 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1972 * Called when a scan on a wiphy finds a beacon on
1973 * new channel
1975 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1976 struct reg_beacon *reg_beacon)
1978 unsigned int i;
1979 struct ieee80211_supported_band *sband;
1981 if (!wiphy->bands[reg_beacon->chan.band])
1982 return;
1984 sband = wiphy->bands[reg_beacon->chan.band];
1986 for (i = 0; i < sband->n_channels; i++)
1987 handle_reg_beacon(wiphy, i, reg_beacon);
1991 * Called upon reg changes or a new wiphy is added
1993 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1995 unsigned int i;
1996 struct ieee80211_supported_band *sband;
1997 struct reg_beacon *reg_beacon;
1999 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2000 if (!wiphy->bands[reg_beacon->chan.band])
2001 continue;
2002 sband = wiphy->bands[reg_beacon->chan.band];
2003 for (i = 0; i < sband->n_channels; i++)
2004 handle_reg_beacon(wiphy, i, reg_beacon);
2008 /* Reap the advantages of previously found beacons */
2009 static void reg_process_beacons(struct wiphy *wiphy)
2012 * Means we are just firing up cfg80211, so no beacons would
2013 * have been processed yet.
2015 if (!last_request)
2016 return;
2017 wiphy_update_beacon_reg(wiphy);
2020 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2022 if (!chan)
2023 return false;
2024 if (chan->flags & IEEE80211_CHAN_DISABLED)
2025 return false;
2026 /* This would happen when regulatory rules disallow HT40 completely */
2027 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2028 return false;
2029 return true;
2032 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2033 struct ieee80211_channel *channel)
2035 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2036 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2037 const struct ieee80211_regdomain *regd;
2038 unsigned int i;
2039 u32 flags;
2041 if (!is_ht40_allowed(channel)) {
2042 channel->flags |= IEEE80211_CHAN_NO_HT40;
2043 return;
2047 * We need to ensure the extension channels exist to
2048 * be able to use HT40- or HT40+, this finds them (or not)
2050 for (i = 0; i < sband->n_channels; i++) {
2051 struct ieee80211_channel *c = &sband->channels[i];
2053 if (c->center_freq == (channel->center_freq - 20))
2054 channel_before = c;
2055 if (c->center_freq == (channel->center_freq + 20))
2056 channel_after = c;
2059 flags = 0;
2060 regd = get_wiphy_regdom(wiphy);
2061 if (regd) {
2062 const struct ieee80211_reg_rule *reg_rule =
2063 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2064 regd, MHZ_TO_KHZ(20));
2066 if (!IS_ERR(reg_rule))
2067 flags = reg_rule->flags;
2071 * Please note that this assumes target bandwidth is 20 MHz,
2072 * if that ever changes we also need to change the below logic
2073 * to include that as well.
2075 if (!is_ht40_allowed(channel_before) ||
2076 flags & NL80211_RRF_NO_HT40MINUS)
2077 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2078 else
2079 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2081 if (!is_ht40_allowed(channel_after) ||
2082 flags & NL80211_RRF_NO_HT40PLUS)
2083 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2084 else
2085 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2088 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2089 struct ieee80211_supported_band *sband)
2091 unsigned int i;
2093 if (!sband)
2094 return;
2096 for (i = 0; i < sband->n_channels; i++)
2097 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2100 static void reg_process_ht_flags(struct wiphy *wiphy)
2102 enum nl80211_band band;
2104 if (!wiphy)
2105 return;
2107 for (band = 0; band < NUM_NL80211_BANDS; band++)
2108 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2111 static void reg_call_notifier(struct wiphy *wiphy,
2112 struct regulatory_request *request)
2114 if (wiphy->reg_notifier)
2115 wiphy->reg_notifier(wiphy, request);
2118 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2120 struct cfg80211_chan_def chandef;
2121 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2122 enum nl80211_iftype iftype;
2124 wdev_lock(wdev);
2125 iftype = wdev->iftype;
2127 /* make sure the interface is active */
2128 if (!wdev->netdev || !netif_running(wdev->netdev))
2129 goto wdev_inactive_unlock;
2131 switch (iftype) {
2132 case NL80211_IFTYPE_AP:
2133 case NL80211_IFTYPE_P2P_GO:
2134 if (!wdev->beacon_interval)
2135 goto wdev_inactive_unlock;
2136 chandef = wdev->chandef;
2137 break;
2138 case NL80211_IFTYPE_ADHOC:
2139 if (!wdev->ssid_len)
2140 goto wdev_inactive_unlock;
2141 chandef = wdev->chandef;
2142 break;
2143 case NL80211_IFTYPE_STATION:
2144 case NL80211_IFTYPE_P2P_CLIENT:
2145 if (!wdev->current_bss ||
2146 !wdev->current_bss->pub.channel)
2147 goto wdev_inactive_unlock;
2149 if (!rdev->ops->get_channel ||
2150 rdev_get_channel(rdev, wdev, &chandef))
2151 cfg80211_chandef_create(&chandef,
2152 wdev->current_bss->pub.channel,
2153 NL80211_CHAN_NO_HT);
2154 break;
2155 case NL80211_IFTYPE_MONITOR:
2156 case NL80211_IFTYPE_AP_VLAN:
2157 case NL80211_IFTYPE_P2P_DEVICE:
2158 /* no enforcement required */
2159 break;
2160 default:
2161 /* others not implemented for now */
2162 WARN_ON(1);
2163 break;
2166 wdev_unlock(wdev);
2168 switch (iftype) {
2169 case NL80211_IFTYPE_AP:
2170 case NL80211_IFTYPE_P2P_GO:
2171 case NL80211_IFTYPE_ADHOC:
2172 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2173 case NL80211_IFTYPE_STATION:
2174 case NL80211_IFTYPE_P2P_CLIENT:
2175 return cfg80211_chandef_usable(wiphy, &chandef,
2176 IEEE80211_CHAN_DISABLED);
2177 default:
2178 break;
2181 return true;
2183 wdev_inactive_unlock:
2184 wdev_unlock(wdev);
2185 return true;
2188 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2190 struct wireless_dev *wdev;
2191 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2193 ASSERT_RTNL();
2195 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2196 if (!reg_wdev_chan_valid(wiphy, wdev))
2197 cfg80211_leave(rdev, wdev);
2200 static void reg_check_chans_work(struct work_struct *work)
2202 struct cfg80211_registered_device *rdev;
2204 pr_debug("Verifying active interfaces after reg change\n");
2205 rtnl_lock();
2207 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2208 if (!(rdev->wiphy.regulatory_flags &
2209 REGULATORY_IGNORE_STALE_KICKOFF))
2210 reg_leave_invalid_chans(&rdev->wiphy);
2212 rtnl_unlock();
2215 static void reg_check_channels(void)
2218 * Give usermode a chance to do something nicer (move to another
2219 * channel, orderly disconnection), before forcing a disconnection.
