2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 Intel Corporation
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
25 * DOC: Wireless regulatory infrastructure
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
70 #define REG_ENFORCE_GRACE_MS 60000
73 * enum reg_request_treatment - regulatory request treatment
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
82 enum reg_request_treatment
{
89 static struct regulatory_request core_request_world
= {
90 .initiator
= NL80211_REGDOM_SET_BY_CORE
,
95 .country_ie_env
= ENVIRON_ANY
,
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
102 static struct regulatory_request __rcu
*last_request
=
103 (void __force __rcu
*)&core_request_world
;
105 /* To trigger userspace events and load firmware */
106 static struct platform_device
*reg_pdev
;
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
114 const struct ieee80211_regdomain __rcu
*cfg80211_regdomain
;
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
121 static int reg_num_devs_support_basehint
;
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
128 static bool reg_is_indoor
;
129 static spinlock_t reg_indoor_lock
;
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid
;
134 static void restore_regulatory_settings(bool reset_user
);
136 static const struct ieee80211_regdomain
*get_cfg80211_regdom(void)
138 return rcu_dereference_rtnl(cfg80211_regdomain
);
141 const struct ieee80211_regdomain
*get_wiphy_regdom(struct wiphy
*wiphy
)
143 return rcu_dereference_rtnl(wiphy
->regd
);
146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region
)
148 switch (dfs_region
) {
149 case NL80211_DFS_UNSET
:
151 case NL80211_DFS_FCC
:
153 case NL80211_DFS_ETSI
:
161 enum nl80211_dfs_regions
reg_get_dfs_region(struct wiphy
*wiphy
)
163 const struct ieee80211_regdomain
*regd
= NULL
;
164 const struct ieee80211_regdomain
*wiphy_regd
= NULL
;
166 regd
= get_cfg80211_regdom();
170 wiphy_regd
= get_wiphy_regdom(wiphy
);
174 if (wiphy_regd
->dfs_region
== regd
->dfs_region
)
177 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
178 dev_name(&wiphy
->dev
),
179 reg_dfs_region_str(wiphy_regd
->dfs_region
),
180 reg_dfs_region_str(regd
->dfs_region
));
183 return regd
->dfs_region
;
186 static void rcu_free_regdom(const struct ieee80211_regdomain
*r
)
190 kfree_rcu((struct ieee80211_regdomain
*)r
, rcu_head
);
193 static struct regulatory_request
*get_last_request(void)
195 return rcu_dereference_rtnl(last_request
);
198 /* Used to queue up regulatory hints */
199 static LIST_HEAD(reg_requests_list
);
200 static spinlock_t reg_requests_lock
;
202 /* Used to queue up beacon hints for review */
203 static LIST_HEAD(reg_pending_beacons
);
204 static spinlock_t reg_pending_beacons_lock
;
206 /* Used to keep track of processed beacon hints */
207 static LIST_HEAD(reg_beacon_list
);
210 struct list_head list
;
211 struct ieee80211_channel chan
;
214 static void reg_check_chans_work(struct work_struct
*work
);
215 static DECLARE_DELAYED_WORK(reg_check_chans
, reg_check_chans_work
);
217 static void reg_todo(struct work_struct
*work
);
218 static DECLARE_WORK(reg_work
, reg_todo
);
220 /* We keep a static world regulatory domain in case of the absence of CRDA */
221 static const struct ieee80211_regdomain world_regdom
= {
225 /* IEEE 802.11b/g, channels 1..11 */
226 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
227 /* IEEE 802.11b/g, channels 12..13. */
228 REG_RULE(2467-10, 2472+10, 20, 6, 20,
229 NL80211_RRF_NO_IR
| NL80211_RRF_AUTO_BW
),
230 /* IEEE 802.11 channel 14 - Only JP enables
231 * this and for 802.11b only */
232 REG_RULE(2484-10, 2484+10, 20, 6, 20,
234 NL80211_RRF_NO_OFDM
),
235 /* IEEE 802.11a, channel 36..48 */
236 REG_RULE(5180-10, 5240+10, 80, 6, 20,
238 NL80211_RRF_AUTO_BW
),
240 /* IEEE 802.11a, channel 52..64 - DFS required */
241 REG_RULE(5260-10, 5320+10, 80, 6, 20,
243 NL80211_RRF_AUTO_BW
|
246 /* IEEE 802.11a, channel 100..144 - DFS required */
247 REG_RULE(5500-10, 5720+10, 160, 6, 20,
251 /* IEEE 802.11a, channel 149..165 */
252 REG_RULE(5745-10, 5825+10, 80, 6, 20,
255 /* IEEE 802.11ad (60GHz), channels 1..3 */
256 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
260 /* protected by RTNL */
261 static const struct ieee80211_regdomain
*cfg80211_world_regdom
=
264 static char *ieee80211_regdom
= "00";
265 static char user_alpha2
[2];
267 module_param(ieee80211_regdom
, charp
, 0444);
268 MODULE_PARM_DESC(ieee80211_regdom
, "IEEE 802.11 regulatory domain code");
270 static void reg_free_request(struct regulatory_request
*request
)
272 if (request
== &core_request_world
)
275 if (request
!= get_last_request())
279 static void reg_free_last_request(void)
281 struct regulatory_request
*lr
= get_last_request();
283 if (lr
!= &core_request_world
&& lr
)
284 kfree_rcu(lr
, rcu_head
);
287 static void reg_update_last_request(struct regulatory_request
*request
)
289 struct regulatory_request
*lr
;
291 lr
= get_last_request();
295 reg_free_last_request();
296 rcu_assign_pointer(last_request
, request
);
299 static void reset_regdomains(bool full_reset
,
300 const struct ieee80211_regdomain
*new_regdom
)
302 const struct ieee80211_regdomain
*r
;
306 r
= get_cfg80211_regdom();
308 /* avoid freeing static information or freeing something twice */
309 if (r
== cfg80211_world_regdom
)
311 if (cfg80211_world_regdom
== &world_regdom
)
312 cfg80211_world_regdom
= NULL
;
313 if (r
== &world_regdom
)
317 rcu_free_regdom(cfg80211_world_regdom
);
319 cfg80211_world_regdom
= &world_regdom
;
320 rcu_assign_pointer(cfg80211_regdomain
, new_regdom
);
325 reg_update_last_request(&core_request_world
);
329 * Dynamic world regulatory domain requested by the wireless
330 * core upon initialization
332 static void update_world_regdomain(const struct ieee80211_regdomain
*rd
)
334 struct regulatory_request
*lr
;
336 lr
= get_last_request();
340 reset_regdomains(false, rd
);
342 cfg80211_world_regdom
= rd
;
345 bool is_world_regdom(const char *alpha2
)
349 return alpha2
[0] == '0' && alpha2
[1] == '0';
352 static bool is_alpha2_set(const char *alpha2
)
356 return alpha2
[0] && alpha2
[1];
359 static bool is_unknown_alpha2(const char *alpha2
)
364 * Special case where regulatory domain was built by driver
365 * but a specific alpha2 cannot be determined
367 return alpha2
[0] == '9' && alpha2
[1] == '9';
370 static bool is_intersected_alpha2(const char *alpha2
)
375 * Special case where regulatory domain is the
376 * result of an intersection between two regulatory domain
379 return alpha2
[0] == '9' && alpha2
[1] == '8';
382 static bool is_an_alpha2(const char *alpha2
)
386 return isalpha(alpha2
[0]) && isalpha(alpha2
[1]);
389 static bool alpha2_equal(const char *alpha2_x
, const char *alpha2_y
)
391 if (!alpha2_x
|| !alpha2_y
)
393 return alpha2_x
[0] == alpha2_y
[0] && alpha2_x
[1] == alpha2_y
[1];
396 static bool regdom_changes(const char *alpha2
)
398 const struct ieee80211_regdomain
*r
= get_cfg80211_regdom();
402 return !alpha2_equal(r
->alpha2
, alpha2
);
406 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
407 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
408 * has ever been issued.
410 static bool is_user_regdom_saved(void)
412 if (user_alpha2
[0] == '9' && user_alpha2
[1] == '7')
415 /* This would indicate a mistake on the design */
416 if (WARN(!is_world_regdom(user_alpha2
) && !is_an_alpha2(user_alpha2
),
417 "Unexpected user alpha2: %c%c\n",
418 user_alpha2
[0], user_alpha2
[1]))
424 static const struct ieee80211_regdomain
*
425 reg_copy_regd(const struct ieee80211_regdomain
*src_regd
)
427 struct ieee80211_regdomain
*regd
;
428 int size_of_regd
, size_of_wmms
;
430 struct ieee80211_wmm_rule
*d_wmm
, *s_wmm
;
433 sizeof(struct ieee80211_regdomain
) +
434 src_regd
->n_reg_rules
* sizeof(struct ieee80211_reg_rule
);
435 size_of_wmms
= src_regd
->n_wmm_rules
*
436 sizeof(struct ieee80211_wmm_rule
);
438 regd
= kzalloc(size_of_regd
+ size_of_wmms
, GFP_KERNEL
);
440 return ERR_PTR(-ENOMEM
);
442 memcpy(regd
, src_regd
, sizeof(struct ieee80211_regdomain
));
444 d_wmm
= (struct ieee80211_wmm_rule
*)((u8
*)regd
+ size_of_regd
);
445 s_wmm
= (struct ieee80211_wmm_rule
*)((u8
*)src_regd
+ size_of_regd
);
446 memcpy(d_wmm
, s_wmm
, size_of_wmms
);
448 for (i
= 0; i
< src_regd
->n_reg_rules
; i
++) {
449 memcpy(®d
->reg_rules
[i
], &src_regd
->reg_rules
[i
],
450 sizeof(struct ieee80211_reg_rule
));
451 if (!src_regd
->reg_rules
[i
].wmm_rule
)
454 regd
->reg_rules
[i
].wmm_rule
= d_wmm
+
455 (src_regd
->reg_rules
[i
].wmm_rule
- s_wmm
) /
456 sizeof(struct ieee80211_wmm_rule
);
461 struct reg_regdb_apply_request
{
462 struct list_head list
;
463 const struct ieee80211_regdomain
*regdom
;
466 static LIST_HEAD(reg_regdb_apply_list
);
467 static DEFINE_MUTEX(reg_regdb_apply_mutex
);
469 static void reg_regdb_apply(struct work_struct
*work
)
471 struct reg_regdb_apply_request
*request
;
475 mutex_lock(®_regdb_apply_mutex
);
476 while (!list_empty(®_regdb_apply_list
)) {
477 request
= list_first_entry(®_regdb_apply_list
,
478 struct reg_regdb_apply_request
,
480 list_del(&request
->list
);
482 set_regdom(request
->regdom
, REGD_SOURCE_INTERNAL_DB
);
485 mutex_unlock(®_regdb_apply_mutex
);
490 static DECLARE_WORK(reg_regdb_work
, reg_regdb_apply
);
492 static int reg_schedule_apply(const struct ieee80211_regdomain
*regdom
)
494 struct reg_regdb_apply_request
*request
;
496 request
= kzalloc(sizeof(struct reg_regdb_apply_request
), GFP_KERNEL
);
502 request
->regdom
= regdom
;
504 mutex_lock(®_regdb_apply_mutex
);
505 list_add_tail(&request
->list
, ®_regdb_apply_list
);
506 mutex_unlock(®_regdb_apply_mutex
);
508 schedule_work(®_regdb_work
);
512 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
513 /* Max number of consecutive attempts to communicate with CRDA */
514 #define REG_MAX_CRDA_TIMEOUTS 10
516 static u32 reg_crda_timeouts
;
518 static void crda_timeout_work(struct work_struct
*work
);
519 static DECLARE_DELAYED_WORK(crda_timeout
, crda_timeout_work
);
521 static void crda_timeout_work(struct work_struct
*work
)
523 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
526 restore_regulatory_settings(true);
530 static void cancel_crda_timeout(void)
532 cancel_delayed_work(&crda_timeout
);
535 static void cancel_crda_timeout_sync(void)
537 cancel_delayed_work_sync(&crda_timeout
);
540 static void reset_crda_timeouts(void)
542 reg_crda_timeouts
= 0;
546 * This lets us keep regulatory code which is updated on a regulatory
547 * basis in userspace.
