firewire: fw-sbp2: don't retry login or reconnect after unplug
[linux-2.6/btrfs-unstable.git] / drivers / firewire / fw-sbp2.c
blob72fddf5a12a323decf9a4975c3d0dfadb480fa65
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/blkdev.h>
39 #include <linux/string.h>
40 #include <linux/stringify.h>
41 #include <linux/timer.h>
42 #include <linux/workqueue.h>
43 #include <asm/system.h>
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_cmnd.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_host.h>
50 #include "fw-transaction.h"
51 #include "fw-topology.h"
52 #include "fw-device.h"
55 * So far only bridges from Oxford Semiconductor are known to support
56 * concurrent logins. Depending on firmware, four or two concurrent logins
57 * are possible on OXFW911 and newer Oxsemi bridges.
59 * Concurrent logins are useful together with cluster filesystems.
61 static int sbp2_param_exclusive_login = 1;
62 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
63 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
64 "(default = Y, use N for concurrent initiators)");
67 * Flags for firmware oddities
69 * - 128kB max transfer
70 * Limit transfer size. Necessary for some old bridges.
72 * - 36 byte inquiry
73 * When scsi_mod probes the device, let the inquiry command look like that
74 * from MS Windows.
76 * - skip mode page 8
77 * Suppress sending of mode_sense for mode page 8 if the device pretends to
78 * support the SCSI Primary Block commands instead of Reduced Block Commands.
80 * - fix capacity
81 * Tell sd_mod to correct the last sector number reported by read_capacity.
82 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
83 * Don't use this with devices which don't have this bug.
85 * - override internal blacklist
86 * Instead of adding to the built-in blacklist, use only the workarounds
87 * specified in the module load parameter.
88 * Useful if a blacklist entry interfered with a non-broken device.
90 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
91 #define SBP2_WORKAROUND_INQUIRY_36 0x2
92 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
93 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
94 #define SBP2_WORKAROUND_OVERRIDE 0x100
96 static int sbp2_param_workarounds;
97 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
98 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
99 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
100 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
101 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
102 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
103 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
104 ", or a combination)");
106 /* I don't know why the SCSI stack doesn't define something like this... */
107 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
109 static const char sbp2_driver_name[] = "sbp2";
112 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
113 * and one struct scsi_device per sbp2_logical_unit.
115 struct sbp2_logical_unit {
116 struct sbp2_target *tgt;
117 struct list_head link;
118 struct scsi_device *sdev;
119 struct fw_address_handler address_handler;
120 struct list_head orb_list;
122 u64 command_block_agent_address;
123 u16 lun;
124 int login_id;
127 * The generation is updated once we've logged in or reconnected
128 * to the logical unit. Thus, I/O to the device will automatically
129 * fail and get retried if it happens in a window where the device
130 * is not ready, e.g. after a bus reset but before we reconnect.
132 int generation;
133 int retries;
134 struct delayed_work work;
138 * We create one struct sbp2_target per IEEE 1212 Unit Directory
139 * and one struct Scsi_Host per sbp2_target.
141 struct sbp2_target {
142 struct kref kref;
143 struct fw_unit *unit;
144 struct list_head lu_list;
146 u64 management_agent_address;
147 int directory_id;
148 int node_id;
149 int address_high;
150 unsigned int workarounds;
151 unsigned int mgt_orb_timeout;
155 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
156 * provided in the config rom. Most devices do provide a value, which
157 * we'll use for login management orbs, but with some sane limits.