2221 mod_delayed_work(system_power_efficient_wq,
2222 &reg_check_chans,
2223 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2226 static void wiphy_update_regulatory(struct wiphy *wiphy,
2227 enum nl80211_reg_initiator initiator)
2229 enum nl80211_band band;
2230 struct regulatory_request *lr = get_last_request();
2232 if (ignore_reg_update(wiphy, initiator)) {
2234 * Regulatory updates set by CORE are ignored for custom
2235 * regulatory cards. Let us notify the changes to the driver,
2236 * as some drivers used this to restore its orig_* reg domain.
2238 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2239 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2240 reg_call_notifier(wiphy, lr);
2241 return;
2244 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2246 for (band = 0; band < NUM_NL80211_BANDS; band++)
2247 handle_band(wiphy, initiator, wiphy->bands[band]);
2249 reg_process_beacons(wiphy);
2250 reg_process_ht_flags(wiphy);
2251 reg_call_notifier(wiphy, lr);
2254 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2256 struct cfg80211_registered_device *rdev;
2257 struct wiphy *wiphy;
2259 ASSERT_RTNL();
2261 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2262 wiphy = &rdev->wiphy;
2263 wiphy_update_regulatory(wiphy, initiator);
2266 reg_check_channels();
2269 static void handle_channel_custom(struct wiphy *wiphy,
2270 struct ieee80211_channel *chan,
2271 const struct ieee80211_regdomain *regd)
2273 u32 bw_flags = 0;
2274 const struct ieee80211_reg_rule *reg_rule = NULL;
2275 const struct ieee80211_power_rule *power_rule = NULL;
2276 u32 bw;
2278 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2279 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2280 regd, bw);
2281 if (!IS_ERR(reg_rule))
2282 break;
2285 if (IS_ERR(reg_rule)) {
2286 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2287 chan->center_freq);
2288 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2289 chan->flags |= IEEE80211_CHAN_DISABLED;
2290 } else {
2291 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2292 chan->flags = chan->orig_flags;
2294 return;
2297 power_rule = &reg_rule->power_rule;
2298 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2300 chan->dfs_state_entered = jiffies;
2301 chan->dfs_state = NL80211_DFS_USABLE;
2303 chan->beacon_found = false;
2305 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2306 chan->flags = chan->orig_flags | bw_flags |
2307 map_regdom_flags(reg_rule->flags);
2308 else
2309 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2311 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2312 chan->max_reg_power = chan->max_power =
2313 (int) MBM_TO_DBM(power_rule->max_eirp);
2315 if (chan->flags & IEEE80211_CHAN_RADAR) {
2316 if (reg_rule->dfs_cac_ms)
2317 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2318 else
2319 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2322 chan->max_power = chan->max_reg_power;
2325 static void handle_band_custom(struct wiphy *wiphy,
2326 struct ieee80211_supported_band *sband,
2327 const struct ieee80211_regdomain *regd)
2329 unsigned int i;
2331 if (!sband)
2332 return;
2334 for (i = 0; i < sband->n_channels; i++)
2335 handle_channel_custom(wiphy, &sband->channels[i], regd);
2338 /* Used by drivers prior to wiphy registration */
2339 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2340 const struct ieee80211_regdomain *regd)
2342 enum nl80211_band band;
2343 unsigned int bands_set = 0;
2345 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2346 "wiphy should have REGULATORY_CUSTOM_REG\n");
2347 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2349 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2350 if (!wiphy->bands[band])
2351 continue;
2352 handle_band_custom(wiphy, wiphy->bands[band], regd);
2353 bands_set++;
2357 * no point in calling this if it won't have any effect
2358 * on your device's supported bands.
2360 WARN_ON(!bands_set);
2362 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2364 static void reg_set_request_processed(void)
2366 bool need_more_processing = false;
2367 struct regulatory_request *lr = get_last_request();
2369 lr->processed = true;
2371 spin_lock(&reg_requests_lock);
2372 if (!list_empty(&reg_requests_list))
2373 need_more_processing = true;
2374 spin_unlock(&reg_requests_lock);
2376 cancel_crda_timeout();
2378 if (need_more_processing)
2379 schedule_work(&reg_work);
2383 * reg_process_hint_core - process core regulatory requests
2384 * @pending_request: a pending core regulatory request
2386 * The wireless subsystem can use this function to process
2387 * a regulatory request issued by the regulatory core.
2389 static enum reg_request_treatment
2390 reg_process_hint_core(struct regulatory_request *core_request)
2392 if (reg_query_database(core_request)) {
2393 core_request->intersect = false;
2394 core_request->processed = false;
2395 reg_update_last_request(core_request);
2396 return REG_REQ_OK;
2399 return REG_REQ_IGNORE;
2402 static enum reg_request_treatment
2403 __reg_process_hint_user(struct regulatory_request *user_request)
2405 struct regulatory_request *lr = get_last_request();
2407 if (reg_request_cell_base(user_request))
2408 return reg_ignore_cell_hint(user_request);
2410 if (reg_request_cell_base(lr))
2411 return REG_REQ_IGNORE;
2413 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2414 return REG_REQ_INTERSECT;
2416 * If the user knows better the user should set the regdom
2417 * to their country before the IE is picked up
2419 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2420 lr->intersect)
2421 return REG_REQ_IGNORE;
2423 * Process user requests only after previous user/driver/core
2424 * requests have been processed
2426 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2427 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2428 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2429 regdom_changes(lr->alpha2))
2430 return REG_REQ_IGNORE;
2432 if (!regdom_changes(user_request->alpha2))
2433 return REG_REQ_ALREADY_SET;
2435 return REG_REQ_OK;
2439 * reg_process_hint_user - process user regulatory requests
2440 * @user_request: a pending user regulatory request
2442 * The wireless subsystem can use this function to process
2443 * a regulatory request initiated by userspace.