549 static int call_crda(const char *alpha2
)
552 char *env
[] = { country
, NULL
};
555 snprintf(country
, sizeof(country
), "COUNTRY=%c%c",
556 alpha2
[0], alpha2
[1]);
558 if (reg_crda_timeouts
> REG_MAX_CRDA_TIMEOUTS
) {
559 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
563 if (!is_world_regdom((char *) alpha2
))
564 pr_debug("Calling CRDA for country: %c%c\n",
565 alpha2
[0], alpha2
[1]);
567 pr_debug("Calling CRDA to update world regulatory domain\n");
569 ret
= kobject_uevent_env(®_pdev
->dev
.kobj
, KOBJ_CHANGE
, env
);
573 queue_delayed_work(system_power_efficient_wq
,
574 &crda_timeout
, msecs_to_jiffies(3142));
578 static inline void cancel_crda_timeout(void) {}
579 static inline void cancel_crda_timeout_sync(void) {}
580 static inline void reset_crda_timeouts(void) {}
581 static inline int call_crda(const char *alpha2
)
585 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
587 /* code to directly load a firmware database through request_firmware */
588 static const struct fwdb_header
*regdb
;
590 struct fwdb_country
{
593 /* this struct cannot be extended */
594 } __packed
__aligned(4);
596 struct fwdb_collection
{
600 /* no optional data yet */
601 /* aligned to 2, then followed by __be16 array of rule pointers */
602 } __packed
__aligned(4);
605 FWDB_FLAG_NO_OFDM
= BIT(0),
606 FWDB_FLAG_NO_OUTDOOR
= BIT(1),
607 FWDB_FLAG_DFS
= BIT(2),
608 FWDB_FLAG_NO_IR
= BIT(3),
609 FWDB_FLAG_AUTO_BW
= BIT(4),
618 struct fwdb_wmm_rule
{
619 struct fwdb_wmm_ac client
[IEEE80211_NUM_ACS
];
620 struct fwdb_wmm_ac ap
[IEEE80211_NUM_ACS
];
627 __be32 start
, end
, max_bw
;
628 /* start of optional data */
631 } __packed
__aligned(4);
633 #define FWDB_MAGIC 0x52474442
634 #define FWDB_VERSION 20
639 struct fwdb_country country
[];
640 } __packed
__aligned(4);
642 static int ecw2cw(int ecw
)
644 return (1 << ecw
) - 1;
647 static bool valid_wmm(struct fwdb_wmm_rule
*rule
)
649 struct fwdb_wmm_ac
*ac
= (struct fwdb_wmm_ac
*)rule
;
652 for (i
= 0; i
< IEEE80211_NUM_ACS
* 2; i
++) {
653 u16 cw_min
= ecw2cw((ac
[i
].ecw
& 0xf0) >> 4);
654 u16 cw_max
= ecw2cw(ac
[i
].ecw
& 0x0f);
655 u8 aifsn
= ac
[i
].aifsn
;
657 if (cw_min
>= cw_max
)
667 static bool valid_rule(const u8
*data
, unsigned int size
, u16 rule_ptr
)
669 struct fwdb_rule
*rule
= (void *)(data
+ (rule_ptr
<< 2));
671 if ((u8
*)rule
+ sizeof(rule
->len
) > data
+ size
)
674 /* mandatory fields */
675 if (rule
->len
< offsetofend(struct fwdb_rule
, max_bw
))
677 if (rule
->len
>= offsetofend(struct fwdb_rule
, wmm_ptr
)) {
678 u32 wmm_ptr
= be16_to_cpu(rule
->wmm_ptr
) << 2;
679 struct fwdb_wmm_rule
*wmm
;
681 if (wmm_ptr
+ sizeof(struct fwdb_wmm_rule
) > size
)
684 wmm
= (void *)(data
+ wmm_ptr
);
692 static bool valid_country(const u8
*data
, unsigned int size
,
693 const struct fwdb_country
*country
)
695 unsigned int ptr
= be16_to_cpu(country
->coll_ptr
) << 2;
696 struct fwdb_collection
*coll
= (void *)(data
+ ptr
);
700 /* make sure we can read len/n_rules */
701 if ((u8
*)coll
+ offsetofend(typeof(*coll
), n_rules
) > data
+ size
)
704 /* make sure base struct and all rules fit */
705 if ((u8
*)coll
+ ALIGN(coll
->len
, 2) +
706 (coll
->n_rules
* 2) > data
+ size
)
709 /* mandatory fields must exist */
710 if (coll
->len
< offsetofend(struct fwdb_collection
, dfs_region
))
713 rules_ptr
= (void *)((u8
*)coll
+ ALIGN(coll
->len
, 2));
715 for (i
= 0; i
< coll
->n_rules
; i
++) {
716 u16 rule_ptr
= be16_to_cpu(rules_ptr
[i
]);
718 if (!valid_rule(data
, size
, rule_ptr
))
725 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
726 static struct key
*builtin_regdb_keys
;
728 static void __init
load_keys_from_buffer(const u8
*p
, unsigned int buflen
)
730 const u8
*end
= p
+ buflen
;
735 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
736 * than 256 bytes in size.
743 plen
= (p
[2] << 8) | p
[3];
748 key
= key_create_or_update(make_key_ref(builtin_regdb_keys
, 1),
749 "asymmetric", NULL
, p
, plen
,
750 ((KEY_POS_ALL
& ~KEY_POS_SETATTR
) |
751 KEY_USR_VIEW
| KEY_USR_READ
),
752 KEY_ALLOC_NOT_IN_QUOTA
|
754 KEY_ALLOC_BYPASS_RESTRICTION
);
756 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
759 pr_notice("Loaded X.509 cert '%s'\n",
760 key_ref_to_ptr(key
)->description
);
769 pr_err("Problem parsing in-kernel X.509 certificate list\n");
772 static int __init
load_builtin_regdb_keys(void)
775 keyring_alloc(".builtin_regdb_keys",
776 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
777 ((KEY_POS_ALL
& ~KEY_POS_SETATTR
) |
778 KEY_USR_VIEW
| KEY_USR_READ
| KEY_USR_SEARCH
),
779 KEY_ALLOC_NOT_IN_QUOTA
, NULL
, NULL
);
780 if (IS_ERR(builtin_regdb_keys
))
781 return PTR_ERR(builtin_regdb_keys
);
783 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
785 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
786 load_keys_from_buffer(shipped_regdb_certs
, shipped_regdb_certs_len
);
788 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
789 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
[0] != '\0')
790 load_keys_from_buffer(extra_regdb_certs
, extra_regdb_certs_len
);
796 static bool regdb_has_valid_signature(const u8
*data
, unsigned int size
)
798 const struct firmware
*sig
;
801 if (request_firmware(&sig
, "regulatory.db.p7s", ®_pdev
->dev
))
804 result
= verify_pkcs7_signature(data
, size
, sig
->data
, sig
->size
,
806 VERIFYING_UNSPECIFIED_SIGNATURE
,
809 release_firmware(sig
);
814 static void free_regdb_keyring(void)
816 key_put(builtin_regdb_keys
);
819 static int load_builtin_regdb_keys(void)
824 static bool regdb_has_valid_signature(const u8
*data
, unsigned int size
)
829 static void free_regdb_keyring(void)
832 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
834 static bool valid_regdb(const u8
*data
, unsigned int size
)
836 const struct fwdb_header
*hdr
= (void *)data
;
837 const struct fwdb_country
*country
;
839 if (size
< sizeof(*hdr
))
842 if (hdr
->magic
!= cpu_to_be32(FWDB_MAGIC
))
845 if (hdr
->version
!= cpu_to_be32(FWDB_VERSION
))
848 if (!regdb_has_valid_signature(data
, size
))
851 country
= &hdr
->country
[0];
852 while ((u8
*)(country
+ 1) <= data
+ size
) {
853 if (!country
->coll_ptr
)
855 if (!valid_country(data
, size
, country
))
863 static void set_wmm_rule(struct ieee80211_wmm_rule
*rule
,
864 struct fwdb_wmm_rule
*wmm
)
868 for (i
= 0; i
< IEEE80211_NUM_ACS
; i
++) {
869 rule
->client
[i
].cw_min
=
870 ecw2cw((wmm
->client
[i
].ecw
& 0xf0) >> 4);
871 rule
->client
[i
].cw_max
= ecw2cw(wmm
->client
[i
].ecw
& 0x0f);
872 rule
->client
[i
].aifsn
= wmm
->client
[i
].aifsn
;
873 rule
->client
[i
].cot
= 1000 * be16_to_cpu(wmm
->client
[i
].cot
);
874 rule
->ap
[i
].cw_min
= ecw2cw((wmm
->ap
[i
].ecw
& 0xf0) >> 4);
875 rule
->ap
[i
].cw_max
= ecw2cw(wmm
->ap
[i
].ecw
& 0x0f);
876 rule
->ap
[i
].aifsn
= wmm
->ap
[i
].aifsn
;
877 rule
->ap
[i
].cot
= 1000 * be16_to_cpu(wmm
->ap
[i
].cot
);
881 static int __regdb_query_wmm(const struct fwdb_header
*db
,
882 const struct fwdb_country
*country
, int freq
,
883 u32
*dbptr
, struct ieee80211_wmm_rule
*rule
)
885 unsigned int ptr
= be16_to_cpu(country
->coll_ptr
) << 2;
886 struct fwdb_collection
*coll
= (void *)((u8
*)db
+ ptr
);
889 for (i
= 0; i
< coll
->n_rules
; i
++) {
890 __be16
*rules_ptr
= (void *)((u8
*)coll
+ ALIGN(coll
->len
, 2));
891 unsigned int rule_ptr
= be16_to_cpu(rules_ptr
[i
]) << 2;
892 struct fwdb_rule
*rrule
= (void *)((u8
*)db
+ rule_ptr
);
893 struct fwdb_wmm_rule
*wmm
;
894 unsigned int wmm_ptr
;
896 if (rrule
->len
< offsetofend(struct fwdb_rule
, wmm_ptr
))
899 if (freq
>= KHZ_TO_MHZ(be32_to_cpu(rrule
->start
)) &&
900 freq
<= KHZ_TO_MHZ(be32_to_cpu(rrule
->end
))) {
901 wmm_ptr
= be16_to_cpu(rrule
->wmm_ptr
) << 2;
902 wmm
= (void *)((u8
*)db
+ wmm_ptr
);
903 set_wmm_rule(rule
, wmm
);
913 int reg_query_regdb_wmm(char *alpha2
, int freq
, u32
*dbptr
,
914 struct ieee80211_wmm_rule
*rule
)
916 const struct fwdb_header
*hdr
= regdb
;
917 const struct fwdb_country
*country
;
920 return PTR_ERR(regdb
);
922 country
= &hdr
->country
[0];
923 while (country
->coll_ptr
) {
924 if (alpha2_equal(alpha2
, country
->alpha2
))
925 return __regdb_query_wmm(regdb
, country
, freq
, dbptr
,
933 EXPORT_SYMBOL(reg_query_regdb_wmm
);
936 struct ieee80211_wmm_rule
*rule
;
940 static struct ieee80211_wmm_rule
*find_wmm_ptr(struct wmm_ptrs
*wmm_ptrs
,
941 u32 wmm_ptr
, int n_wmms
)
945 for (i
= 0; i
< n_wmms
; i
++) {
946 if (wmm_ptrs
[i
].ptr
== wmm_ptr
)
947 return wmm_ptrs
[i
].rule
;
952 static int regdb_query_country(const struct fwdb_header
*db
,
953 const struct fwdb_country
*country
)
955 unsigned int ptr
= be16_to_cpu(country
->coll_ptr
) << 2;
956 struct fwdb_collection
*coll
= (void *)((u8
*)db
+ ptr
);
957 struct ieee80211_regdomain
*regdom
;
958 struct ieee80211_regdomain
*tmp_rd
;
959 unsigned int size_of_regd
, i
, n_wmms
= 0;
960 struct wmm_ptrs
*wmm_ptrs
;
962 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
963 coll
->n_rules
* sizeof(struct ieee80211_reg_rule
);
965 regdom
= kzalloc(size_of_regd
, GFP_KERNEL
);
969 wmm_ptrs
= kcalloc(coll
->n_rules
, sizeof(*wmm_ptrs
), GFP_KERNEL
);
975 regdom
->n_reg_rules
= coll
->n_rules
;
976 regdom
->alpha2
[0] = country
->alpha2
[0];
977 regdom
->alpha2
[1] = country
->alpha2
[1];
978 regdom
->dfs_region
= coll
->dfs_region
;
980 for (i
= 0; i
< regdom
->n_reg_rules
; i
++) {
981 __be16
*rules_ptr
= (void *)((u8
*)coll
+ ALIGN(coll
->len
, 2));
982 unsigned int rule_ptr
= be16_to_cpu(rules_ptr
[i
]) << 2;
983 struct fwdb_rule
*rule
= (void *)((u8
*)db
+ rule_ptr
);
984 struct ieee80211_reg_rule
*rrule
= ®dom
->reg_rules
[i
];
986 rrule
->freq_range
.start_freq_khz
= be32_to_cpu(rule
->start
);
987 rrule
->freq_range
.end_freq_khz
= be32_to_cpu(rule
->end
);
988 rrule
->freq_range
.max_bandwidth_khz
= be32_to_cpu(rule
->max_bw
);
990 rrule
->power_rule
.max_antenna_gain
= 0;
991 rrule
->power_rule
.max_eirp
= be16_to_cpu(rule
->max_eirp
);
994 if (rule
->flags
& FWDB_FLAG_NO_OFDM
)
995 rrule
->flags
|= NL80211_RRF_NO_OFDM
;
996 if (rule
->flags
& FWDB_FLAG_NO_OUTDOOR
)
997 rrule
->flags
|= NL80211_RRF_NO_OUTDOOR
;
998 if (rule
->flags
& FWDB_FLAG_DFS
)
999 rrule
->flags
|= NL80211_RRF_DFS
;
1000 if (rule
->flags
& FWDB_FLAG_NO_IR
)
1001 rrule
->flags
|= NL80211_RRF_NO_IR
;
1002 if (rule
->flags
& FWDB_FLAG_AUTO_BW
)
1003 rrule
->flags
|= NL80211_RRF_AUTO_BW
;
1005 rrule
->dfs_cac_ms
= 0;
1007 /* handle optional data */
1008 if (rule
->len
>= offsetofend(struct fwdb_rule
, cac_timeout
))
1010 1000 * be16_to_cpu(rule
->cac_timeout
);
1011 if (rule
->len
>= offsetofend(struct fwdb_rule
, wmm_ptr
)) {
1012 u32 wmm_ptr
= be16_to_cpu(rule
->wmm_ptr
) << 2;
1013 struct ieee80211_wmm_rule
*wmm_pos
=
1014 find_wmm_ptr(wmm_ptrs
, wmm_ptr
, n_wmms
);
1015 struct fwdb_wmm_rule
*wmm
;
1016 struct ieee80211_wmm_rule
*wmm_rule
;
1019 rrule
->wmm_rule
= wmm_pos
;
1022 wmm
= (void *)((u8
*)db
+ wmm_ptr
);
1023 tmp_rd
= krealloc(regdom
, size_of_regd
+ (n_wmms
+ 1) *
1024 sizeof(struct ieee80211_wmm_rule
),
1033 wmm_rule
= (struct ieee80211_wmm_rule
*)
1034 ((u8
*)regdom
+ size_of_regd
+ n_wmms
*
1035 sizeof(struct ieee80211_wmm_rule
));
1037 set_wmm_rule(wmm_rule
, wmm
);
1038 wmm_ptrs
[n_wmms
].ptr
= wmm_ptr
;
1039 wmm_ptrs
[n_wmms
++].rule
= wmm_rule
;
1044 return reg_schedule_apply(regdom
);
1047 static int query_regdb(const char *alpha2
)
1049 const struct fwdb_header
*hdr
= regdb
;
1050 const struct fwdb_country
*country
;
1055 return PTR_ERR(regdb
);
1057 country
= &hdr
->country
[0];
1058 while (country
->coll_ptr
) {
1059 if (alpha2_equal(alpha2