159 #define SBP2_MIN_LOGIN_ORB_TIMEOUT 5000U /* Timeout in ms */
160 #define SBP2_MAX_LOGIN_ORB_TIMEOUT 40000U /* Timeout in ms */
161 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
162 #define SBP2_ORB_NULL 0x80000000
163 #define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000
165 #define SBP2_DIRECTION_TO_MEDIA 0x0
166 #define SBP2_DIRECTION_FROM_MEDIA 0x1
168 /* Unit directory keys */
169 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
170 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
171 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
172 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
174 /* Management orb opcodes */
175 #define SBP2_LOGIN_REQUEST 0x0
176 #define SBP2_QUERY_LOGINS_REQUEST 0x1
177 #define SBP2_RECONNECT_REQUEST 0x3
178 #define SBP2_SET_PASSWORD_REQUEST 0x4
179 #define SBP2_LOGOUT_REQUEST 0x7
180 #define SBP2_ABORT_TASK_REQUEST 0xb
181 #define SBP2_ABORT_TASK_SET 0xc
182 #define SBP2_LOGICAL_UNIT_RESET 0xe
183 #define SBP2_TARGET_RESET_REQUEST 0xf
185 /* Offsets for command block agent registers */
186 #define SBP2_AGENT_STATE 0x00
187 #define SBP2_AGENT_RESET 0x04
188 #define SBP2_ORB_POINTER 0x08
189 #define SBP2_DOORBELL 0x10
190 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
192 /* Status write response codes */
193 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
194 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
195 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
196 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
198 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
199 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
200 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
201 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
202 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
203 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
204 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
205 #define STATUS_GET_DATA(v) ((v).data)
207 struct sbp2_status {
208 u32 status;
209 u32 orb_low;
210 u8 data[24];
213 struct sbp2_pointer {
214 u32 high;
215 u32 low;
218 struct sbp2_orb {
219 struct fw_transaction t;
220 struct kref kref;
221 dma_addr_t request_bus;
222 int rcode;
223 struct sbp2_pointer pointer;
224 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
225 struct list_head link;
228 #define MANAGEMENT_ORB_LUN(v) ((v))
229 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
230 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
231 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
232 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
233 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
235 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
236 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
238 struct sbp2_management_orb {
239 struct sbp2_orb base;
240 struct {
241 struct sbp2_pointer password;
242 struct sbp2_pointer response;
243 u32 misc;
244 u32 length;
245 struct sbp2_pointer status_fifo;
246 } request;
247 __be32 response[4];
248 dma_addr_t response_bus;
249 struct completion done;
250 struct sbp2_status status;
253 #define LOGIN_RESPONSE_GET_LOGIN_ID(v) ((v).misc & 0xffff)
254 #define LOGIN_RESPONSE_GET_LENGTH(v) (((v).misc >> 16) & 0xffff)
256 struct sbp2_login_response {
257 u32 misc;
258 struct sbp2_pointer command_block_agent;
259 u32 reconnect_hold;
261 #define COMMAND_ORB_DATA_SIZE(v) ((v))
262 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
263 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
264 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
265 #define COMMAND_ORB_SPEED(v) ((v) << 24)
266 #define COMMAND_ORB_DIRECTION(v) ((v) << 27)
267 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
268 #define COMMAND_ORB_NOTIFY ((1) << 31)
270 struct sbp2_command_orb {
271 struct sbp2_orb base;
272 struct {
273 struct sbp2_pointer next;
274 struct sbp2_pointer data_descriptor;
275 u32 misc;
276 u8 command_block[12];
277 } request;
278 struct scsi_cmnd *cmd;
279 scsi_done_fn_t done;
280 struct sbp2_logical_unit *lu;
282 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
283 dma_addr_t page_table_bus;
287 * List of devices with known bugs.
289 * The firmware_revision field, masked with 0xffff00, is the best
290 * indicator for the type of bridge chip of a device. It yields a few
291 * false positives but this did not break correctly behaving devices
292 * so far. We use ~0 as a wildcard, since the 24 bit values we get
293 * from the config rom can never match that.
295 static const struct {
296 u32 firmware_revision;
297 u32 model;
298 unsigned int workarounds;
299 } sbp2_workarounds_table[] = {
300 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
301 .firmware_revision = 0x002800,
302 .model = 0x001010,
303 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
304 SBP2_WORKAROUND_MODE_SENSE_8,
306 /* Initio bridges, actually only needed for some older ones */ {
307 .firmware_revision = 0x000200,
308 .model = ~0,
309 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
311 /* Symbios bridge */ {
312 .firmware_revision = 0xa0b800,
313 .model = ~0,
314 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
318 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
319 * these iPods do not feature the read_capacity bug according
320 * to one report. Read_capacity behaviour as well as model_id
321 * could change due to Apple-supplied firmware updates though.