2445 static enum reg_request_treatment
2446 reg_process_hint_user(struct regulatory_request *user_request)
2448 enum reg_request_treatment treatment;
2450 treatment = __reg_process_hint_user(user_request);
2451 if (treatment == REG_REQ_IGNORE ||
2452 treatment == REG_REQ_ALREADY_SET)
2453 return REG_REQ_IGNORE;
2455 user_request->intersect = treatment == REG_REQ_INTERSECT;
2456 user_request->processed = false;
2458 if (reg_query_database(user_request)) {
2459 reg_update_last_request(user_request);
2460 user_alpha2[0] = user_request->alpha2[0];
2461 user_alpha2[1] = user_request->alpha2[1];
2462 return REG_REQ_OK;
2465 return REG_REQ_IGNORE;
2468 static enum reg_request_treatment
2469 __reg_process_hint_driver(struct regulatory_request *driver_request)
2471 struct regulatory_request *lr = get_last_request();
2473 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2474 if (regdom_changes(driver_request->alpha2))
2475 return REG_REQ_OK;
2476 return REG_REQ_ALREADY_SET;
2480 * This would happen if you unplug and plug your card
2481 * back in or if you add a new device for which the previously
2482 * loaded card also agrees on the regulatory domain.
2484 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2485 !regdom_changes(driver_request->alpha2))
2486 return REG_REQ_ALREADY_SET;
2488 return REG_REQ_INTERSECT;
2492 * reg_process_hint_driver - process driver regulatory requests
2493 * @driver_request: a pending driver regulatory request
2495 * The wireless subsystem can use this function to process
2496 * a regulatory request issued by an 802.11 driver.
2498 * Returns one of the different reg request treatment values.
2500 static enum reg_request_treatment
2501 reg_process_hint_driver(struct wiphy *wiphy,
2502 struct regulatory_request *driver_request)
2504 const struct ieee80211_regdomain *regd, *tmp;
2505 enum reg_request_treatment treatment;
2507 treatment = __reg_process_hint_driver(driver_request);
2509 switch (treatment) {
2510 case REG_REQ_OK:
2511 break;
2512 case REG_REQ_IGNORE:
2513 return REG_REQ_IGNORE;
2514 case REG_REQ_INTERSECT:
2515 case REG_REQ_ALREADY_SET:
2516 regd = reg_copy_regd(get_cfg80211_regdom());
2517 if (IS_ERR(regd))
2518 return REG_REQ_IGNORE;
2520 tmp = get_wiphy_regdom(wiphy);
2521 rcu_assign_pointer(wiphy->regd, regd);
2522 rcu_free_regdom(tmp);
2526 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2527 driver_request->processed = false;
2530 * Since CRDA will not be called in this case as we already
2531 * have applied the requested regulatory domain before we just
2532 * inform userspace we have processed the request
2534 if (treatment == REG_REQ_ALREADY_SET) {
2535 nl80211_send_reg_change_event(driver_request);
2536 reg_update_last_request(driver_request);
2537 reg_set_request_processed();
2538 return REG_REQ_ALREADY_SET;
2541 if (reg_query_database(driver_request)) {
2542 reg_update_last_request(driver_request);
2543 return REG_REQ_OK;
2546 return REG_REQ_IGNORE;
2549 static enum reg_request_treatment
2550 __reg_process_hint_country_ie(struct wiphy *wiphy,
2551 struct regulatory_request *country_ie_request)
2553 struct wiphy *last_wiphy = NULL;
2554 struct regulatory_request *lr = get_last_request();
2556 if (reg_request_cell_base(lr)) {
2557 /* Trust a Cell base station over the AP's country IE */
2558 if (regdom_changes(country_ie_request->alpha2))
2559 return REG_REQ_IGNORE;
2560 return REG_REQ_ALREADY_SET;
2561 } else {
2562 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2563 return REG_REQ_IGNORE;
2566 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2567 return -EINVAL;
2569 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2570 return REG_REQ_OK;
2572 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2574 if (last_wiphy != wiphy) {
2576 * Two cards with two APs claiming different
2577 * Country IE alpha2s. We could
2578 * intersect them, but that seems unlikely
2579 * to be correct. Reject second one for now.
2581 if (regdom_changes(country_ie_request->alpha2))
2582 return REG_REQ_IGNORE;
2583 return REG_REQ_ALREADY_SET;
2586 if (regdom_changes(country_ie_request->alpha2))
2587 return REG_REQ_OK;
2588 return REG_REQ_ALREADY_SET;
2592 * reg_process_hint_country_ie - process regulatory requests from country IEs
2593 * @country_ie_request: a regulatory request from a country IE
2595 * The wireless subsystem can use this function to process
2596 * a regulatory request issued by a country Information Element.
2598 * Returns one of the different reg request treatment values.
2600 static enum reg_request_treatment
2601 reg_process_hint_country_ie(struct wiphy *wiphy,
2602 struct regulatory_request *country_ie_request)
2604 enum reg_request_treatment treatment;
2606 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2608 switch (treatment) {
2609 case REG_REQ_OK:
2610 break;
2611 case REG_REQ_IGNORE:
2612 return REG_REQ_IGNORE;
2613 case REG_REQ_ALREADY_SET:
2614 reg_free_request(country_ie_request);
2615 return REG_REQ_ALREADY_SET;
2616 case REG_REQ_INTERSECT:
2618 * This doesn't happen yet, not sure we
2619 * ever want to support it for this case.
2621 WARN_ONCE(1, "Unexpected intersection for country IEs");
2622 return REG_REQ_IGNORE;
2625 country_ie_request->intersect = false;
2626 country_ie_request->processed = false;
2628 if (reg_query_database(country_ie_request)) {
2629 reg_update_last_request(country_ie_request);
2630 return REG_REQ_OK;
2633 return REG_REQ_IGNORE;
2636 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2638 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2639 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2640 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2641 bool dfs_domain_same;
2643 rcu_read_lock();
2645 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2646 wiphy1_regd = rcu_dereference(wiphy1->regd);
2647 if (!wiphy1_regd)
2648 wiphy1_regd = cfg80211_regd;
2650 wiphy2_regd = rcu_dereference(wiphy2->regd);
2651 if (!wiphy2_regd)
2652 wiphy2_regd = cfg80211_regd;
2654 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2656 rcu_read_unlock();
2658 return dfs_domain_same;
2661 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2662 struct ieee80211_channel *src_chan)
2664 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2665 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2666 return;
2668 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2669 src_chan->flags & IEEE80211_CHAN_DISABLED)
2670 return;
2672 if (src_chan->center_freq == dst_chan->center_freq &&
2673 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2674 dst_chan->dfs_state = src_chan->dfs_state;
2675 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2679 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2680 struct wiphy *src_wiphy)
2682 struct ieee80211_supported_band *src_sband, *dst_sband;
2683 struct ieee80211_channel *src_chan, *dst_chan;
2684 int i, j, band;
2686 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2687 return;
2689 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2690 dst_sband = dst_wiphy->bands[band];
2691 src_sband = src_wiphy->bands[band];
2692 if (!dst_sband || !src_sband)
2693 continue;
2695 for (i = 0; i < dst_sband->n_channels; i++) {
2696 dst_chan = &dst_sband->channels[i];
2697 for (j = 0; j < src_sband->n_channels; j++) {
2698 src_chan = &src_sband->channels[j];
2699 reg_copy_dfs_chan_state(dst_chan, src_chan);
2705 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2707 struct cfg80211_registered_device *rdev;
2709 ASSERT_RTNL();
2711 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2712 if (wiphy == &rdev->wiphy)
2713 continue;
2714 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2718 /* This processes *all* regulatory hints */
2719 static void reg_process_hint(struct regulatory_request *reg_request)
2721 struct wiphy *wiphy = NULL;
2722 enum reg_request_treatment treatment;
2724 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2725 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2727 switch (reg_request->initiator) {
2728 case NL80211_REGDOM_SET_BY_CORE:
2729 treatment = reg_process_hint_core(reg_request);
2730 break;
2731 case NL80211_REGDOM_SET_BY_USER:
2732 treatment = reg_process_hint_user(reg_request);
2733 break;
2734 case NL80211_REGDOM_SET_BY_DRIVER:
2735 if (!wiphy)
2736 goto out_free;
2737 treatment = reg_process_hint_driver(wiphy, reg_request);
2738 break;
2739 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2740 if (!wiphy)
2741 goto out_free;
2742 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2743 break;
2744 default:
2745 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2746 goto out_free;
2749 if (treatment == REG_REQ_IGNORE)
2750 goto out_free;
2752 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2753 "unexpected treatment value %d\n", treatment);
2755 /* This is required so that the orig_* parameters are saved.