, country
->alpha2
))
1060 return regdb_query_country(regdb
, country
);
1067 static void regdb_fw_cb(const struct firmware
*fw
, void *context
)
1070 bool restore
= true;
1074 pr_info("failed to load regulatory.db\n");
1075 set_error
= -ENODATA
;
1076 } else if (!valid_regdb(fw
->data
, fw
->size
)) {
1077 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1078 set_error
= -EINVAL
;
1082 if (WARN_ON(regdb
&& !IS_ERR(regdb
))) {
1083 /* just restore and free new db */
1084 } else if (set_error
) {
1085 regdb
= ERR_PTR(set_error
);
1087 db
= kmemdup(fw
->data
, fw
->size
, GFP_KERNEL
);
1090 restore
= context
&& query_regdb(context
);
1097 restore_regulatory_settings(true);
1103 release_firmware(fw
);
1106 static int query_regdb_file(const char *alpha2
)
1111 return query_regdb(alpha2
);
1113 alpha2
= kmemdup(alpha2
, 2, GFP_KERNEL
);
1117 return request_firmware_nowait(THIS_MODULE
, true, "regulatory.db",
1118 ®_pdev
->dev
, GFP_KERNEL
,
1119 (void *)alpha2
, regdb_fw_cb
);
1122 int reg_reload_regdb(void)
1124 const struct firmware
*fw
;
1128 err
= request_firmware(&fw
, "regulatory.db", ®_pdev
->dev
);
1132 if (!valid_regdb(fw
->data
, fw
->size
)) {
1137 db
= kmemdup(fw
->data
, fw
->size
, GFP_KERNEL
);
1144 if (!IS_ERR_OR_NULL(regdb
))
1150 release_firmware(fw
);
1154 static bool reg_query_database(struct regulatory_request
*request
)
1156 if (query_regdb_file(request
->alpha2
) == 0)
1159 if (call_crda(request
->alpha2
) == 0)
1165 bool reg_is_valid_request(const char *alpha2
)
1167 struct regulatory_request
*lr
= get_last_request();
1169 if (!lr
|| lr
->processed
)
1172 return alpha2_equal(lr
->alpha2
, alpha2
);
1175 static const struct ieee80211_regdomain
*reg_get_regdomain(struct wiphy
*wiphy
)
1177 struct regulatory_request
*lr
= get_last_request();
1180 * Follow the driver's regulatory domain, if present, unless a country
1181 * IE has been processed or a user wants to help complaince further
1183 if (lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1184 lr
->initiator
!= NL80211_REGDOM_SET_BY_USER
&&
1186 return get_wiphy_regdom(wiphy
);
1188 return get_cfg80211_regdom();
1192 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain
*rd
,
1193 const struct ieee80211_reg_rule
*rule
)
1195 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
1196 const struct ieee80211_freq_range
*freq_range_tmp
;
1197 const struct ieee80211_reg_rule
*tmp
;
1198 u32 start_freq
, end_freq
, idx
, no
;
1200 for (idx
= 0; idx
< rd
->n_reg_rules
; idx
++)
1201 if (rule
== &rd
->reg_rules
[idx
])
1204 if (idx
== rd
->n_reg_rules
)
1207 /* get start_freq */
1211 tmp
= &rd
->reg_rules
[--no
];
1212 freq_range_tmp
= &tmp
->freq_range
;
1214 if (freq_range_tmp
->end_freq_khz
< freq_range
->start_freq_khz
)
1217 freq_range
= freq_range_tmp
;
1220 start_freq
= freq_range
->start_freq_khz
;
1223 freq_range
= &rule
->freq_range
;
1226 while (no
< rd
->n_reg_rules
- 1) {
1227 tmp
= &rd
->reg_rules
[++no
];
1228 freq_range_tmp
= &tmp
->freq_range
;
1230 if (freq_range_tmp
->start_freq_khz
> freq_range
->end_freq_khz
)
1233 freq_range
= freq_range_tmp
;
1236 end_freq
= freq_range
->end_freq_khz
;
1238 return end_freq
- start_freq
;
1241 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain
*rd
,
1242 const struct ieee80211_reg_rule
*rule
)
1244 unsigned int bw
= reg_get_max_bandwidth_from_range(rd
, rule
);
1246 if (rule
->flags
& NL80211_RRF_NO_160MHZ
)
1247 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(80));
1248 if (rule
->flags
& NL80211_RRF_NO_80MHZ
)
1249 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(40));
1252 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1255 if (rule
->flags
& NL80211_RRF_NO_HT40MINUS
&&
1256 rule
->flags
& NL80211_RRF_NO_HT40PLUS
)
1257 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(20));
1262 /* Sanity check on a regulatory rule */
1263 static bool is_valid_reg_rule(const struct ieee80211_reg_rule
*rule
)
1265 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
1268 if (freq_range
->start_freq_khz
<= 0 || freq_range
->end_freq_khz
<= 0)
1271 if (freq_range
->start_freq_khz
> freq_range
->end_freq_khz
)
1274 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
1276 if (freq_range
->end_freq_khz
<= freq_range
->start_freq_khz
||
1277 freq_range
->max_bandwidth_khz
> freq_diff
)
1283 static bool is_valid_rd(const struct ieee80211_regdomain
*rd
)
1285 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1288 if (!rd
->n_reg_rules
)
1291 if (WARN_ON(rd
->n_reg_rules
> NL80211_MAX_SUPP_REG_RULES
))
1294 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
1295 reg_rule
= &rd
->reg_rules
[i
];
1296 if (!is_valid_reg_rule(reg_rule
))
1304 * freq_in_rule_band - tells us if a frequency is in a frequency band
1305 * @freq_range: frequency rule we want to query
1306 * @freq_khz: frequency we are inquiring about
1308 * This lets us know if a specific frequency rule is or is not relevant to
1309 * a specific frequency's band. Bands are device specific and artificial
1310 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1311 * however it is safe for now to assume that a frequency rule should not be
1312 * part of a frequency's band if the start freq or end freq are off by more
1313 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
1315 * This resolution can be lowered and should be considered as we add
1316 * regulatory rule support for other "bands".
1318 static bool freq_in_rule_band(const struct ieee80211_freq_range
*freq_range
,
1321 #define ONE_GHZ_IN_KHZ 1000000
1323 * From 802.11ad: directional multi-gigabit (DMG):
1324 * Pertaining to operation in a frequency band containing a channel
1325 * with the Channel starting frequency above 45 GHz.
1327 u32 limit
= freq_khz
> 45 * ONE_GHZ_IN_KHZ
?
1328 10 * ONE_GHZ_IN_KHZ
: 2 * ONE_GHZ_IN_KHZ
;
1329 if (abs(freq_khz
- freq_range
->start_freq_khz
) <= limit
)
1331 if (abs(freq_khz
- freq_range
->end_freq_khz
) <= limit
)
1334 #undef ONE_GHZ_IN_KHZ
1338 * Later on we can perhaps use the more restrictive DFS
1339 * region but we don't have information for that yet so
1340 * for now simply disallow conflicts.
1342 static enum nl80211_dfs_regions
1343 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1
,
1344 const enum nl80211_dfs_regions dfs_region2
)
1346 if (dfs_region1
!= dfs_region2
)
1347 return NL80211_DFS_UNSET
;
1352 * Helper for regdom_intersect(), this does the real
1353 * mathematical intersection fun
1355 static int reg_rules_intersect(const struct ieee80211_regdomain
*rd1
,
1356 const struct ieee80211_regdomain
*rd2
,
1357 const struct ieee80211_reg_rule
*rule1
,
1358 const struct ieee80211_reg_rule
*rule2
,
1359 struct ieee80211_reg_rule
*intersected_rule
)
1361 const struct ieee80211_freq_range
*freq_range1
, *freq_range2
;
1362 struct ieee80211_freq_range
*freq_range
;
1363 const struct ieee80211_power_rule
*power_rule1
, *power_rule2
;
1364 struct ieee80211_power_rule
*power_rule
;
1365 u32 freq_diff
, max_bandwidth1
, max_bandwidth2
;
1367 freq_range1
= &rule1
->freq_range
;
1368 freq_range2
= &rule2
->freq_range
;
1369 freq_range
= &intersected_rule
->freq_range
;
1371 power_rule1
= &rule1
->power_rule
;
1372 power_rule2
= &rule2
->power_rule
;
1373 power_rule
= &intersected_rule
->power_rule
;
1375 freq_range
->start_freq_khz
= max(freq_range1
->start_freq_khz
,
1376 freq_range2
->start_freq_khz
);
1377 freq_range
->end_freq_khz
= min(freq_range1
->end_freq_khz
,
1378 freq_range2
->end_freq_khz
);
1380 max_bandwidth1
= freq_range1
->max_bandwidth_khz
;
1381 max_bandwidth2
= freq_range2
->max_bandwidth_khz
;
1383 if (rule1
->flags
& NL80211_RRF_AUTO_BW
)
1384 max_bandwidth1
= reg_get_max_bandwidth(rd1
, rule1
);
1385 if (rule2
->flags
& NL80211_RRF_AUTO_BW
)
1386 max_bandwidth2
= reg_get_max_bandwidth(rd2
, rule2
);
1388 freq_range
->max_bandwidth_khz
= min(max_bandwidth1
, max_bandwidth2
);
1390 intersected_rule
->flags
= rule1
->flags
| rule2
->flags
;
1393 * In case NL80211_RRF_AUTO_BW requested for both rules
1394 * set AUTO_BW in intersected rule also. Next we will
1395 * calculate BW correctly in handle_channel function.
1396 * In other case remove AUTO_BW flag while we calculate
1397 * maximum bandwidth correctly and auto calculation is
1400 if ((rule1
->flags
& NL80211_RRF_AUTO_BW
) &&
1401 (rule2
->flags
& NL80211_RRF_AUTO_BW
))
1402 intersected_rule
->flags
|= NL80211_RRF_AUTO_BW
;
1404 intersected_rule
->flags
&= ~NL80211_RRF_AUTO_BW
;
1406 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
1407 if (freq_range
->max_bandwidth_khz
> freq_diff
)
1408 freq_range
->max_bandwidth_khz
= freq_diff
;
1410 power_rule
->max_eirp
= min(power_rule1
->max_eirp
,
1411 power_rule2
->max_eirp
);
1412 power_rule
->max_antenna_gain
= min(power_rule1
->max_antenna_gain
,
1413 power_rule2
->max_antenna_gain
);
1415 intersected_rule
->dfs_cac_ms
= max(rule1
->dfs_cac_ms
,
1418 if (!is_valid_reg_rule(intersected_rule
))
1424 /* check whether old rule contains new rule */
1425 static bool rule_contains(struct ieee80211_reg_rule
*r1
,
1426 struct ieee80211_reg_rule
*r2
)
1428 /* for simplicity, currently consider only same flags */
1429 if (r1
->flags
!= r2
->flags
)
1432 /* verify r1 is more restrictive */
1433 if ((r1
->power_rule
.max_antenna_gain
>
1434 r2
->power_rule
.max_antenna_gain
) ||
1435 r1
->power_rule
.max_eirp
> r2
->power_rule
.max_eirp
)
1438 /* make sure r2's range is contained within r1 */
1439 if (r1
->freq_range
.start_freq_khz
> r2
->freq_range
.start_freq_khz
||
1440 r1
->freq_range
.end_freq_khz
< r2
->freq_range
.end_freq_khz
)
1443 /* and finally verify that r1.max_bw >= r2.max_bw */
1444 if (r1
->freq_range
.max_bandwidth_khz
<
1445 r2
->freq_range
.max_bandwidth_khz
)
1451 /* add or extend current rules. do nothing if rule is already contained */
1452 static void add_rule(struct ieee80211_reg_rule
*rule
,
1453 struct ieee80211_reg_rule
*reg_rules
, u32
*n_rules
)
1455 struct ieee80211_reg_rule
*tmp_rule
;
1458 for (i
= 0; i
< *n_rules
; i
++) {
1459 tmp_rule
= ®_rules
[i
];
1460 /* rule is already contained - do nothing */
1461 if (rule_contains(tmp_rule
, rule
))
1464 /* extend rule if possible */
1465 if (rule_contains(rule
, tmp_rule
)) {
1466 memcpy(tmp_rule
, rule
, sizeof(*rule
));
1471 memcpy(®_rules
[*n_rules
], rule
, sizeof(*rule
));
1476 * regdom_intersect - do the intersection between two regulatory domains
1477 * @rd1: first regulatory domain
1478 * @rd2: second regulatory domain
1480 * Use this function to get the intersection between two regulatory domains.
1481 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1482 * as no one single alpha2 can represent this regulatory domain.
1484 * Returns a pointer to the regulatory domain structure which will hold the
1485 * resulting intersection of rules between rd1 and rd2. We will
1486 * kzalloc() this structure for you.
1488 static struct ieee80211_regdomain
*
1489 regdom_intersect(const struct ieee80211_regdomain
*rd1
,
1490 const struct ieee80211_regdomain
*rd2
)
1492 int r
, size_of_regd
;
1494 unsigned int num_rules
= 0;
1495 const struct ieee80211_reg_rule
*rule1
, *rule2
;
1496 struct ieee80211_reg_rule intersected_rule
;
1497 struct ieee80211_regdomain
*rd
;
1503 * First we get a count of the rules we'll need, then we actually
1504 * build them. This is to so we can malloc() and free() a
1505 * regdomain once. The reason we use reg_rules_intersect() here
1506 * is it will return -EINVAL if the rule computed makes no sense.
1507 * All rules that do check out OK are valid.
