media: mmp-driver: add needed __iomem marks to power_regs
[linux-2.6/btrfs-unstable.git] / net / sched / sch_tbf.c
blob03225a8df9730cee7e020331b42a805d42b6f25c
1 /*
2 * net/sched/sch_tbf.c Token Bucket Filter queue.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11 * original idea by Martin Devera
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/string.h>
19 #include <linux/errno.h>
20 #include <linux/skbuff.h>
21 #include <net/netlink.h>
22 #include <net/sch_generic.h>
23 #include <net/pkt_sched.h>
26 /* Simple Token Bucket Filter.
27 =======================================
29 SOURCE.
30 -------
32 None.
34 Description.
35 ------------
37 A data flow obeys TBF with rate R and depth B, if for any
38 time interval t_i...t_f the number of transmitted bits
39 does not exceed B + R*(t_f-t_i).
41 Packetized version of this definition:
42 The sequence of packets of sizes s_i served at moments t_i
43 obeys TBF, if for any i<=k:
45 s_i+....+s_k <= B + R*(t_k - t_i)
47 Algorithm.
48 ----------
50 Let N(t_i) be B/R initially and N(t) grow continuously with time as:
52 N(t+delta) = min{B/R, N(t) + delta}
54 If the first packet in queue has length S, it may be
55 transmitted only at the time t_* when S/R <= N(t_*),
56 and in this case N(t) jumps:
58 N(t_* + 0) = N(t_* - 0) - S/R.
62 Actually, QoS requires two TBF to be applied to a data stream.
63 One of them controls steady state burst size, another
64 one with rate P (peak rate) and depth M (equal to link MTU)
65 limits bursts at a smaller time scale.
67 It is easy to see that P>R, and B>M. If P is infinity, this double
68 TBF is equivalent to a single one.
70 When TBF works in reshaping mode, latency is estimated as:
72 lat = max ((L-B)/R, (L-M)/P)
75 NOTES.
76 ------
78 If TBF throttles, it starts a watchdog timer, which will wake it up
79 when it is ready to transmit.
80 Note that the minimal timer resolution is 1/HZ.
81 If no new packets arrive during this period,
82 or if the device is not awaken by EOI for some previous packet,
83 TBF can stop its activity for 1/HZ.
86 This means, that with depth B, the maximal rate is
88 R_crit = B*HZ
90 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
92 Note that the peak rate TBF is much more tough: with MTU 1500
93 P_crit = 150Kbytes/sec. So, if you need greater peak
94 rates, use alpha with HZ=1000 :-)
96 With classful TBF, limit is just kept for backwards compatibility.
97 It is passed to the default bfifo qdisc - if the inner qdisc is
98 changed the limit is not effective anymore.
101 struct tbf_sched_data {
102 /* Parameters */
103 u32 limit; /* Maximal length of backlog: bytes */
104 u32 max_size;
105 s64 buffer; /* Token bucket depth/rate: MUST BE >= MTU/B */
106 s64 mtu;
107 struct psched_ratecfg rate;
108 struct psched_ratecfg peak;
110 /* Variables */
111 s64 tokens; /* Current number of B tokens */
112 s64 ptokens; /* Current number of P tokens */
113 s64 t_c; /* Time check-point */
114 struct Qdisc *qdisc; /* Inner qdisc, default - bfifo queue */
115 struct qdisc_watchdog watchdog; /* Watchdog timer */
119 /* Time to Length, convert time in ns to length in bytes
120 * to determinate how many bytes can be sent in given time.