2756 * NOTE: treatment must be set for any case that reaches here!
2758 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2759 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2760 wiphy_update_regulatory(wiphy, reg_request->initiator);
2761 wiphy_all_share_dfs_chan_state(wiphy);
2762 reg_check_channels();
2765 return;
2767 out_free:
2768 reg_free_request(reg_request);
2771 static bool reg_only_self_managed_wiphys(void)
2773 struct cfg80211_registered_device *rdev;
2774 struct wiphy *wiphy;
2775 bool self_managed_found = false;
2777 ASSERT_RTNL();
2779 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2780 wiphy = &rdev->wiphy;
2781 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2782 self_managed_found = true;
2783 else
2784 return false;
2787 /* make sure at least one self-managed wiphy exists */
2788 return self_managed_found;
2792 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2793 * Regulatory hints come on a first come first serve basis and we
2794 * must process each one atomically.
2796 static void reg_process_pending_hints(void)
2798 struct regulatory_request *reg_request, *lr;
2800 lr = get_last_request();
2802 /* When last_request->processed becomes true this will be rescheduled */
2803 if (lr && !lr->processed) {
2804 reg_process_hint(lr);
2805 return;
2808 spin_lock(&reg_requests_lock);
2810 if (list_empty(&reg_requests_list)) {
2811 spin_unlock(&reg_requests_lock);
2812 return;
2815 reg_request = list_first_entry(&reg_requests_list,
2816 struct regulatory_request,
2817 list);
2818 list_del_init(&reg_request->list);
2820 spin_unlock(&reg_requests_lock);
2822 if (reg_only_self_managed_wiphys()) {
2823 reg_free_request(reg_request);
2824 return;
2827 reg_process_hint(reg_request);
2829 lr = get_last_request();
2831 spin_lock(&reg_requests_lock);
2832 if (!list_empty(&reg_requests_list) && lr && lr->processed)
2833 schedule_work(&reg_work);
2834 spin_unlock(&reg_requests_lock);
2837 /* Processes beacon hints -- this has nothing to do with country IEs */
2838 static void reg_process_pending_beacon_hints(void)
2840 struct cfg80211_registered_device *rdev;
2841 struct reg_beacon *pending_beacon, *tmp;
2843 /* This goes through the _pending_ beacon list */
2844 spin_lock_bh(&reg_pending_beacons_lock);
2846 list_for_each_entry_safe(pending_beacon, tmp,
2847 &reg_pending_beacons, list) {
2848 list_del_init(&pending_beacon->list);
2850 /* Applies the beacon hint to current wiphys */
2851 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2852 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2854 /* Remembers the beacon hint for new wiphys or reg changes */
2855 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2858 spin_unlock_bh(&reg_pending_beacons_lock);
2861 static void reg_process_self_managed_hints(void)
2863 struct cfg80211_registered_device *rdev;
2864 struct wiphy *wiphy;
2865 const struct ieee80211_regdomain *tmp;
2866 const struct ieee80211_regdomain *regd;
2867 enum nl80211_band band;
2868 struct regulatory_request request = {};
2870 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2871 wiphy = &rdev->wiphy;
2873 spin_lock(&reg_requests_lock);
2874 regd = rdev->requested_regd;
2875 rdev->requested_regd = NULL;
2876 spin_unlock(&reg_requests_lock);
2878 if (regd == NULL)
2879 continue;
2881 tmp = get_wiphy_regdom(wiphy);
2882 rcu_assign_pointer(wiphy->regd, regd);
2883 rcu_free_regdom(tmp);
2885 for (band = 0; band < NUM_NL80211_BANDS; band++)
2886 handle_band_custom(wiphy, wiphy->bands[band], regd);
2888 reg_process_ht_flags(wiphy);
2890 request.wiphy_idx = get_wiphy_idx(wiphy);
2891 request.alpha2[0] = regd->alpha2[0];
2892 request.alpha2[1] = regd->alpha2[1];
2893 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2895 nl80211_send_wiphy_reg_change_event(&request);
2898 reg_check_channels();
2901 static void reg_todo(struct work_struct *work)
2903 rtnl_lock();
2904 reg_process_pending_hints();
2905 reg_process_pending_beacon_hints();
2906 reg_process_self_managed_hints();
2907 rtnl_unlock();
2910 static void queue_regulatory_request(struct regulatory_request *request)
2912 request->alpha2[0] = toupper(request->alpha2[0]);
2913 request->alpha2[1] = toupper(request->alpha2[1]);
2915 spin_lock(&reg_requests_lock);
2916 list_add_tail(&request->list, &reg_requests_list);
2917 spin_unlock(&reg_requests_lock);
2919 schedule_work(&reg_work);
2923 * Core regulatory hint -- happens during cfg80211_init()
2924 * and when we restore regulatory settings.