1510 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
1511 rule1
= &rd1
->reg_rules
[x
];
1512 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
1513 rule2
= &rd2
->reg_rules
[y
];
1514 if (!reg_rules_intersect(rd1
, rd2
, rule1
, rule2
,
1523 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
1524 num_rules
* sizeof(struct ieee80211_reg_rule
);
1526 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
1530 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
1531 rule1
= &rd1
->reg_rules
[x
];
1532 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
1533 rule2
= &rd2
->reg_rules
[y
];
1534 r
= reg_rules_intersect(rd1
, rd2
, rule1
, rule2
,
1537 * No need to memset here the intersected rule here as
1538 * we're not using the stack anymore
1543 add_rule(&intersected_rule
, rd
->reg_rules
,
1548 rd
->alpha2
[0] = '9';
1549 rd
->alpha2
[1] = '8';
1550 rd
->dfs_region
= reg_intersect_dfs_region(rd1
->dfs_region
,
1557 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1558 * want to just have the channel structure use these
1560 static u32
map_regdom_flags(u32 rd_flags
)
1562 u32 channel_flags
= 0;
1563 if (rd_flags
& NL80211_RRF_NO_IR_ALL
)
1564 channel_flags
|= IEEE80211_CHAN_NO_IR
;
1565 if (rd_flags
& NL80211_RRF_DFS
)
1566 channel_flags
|= IEEE80211_CHAN_RADAR
;
1567 if (rd_flags
& NL80211_RRF_NO_OFDM
)
1568 channel_flags
|= IEEE80211_CHAN_NO_OFDM
;
1569 if (rd_flags
& NL80211_RRF_NO_OUTDOOR
)
1570 channel_flags
|= IEEE80211_CHAN_INDOOR_ONLY
;
1571 if (rd_flags
& NL80211_RRF_IR_CONCURRENT
)
1572 channel_flags
|= IEEE80211_CHAN_IR_CONCURRENT
;
1573 if (rd_flags
& NL80211_RRF_NO_HT40MINUS
)
1574 channel_flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
1575 if (rd_flags
& NL80211_RRF_NO_HT40PLUS
)
1576 channel_flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
1577 if (rd_flags
& NL80211_RRF_NO_80MHZ
)
1578 channel_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1579 if (rd_flags
& NL80211_RRF_NO_160MHZ
)
1580 channel_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1581 return channel_flags
;
1584 static const struct ieee80211_reg_rule
*
1585 freq_reg_info_regd(u32 center_freq
,
1586 const struct ieee80211_regdomain
*regd
, u32 bw
)
1589 bool band_rule_found
= false;
1590 bool bw_fits
= false;
1593 return ERR_PTR(-EINVAL
);
1595 for (i
= 0; i
< regd
->n_reg_rules
; i
++) {
1596 const struct ieee80211_reg_rule
*rr
;
1597 const struct ieee80211_freq_range
*fr
= NULL
;
1599 rr
= ®d
->reg_rules
[i
];
1600 fr
= &rr
->freq_range
;
1603 * We only need to know if one frequency rule was
1604 * was in center_freq's band, that's enough, so lets
1605 * not overwrite it once found
1607 if (!band_rule_found
)
1608 band_rule_found
= freq_in_rule_band(fr
, center_freq
);
1610 bw_fits
= cfg80211_does_bw_fit_range(fr
, center_freq
, bw
);
1612 if (band_rule_found
&& bw_fits
)
1616 if (!band_rule_found
)
1617 return ERR_PTR(-ERANGE
);
1619 return ERR_PTR(-EINVAL
);
1622 static const struct ieee80211_reg_rule
*
1623 __freq_reg_info(struct wiphy
*wiphy
, u32 center_freq
, u32 min_bw
)
1625 const struct ieee80211_regdomain
*regd
= reg_get_regdomain(wiphy
);
1626 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1629 for (bw
= MHZ_TO_KHZ(20); bw
>= min_bw
; bw
= bw
/ 2) {
1630 reg_rule
= freq_reg_info_regd(center_freq
, regd
, bw
);
1631 if (!IS_ERR(reg_rule
))
1638 const struct ieee80211_reg_rule
*freq_reg_info(struct wiphy
*wiphy
,
1641 return __freq_reg_info(wiphy
, center_freq
, MHZ_TO_KHZ(20));
1643 EXPORT_SYMBOL(freq_reg_info
);
1645 const char *reg_initiator_name(enum nl80211_reg_initiator initiator
)
1647 switch (initiator
) {
1648 case NL80211_REGDOM_SET_BY_CORE
:
1650 case NL80211_REGDOM_SET_BY_USER
:
1652 case NL80211_REGDOM_SET_BY_DRIVER
:
1654 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
1655 return "country IE";
1661 EXPORT_SYMBOL(reg_initiator_name
);
1663 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain
*regd
,
1664 const struct ieee80211_reg_rule
*reg_rule
,
1665 const struct ieee80211_channel
*chan
)
1667 const struct ieee80211_freq_range
*freq_range
= NULL
;
1668 u32 max_bandwidth_khz
, bw_flags
= 0;
1670 freq_range
= ®_rule
->freq_range
;
1672 max_bandwidth_khz
= freq_range
->max_bandwidth_khz
;
1673 /* Check if auto calculation requested */
1674 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
1675 max_bandwidth_khz
= reg_get_max_bandwidth(regd
, reg_rule
);
1677 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1678 if (!cfg80211_does_bw_fit_range(freq_range
,
1679 MHZ_TO_KHZ(chan
->center_freq
),
1681 bw_flags
|= IEEE80211_CHAN_NO_10MHZ
;
1682 if (!cfg80211_does_bw_fit_range(freq_range
,
1683 MHZ_TO_KHZ(chan
->center_freq
),
1685 bw_flags
|= IEEE80211_CHAN_NO_20MHZ
;
1687 if (max_bandwidth_khz
< MHZ_TO_KHZ(10))
1688 bw_flags
|= IEEE80211_CHAN_NO_10MHZ
;
1689 if (max_bandwidth_khz
< MHZ_TO_KHZ(20))
1690 bw_flags
|= IEEE80211_CHAN_NO_20MHZ
;
1691 if (max_bandwidth_khz
< MHZ_TO_KHZ(40))
1692 bw_flags
|= IEEE80211_CHAN_NO_HT40
;
1693 if (max_bandwidth_khz
< MHZ_TO_KHZ(80))
1694 bw_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1695 if (max_bandwidth_khz
< MHZ_TO_KHZ(160))
1696 bw_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1701 * Note that right now we assume the desired channel bandwidth
1702 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1703 * per channel, the primary and the extension channel).
1705 static void handle_channel(struct wiphy
*wiphy
,
1706 enum nl80211_reg_initiator initiator
,
1707 struct ieee80211_channel
*chan
)
1709 u32 flags
, bw_flags
= 0;
1710 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1711 const struct ieee80211_power_rule
*power_rule
= NULL
;
1712 struct wiphy
*request_wiphy
= NULL
;
1713 struct regulatory_request
*lr
= get_last_request();
1714 const struct ieee80211_regdomain
*regd
;
1716 request_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
1718 flags
= chan
->orig_flags
;
1720 reg_rule
= freq_reg_info(wiphy
, MHZ_TO_KHZ(chan
->center_freq
));
1721 if (IS_ERR(reg_rule
)) {
1723 * We will disable all channels that do not match our
1724 * received regulatory rule unless the hint is coming
1725 * from a Country IE and the Country IE had no information
1726 * about a band. The IEEE 802.11 spec allows for an AP
1727 * to send only a subset of the regulatory rules allowed,
1728 * so an AP in the US that only supports 2.4 GHz may only send
1729 * a country IE with information for the 2.4 GHz band
1730 * while 5 GHz is still supported.
1732 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1733 PTR_ERR(reg_rule
) == -ERANGE
)
1736 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1737 request_wiphy
&& request_wiphy
== wiphy
&&
1738 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1739 pr_debug("Disabling freq %d MHz for good\n",
1741 chan
->orig_flags
|= IEEE80211_CHAN_DISABLED
;
1742 chan
->flags
= chan
->orig_flags
;
1744 pr_debug("Disabling freq %d MHz\n",
1746 chan
->flags
|= IEEE80211_CHAN_DISABLED
;
1751 regd
= reg_get_regdomain(wiphy
);
1753 power_rule
= ®_rule
->power_rule
;
1754 bw_flags
= reg_rule_to_chan_bw_flags(regd
, reg_rule
, chan
);
1756 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1757 request_wiphy
&& request_wiphy
== wiphy
&&
1758 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1760 * This guarantees the driver's requested regulatory domain
1761 * will always be used as a base for further regulatory
1764 chan
->flags
= chan
->orig_flags
=
1765 map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1766 chan
->max_antenna_gain
= chan
->orig_mag
=
1767 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1768 chan
->max_reg_power
= chan
->max_power
= chan
->orig_mpwr
=
1769 (int) MBM_TO_DBM(power_rule
->max_eirp
);
1771 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1772 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1773 if (reg_rule
->dfs_cac_ms
)
1774 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1780 chan
->dfs_state
= NL80211_DFS_USABLE
;
1781 chan
->dfs_state_entered
= jiffies
;
1783 chan
->beacon_found
= false;
1784 chan
->flags
= flags
| bw_flags
| map_regdom_flags(reg_rule
->flags
);
1785 chan
->max_antenna_gain
=
1786 min_t(int, chan
->orig_mag
,
1787 MBI_TO_DBI(power_rule
->max_antenna_gain
));
1788 chan
->max_reg_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1790 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1791 if (reg_rule
->dfs_cac_ms
)
1792 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1794 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1797 if (chan
->orig_mpwr
) {
1799 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1800 * will always follow the passed country IE power settings.
1802 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1803 wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_FOLLOW_POWER
)
1804 chan
->max_power
= chan
->max_reg_power
;
1806 chan
->max_power
= min(chan
->orig_mpwr
,
1807 chan
->max_reg_power
);
1809 chan
->max_power
= chan
->max_reg_power
;
1812 static void handle_band(struct wiphy
*wiphy
,
1813 enum nl80211_reg_initiator initiator
,
1814 struct ieee80211_supported_band
*sband
)
1821 for (i
= 0; i
< sband
->n_channels
; i
++)
1822 handle_channel(wiphy
, initiator
, &sband
->channels
[i
]);
1825 static bool reg_request_cell_base(struct regulatory_request
*request
)
1827 if (request
->initiator
!= NL80211_REGDOM_SET_BY_USER
)
1829 return request
->user_reg_hint_type
== NL80211_USER_REG_HINT_CELL_BASE
;
1832 bool reg_last_request_cell_base(void)
1834 return reg_request_cell_base(get_last_request());
1837 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1838 /* Core specific check */
1839 static enum reg_request_treatment
1840 reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
1842 struct regulatory_request
*lr
= get_last_request();
1844 if (!reg_num_devs_support_basehint
)
1845 return REG_REQ_IGNORE
;
1847 if (reg_request_cell_base(lr
) &&
1848 !regdom_changes(pending_request
->alpha2
))
1849 return REG_REQ_ALREADY_SET
;
1854 /* Device specific check */
1855 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
1857 return !(wiphy
->features
& NL80211_FEATURE_CELL_BASE_REG_HINTS
);
1860 static enum reg_request_treatment
1861 reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
1863 return REG_REQ_IGNORE
;
1866 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
1872 static bool wiphy_strict_alpha2_regd(struct wiphy
*wiphy
)
1874 if (wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
&&
1875 !(wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
))
1880 static bool ignore_reg_update(struct wiphy
*wiphy
,
1881 enum nl80211_reg_initiator initiator
)
1883 struct regulatory_request
*lr
= get_last_request();
1885 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
1889 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1890 reg_initiator_name(initiator
));
1894 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
1895 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
) {
1896 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1897 reg_initiator_name(initiator
));
1902 * wiphy->regd will be set once the device has its own
1903 * desired regulatory domain set
1905 if (wiphy_strict_alpha2_regd(wiphy
) && !wiphy
->regd
&&
1906 initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1907 !is_world_regdom(lr
->alpha2
)) {
1908 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1909 reg_initiator_name(initiator
));
1913 if (reg_request_cell_base(lr
))
1914 return reg_dev_ignore_cell_hint(wiphy
);
1919 static bool reg_is_world_roaming(struct wiphy
*wiphy
)
1921 const struct ieee80211_regdomain
*cr
= get_cfg80211_regdom();
1922 const struct ieee80211_regdomain
*wr
= get_wiphy_regdom(wiphy
);
1923 struct regulatory_request
*lr
= get_last_request();
1925 if (is_world_regdom(cr
->alpha2
) || (wr
&& is_world_regdom(wr
->alpha2
)))
1928 if (lr
&& lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1929 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
)
1935 static void handle_reg_beacon(struct wiphy
*wiphy
, unsigned int chan_idx
,
1936 struct reg_beacon
*reg_beacon
)
1938 struct ieee80211_supported_band
*sband
;
1939 struct ieee80211_channel
*chan
;
1940 bool channel_changed
= false;
1941 struct ieee80211_channel chan_before
;
1943 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1944 chan
= &sband
->channels
[chan_idx
];
1946 if (likely(chan
->center_freq
!= reg_beacon
->chan
.center_freq
))
1949 if (chan
->beacon_found
)
1952 chan
->beacon_found
= true;
1954 if (!reg_is_world_roaming(wiphy
))
1957 if (wiphy
->regulatory_flags
& REGULATORY_DISABLE_BEACON_HINTS
)
1960 chan_before
= *chan
;
1962 if (chan
->flags
& IEEE80211_CHAN_NO_IR
) {
1963 chan
->flags
&= ~IEEE80211_CHAN_NO_IR
;
1964 channel_changed
= true;
1967 if (channel_changed
)
1968 nl80211_send_beacon_hint_event(wiphy
, &chan_before
, chan
);
1972 * Called when a scan on a wiphy finds a beacon on
1975 static void wiphy_update_new_beacon(struct wiphy
*wiphy
,
1976 struct reg_beacon
*reg_beacon
)
1979 struct ieee80211_supported_band
*sband
;
1981 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1984 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1986 for (i
= 0; i
< sband
->n_channels
; i
++)
1987 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1991 * Called upon reg changes or a new wiphy is added
1993 static void wiphy_update_beacon_reg(struct wiphy
*wiphy
)
1996 struct ieee80211_supported_band
*sband
;
1997 struct reg_beacon
*reg_beacon
;
1999 list_for_each_entry(reg_beacon
, ®_beacon_list
, list
) {
2000 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
2002 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
2003 for (i
= 0; i
< sband
->n_channels
; i
++)
2004 handle_reg_beacon(wiphy
, i
, reg_beacon
);
2008 /* Reap the advantages of previously found beacons */
2009 static void reg_process_beacons(struct wiphy
*wiphy
)
2012 * Means we are just firing up cfg80211, so no beacons would
2013 * have been processed yet.