122 static u64 psched_ns_t2l(const struct psched_ratecfg *r,
123 u64 time_in_ns)
125 /* The formula is :
126 * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC
128 u64 len = time_in_ns * r->rate_bytes_ps;
130 do_div(len, NSEC_PER_SEC);
132 if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) {
133 do_div(len, 53);
134 len = len * 48;
137 if (len > r->overhead)
138 len -= r->overhead;
139 else
140 len = 0;
142 return len;
145 /* GSO packet is too big, segment it so that tbf can transmit
146 * each segment in time
148 static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch,
149 struct sk_buff **to_free)
151 struct tbf_sched_data *q = qdisc_priv(sch);
152 struct sk_buff *segs, *nskb;
153 netdev_features_t features = netif_skb_features(skb);
154 unsigned int len = 0, prev_len = qdisc_pkt_len(skb);
155 int ret, nb;
157 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
159 if (IS_ERR_OR_NULL(segs))
160 return qdisc_drop(skb, sch, to_free);
162 nb = 0;
163 while (segs) {
164 nskb = segs->next;
165 segs->next = NULL;
166 qdisc_skb_cb(segs)->pkt_len = segs->len;
167 len += segs->len;
168 ret = qdisc_enqueue(segs, q->qdisc, to_free);
169 if (ret != NET_XMIT_SUCCESS) {
170 if (net_xmit_drop_count(ret))
171 qdisc_qstats_drop(sch);
172 } else {
173 nb++;
175 segs = nskb;
177 sch->q.qlen += nb;
178 if (nb > 1)
179 qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
180 consume_skb(skb);
181 return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
184 static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch,
185 struct sk_buff **to_free)
187 struct tbf_sched_data *q = qdisc_priv(sch);
188 int ret;
190 if (qdisc_pkt_len(skb) > q->max_size) {
191 if (skb_is_gso(skb) &&
192 skb_gso_validate_mac_len(skb, q->max_size))
193 return tbf_segment(skb, sch, to_free);
194 return qdisc_drop(skb, sch, to_free);
196 ret = qdisc_enqueue(skb, q->qdisc, to_free);
197 if (ret != NET_XMIT_SUCCESS) {
198 if (net_xmit_drop_count(ret))
199 qdisc_qstats_drop(sch);
200 return ret;
203 qdisc_qstats_backlog_inc(sch, skb);
204 sch->q.qlen++;
205 return NET_XMIT_SUCCESS;
208 static bool tbf_peak_present(const struct tbf_sched_data *q)
210 return q->peak.rate_bytes_ps;
213 static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
215 struct tbf_sched_data *q = qdisc_priv(sch);
216 struct sk_buff *skb;
218 skb = q->qdisc->ops->peek(q->qdisc);
220 if (skb) {
221 s64 now;
222 s64 toks;
223 s64 ptoks = 0;
224 unsigned int len = qdisc_pkt_len(skb);
226 now = ktime_get_ns();
227 toks = min_t(s64, now - q->t_c, q->buffer);
229 if (tbf_peak_present(q)) {
230 ptoks = toks + q->ptokens;
231 if (ptoks > q->mtu)
232 ptoks = q->mtu;
233 ptoks -= (s64) psched_l2t_ns(&q->peak, len);
235 toks += q->tokens;
236 if (toks > q->buffer)
237 toks = q->buffer;
238 toks -= (s64) psched_l2t_ns(&q->rate, len);
240 if ((toks|ptoks) >= 0) {
241 skb = qdisc_dequeue_peeked(q->qdisc);
242 if (unlikely(!skb))
243 return NULL;
245 q->t_c = now;
246 q->tokens = toks;
247 q->ptokens = ptoks;
248 qdisc_qstats_backlog_dec(sch, skb);
249 sch->q.qlen--;
250 qdisc_bstats_update(sch, skb);
251 return skb;
254 qdisc_watchdog_schedule_ns(&q->watchdog,
255 now + max_t(long, -toks, -ptoks));
257 /* Maybe we have a shorter packet in the queue,
258 which can be sent now. It sounds cool,
259 but, however, this is wrong in principle.
260 We MUST NOT reorder packets under these circumstances.
262 Really, if we split the flow into independent
263 subflows, it would be a very good solution.