2926 static int regulatory_hint_core(const char *alpha2)
2928 struct regulatory_request *request;
2930 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2931 if (!request)
2932 return -ENOMEM;
2934 request->alpha2[0] = alpha2[0];
2935 request->alpha2[1] = alpha2[1];
2936 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2938 queue_regulatory_request(request);
2940 return 0;
2943 /* User hints */
2944 int regulatory_hint_user(const char *alpha2,
2945 enum nl80211_user_reg_hint_type user_reg_hint_type)
2947 struct regulatory_request *request;
2949 if (WARN_ON(!alpha2))
2950 return -EINVAL;
2952 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2953 if (!request)
2954 return -ENOMEM;
2956 request->wiphy_idx = WIPHY_IDX_INVALID;
2957 request->alpha2[0] = alpha2[0];
2958 request->alpha2[1] = alpha2[1];
2959 request->initiator = NL80211_REGDOM_SET_BY_USER;
2960 request->user_reg_hint_type = user_reg_hint_type;
2962 /* Allow calling CRDA again */
2963 reset_crda_timeouts();
2965 queue_regulatory_request(request);
2967 return 0;
2970 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2972 spin_lock(&reg_indoor_lock);
2974 /* It is possible that more than one user space process is trying to
2975 * configure the indoor setting. To handle such cases, clear the indoor
2976 * setting in case that some process does not think that the device
2977 * is operating in an indoor environment. In addition, if a user space
2978 * process indicates that it is controlling the indoor setting, save its
2979 * portid, i.e., make it the owner.
2981 reg_is_indoor = is_indoor;
2982 if (reg_is_indoor) {
2983 if (!reg_is_indoor_portid)
2984 reg_is_indoor_portid = portid;
2985 } else {
2986 reg_is_indoor_portid = 0;
2989 spin_unlock(&reg_indoor_lock);
2991 if (!is_indoor)
2992 reg_check_channels();
2994 return 0;
2997 void regulatory_netlink_notify(u32 portid)
2999 spin_lock(&reg_indoor_lock);
3001 if (reg_is_indoor_portid != portid) {
3002 spin_unlock(&reg_indoor_lock);
3003 return;
3006 reg_is_indoor = false;
3007 reg_is_indoor_portid = 0;
3009 spin_unlock(&reg_indoor_lock);
3011 reg_check_channels();
3014 /* Driver hints */
3015 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3017 struct regulatory_request *request;
3019 if (WARN_ON(!alpha2 || !wiphy))
3020 return -EINVAL;
3022 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3024 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3025 if (!request)
3026 return -ENOMEM;
3028 request->wiphy_idx = get_wiphy_idx(wiphy);
3030 request->alpha2[0] = alpha2[0];
3031 request->alpha2[1] = alpha2[1];
3032 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3034 /* Allow calling CRDA again */
3035 reset_crda_timeouts();
3037 queue_regulatory_request(request);
3039 return 0;
3041 EXPORT_SYMBOL(regulatory_hint);
3043 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3044 const u8 *country_ie, u8 country_ie_len)
3046 char alpha2[2];
3047 enum environment_cap env = ENVIRON_ANY;
3048 struct regulatory_request *request = NULL, *lr;
3050 /* IE len must be evenly divisible by 2 */
3051 if (country_ie_len & 0x01)
3052 return;
3054 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3055 return;
3057 request = kzalloc(sizeof(*request), GFP_KERNEL);
3058 if (!request)
3059 return;
3061 alpha2[0] = country_ie[0];
3062 alpha2[1] = country_ie[1];
3064 if (country_ie[2] == 'I')
3065 env = ENVIRON_INDOOR;
3066 else if (country_ie[2] == 'O')
3067 env = ENVIRON_OUTDOOR;
3069 rcu_read_lock();
3070 lr = get_last_request();
3072 if (unlikely(!lr))
3073 goto out;
3076 * We will run this only upon a successful connection on cfg80211.
3077 * We leave conflict resolution to the workqueue, where can hold
3078 * the RTNL.
3080 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3081 lr->wiphy_idx != WIPHY_IDX_INVALID)
3082 goto out;
3084 request->wiphy_idx = get_wiphy_idx(wiphy);
3085 request->alpha2[0] = alpha2[0];
3086 request->alpha2[1] = alpha2[1];
3087 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3088 request->country_ie_env = env;
3090 /* Allow calling CRDA again */
3091 reset_crda_timeouts();
3093 queue_regulatory_request(request);
3094 request = NULL;
3095 out:
3096 kfree(request);
3097 rcu_read_unlock();
3100 static void restore_alpha2(char *alpha2, bool reset_user)
3102 /* indicates there is no alpha2 to consider for restoration */
3103 alpha2[0] = '9';
3104 alpha2[1] = '7';
3106 /* The user setting has precedence over the module parameter */
3107 if (is_user_regdom_saved()) {
3108 /* Unless we're asked to ignore it and reset it */
3109 if (reset_user) {
3110 pr_debug("Restoring regulatory settings including user preference\n");
3111 user_alpha2[0] = '9';
3112 user_alpha2[1] = '7';
3115 * If we're ignoring user settings, we still need to
3116 * check the module parameter to ensure we put things
3117 * back as they were for a full restore.
3119 if (!is_world_regdom(ieee80211_regdom)) {
3120 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3121 ieee80211_regdom[0], ieee80211_regdom[1]);
3122 alpha2[0] = ieee80211_regdom[0];
3123 alpha2[1] = ieee80211_regdom[1];
3125 } else {
3126 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3127 user_alpha2[0], user_alpha2[1]);
3128 alpha2[0] = user_alpha2[0];
3129 alpha2[1] = user_alpha2[1];
3131 } else if (!is_world_regdom(ieee80211_regdom)) {
3132 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3133 ieee80211_regdom[0], ieee80211_regdom[1]);
3134 alpha2[0] = ieee80211_regdom[0];
3135 alpha2[1] = ieee80211_regdom[1];
3136 } else
3137 pr_debug("Restoring regulatory settings\n");
3140 static void restore_custom_reg_settings(struct wiphy *wiphy)
3142 struct ieee80211_supported_band *sband;
3143 enum nl80211_band band;
3144 struct ieee80211_channel *chan;
3145 int i;
3147 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3148 sband = wiphy->bands[band];
3149 if (!sband)
3150 continue;
3151 for (i = 0; i < sband->n_channels; i++) {
3152 chan = &sband->channels[i];
3153 chan->flags = chan->orig_flags;
3154 chan->max_antenna_gain = chan->orig_mag;
3155 chan->max_power = chan->orig_mpwr;
3156 chan->beacon_found = false;
3162 * Restoring regulatory settings involves ingoring any
3163 * possibly stale country IE information and user regulatory
3164 * settings if so desired, this includes any beacon hints
3165 * learned as we could have traveled outside to another country
3166 * after disconnection. To restore regulatory settings we do
3167 * exactly what we did at bootup:
3169 * - send a core regulatory hint
3170 * - send a user regulatory hint if applicable
3172 * Device drivers that send a regulatory hint for a specific country
3173 * keep their own regulatory domain on wiphy->regd so that does does
3174 * not need to be remembered.