2017 wiphy_update_beacon_reg(wiphy
);
2020 static bool is_ht40_allowed(struct ieee80211_channel
*chan
)
2024 if (chan
->flags
& IEEE80211_CHAN_DISABLED
)
2026 /* This would happen when regulatory rules disallow HT40 completely */
2027 if ((chan
->flags
& IEEE80211_CHAN_NO_HT40
) == IEEE80211_CHAN_NO_HT40
)
2032 static void reg_process_ht_flags_channel(struct wiphy
*wiphy
,
2033 struct ieee80211_channel
*channel
)
2035 struct ieee80211_supported_band
*sband
= wiphy
->bands
[channel
->band
];
2036 struct ieee80211_channel
*channel_before
= NULL
, *channel_after
= NULL
;
2037 const struct ieee80211_regdomain
*regd
;
2041 if (!is_ht40_allowed(channel
)) {
2042 channel
->flags
|= IEEE80211_CHAN_NO_HT40
;
2047 * We need to ensure the extension channels exist to
2048 * be able to use HT40- or HT40+, this finds them (or not)
2050 for (i
= 0; i
< sband
->n_channels
; i
++) {
2051 struct ieee80211_channel
*c
= &sband
->channels
[i
];
2053 if (c
->center_freq
== (channel
->center_freq
- 20))
2055 if (c
->center_freq
== (channel
->center_freq
+ 20))
2060 regd
= get_wiphy_regdom(wiphy
);
2062 const struct ieee80211_reg_rule
*reg_rule
=
2063 freq_reg_info_regd(MHZ_TO_KHZ(channel
->center_freq
),
2064 regd
, MHZ_TO_KHZ(20));
2066 if (!IS_ERR(reg_rule
))
2067 flags
= reg_rule
->flags
;
2071 * Please note that this assumes target bandwidth is 20 MHz,
2072 * if that ever changes we also need to change the below logic
2073 * to include that as well.
2075 if (!is_ht40_allowed(channel_before
) ||
2076 flags
& NL80211_RRF_NO_HT40MINUS
)
2077 channel
->flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
2079 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40MINUS
;
2081 if (!is_ht40_allowed(channel_after
) ||
2082 flags
& NL80211_RRF_NO_HT40PLUS
)
2083 channel
->flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
2085 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40PLUS
;
2088 static void reg_process_ht_flags_band(struct wiphy
*wiphy
,
2089 struct ieee80211_supported_band
*sband
)
2096 for (i
= 0; i
< sband
->n_channels
; i
++)
2097 reg_process_ht_flags_channel(wiphy
, &sband
->channels
[i
]);
2100 static void reg_process_ht_flags(struct wiphy
*wiphy
)
2102 enum nl80211_band band
;
2107 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
2108 reg_process_ht_flags_band(wiphy
, wiphy
->bands
[band
]);
2111 static void reg_call_notifier(struct wiphy
*wiphy
,
2112 struct regulatory_request
*request
)
2114 if (wiphy
->reg_notifier
)
2115 wiphy
->reg_notifier(wiphy
, request
);
2118 static bool reg_wdev_chan_valid(struct wiphy
*wiphy
, struct wireless_dev
*wdev
)
2120 struct cfg80211_chan_def chandef
;
2121 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wiphy
);
2122 enum nl80211_iftype iftype
;
2125 iftype
= wdev
->iftype
;
2127 /* make sure the interface is active */
2128 if (!wdev
->netdev
|| !netif_running(wdev
->netdev
))
2129 goto wdev_inactive_unlock
;
2132 case NL80211_IFTYPE_AP
:
2133 case NL80211_IFTYPE_P2P_GO
:
2134 if (!wdev
->beacon_interval
)
2135 goto wdev_inactive_unlock
;
2136 chandef
= wdev
->chandef
;
2138 case NL80211_IFTYPE_ADHOC
:
2139 if (!wdev
->ssid_len
)
2140 goto wdev_inactive_unlock
;
2141 chandef
= wdev
->chandef
;
2143 case NL80211_IFTYPE_STATION
:
2144 case NL80211_IFTYPE_P2P_CLIENT
:
2145 if (!wdev
->current_bss
||
2146 !wdev
->current_bss
->pub
.channel
)
2147 goto wdev_inactive_unlock
;
2149 if (!rdev
->ops
->get_channel
||
2150 rdev_get_channel(rdev
, wdev
, &chandef
))
2151 cfg80211_chandef_create(&chandef
,
2152 wdev
->current_bss
->pub
.channel
,
2153 NL80211_CHAN_NO_HT
);
2155 case NL80211_IFTYPE_MONITOR
:
2156 case NL80211_IFTYPE_AP_VLAN
:
2157 case NL80211_IFTYPE_P2P_DEVICE
:
2158 /* no enforcement required */
2161 /* others not implemented for now */
2169 case NL80211_IFTYPE_AP
:
2170 case NL80211_IFTYPE_P2P_GO
:
2171 case NL80211_IFTYPE_ADHOC
:
2172 return cfg80211_reg_can_beacon_relax(wiphy
, &chandef
, iftype
);
2173 case NL80211_IFTYPE_STATION
:
2174 case NL80211_IFTYPE_P2P_CLIENT
:
2175 return cfg80211_chandef_usable(wiphy
, &chandef
,
2176 IEEE80211_CHAN_DISABLED
);
2183 wdev_inactive_unlock
:
2188 static void reg_leave_invalid_chans(struct wiphy
*wiphy
)
2190 struct wireless_dev
*wdev
;
2191 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wiphy
);
2195 list_for_each_entry(wdev
, &rdev
->wiphy
.wdev_list
, list
)
2196 if (!reg_wdev_chan_valid(wiphy
, wdev
))
2197 cfg80211_leave(rdev
, wdev
);
2200 static void reg_check_chans_work(struct work_struct
*work
)
2202 struct cfg80211_registered_device
*rdev
;
2204 pr_debug("Verifying active interfaces after reg change\n");
2207 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
2208 if (!(rdev
->wiphy
.regulatory_flags
&
2209 REGULATORY_IGNORE_STALE_KICKOFF
))
2210 reg_leave_invalid_chans(&rdev
->wiphy
);
2215 static void reg_check_channels(void)
2218 * Give usermode a chance to do something nicer (move to another
2219 * channel, orderly disconnection), before forcing a disconnection.
2221 mod_delayed_work(system_power_efficient_wq
,
2223 msecs_to_jiffies(REG_ENFORCE_GRACE_MS
));
2226 static void wiphy_update_regulatory(struct wiphy
*wiphy
,
2227 enum nl80211_reg_initiator initiator
)
2229 enum nl80211_band band
;
2230 struct regulatory_request
*lr
= get_last_request();
2232 if (ignore_reg_update(wiphy
, initiator
)) {
2234 * Regulatory updates set by CORE are ignored for custom
2235 * regulatory cards. Let us notify the changes to the driver,
2236 * as some drivers used this to restore its orig_* reg domain.
2238 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
2239 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
)
2240 reg_call_notifier(wiphy
, lr
);
2244 lr
->dfs_region
= get_cfg80211_regdom()->dfs_region
;
2246 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
2247 handle_band(wiphy
, initiator
, wiphy
->bands
[band
]);
2249 reg_process_beacons(wiphy
);
2250 reg_process_ht_flags(wiphy
);
2251 reg_call_notifier(wiphy
, lr
);
2254 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator
)
2256 struct cfg80211_registered_device
*rdev
;
2257 struct wiphy
*wiphy
;
2261 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2262 wiphy
= &rdev
->wiphy
;
2263 wiphy_update_regulatory(wiphy
, initiator
);
2266 reg_check_channels();
2269 static void handle_channel_custom(struct wiphy
*wiphy
,
2270 struct ieee80211_channel
*chan
,
2271 const struct ieee80211_regdomain
*regd
)
2274 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
2275 const struct ieee80211_power_rule
*power_rule
= NULL
;
2278 for (bw
= MHZ_TO_KHZ(20); bw
>= MHZ_TO_KHZ(5); bw
= bw
/ 2) {
2279 reg_rule
= freq_reg_info_regd(MHZ_TO_KHZ(chan
->center_freq
),
2281 if (!IS_ERR(reg_rule
))
2285 if (IS_ERR(reg_rule
)) {
2286 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2288 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
) {
2289 chan
->flags
|= IEEE80211_CHAN_DISABLED
;
2291 chan
->orig_flags
|= IEEE80211_CHAN_DISABLED
;
2292 chan
->flags
= chan
->orig_flags
;
2297 power_rule
= ®_rule
->power_rule
;
2298 bw_flags
= reg_rule_to_chan_bw_flags(regd
, reg_rule
, chan
);
2300 chan
->dfs_state_entered
= jiffies
;
2301 chan
->dfs_state
= NL80211_DFS_USABLE
;
2303 chan
->beacon_found
= false;
2305 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
2306 chan
->flags
= chan
->orig_flags
| bw_flags
|
2307 map_regdom_flags(reg_rule
->flags
);
2309 chan
->flags
|= map_regdom_flags(reg_rule
->flags
) | bw_flags
;
2311 chan
->max_antenna_gain
= (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
2312 chan
->max_reg_power
= chan
->max_power
=
2313 (int) MBM_TO_DBM(power_rule
->max_eirp
);
2315 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
2316 if (reg_rule
->dfs_cac_ms
)
2317 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
2319 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
2322 chan
->max_power
= chan
->max_reg_power
;
2325 static void handle_band_custom(struct wiphy
*wiphy
,
2326 struct ieee80211_supported_band
*sband
,
2327 const struct ieee80211_regdomain
*regd
)
2334 for (i
= 0; i
< sband
->n_channels
; i
++)
2335 handle_channel_custom(wiphy
, &sband
->channels
[i
], regd
);
2338 /* Used by drivers prior to wiphy registration */
2339 void wiphy_apply_custom_regulatory(struct wiphy
*wiphy
,
2340 const struct ieee80211_regdomain
*regd
)
2342 enum nl80211_band band
;
2343 unsigned int bands_set
= 0;
2345 WARN(!(wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
),
2346 "wiphy should have REGULATORY_CUSTOM_REG\n");
2347 wiphy
->regulatory_flags
|= REGULATORY_CUSTOM_REG
;
2349 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
2350 if (!wiphy
->bands
[band
])
2352 handle_band_custom(wiphy
, wiphy
->bands
[band
], regd
);
2357 * no point in calling this if it won't have any effect
2358 * on your device's supported bands.
2360 WARN_ON(!bands_set
);
2362 EXPORT_SYMBOL(wiphy_apply_custom_regulatory
);
2364 static void reg_set_request_processed(void)
2366 bool need_more_processing
= false;
2367 struct regulatory_request
*lr
= get_last_request();
2369 lr
->processed
= true;
2371 spin_lock(®_requests_lock
);
2372 if (!list_empty(®_requests_list
))
2373 need_more_processing
= true;
2374 spin_unlock(®_requests_lock
);
2376 cancel_crda_timeout();
2378 if (need_more_processing
)
2379 schedule_work(®_work
);
2383 * reg_process_hint_core - process core regulatory requests
2384 * @pending_request: a pending core regulatory request
2386 * The wireless subsystem can use this function to process
2387 * a regulatory request issued by the regulatory core.
2389 static enum reg_request_treatment
2390 reg_process_hint_core(struct regulatory_request
*core_request
)
2392 if (reg_query_database(core_request
)) {
2393 core_request
->intersect
= false;
2394 core_request
->processed
= false;
2395 reg_update_last_request(core_request
);
2399 return REG_REQ_IGNORE
;
2402 static enum reg_request_treatment
2403 __reg_process_hint_user(struct regulatory_request
*user_request
)
2405 struct regulatory_request
*lr
= get_last_request();
2407 if (reg_request_cell_base(user_request
))
2408 return reg_ignore_cell_hint(user_request
);
2410 if (reg_request_cell_base(lr
))
2411 return REG_REQ_IGNORE
;
2413 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)
2414 return REG_REQ_INTERSECT
;
2416 * If the user knows better the user should set the regdom
2417 * to their country before the IE is picked up
2419 if (lr
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
2421 return REG_REQ_IGNORE
;
2423 * Process user requests only after previous user/driver/core
2424 * requests have been processed
2426 if ((lr
->initiator
== NL80211_REGDOM_SET_BY_CORE
||
2427 lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
2428 lr
->initiator
== NL80211_REGDOM_SET_BY_USER
) &&
2429 regdom_changes(lr
->alpha2
))
2430 return REG_REQ_IGNORE
;
2432 if (!regdom_changes(user_request
->alpha2
))
2433 return REG_REQ_ALREADY_SET
;
2439 * reg_process_hint_user - process user regulatory requests
2440 * @user_request: a pending user regulatory request
2442 * The wireless subsystem can use this function to process
2443 * a regulatory request initiated by userspace.
2445 static enum reg_request_treatment
2446 reg_process_hint_user(struct regulatory_request
*user_request
)
2448 enum reg_request_treatment treatment
;
2450 treatment
= __reg_process_hint_user(user_request
);
2451 if (treatment
== REG_REQ_IGNORE
||
2452 treatment
== REG_REQ_ALREADY_SET
)
2453 return REG_REQ_IGNORE
;
2455 user_request
->intersect
= treatment
== REG_REQ_INTERSECT
;
2456 user_request
->processed
= false;
2458 if (reg_query_database(user_request
)) {
2459 reg_update_last_request(user_request
);
2460 user_alpha2
[0] = user_request
->alpha2
[0];
2461 user_alpha2
[1] = user_request
->alpha2
[1];
2465 return REG_REQ_IGNORE
;
2468 static enum reg_request_treatment
2469 __reg_process_hint_driver(struct regulatory_request
*driver_request
)
2471 struct regulatory_request
*lr
= get_last_request();
2473 if (lr
->initiator
== NL80211_REGDOM_SET_BY_CORE
) {
2474 if (regdom_changes(driver_request
->alpha2
))
2476 return REG_REQ_ALREADY_SET
;
2480 * This would happen if you unplug and plug your card
2481 * back in or if you add a new device for which the previously
2482 * loaded card also agrees on the regulatory domain.