264 This is the main idea of all FQ algorithms
265 (cf. CSZ, HPFQ, HFSC)
268 qdisc_qstats_overlimit(sch);
270 return NULL;
273 static void tbf_reset(struct Qdisc *sch)
275 struct tbf_sched_data *q = qdisc_priv(sch);
277 qdisc_reset(q->qdisc);
278 sch->qstats.backlog = 0;
279 sch->q.qlen = 0;
280 q->t_c = ktime_get_ns();
281 q->tokens = q->buffer;
282 q->ptokens = q->mtu;
283 qdisc_watchdog_cancel(&q->watchdog);
286 static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
287 [TCA_TBF_PARMS] = { .len = sizeof(struct tc_tbf_qopt) },
288 [TCA_TBF_RTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
289 [TCA_TBF_PTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
290 [TCA_TBF_RATE64] = { .type = NLA_U64 },
291 [TCA_TBF_PRATE64] = { .type = NLA_U64 },
292 [TCA_TBF_BURST] = { .type = NLA_U32 },
293 [TCA_TBF_PBURST] = { .type = NLA_U32 },
296 static int tbf_change(struct Qdisc *sch, struct nlattr *opt,
297 struct netlink_ext_ack *extack)
299 int err;
300 struct tbf_sched_data *q = qdisc_priv(sch);
301 struct nlattr *tb[TCA_TBF_MAX + 1];
302 struct tc_tbf_qopt *qopt;
303 struct Qdisc *child = NULL;
304 struct psched_ratecfg rate;
305 struct psched_ratecfg peak;
306 u64 max_size;
307 s64 buffer, mtu;
308 u64 rate64 = 0, prate64 = 0;
310 err = nla_parse_nested(tb, TCA_TBF_MAX, opt, tbf_policy, NULL);
311 if (err < 0)
312 return err;
314 err = -EINVAL;
315 if (tb[TCA_TBF_PARMS] == NULL)
316 goto done;
318 qopt = nla_data(tb[TCA_TBF_PARMS]);
319 if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE)
320 qdisc_put_rtab(qdisc_get_rtab(&qopt->rate,
321 tb[TCA_TBF_RTAB],
322 NULL));
324 if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE)
325 qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate,
326 tb[TCA_TBF_PTAB],
327 NULL));
329 buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U);
330 mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U);
332 if (tb[TCA_TBF_RATE64])
333 rate64 = nla_get_u64(tb[TCA_TBF_RATE64]);
334 psched_ratecfg_precompute(&rate, &qopt->rate, rate64);
336 if (tb[TCA_TBF_BURST]) {
337 max_size = nla_get_u32(tb[TCA_TBF_BURST]);
338 buffer = psched_l2t_ns(&rate, max_size);
339 } else {
340 max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U);
343 if (qopt->peakrate.rate) {
344 if (tb[TCA_TBF_PRATE64])
345 prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]);
346 psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64);
347 if (peak.rate_bytes_ps <= rate.rate_bytes_ps) {
348 pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n",
349 peak.rate_bytes_ps, rate.rate_bytes_ps);
350 err = -EINVAL;
351 goto done;
354 if (tb[TCA_TBF_PBURST]) {
355 u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]);
356 max_size = min_t(u32, max_size, pburst);
357 mtu = psched_l2t_ns(&peak, pburst);
358 } else {
359 max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu));
361 } else {
362 memset(&peak, 0, sizeof(peak));
365 if (max_size < psched_mtu(qdisc_dev(sch)))
366 pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n",
367 max_size, qdisc_dev(sch)->name,
368 psched_mtu(qdisc_dev(sch)));
370 if (!max_size) {
371 err = -EINVAL;
372 goto done;
375 if (q->qdisc != &noop_qdisc) {
376 err = fifo_set_limit(q->qdisc, qopt->limit);
377 if (err)
378 goto done;
379 } else if (qopt->limit > 0) {
380 child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit,
381 extack);
382 if (IS_ERR(child)) {
383 err = PTR_ERR(child);
384 goto done;
388 sch_tree_lock(sch);
389 if (child) {
390 qdisc_tree_reduce_backlog(q->qdisc, q->qdisc->q.qlen,
391 q->qdisc->qstats.backlog);
392 qdisc_destroy(q->qdisc);
393 q->qdisc = child;
394 if (child != &noop_qdisc)
395 qdisc_hash_add(child, true);
397 q->limit = qopt->limit;
398 if (tb[TCA_TBF_PBURST])
399 q->mtu = mtu;
400 else
401 q->mtu = PSCHED_TICKS2NS(qopt->mtu);
402 q->max_size = max_size;