3176 static void restore_regulatory_settings(bool reset_user)
3178 char alpha2[2];
3179 char world_alpha2[2];
3180 struct reg_beacon *reg_beacon, *btmp;
3181 LIST_HEAD(tmp_reg_req_list);
3182 struct cfg80211_registered_device *rdev;
3184 ASSERT_RTNL();
3187 * Clear the indoor setting in case that it is not controlled by user
3188 * space, as otherwise there is no guarantee that the device is still
3189 * operating in an indoor environment.
3191 spin_lock(&reg_indoor_lock);
3192 if (reg_is_indoor && !reg_is_indoor_portid) {
3193 reg_is_indoor = false;
3194 reg_check_channels();
3196 spin_unlock(&reg_indoor_lock);
3198 reset_regdomains(true, &world_regdom);
3199 restore_alpha2(alpha2, reset_user);
3202 * If there's any pending requests we simply
3203 * stash them to a temporary pending queue and
3204 * add then after we've restored regulatory
3205 * settings.
3207 spin_lock(&reg_requests_lock);
3208 list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3209 spin_unlock(&reg_requests_lock);
3211 /* Clear beacon hints */
3212 spin_lock_bh(&reg_pending_beacons_lock);
3213 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3214 list_del(&reg_beacon->list);
3215 kfree(reg_beacon);
3217 spin_unlock_bh(&reg_pending_beacons_lock);
3219 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3220 list_del(&reg_beacon->list);
3221 kfree(reg_beacon);
3224 /* First restore to the basic regulatory settings */
3225 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3226 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3228 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3229 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3230 continue;
3231 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3232 restore_custom_reg_settings(&rdev->wiphy);
3235 regulatory_hint_core(world_alpha2);
3238 * This restores the ieee80211_regdom module parameter
3239 * preference or the last user requested regulatory
3240 * settings, user regulatory settings takes precedence.
3242 if (is_an_alpha2(alpha2))
3243 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3245 spin_lock(&reg_requests_lock);
3246 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3247 spin_unlock(&reg_requests_lock);
3249 pr_debug("Kicking the queue\n");
3251 schedule_work(&reg_work);
3254 void regulatory_hint_disconnect(void)
3256 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3257 restore_regulatory_settings(false);
3260 static bool freq_is_chan_12_13_14(u16 freq)
3262 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3263 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3264 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3265 return true;
3266 return false;
3269 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3271 struct reg_beacon *pending_beacon;
3273 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3274 if (beacon_chan->center_freq ==
3275 pending_beacon->chan.center_freq)
3276 return true;
3277 return false;
3280 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3281 struct ieee80211_channel *beacon_chan,
3282 gfp_t gfp)
3284 struct reg_beacon *reg_beacon;
3285 bool processing;
3287 if (beacon_chan->beacon_found ||
3288 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3289 (beacon_chan->band == NL80211_BAND_2GHZ &&
3290 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3291 return 0;
3293 spin_lock_bh(&reg_pending_beacons_lock);
3294 processing = pending_reg_beacon(beacon_chan);
3295 spin_unlock_bh(&reg_pending_beacons_lock);
3297 if (processing)
3298 return 0;
3300 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3301 if (!reg_beacon)
3302 return -ENOMEM;
3304 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3305 beacon_chan->center_freq,
3306 ieee80211_frequency_to_channel(beacon_chan->center_freq),
3307 wiphy_name(wiphy));
3309 memcpy(&reg_beacon->chan, beacon_chan,
3310 sizeof(struct ieee80211_channel));
3313 * Since we can be called from BH or and non-BH context
3314 * we must use spin_lock_bh()
3316 spin_lock_bh(&reg_pending_beacons_lock);
3317 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3318 spin_unlock_bh(&reg_pending_beacons_lock);
3320 schedule_work(&reg_work);
3322 return 0;
3325 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3327 unsigned int i;
3328 const struct ieee80211_reg_rule *reg_rule = NULL;
3329 const struct ieee80211_freq_range *freq_range = NULL;
3330 const struct ieee80211_power_rule *power_rule = NULL;
3331 char bw[32], cac_time[32];
3333 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3335 for (i = 0; i < rd->n_reg_rules; i++) {
3336 reg_rule = &rd->reg_rules[i];
3337 freq_range = &reg_rule->freq_range;
3338 power_rule = &reg_rule->power_rule;
3340 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3341 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3342 freq_range->max_bandwidth_khz,
3343 reg_get_max_bandwidth(rd, reg_rule));
3344 else
3345 snprintf(bw, sizeof(bw), "%d KHz",
3346 freq_range->max_bandwidth_khz);
3348 if (reg_rule->flags & NL80211_RRF_DFS)
3349 scnprintf(cac_time, sizeof(cac_time), "%u s",
3350 reg_rule->dfs_cac_ms/1000);
3351 else
3352 scnprintf(cac_time, sizeof(cac_time), "N/A");
3356 * There may not be documentation for max antenna gain
3357 * in certain regions
3359 if (power_rule->max_antenna_gain)
3360 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3361 freq_range->start_freq_khz,
3362 freq_range->end_freq_khz,
3364 power_rule->max_antenna_gain,
3365 power_rule->max_eirp,
3366 cac_time);
3367 else
3368 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3369 freq_range->start_freq_khz,
3370 freq_range->end_freq_khz,
3372 power_rule->max_eirp,
3373 cac_time);
3377 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3379 switch (dfs_region) {
3380 case NL80211_DFS_UNSET:
3381 case NL80211_DFS_FCC:
3382 case NL80211_DFS_ETSI:
3383 case NL80211_DFS_JP:
3384 return true;
3385 default:
3386 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
3387 return false;
3391 static void print_regdomain(const struct ieee80211_regdomain *rd)
3393 struct regulatory_request *lr = get_last_request();
3395 if (is_intersected_alpha2(rd->alpha2)) {
3396 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3397 struct cfg80211_registered_device *rdev;
3398 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3399 if (rdev) {
3400 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3401 rdev->country_ie_alpha2[0],