2484 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
2485 !regdom_changes(driver_request
->alpha2
))
2486 return REG_REQ_ALREADY_SET
;
2488 return REG_REQ_INTERSECT
;
2492 * reg_process_hint_driver - process driver regulatory requests
2493 * @driver_request: a pending driver regulatory request
2495 * The wireless subsystem can use this function to process
2496 * a regulatory request issued by an 802.11 driver.
2498 * Returns one of the different reg request treatment values.
2500 static enum reg_request_treatment
2501 reg_process_hint_driver(struct wiphy
*wiphy
,
2502 struct regulatory_request
*driver_request
)
2504 const struct ieee80211_regdomain
*regd
, *tmp
;
2505 enum reg_request_treatment treatment
;
2507 treatment
= __reg_process_hint_driver(driver_request
);
2509 switch (treatment
) {
2512 case REG_REQ_IGNORE
:
2513 return REG_REQ_IGNORE
;
2514 case REG_REQ_INTERSECT
:
2515 case REG_REQ_ALREADY_SET
:
2516 regd
= reg_copy_regd(get_cfg80211_regdom());
2518 return REG_REQ_IGNORE
;
2520 tmp
= get_wiphy_regdom(wiphy
);
2521 rcu_assign_pointer(wiphy
->regd
, regd
);
2522 rcu_free_regdom(tmp
);
2526 driver_request
->intersect
= treatment
== REG_REQ_INTERSECT
;
2527 driver_request
->processed
= false;
2530 * Since CRDA will not be called in this case as we already
2531 * have applied the requested regulatory domain before we just
2532 * inform userspace we have processed the request
2534 if (treatment
== REG_REQ_ALREADY_SET
) {
2535 nl80211_send_reg_change_event(driver_request
);
2536 reg_update_last_request(driver_request
);
2537 reg_set_request_processed();
2538 return REG_REQ_ALREADY_SET
;
2541 if (reg_query_database(driver_request
)) {
2542 reg_update_last_request(driver_request
);
2546 return REG_REQ_IGNORE
;
2549 static enum reg_request_treatment
2550 __reg_process_hint_country_ie(struct wiphy
*wiphy
,
2551 struct regulatory_request
*country_ie_request
)
2553 struct wiphy
*last_wiphy
= NULL
;
2554 struct regulatory_request
*lr
= get_last_request();
2556 if (reg_request_cell_base(lr
)) {
2557 /* Trust a Cell base station over the AP's country IE */
2558 if (regdom_changes(country_ie_request
->alpha2
))
2559 return REG_REQ_IGNORE
;
2560 return REG_REQ_ALREADY_SET
;
2562 if (wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_IGNORE
)
2563 return REG_REQ_IGNORE
;
2566 if (unlikely(!is_an_alpha2(country_ie_request
->alpha2
)))
2569 if (lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
)
2572 last_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
2574 if (last_wiphy
!= wiphy
) {
2576 * Two cards with two APs claiming different
2577 * Country IE alpha2s. We could
2578 * intersect them, but that seems unlikely
2579 * to be correct. Reject second one for now.
2581 if (regdom_changes(country_ie_request
->alpha2
))
2582 return REG_REQ_IGNORE
;
2583 return REG_REQ_ALREADY_SET
;
2586 if (regdom_changes(country_ie_request
->alpha2
))
2588 return REG_REQ_ALREADY_SET
;
2592 * reg_process_hint_country_ie - process regulatory requests from country IEs
2593 * @country_ie_request: a regulatory request from a country IE
2595 * The wireless subsystem can use this function to process
2596 * a regulatory request issued by a country Information Element.
2598 * Returns one of the different reg request treatment values.
2600 static enum reg_request_treatment
2601 reg_process_hint_country_ie(struct wiphy
*wiphy
,
2602 struct regulatory_request
*country_ie_request
)
2604 enum reg_request_treatment treatment
;
2606 treatment
= __reg_process_hint_country_ie(wiphy
, country_ie_request
);
2608 switch (treatment
) {
2611 case REG_REQ_IGNORE
:
2612 return REG_REQ_IGNORE
;
2613 case REG_REQ_ALREADY_SET
:
2614 reg_free_request(country_ie_request
);
2615 return REG_REQ_ALREADY_SET
;
2616 case REG_REQ_INTERSECT
:
2618 * This doesn't happen yet, not sure we
2619 * ever want to support it for this case.
2621 WARN_ONCE(1, "Unexpected intersection for country IEs");
2622 return REG_REQ_IGNORE
;
2625 country_ie_request
->intersect
= false;
2626 country_ie_request
->processed
= false;
2628 if (reg_query_database(country_ie_request
)) {
2629 reg_update_last_request(country_ie_request
);
2633 return REG_REQ_IGNORE
;
2636 bool reg_dfs_domain_same(struct wiphy
*wiphy1
, struct wiphy
*wiphy2
)
2638 const struct ieee80211_regdomain
*wiphy1_regd
= NULL
;
2639 const struct ieee80211_regdomain
*wiphy2_regd
= NULL
;
2640 const struct ieee80211_regdomain
*cfg80211_regd
= NULL
;
2641 bool dfs_domain_same
;
2645 cfg80211_regd
= rcu_dereference(cfg80211_regdomain
);
2646 wiphy1_regd
= rcu_dereference(wiphy1
->regd
);
2648 wiphy1_regd
= cfg80211_regd
;
2650 wiphy2_regd
= rcu_dereference(wiphy2
->regd
);
2652 wiphy2_regd
= cfg80211_regd
;
2654 dfs_domain_same
= wiphy1_regd
->dfs_region
== wiphy2_regd
->dfs_region
;
2658 return dfs_domain_same
;
2661 static void reg_copy_dfs_chan_state(struct ieee80211_channel
*dst_chan
,
2662 struct ieee80211_channel
*src_chan
)
2664 if (!(dst_chan
->flags
& IEEE80211_CHAN_RADAR
) ||
2665 !(src_chan
->flags
& IEEE80211_CHAN_RADAR
))
2668 if (dst_chan
->flags
& IEEE80211_CHAN_DISABLED
||
2669 src_chan
->flags
& IEEE80211_CHAN_DISABLED
)
2672 if (src_chan
->center_freq
== dst_chan
->center_freq
&&
2673 dst_chan
->dfs_state
== NL80211_DFS_USABLE
) {
2674 dst_chan
->dfs_state
= src_chan
->dfs_state
;
2675 dst_chan
->dfs_state_entered
= src_chan
->dfs_state_entered
;
2679 static void wiphy_share_dfs_chan_state(struct wiphy
*dst_wiphy
,
2680 struct wiphy
*src_wiphy
)
2682 struct ieee80211_supported_band
*src_sband
, *dst_sband
;
2683 struct ieee80211_channel
*src_chan
, *dst_chan
;
2686 if (!reg_dfs_domain_same(dst_wiphy
, src_wiphy
))
2689 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
2690 dst_sband
= dst_wiphy
->bands
[band
];
2691 src_sband
= src_wiphy
->bands
[band
];
2692 if (!dst_sband
|| !src_sband
)
2695 for (i
= 0; i
< dst_sband
->n_channels
; i
++) {
2696 dst_chan
= &dst_sband
->channels
[i
];
2697 for (j
= 0; j
< src_sband
->n_channels
; j
++) {
2698 src_chan
= &src_sband
->channels
[j
];
2699 reg_copy_dfs_chan_state(dst_chan
, src_chan
);
2705 static void wiphy_all_share_dfs_chan_state(struct wiphy
*wiphy
)
2707 struct cfg80211_registered_device
*rdev
;
2711 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2712 if (wiphy
== &rdev
->wiphy
)
2714 wiphy_share_dfs_chan_state(wiphy
, &rdev
->wiphy
);
2718 /* This processes *all* regulatory hints */
2719 static void reg_process_hint(struct regulatory_request
*reg_request
)
2721 struct wiphy
*wiphy
= NULL
;
2722 enum reg_request_treatment treatment
;
2724 if (reg_request
->wiphy_idx
!= WIPHY_IDX_INVALID
)
2725 wiphy
= wiphy_idx_to_wiphy(reg_request
->wiphy_idx
);
2727 switch (reg_request
->initiator
) {
2728 case NL80211_REGDOM_SET_BY_CORE
:
2729 treatment
= reg_process_hint_core(reg_request
);
2731 case NL80211_REGDOM_SET_BY_USER
:
2732 treatment
= reg_process_hint_user(reg_request
);
2734 case NL80211_REGDOM_SET_BY_DRIVER
:
2737 treatment
= reg_process_hint_driver(wiphy
, reg_request
);
2739 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
2742 treatment
= reg_process_hint_country_ie(wiphy
, reg_request
);
2745 WARN(1, "invalid initiator %d\n", reg_request
->initiator
);
2749 if (treatment
== REG_REQ_IGNORE
)
2752 WARN(treatment
!= REG_REQ_OK
&& treatment
!= REG_REQ_ALREADY_SET
,
2753 "unexpected treatment value %d\n", treatment
);
2755 /* This is required so that the orig_* parameters are saved.
2756 * NOTE: treatment must be set for any case that reaches here!
2758 if (treatment
== REG_REQ_ALREADY_SET
&& wiphy
&&
2759 wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
2760 wiphy_update_regulatory(wiphy
, reg_request
->initiator
);
2761 wiphy_all_share_dfs_chan_state(wiphy
);
2762 reg_check_channels();
2768 reg_free_request(reg_request
);
2771 static bool reg_only_self_managed_wiphys(void)
2773 struct cfg80211_registered_device
*rdev
;
2774 struct wiphy
*wiphy
;
2775 bool self_managed_found
= false;
2779 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2780 wiphy
= &rdev
->wiphy
;
2781 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
2782 self_managed_found
= true;
2787 /* make sure at least one self-managed wiphy exists */
2788 return self_managed_found
;
2792 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2793 * Regulatory hints come on a first come first serve basis and we
2794 * must process each one atomically.
2796 static void reg_process_pending_hints(void)
2798 struct regulatory_request
*reg_request
, *lr
;
2800 lr
= get_last_request();
2802 /* When last_request->processed becomes true this will be rescheduled */
2803 if (lr
&& !lr
->processed
) {
2804 reg_process_hint(lr
);
2808 spin_lock(®_requests_lock
);
2810 if (list_empty(®_requests_list
)) {
2811 spin_unlock(®_requests_lock
);
2815 reg_request
= list_first_entry(®_requests_list
,
2816 struct regulatory_request
,
2818 list_del_init(®_request
->list
);
2820 spin_unlock(®_requests_lock
);
2822 if (reg_only_self_managed_wiphys()) {
2823 reg_free_request(reg_request
);
2827 reg_process_hint(reg_request
);
2829 lr
= get_last_request();
2831 spin_lock(®_requests_lock
);
2832 if (!list_empty(®_requests_list
) && lr
&& lr
->processed
)
2833 schedule_work(®_work
);
2834 spin_unlock(®_requests_lock
);
2837 /* Processes beacon hints -- this has nothing to do with country IEs */
2838 static void reg_process_pending_beacon_hints(void)
2840 struct cfg80211_registered_device
*rdev
;
2841 struct reg_beacon
*pending_beacon
, *tmp
;
2843 /* This goes through the _pending_ beacon list */
2844 spin_lock_bh(®_pending_beacons_lock
);
2846 list_for_each_entry_safe(pending_beacon
, tmp
,
2847 ®_pending_beacons
, list
) {
2848 list_del_init(&pending_beacon
->list
);
2850 /* Applies the beacon hint to current wiphys */
2851 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
2852 wiphy_update_new_beacon(&rdev
->wiphy
, pending_beacon
);
2854 /* Remembers the beacon hint for new wiphys or reg changes */
2855 list_add_tail(&pending_beacon
->list
, ®_beacon_list
);
2858 spin_unlock_bh(®_pending_beacons_lock
);
2861 static void reg_process_self_managed_hints(void)
2863 struct cfg80211_registered_device
*rdev
;
2864 struct wiphy
*wiphy
;
2865 const struct ieee80211_regdomain
*tmp
;
2866 const struct ieee80211_regdomain
*regd
;
2867 enum nl80211_band band
;
2868 struct regulatory_request request
= {};
2870 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2871 wiphy
= &rdev
->wiphy
;
2873 spin_lock(®_requests_lock
);
2874 regd
= rdev
->requested_regd
;
2875 rdev
->requested_regd
= NULL
;
2876 spin_unlock(®_requests_lock
);
2881 tmp
= get_wiphy_regdom(wiphy
);
2882 rcu_assign_pointer(wiphy
->regd
, regd
);
2883 rcu_free_regdom(tmp
);
2885 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
2886 handle_band_custom(wiphy
, wiphy
->bands
[band
], regd
);
2888 reg_process_ht_flags(wiphy
);
2890 request
.wiphy_idx
= get_wiphy_idx(wiphy
);
2891 request
.alpha2
[0] = regd
->alpha2
[0];
2892 request
.alpha2
[1] = regd
->alpha2
[1];
2893 request
.initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
2895 nl80211_send_wiphy_reg_change_event(&request
);
2898 reg_check_channels();
2901 static void reg_todo(struct work_struct
*work
)
2904 reg_process_pending_hints();
2905 reg_process_pending_beacon_hints();
2906 reg_process_self_managed_hints();
2910 static void queue_regulatory_request(struct regulatory_request
*request
)
2912 request
->alpha2
[0] = toupper(request
->alpha2
[0]);
2913 request
->alpha2
[1] = toupper(request
->alpha2
[1]);
2915 spin_lock(®_requests_lock
);
2916 list_add_tail(&request
->list
, ®_requests_list
);
2917 spin_unlock(®_requests_lock
);
2919 schedule_work(®_work
);
2923 * Core regulatory hint -- happens during cfg80211_init()
2924 * and when we restore regulatory settings.