403 if (tb[TCA_TBF_BURST])
404 q->buffer = buffer;
405 else
406 q->buffer = PSCHED_TICKS2NS(qopt->buffer);
407 q->tokens = q->buffer;
408 q->ptokens = q->mtu;
410 memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg));
411 memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg));
413 sch_tree_unlock(sch);
414 err = 0;
415 done:
416 return err;
419 static int tbf_init(struct Qdisc *sch, struct nlattr *opt,
420 struct netlink_ext_ack *extack)
422 struct tbf_sched_data *q = qdisc_priv(sch);
424 qdisc_watchdog_init(&q->watchdog, sch);
425 q->qdisc = &noop_qdisc;
427 if (!opt)
428 return -EINVAL;
430 q->t_c = ktime_get_ns();
432 return tbf_change(sch, opt, extack);
435 static void tbf_destroy(struct Qdisc *sch)
437 struct tbf_sched_data *q = qdisc_priv(sch);
439 qdisc_watchdog_cancel(&q->watchdog);
440 qdisc_destroy(q->qdisc);
443 static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
445 struct tbf_sched_data *q = qdisc_priv(sch);
446 struct nlattr *nest;
447 struct tc_tbf_qopt opt;
449 sch->qstats.backlog = q->qdisc->qstats.backlog;
450 nest = nla_nest_start(skb, TCA_OPTIONS);
451 if (nest == NULL)
452 goto nla_put_failure;
454 opt.limit = q->limit;
455 psched_ratecfg_getrate(&opt.rate, &q->rate);
456 if (tbf_peak_present(q))
457 psched_ratecfg_getrate(&opt.peakrate, &q->peak);
458 else
459 memset(&opt.peakrate, 0, sizeof(opt.peakrate));
460 opt.mtu = PSCHED_NS2TICKS(q->mtu);
461 opt.buffer = PSCHED_NS2TICKS(q->buffer);
462 if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
463 goto nla_put_failure;
464 if (q->rate.rate_bytes_ps >= (1ULL << 32) &&
465 nla_put_u64_64bit(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps,
466 TCA_TBF_PAD))
467 goto nla_put_failure;
468 if (tbf_peak_present(q) &&
469 q->peak.rate_bytes_ps >= (1ULL << 32) &&
470 nla_put_u64_64bit(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps,
471 TCA_TBF_PAD))
472 goto nla_put_failure;
474 return nla_nest_end(skb, nest);
476 nla_put_failure:
477 nla_nest_cancel(skb, nest);
478 return -1;
481 static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
482 struct sk_buff *skb, struct tcmsg *tcm)
484 struct tbf_sched_data *q = qdisc_priv(sch);
486 tcm->tcm_handle |= TC_H_MIN(1);
487 tcm->tcm_info = q->qdisc->handle;
489 return 0;
492 static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
493 struct Qdisc **old, struct netlink_ext_ack *extack)
495 struct tbf_sched_data *q = qdisc_priv(sch);
497 if (new == NULL)
498 new = &noop_qdisc;
500 *old = qdisc_replace(sch, new, &q->qdisc);
501 return 0;
504 static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
506 struct tbf_sched_data *q = qdisc_priv(sch);
507 return q->qdisc;
510 static unsigned long tbf_find(struct Qdisc *sch, u32 classid)
512 return 1;
515 static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
517 if (!walker->stop) {
518 if (walker->count >= walker->skip)
519 if (walker->fn(sch, 1, walker) < 0) {
520 walker->stop = 1;
521 return;
523 walker->count++;
527 static const struct Qdisc_class_ops tbf_class_ops = {
528 .graft = tbf_graft,
529 .leaf = tbf_leaf,
530 .find = tbf_find,
531 .walk = tbf_walk,
532 .dump = tbf_dump_class,
535 static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
536 .next = NULL,
537 .cl_ops = &tbf_class_ops,
538 .id = "tbf",
539 .priv_size = sizeof(struct tbf_sched_data),
540 .enqueue = tbf_enqueue,
541 .dequeue = tbf_dequeue,
542 .peek = qdisc_peek_dequeued,
543 .init = tbf_init,
544 .reset = tbf_reset,
545 .destroy = tbf_destroy,
546 .change = tbf_change,
547 .dump = tbf_dump,
548 .owner = THIS_MODULE,
551 static int __init tbf_module_init(void)
553 return register_qdisc(&tbf_qdisc_ops);
556 static void __exit tbf_module_exit(void)
558 unregister_qdisc(&tbf_qdisc_ops);
560 module_init(tbf_module_init)
561 module_exit(tbf_module_exit)
562 MODULE_LICENSE("GPL");