3402 rdev->country_ie_alpha2[1]);
3403 } else
3404 pr_debug("Current regulatory domain intersected:\n");
3405 } else
3406 pr_debug("Current regulatory domain intersected:\n");
3407 } else if (is_world_regdom(rd->alpha2)) {
3408 pr_debug("World regulatory domain updated:\n");
3409 } else {
3410 if (is_unknown_alpha2(rd->alpha2))
3411 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3412 else {
3413 if (reg_request_cell_base(lr))
3414 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3415 rd->alpha2[0], rd->alpha2[1]);
3416 else
3417 pr_debug("Regulatory domain changed to country: %c%c\n",
3418 rd->alpha2[0], rd->alpha2[1]);
3422 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3423 print_rd_rules(rd);
3426 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3428 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3429 print_rd_rules(rd);
3432 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3434 if (!is_world_regdom(rd->alpha2))
3435 return -EINVAL;
3436 update_world_regdomain(rd);
3437 return 0;
3440 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3441 struct regulatory_request *user_request)
3443 const struct ieee80211_regdomain *intersected_rd = NULL;
3445 if (!regdom_changes(rd->alpha2))
3446 return -EALREADY;
3448 if (!is_valid_rd(rd)) {
3449 pr_err("Invalid regulatory domain detected: %c%c\n",
3450 rd->alpha2[0], rd->alpha2[1]);
3451 print_regdomain_info(rd);
3452 return -EINVAL;
3455 if (!user_request->intersect) {
3456 reset_regdomains(false, rd);
3457 return 0;
3460 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3461 if (!intersected_rd)
3462 return -EINVAL;
3464 kfree(rd);
3465 rd = NULL;
3466 reset_regdomains(false, intersected_rd);
3468 return 0;
3471 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3472 struct regulatory_request *driver_request)
3474 const struct ieee80211_regdomain *regd;
3475 const struct ieee80211_regdomain *intersected_rd = NULL;
3476 const struct ieee80211_regdomain *tmp;
3477 struct wiphy *request_wiphy;
3479 if (is_world_regdom(rd->alpha2))
3480 return -EINVAL;
3482 if (!regdom_changes(rd->alpha2))
3483 return -EALREADY;
3485 if (!is_valid_rd(rd)) {
3486 pr_err("Invalid regulatory domain detected: %c%c\n",
3487 rd->alpha2[0], rd->alpha2[1]);
3488 print_regdomain_info(rd);
3489 return -EINVAL;
3492 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3493 if (!request_wiphy)
3494 return -ENODEV;
3496 if (!driver_request->intersect) {
3497 if (request_wiphy->regd)
3498 return -EALREADY;
3500 regd = reg_copy_regd(rd);
3501 if (IS_ERR(regd))
3502 return PTR_ERR(regd);
3504 rcu_assign_pointer(request_wiphy->regd, regd);
3505 reset_regdomains(false, rd);
3506 return 0;
3509 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3510 if (!intersected_rd)
3511 return -EINVAL;
3514 * We can trash what CRDA provided now.
3515 * However if a driver requested this specific regulatory
3516 * domain we keep it for its private use
3518 tmp = get_wiphy_regdom(request_wiphy);
3519 rcu_assign_pointer(request_wiphy->regd, rd);
3520 rcu_free_regdom(tmp);
3522 rd = NULL;
3524 reset_regdomains(false, intersected_rd);
3526 return 0;
3529 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3530 struct regulatory_request *country_ie_request)
3532 struct wiphy *request_wiphy;
3534 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3535 !is_unknown_alpha2(rd->alpha2))
3536 return -EINVAL;
3539 * Lets only bother proceeding on the same alpha2 if the current
3540 * rd is non static (it means CRDA was present and was used last)
3541 * and the pending request came in from a country IE
3544 if (!is_valid_rd(rd)) {
3545 pr_err("Invalid regulatory domain detected: %c%c\n",
3546 rd->alpha2[0], rd->alpha2[1]);
3547 print_regdomain_info(rd);
3548 return -EINVAL;
3551 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3552 if (!request_wiphy)
3553 return -ENODEV;
3555 if (country_ie_request->intersect)
3556 return -EINVAL;
3558 reset_regdomains(false, rd);
3559 return 0;
3563 * Use this call to set the current regulatory domain. Conflicts with
3564 * multiple drivers can be ironed out later. Caller must've already
3565 * kmalloc'd the rd structure.
3567 int set_regdom(const struct ieee80211_regdomain *rd,
3568 enum ieee80211_regd_source regd_src)
3570 struct regulatory_request *lr;
3571 bool user_reset = false;
3572 int r;
3574 if (!reg_is_valid_request(rd->alpha2)) {
3575 kfree(rd);
3576 return -EINVAL;
3579 if (regd_src == REGD_SOURCE_CRDA)
3580 reset_crda_timeouts();
3582 lr = get_last_request();
3584 /* Note that this doesn't update the wiphys, this is done below */
3585 switch (lr->initiator) {
3586 case NL80211_REGDOM_SET_BY_CORE:
3587 r = reg_set_rd_core(rd);
3588 break;
3589 case NL80211_REGDOM_SET_BY_USER:
3590 r = reg_set_rd_user(rd, lr);
3591 user_reset = true;
3592 break;
3593 case NL80211_REGDOM_SET_BY_DRIVER:
3594 r = reg_set_rd_driver(rd, lr);
3595 break;
3596 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3597 r = reg_set_rd_country_ie(rd, lr);
3598 break;
3599 default:
3600 WARN(1, "invalid initiator %d\n", lr->initiator);
3601 kfree(rd);
3602 return -EINVAL;
3605 if (r) {
3606 switch (r) {
3607 case -EALREADY:
3608 reg_set_request_processed();
3609 break;
3610 default:
3611 /* Back to world regulatory in case of errors */
3612 restore_regulatory_settings(user_reset);
3615 kfree(rd);
3616 return r;
3619 /* This would make this whole thing pointless */
3620 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3621 return -EINVAL;
3623 /* update all wiphys now with the new established regulatory domain */
3624 update_all_wiphy_regulatory(lr->initiator);
3626 print_regdomain(get_cfg80211_regdom());
3628 nl80211_send_reg_change_event(lr);
3630 reg_set_request_processed();
3632 return 0;
3635 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3636 struct ieee80211_regdomain *rd)
3638 const struct ieee80211_regdomain *regd;
3639 const struct ieee80211_regdomain *prev_regd;
3640 struct cfg80211_registered_device *rdev;
3642 if (WARN_ON(!wiphy || !rd))
3643 return -EINVAL;
3645 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3646 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3647 return -EPERM;
3649 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3650 print_regdomain_info(rd);
3651 return -EINVAL;
3654 regd = reg_copy_regd(rd);
3655 if (IS_ERR(regd))
3656 return PTR_ERR(regd);