2926 static int regulatory_hint_core(const char *alpha2
)
2928 struct regulatory_request
*request
;
2930 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2934 request
->alpha2
[0] = alpha2
[0];
2935 request
->alpha2
[1] = alpha2
[1];
2936 request
->initiator
= NL80211_REGDOM_SET_BY_CORE
;
2938 queue_regulatory_request(request
);
2944 int regulatory_hint_user(const char *alpha2
,
2945 enum nl80211_user_reg_hint_type user_reg_hint_type
)
2947 struct regulatory_request
*request
;
2949 if (WARN_ON(!alpha2
))
2952 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2956 request
->wiphy_idx
= WIPHY_IDX_INVALID
;
2957 request
->alpha2
[0] = alpha2
[0];
2958 request
->alpha2
[1] = alpha2
[1];
2959 request
->initiator
= NL80211_REGDOM_SET_BY_USER
;
2960 request
->user_reg_hint_type
= user_reg_hint_type
;
2962 /* Allow calling CRDA again */
2963 reset_crda_timeouts();
2965 queue_regulatory_request(request
);
2970 int regulatory_hint_indoor(bool is_indoor
, u32 portid
)
2972 spin_lock(®_indoor_lock
);
2974 /* It is possible that more than one user space process is trying to
2975 * configure the indoor setting. To handle such cases, clear the indoor
2976 * setting in case that some process does not think that the device
2977 * is operating in an indoor environment. In addition, if a user space
2978 * process indicates that it is controlling the indoor setting, save its
2979 * portid, i.e., make it the owner.
2981 reg_is_indoor
= is_indoor
;
2982 if (reg_is_indoor
) {
2983 if (!reg_is_indoor_portid
)
2984 reg_is_indoor_portid
= portid
;
2986 reg_is_indoor_portid
= 0;
2989 spin_unlock(®_indoor_lock
);
2992 reg_check_channels();
2997 void regulatory_netlink_notify(u32 portid
)
2999 spin_lock(®_indoor_lock
);
3001 if (reg_is_indoor_portid
!= portid
) {
3002 spin_unlock(®_indoor_lock
);
3006 reg_is_indoor
= false;
3007 reg_is_indoor_portid
= 0;
3009 spin_unlock(®_indoor_lock
);
3011 reg_check_channels();
3015 int regulatory_hint(struct wiphy
*wiphy
, const char *alpha2
)
3017 struct regulatory_request
*request
;
3019 if (WARN_ON(!alpha2
|| !wiphy
))
3022 wiphy
->regulatory_flags
&= ~REGULATORY_CUSTOM_REG
;
3024 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
3028 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
3030 request
->alpha2
[0] = alpha2
[0];
3031 request
->alpha2
[1] = alpha2
[1];
3032 request
->initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
3034 /* Allow calling CRDA again */
3035 reset_crda_timeouts();
3037 queue_regulatory_request(request
);
3041 EXPORT_SYMBOL(regulatory_hint
);
3043 void regulatory_hint_country_ie(struct wiphy
*wiphy
, enum nl80211_band band
,
3044 const u8
*country_ie
, u8 country_ie_len
)
3047 enum environment_cap env
= ENVIRON_ANY
;
3048 struct regulatory_request
*request
= NULL
, *lr
;
3050 /* IE len must be evenly divisible by 2 */
3051 if (country_ie_len
& 0x01)
3054 if (country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
)
3057 request
= kzalloc(sizeof(*request
), GFP_KERNEL
);
3061 alpha2
[0] = country_ie
[0];
3062 alpha2
[1] = country_ie
[1];
3064 if (country_ie
[2] == 'I')
3065 env
= ENVIRON_INDOOR
;
3066 else if (country_ie
[2] == 'O')
3067 env
= ENVIRON_OUTDOOR
;
3070 lr
= get_last_request();
3076 * We will run this only upon a successful connection on cfg80211.
3077 * We leave conflict resolution to the workqueue, where can hold
3080 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
3081 lr
->wiphy_idx
!= WIPHY_IDX_INVALID
)
3084 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
3085 request
->alpha2
[0] = alpha2
[0];
3086 request
->alpha2
[1] = alpha2
[1];
3087 request
->initiator
= NL80211_REGDOM_SET_BY_COUNTRY_IE
;
3088 request
->country_ie_env
= env
;
3090 /* Allow calling CRDA again */
3091 reset_crda_timeouts();
3093 queue_regulatory_request(request
);
3100 static void restore_alpha2(char *alpha2
, bool reset_user
)
3102 /* indicates there is no alpha2 to consider for restoration */
3106 /* The user setting has precedence over the module parameter */
3107 if (is_user_regdom_saved()) {
3108 /* Unless we're asked to ignore it and reset it */
3110 pr_debug("Restoring regulatory settings including user preference\n");
3111 user_alpha2
[0] = '9';
3112 user_alpha2
[1] = '7';
3115 * If we're ignoring user settings, we still need to
3116 * check the module parameter to ensure we put things
3117 * back as they were for a full restore.
3119 if (!is_world_regdom(ieee80211_regdom
)) {
3120 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3121 ieee80211_regdom
[0], ieee80211_regdom
[1]);
3122 alpha2
[0] = ieee80211_regdom
[0];
3123 alpha2
[1] = ieee80211_regdom
[1];
3126 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3127 user_alpha2
[0], user_alpha2
[1]);
3128 alpha2
[0] = user_alpha2
[0];
3129 alpha2
[1] = user_alpha2
[1];
3131 } else if (!is_world_regdom(ieee80211_regdom
)) {
3132 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3133 ieee80211_regdom
[0], ieee80211_regdom
[1]);
3134 alpha2
[0] = ieee80211_regdom
[0];
3135 alpha2
[1] = ieee80211_regdom
[1];
3137 pr_debug("Restoring regulatory settings\n");
3140 static void restore_custom_reg_settings(struct wiphy
*wiphy
)
3142 struct ieee80211_supported_band
*sband
;
3143 enum nl80211_band band
;
3144 struct ieee80211_channel
*chan
;
3147 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
3148 sband
= wiphy
->bands
[band
];
3151 for (i
= 0; i
< sband
->n_channels
; i
++) {
3152 chan
= &sband
->channels
[i
];
3153 chan
->flags
= chan
->orig_flags
;
3154 chan
->max_antenna_gain
= chan
->orig_mag
;
3155 chan
->max_power
= chan
->orig_mpwr
;
3156 chan
->beacon_found
= false;
3162 * Restoring regulatory settings involves ingoring any
3163 * possibly stale country IE information and user regulatory
3164 * settings if so desired, this includes any beacon hints
3165 * learned as we could have traveled outside to another country
3166 * after disconnection. To restore regulatory settings we do
3167 * exactly what we did at bootup:
3169 * - send a core regulatory hint
3170 * - send a user regulatory hint if applicable
3172 * Device drivers that send a regulatory hint for a specific country
3173 * keep their own regulatory domain on wiphy->regd so that does does
3174 * not need to be remembered.
3176 static void restore_regulatory_settings(bool reset_user
)
3179 char world_alpha2
[2];
3180 struct reg_beacon
*reg_beacon
, *btmp
;
3181 LIST_HEAD(tmp_reg_req_list
);
3182 struct cfg80211_registered_device
*rdev
;
3187 * Clear the indoor setting in case that it is not controlled by user
3188 * space, as otherwise there is no guarantee that the device is still
3189 * operating in an indoor environment.
3191 spin_lock(®_indoor_lock
);
3192 if (reg_is_indoor
&& !reg_is_indoor_portid
) {
3193 reg_is_indoor
= false;
3194 reg_check_channels();
3196 spin_unlock(®_indoor_lock
);
3198 reset_regdomains(true, &world_regdom
);
3199 restore_alpha2(alpha2
, reset_user
);
3202 * If there's any pending requests we simply
3203 * stash them to a temporary pending queue and
3204 * add then after we've restored regulatory
3207 spin_lock(®_requests_lock
);
3208 list_splice_tail_init(®_requests_list
, &tmp_reg_req_list
);
3209 spin_unlock(®_requests_lock
);
3211 /* Clear beacon hints */
3212 spin_lock_bh(®_pending_beacons_lock
);
3213 list_for_each_entry_safe(reg_beacon
, btmp
, ®_pending_beacons
, list
) {
3214 list_del(®_beacon
->list
);
3217 spin_unlock_bh(®_pending_beacons_lock
);
3219 list_for_each_entry_safe(reg_beacon
, btmp
, ®_beacon_list
, list
) {
3220 list_del(®_beacon
->list
);
3224 /* First restore to the basic regulatory settings */
3225 world_alpha2
[0] = cfg80211_world_regdom
->alpha2
[0];
3226 world_alpha2
[1] = cfg80211_world_regdom
->alpha2
[1];
3228 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
3229 if (rdev
->wiphy
.regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
3231 if (rdev
->wiphy
.regulatory_flags
& REGULATORY_CUSTOM_REG
)
3232 restore_custom_reg_settings(&rdev
->wiphy
);
3235 regulatory_hint_core(world_alpha2
);
3238 * This restores the ieee80211_regdom module parameter
3239 * preference or the last user requested regulatory
3240 * settings, user regulatory settings takes precedence.
3242 if (is_an_alpha2(alpha2
))
3243 regulatory_hint_user(alpha2
, NL80211_USER_REG_HINT_USER
);
3245 spin_lock(®_requests_lock
);
3246 list_splice_tail_init(&tmp_reg_req_list
, ®_requests_list
);
3247 spin_unlock(®_requests_lock
);
3249 pr_debug("Kicking the queue\n");
3251 schedule_work(®_work
);
3254 void regulatory_hint_disconnect(void)
3256 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3257 restore_regulatory_settings(false);
3260 static bool freq_is_chan_12_13_14(u16 freq
)
3262 if (freq
== ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ
) ||
3263 freq
== ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ
) ||
3264 freq
== ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ
))
3269 static bool pending_reg_beacon(struct ieee80211_channel
*beacon_chan
)
3271 struct reg_beacon
*pending_beacon
;
3273 list_for_each_entry(pending_beacon
, ®_pending_beacons
, list
)
3274 if (beacon_chan
->center_freq
==
3275 pending_beacon
->chan
.center_freq
)
3280 int regulatory_hint_found_beacon(struct wiphy
*wiphy
,
3281 struct ieee80211_channel
*beacon_chan
,
3284 struct reg_beacon
*reg_beacon
;
3287 if (beacon_chan
->beacon_found
||
3288 beacon_chan
->flags
& IEEE80211_CHAN_RADAR
||
3289 (beacon_chan
->band
== NL80211_BAND_2GHZ
&&
3290 !freq_is_chan_12_13_14(beacon_chan
->center_freq
)))
3293 spin_lock_bh(®_pending_beacons_lock
);
3294 processing
= pending_reg_beacon(beacon_chan
);
3295 spin_unlock_bh(®_pending_beacons_lock
);
3300 reg_beacon
= kzalloc(sizeof(struct reg_beacon
), gfp
);
3304 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3305 beacon_chan
->center_freq
,
3306 ieee80211_frequency_to_channel(beacon_chan
->center_freq
),
3309 memcpy(®_beacon
->chan
, beacon_chan
,
3310 sizeof(struct ieee80211_channel
));
3313 * Since we can be called from BH or and non-BH context
3314 * we must use spin_lock_bh()
3316 spin_lock_bh(®_pending_beacons_lock
);
3317 list_add_tail(®_beacon
->list
, ®_pending_beacons
);
3318 spin_unlock_bh(®_pending_beacons_lock
);
3320 schedule_work(®_work
);
3325 static void print_rd_rules(const struct ieee80211_regdomain
*rd
)
3328 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
3329 const struct ieee80211_freq_range
*freq_range
= NULL
;
3330 const struct ieee80211_power_rule
*power_rule
= NULL
;
3331 char bw
[32], cac_time
[32];
3333 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3335 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
3336 reg_rule
= &rd
->reg_rules
[i
];
3337 freq_range
= ®_rule
->freq_range
;
3338 power_rule
= ®_rule
->power_rule
;
3340 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
3341 snprintf(bw
, sizeof(bw
), "%d KHz, %d KHz AUTO",
3342 freq_range
->max_bandwidth_khz
,
3343 reg_get_max_bandwidth(rd
, reg_rule
));
3345 snprintf(bw
, sizeof(bw
), "%d KHz",
3346 freq_range
->max_bandwidth_khz
);
3348 if (reg_rule
->flags
& NL80211_RRF_DFS
)
3349 scnprintf(cac_time
, sizeof(cac_time
), "%u s",
3350 reg_rule
->dfs_cac_ms
/1000);
3352 scnprintf(cac_time
, sizeof(cac_time
), "N/A");
3356 * There may not be documentation for max antenna gain
3357 * in certain regions
3359 if (power_rule
->max_antenna_gain
)
3360 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3361 freq_range
->start_freq_khz
,
3362 freq_range
->end_freq_khz
,
3364 power_rule
->max_antenna_gain
,
3365 power_rule
->max_eirp
,
3368 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3369 freq_range
->start_freq_khz
,
3370 freq_range
->end_freq_khz
,
3372 power_rule
->max_eirp
,
3377 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region
)
3379 switch (dfs_region
) {
3380 case NL80211_DFS_UNSET
:
3381 case NL80211_DFS_FCC
:
3382 case NL80211_DFS_ETSI
:
3383 case NL80211_DFS_JP
:
3386 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region
);
3391 static void print_regdomain(const struct ieee80211_regdomain
*rd
)
3393 struct regulatory_request
*lr
= get_last_request();
3395 if (is_intersected_alpha2(rd
->alpha2
)) {
3396 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
3397 struct cfg80211_registered_device
*rdev
;
3398 rdev
= cfg80211_rdev_by_wiphy_idx(lr
->wiphy_idx
);
3400 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3401 rdev
->country_ie_alpha2
[0],
3402 rdev
->country_ie_alpha2
[1]);
3404 pr_debug("Current regulatory domain intersected:\n");
3406 pr_debug("Current regulatory domain intersected:\n");
3407 } else if (is_world_regdom(rd
->alpha2
)) {
3408 pr_debug("World regulatory domain updated:\n");
3410 if (is_unknown_alpha2(rd
->alpha2
))
3411 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3413 if (reg_request_cell_base(lr
))
3414 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3415 rd
->alpha2
[0], rd
->alpha2
[1]);
3417 pr_debug("Regulatory domain changed to country: %c%c\n",
3418 rd
->alpha2
[0], rd
->alpha2
[1]);
3422 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd
->dfs_region
));
3426 static void print_regdomain_info(const struct ieee80211_regdomain
*rd
)
3428 pr_debug("Regulatory domain: %c%c\n", rd
->alpha2
[0], rd
->alpha2
[1]);
3432 static int reg_set_rd_core(const struct ieee80211_regdomain
*rd
)
3434 if (!is_world_regdom(rd
->alpha2
))
3436 update_world_regdomain(rd
);
3440 static int reg_set_rd_user(const struct ieee80211_regdomain
*rd
,
3441 struct regulatory_request
*user_request
)
3443 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
3445 if (!regdom_changes(rd
->alpha2
))
3448 if (!is_valid_rd(rd
)) {
3449 pr_err("Invalid regulatory domain detected: %c%c\n",
3450 rd
->alpha2
[0], rd
->alpha2
[1]);
3451 print_regdomain_info(rd
);
3455 if (!user_request
->intersect
) {
3456 reset_regdomains(false, rd
);
3460 intersected_rd
= regdom_intersect(rd
, get_cfg80211_regdom());
3461 if (!intersected_rd
)
3466 reset_regdomains(false, intersected_rd
);
3471 static int reg_set_rd_driver(const struct ieee80211_regdomain
*rd
,
3472 struct regulatory_request
*driver_request
)
3474 const struct ieee80211_regdomain
*regd
;
3475 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
3476 const struct ieee80211_regdomain
*tmp
;
3477 struct wiphy
*request_wiphy
;
3479 if (is_world_regdom(rd
->alpha2
))
3482 if (!regdom_changes(rd
->alpha2
))
3485 if (!is_valid_rd(rd
)) {
3486 pr_err("Invalid regulatory domain detected: %c%c\n",
3487 rd
->alpha2
[0], rd
->alpha2
[1]);
3488 print_regdomain_info(rd
);
3492 request_wiphy
= wiphy_idx_to_wiphy(driver_request
->wiphy_idx
);
3496 if (!driver_request
->intersect
) {
3497 if (request_wiphy
->regd
)
3500 regd
= reg_copy_regd(rd
);
3502 return PTR_ERR(regd
);
3504 rcu_assign_pointer(request_wiphy
->regd
, regd
);
3505 reset_regdomains(false, rd
);
3509 intersected_rd
= regdom_intersect(rd
, get_cfg80211_regdom());
3510 if (!intersected_rd
)
3514 * We can trash what CRDA provided now.
3515 * However if a driver requested this specific regulatory
3516 * domain we keep it for its private use
3518 tmp
= get_wiphy_regdom(request_wiphy
);
3519 rcu_assign_pointer(request_wiphy
->regd
, rd
);
3520 rcu_free_regdom(tmp
);
3524 reset_regdomains(false, intersected_rd
);
3529 static int reg_set_rd_country_ie(const struct ieee80211_regdomain
*rd
,
3530 struct regulatory_request
*country_ie_request
)
3532 struct wiphy
*request_wiphy
;
3534 if (!is_alpha2_set(rd
->alpha2
) && !is_an_alpha2(rd
->alpha2
) &&
3535 !is_unknown_alpha2(rd
->alpha2
))
3539 * Lets only bother proceeding on the same alpha2 if the current
3540 * rd is non static (it means CRDA was present and was used last)
3541 * and the pending request came in from a country IE
3544 if (!is_valid_rd(rd
)) {
3545 pr_err("Invalid regulatory domain detected: %c%c\n",
3546 rd
->alpha2
[0], rd
->alpha2
[1]);
3547 print_regdomain_info(rd
);
3551 request_wiphy
= wiphy_idx_to_wiphy(country_ie_request
->wiphy_idx
);
3555 if (country_ie_request
->intersect
)
3558 reset_regdomains(false, rd
);
3563 * Use this call to set the current regulatory domain. Conflicts with
3564 * multiple drivers can be ironed out later. Caller must've already
3565 * kmalloc'd the rd structure.
3567 int set_regdom(const struct ieee80211_regdomain
*rd
,
3568 enum ieee80211_regd_source regd_src
)
3570 struct regulatory_request
*lr
;
3571 bool user_reset
= false;
3574 if (!reg_is_valid_request(rd
->alpha2
)) {
3579 if (regd_src
== REGD_SOURCE_CRDA
)
3580 reset_crda_timeouts();
3582 lr
= get_last_request();
3584 /* Note that this doesn't update the wiphys, this is done below */
3585 switch (lr
->initiator
) {
3586 case NL80211_REGDOM_SET_BY_CORE
:
3587 r
= reg_set_rd_core(rd
);
3589 case NL80211_REGDOM_SET_BY_USER
:
3590 r
= reg_set_rd_user(rd
, lr
);
3593 case NL80211_REGDOM_SET_BY_DRIVER
:
3594 r
= reg_set_rd_driver(rd
, lr
);
3596 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
3597 r
= reg_set_rd_country_ie(rd
, lr
);
3600 WARN(1, "invalid initiator %d\n", lr
->initiator
);
3608 reg_set_request_processed();
3611 /* Back to world regulatory in case of errors */
3612 restore_regulatory_settings(user_reset
);
3619 /* This would make this whole thing pointless */
3620 if (WARN_ON(!lr
->intersect
&& rd
!= get_cfg80211_regdom()))
3623 /* update all wiphys now with the new established regulatory domain */
3624 update_all_wiphy_regulatory(lr
->initiator
);
3626 print_regdomain(get_cfg80211_regdom());
3628 nl80211_send_reg_change_event(lr
);
3630 reg_set_request_processed();
3635 static int __regulatory_set_wiphy_regd(struct wiphy
*wiphy
,
3636 struct ieee80211_regdomain
*rd
)
3638 const struct ieee80211_regdomain
*regd
;
3639 const struct ieee80211_regdomain
*prev_regd
;
3640 struct cfg80211_registered_device
*rdev
;
3642 if (WARN_ON(!wiphy
|| !rd
))
3645 if (WARN(!(wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
),
3646 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3649 if (WARN(!is_valid_rd(rd
), "Invalid regulatory domain detected\n")) {
3650 print_regdomain_info(rd
);
3654 regd
= reg_copy_regd(rd
);
3656 return PTR_ERR(regd
);
3658 rdev
= wiphy_to_rdev(wiphy
);
3660 spin_lock(®_requests_lock
);
3661 prev_regd
= rdev
->requested_regd
;
3662 rdev
->requested_regd
= regd
;
3663 spin_unlock(®_requests_lock
);
3669 int regulatory_set_wiphy_regd(struct wiphy
*wiphy
,
3670 struct ieee80211_regdomain
*rd
)
3672 int ret
= __regulatory_set_wiphy_regd(wiphy
, rd
);
3677 schedule_work(®_work
);
3680 EXPORT_SYMBOL(regulatory_set_wiphy_regd
);
3682 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy
*wiphy
,
3683 struct ieee80211_regdomain
*rd
)
3689 ret
= __regulatory_set_wiphy_regd(wiphy
, rd
);
3693 /* process the request immediately */
3694 reg_process_self_managed_hints();
3697 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl
);
3699 void wiphy_regulatory_register(struct wiphy
*wiphy
)
3701 struct regulatory_request
*lr
;
3703 /* self-managed devices ignore external hints */
3704 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
3705 wiphy
->regulatory_flags
|= REGULATORY_DISABLE_BEACON_HINTS
|
3706 REGULATORY_COUNTRY_IE_IGNORE
;
3708 if (!reg_dev_ignore_cell_hint(wiphy
))
3709 reg_num_devs_support_basehint
++;
3711 lr
= get_last_request();
3712 wiphy_update_regulatory(wiphy
, lr
->initiator
);
3713 wiphy_all_share_dfs_chan_state(wiphy
);
3716 void wiphy_regulatory_deregister(struct wiphy
*wiphy
)
3718 struct wiphy
*request_wiphy
= NULL
;
3719 struct regulatory_request
*lr
;
3721 lr
= get_last_request();
3723 if (!reg_dev_ignore_cell_hint(wiphy
))
3724 reg_num_devs_support_basehint
--;
3726 rcu_free_regdom(get_wiphy_regdom(wiphy
));
3727 RCU_INIT_POINTER(wiphy
->regd
, NULL
);
3730 request_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
3732 if (!request_wiphy
|| request_wiphy
!= wiphy
)
3735 lr
->wiphy_idx
= WIPHY_IDX_INVALID
;
3736 lr
->country_ie_env
= ENVIRON_ANY
;
3740 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3741 * UNII band definitions
3743 int cfg80211_get_unii(int freq
)
3746 if (freq
>= 5150 && freq
<= 5250)
3750 if (freq
> 5250 && freq
<= 5350)
3754 if (freq
> 5350 && freq
<= 5470)
3758 if (freq
> 5470 && freq
<= 5725)
3762 if (freq
> 5725 && freq
<= 5825)
3768 bool regulatory_indoor_allowed(void)
3770 return reg_is_indoor
;
3773 bool regulatory_pre_cac_allowed(struct wiphy
*wiphy
)
3775 const struct ieee80211_regdomain
*regd
= NULL
;
3776 const struct ieee80211_regdomain
*wiphy_regd
= NULL
;
3777 bool pre_cac_allowed
= false;
3781 regd
= rcu_dereference(cfg80211_regdomain
);
3782 wiphy_regd
= rcu_dereference(wiphy
->regd
);
3784 if (regd
->dfs_region
== NL80211_DFS_ETSI
)
3785 pre_cac_allowed
= true;
3789 return pre_cac_allowed
;
3792 if (regd
->dfs_region
== wiphy_regd
->dfs_region
&&
3793 wiphy_regd
->dfs_region
== NL80211_DFS_ETSI
)
3794 pre_cac_allowed
= true;
3798 return pre_cac_allowed
;
3801 void regulatory_propagate_dfs_state(struct wiphy
*wiphy
,
3802 struct cfg80211_chan_def
*chandef
,
3803 enum nl80211_dfs_state dfs_state
,
3804 enum nl80211_radar_event event
)
3806 struct cfg80211_registered_device
*rdev
;
3810 if (WARN_ON(!cfg80211_chandef_valid(chandef
)))
3813 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
3814 if (wiphy
== &rdev
->wiphy
)
3817 if (!reg_dfs_domain_same(wiphy
, &rdev
->wiphy
))
3820 if (!ieee80211_get_channel(&rdev
->wiphy
,
3821 chandef
->chan
->center_freq
))
3824 cfg80211_set_dfs_state(&rdev
->wiphy
, chandef
, dfs_state
);
3826 if (event
== NL80211_RADAR_DETECTED
||
3827 event
== NL80211_RADAR_CAC_FINISHED
)
3828 cfg80211_sched_dfs_chan_update(rdev
);
3830 nl80211_radar_notify(rdev
, chandef
, event
, NULL
, GFP_KERNEL
);
3834 static int __init
regulatory_init_db(void)
3838 err
= load_builtin_regdb_keys();
3842 /* We always try to get an update for the static regdomain */
3843 err
= regulatory_hint_core(cfg80211_world_regdom
->alpha2
);
3845 if (err
== -ENOMEM
) {
3846 platform_device_unregister(reg_pdev
);
3850 * N.B. kobject_uevent_env() can fail mainly for when we're out
3851 * memory which is handled and propagated appropriately above
3852 * but it can also fail during a netlink_broadcast() or during
3853 * early boot for call_usermodehelper(). For now treat these
3854 * errors as non-fatal.
3856 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3860 * Finally, if the user set the module parameter treat it
3863 if (!is_world_regdom(ieee80211_regdom
))
3864 regulatory_hint_user(ieee80211_regdom
,
3865 NL80211_USER_REG_HINT_USER
);
3870 late_initcall(regulatory_init_db
);
3873 int __init
regulatory_init(void)
3875 reg_pdev
= platform_device_register_simple("regulatory", 0, NULL
, 0);
3876 if (IS_ERR(reg_pdev
))
3877 return PTR_ERR(reg_pdev
);
3879 spin_lock_init(®_requests_lock
);
3880 spin_lock_init(®_pending_beacons_lock
);
3881 spin_lock_init(®_indoor_lock
);
3883 rcu_assign_pointer(cfg80211_regdomain
, cfg80211_world_regdom
);
3885 user_alpha2
[0] = '9';
3886 user_alpha2
[1] = '7';
3889 return regulatory_init_db();
3895 void regulatory_exit(void)
3897 struct regulatory_request
*reg_request
, *tmp
;
3898 struct reg_beacon
*reg_beacon
, *btmp
;
3900 cancel_work_sync(®_work
);
3901 cancel_crda_timeout_sync();
3902 cancel_delayed_work_sync(®_check_chans
);
3904 /* Lock to suppress warnings */
3906 reset_regdomains(true, NULL
);
3909 dev_set_uevent_suppress(®_pdev
->dev
, true);
3911 platform_device_unregister(reg_pdev
);
3913 list_for_each_entry_safe(reg_beacon
, btmp
, ®_pending_beacons
, list
) {
3914 list_del(®_beacon
->list
);
3918 list_for_each_entry_safe(reg_beacon
, btmp
, ®_beacon_list
, list
) {
3919 list_del(®_beacon
->list
);
3923 list_for_each_entry_safe(reg_request
, tmp
, ®_requests_list
, list
) {
3924 list_del(®_request
->list
);
3928 if (!IS_ERR_OR_NULL(regdb
))
3931 free_regdb_keyring();