3658 rdev = wiphy_to_rdev(wiphy);
3660 spin_lock(&reg_requests_lock);
3661 prev_regd = rdev->requested_regd;
3662 rdev->requested_regd = regd;
3663 spin_unlock(&reg_requests_lock);
3665 kfree(prev_regd);
3666 return 0;
3669 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3670 struct ieee80211_regdomain *rd)
3672 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3674 if (ret)
3675 return ret;
3677 schedule_work(&reg_work);
3678 return 0;
3680 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3682 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3683 struct ieee80211_regdomain *rd)
3685 int ret;
3687 ASSERT_RTNL();
3689 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3690 if (ret)
3691 return ret;
3693 /* process the request immediately */
3694 reg_process_self_managed_hints();
3695 return 0;
3697 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3699 void wiphy_regulatory_register(struct wiphy *wiphy)
3701 struct regulatory_request *lr;
3703 /* self-managed devices ignore external hints */
3704 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3705 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3706 REGULATORY_COUNTRY_IE_IGNORE;
3708 if (!reg_dev_ignore_cell_hint(wiphy))
3709 reg_num_devs_support_basehint++;
3711 lr = get_last_request();
3712 wiphy_update_regulatory(wiphy, lr->initiator);
3713 wiphy_all_share_dfs_chan_state(wiphy);
3716 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3718 struct wiphy *request_wiphy = NULL;
3719 struct regulatory_request *lr;
3721 lr = get_last_request();
3723 if (!reg_dev_ignore_cell_hint(wiphy))
3724 reg_num_devs_support_basehint--;
3726 rcu_free_regdom(get_wiphy_regdom(wiphy));
3727 RCU_INIT_POINTER(wiphy->regd, NULL);
3729 if (lr)
3730 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3732 if (!request_wiphy || request_wiphy != wiphy)
3733 return;
3735 lr->wiphy_idx = WIPHY_IDX_INVALID;
3736 lr->country_ie_env = ENVIRON_ANY;
3740 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3741 * UNII band definitions
3743 int cfg80211_get_unii(int freq)
3745 /* UNII-1 */
3746 if (freq >= 5150 && freq <= 5250)
3747 return 0;
3749 /* UNII-2A */
3750 if (freq > 5250 && freq <= 5350)
3751 return 1;
3753 /* UNII-2B */
3754 if (freq > 5350 && freq <= 5470)
3755 return 2;
3757 /* UNII-2C */
3758 if (freq > 5470 && freq <= 5725)
3759 return 3;
3761 /* UNII-3 */
3762 if (freq > 5725 && freq <= 5825)
3763 return 4;
3765 return -EINVAL;
3768 bool regulatory_indoor_allowed(void)
3770 return reg_is_indoor;
3773 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3775 const struct ieee80211_regdomain *regd = NULL;
3776 const struct ieee80211_regdomain *wiphy_regd = NULL;
3777 bool pre_cac_allowed = false;
3779 rcu_read_lock();
3781 regd = rcu_dereference(cfg80211_regdomain);
3782 wiphy_regd = rcu_dereference(wiphy->regd);
3783 if (!wiphy_regd) {
3784 if (regd->dfs_region == NL80211_DFS_ETSI)
3785 pre_cac_allowed = true;
3787 rcu_read_unlock();
3789 return pre_cac_allowed;
3792 if (regd->dfs_region == wiphy_regd->dfs_region &&
3793 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3794 pre_cac_allowed = true;
3796 rcu_read_unlock();
3798 return pre_cac_allowed;
3801 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3802 struct cfg80211_chan_def *chandef,
3803 enum nl80211_dfs_state dfs_state,
3804 enum nl80211_radar_event event)
3806 struct cfg80211_registered_device *rdev;
3808 ASSERT_RTNL();
3810 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3811 return;
3813 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3814 if (wiphy == &rdev->wiphy)
3815 continue;
3817 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3818 continue;
3820 if (!ieee80211_get_channel(&rdev->wiphy,
3821 chandef->chan->center_freq))
3822 continue;
3824 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3826 if (event == NL80211_RADAR_DETECTED ||
3827 event == NL80211_RADAR_CAC_FINISHED)
3828 cfg80211_sched_dfs_chan_update(rdev);
3830 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3834 static int __init regulatory_init_db(void)
3836 int err;
3838 err = load_builtin_regdb_keys();
3839 if (err)
3840 return err;
3842 /* We always try to get an update for the static regdomain */
3843 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3844 if (err) {
3845 if (err == -ENOMEM) {
3846 platform_device_unregister(reg_pdev);
3847 return err;
3850 * N.B. kobject_uevent_env() can fail mainly for when we're out
3851 * memory which is handled and propagated appropriately above
3852 * but it can also fail during a netlink_broadcast() or during
3853 * early boot for call_usermodehelper(). For now treat these
3854 * errors as non-fatal.
3856 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3860 * Finally, if the user set the module parameter treat it
3861 * as a user hint.
3863 if (!is_world_regdom(ieee80211_regdom))
3864 regulatory_hint_user(ieee80211_regdom,
3865 NL80211_USER_REG_HINT_USER);
3867 return 0;
3869 #ifndef MODULE
3870 late_initcall(regulatory_init_db);
3871 #endif
3873 int __init regulatory_init(void)
3875 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3876 if (IS_ERR(reg_pdev))
3877 return PTR_ERR(reg_pdev);
3879 spin_lock_init(&reg_requests_lock);
3880 spin_lock_init(&reg_pending_beacons_lock);
3881 spin_lock_init(&reg_indoor_lock);
3883 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3885 user_alpha2[0] = '9';
3886 user_alpha2[1] = '7';
3888 #ifdef MODULE
3889 return regulatory_init_db();
3890 #else
3891 return 0;
3892 #endif
3895 void regulatory_exit(void)
3897 struct regulatory_request *reg_request, *tmp;
3898 struct reg_beacon *reg_beacon, *btmp;
3900 cancel_work_sync(&reg_work);
3901 cancel_crda_timeout_sync();
3902 cancel_delayed_work_sync(&reg_check_chans);
3904 /* Lock to suppress warnings */
3905 rtnl_lock();
3906 reset_regdomains(true, NULL);
3907 rtnl_unlock();
3909 dev_set_uevent_suppress(&reg_pdev->dev, true);
3911 platform_device_unregister(reg_pdev);
3913 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3914 list_del(&reg_beacon->list);
3915 kfree(reg_beacon);
3918 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3919 list_del(&reg_beacon->list);
3920 kfree(reg_beacon);
3923 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3924 list_del(&reg_request->list);
3925 kfree(reg_request);
3928 if (!IS_ERR_OR_NULL(regdb))
3929 kfree(regdb);
3931 free_regdb_keyring();