324 /* iPod 4th generation. */ {
325 .firmware_revision = 0x0a2700,
326 .model = 0x000021,
327 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
329 /* iPod mini */ {
330 .firmware_revision = 0x0a2700,
331 .model = 0x000023,
332 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
334 /* iPod Photo */ {
335 .firmware_revision = 0x0a2700,
336 .model = 0x00007e,
337 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
341 static void
342 free_orb(struct kref *kref)
344 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
346 kfree(orb);
349 static void
350 sbp2_status_write(struct fw_card *card, struct fw_request *request,
351 int tcode, int destination, int source,
352 int generation, int speed,
353 unsigned long long offset,
354 void *payload, size_t length, void *callback_data)
356 struct sbp2_logical_unit *lu = callback_data;
357 struct sbp2_orb *orb;
358 struct sbp2_status status;
359 size_t header_size;
360 unsigned long flags;
362 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
363 length == 0 || length > sizeof(status)) {
364 fw_send_response(card, request, RCODE_TYPE_ERROR);
365 return;
368 header_size = min(length, 2 * sizeof(u32));
369 fw_memcpy_from_be32(&status, payload, header_size);
370 if (length > header_size)
371 memcpy(status.data, payload + 8, length - header_size);
372 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
373 fw_notify("non-orb related status write, not handled\n");
374 fw_send_response(card, request, RCODE_COMPLETE);
375 return;
378 /* Lookup the orb corresponding to this status write. */
379 spin_lock_irqsave(&card->lock, flags);
380 list_for_each_entry(orb, &lu->orb_list, link) {
381 if (STATUS_GET_ORB_HIGH(status) == 0 &&
382 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
383 orb->rcode = RCODE_COMPLETE;
384 list_del(&orb->link);
385 break;
388 spin_unlock_irqrestore(&card->lock, flags);
390 if (&orb->link != &lu->orb_list)
391 orb->callback(orb, &status);
392 else
393 fw_error("status write for unknown orb\n");
395 kref_put(&orb->kref, free_orb);
397 fw_send_response(card, request, RCODE_COMPLETE);
400 static void
401 complete_transaction(struct fw_card *card, int rcode,
402 void *payload, size_t length, void *data)
404 struct sbp2_orb *orb = data;
405 unsigned long flags;
408 * This is a little tricky. We can get the status write for
409 * the orb before we get this callback. The status write
410 * handler above will assume the orb pointer transaction was
411 * successful and set the rcode to RCODE_COMPLETE for the orb.
412 * So this callback only sets the rcode if it hasn't already
413 * been set and only does the cleanup if the transaction
414 * failed and we didn't already get a status write.
416 spin_lock_irqsave(&card->lock, flags);
418 if (orb->rcode == -1)
419 orb->rcode = rcode;
420 if (orb->rcode != RCODE_COMPLETE) {
421 list_del(&orb->link);
422 spin_unlock_irqrestore(&card->lock, flags);
423 orb->callback(orb, NULL);
424 } else {
425 spin_unlock_irqrestore(&card->lock, flags);
428 kref_put(&orb->kref, free_orb);
431 static void
432 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
433 int node_id, int generation, u64 offset)
435 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
436 unsigned long flags;
438 orb->pointer.high = 0;
439 orb->pointer.low = orb->request_bus;
440 fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
442 spin_lock_irqsave(&device->card->lock, flags);
443 list_add_tail(&orb->link, &lu->orb_list);
444 spin_unlock_irqrestore(&device->card->lock, flags);
446 /* Take a ref for the orb list and for the transaction callback. */
447 kref_get(&orb->kref);
448 kref_get(&orb->kref);
450 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
451 node_id, generation, device->max_speed, offset,
452 &orb->pointer, sizeof(orb->pointer),
453 complete_transaction, orb);
456 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
458 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
459 struct sbp2_orb *orb, *next;
460 struct list_head list;
461 unsigned long flags;
462 int retval = -ENOENT;
464 INIT_LIST_HEAD(&list);
465 spin_lock_irqsave(&device->card->lock, flags);
466 list_splice_init(&lu->orb_list, &list);
467 spin_unlock_irqrestore(&device->card->lock, flags);
469 list_for_each_entry_safe(orb, next, &list, link) {
470 retval = 0;
471 if (fw_cancel_transaction(device->card, &orb->t) == 0)
472 continue;
474 orb->rcode = RCODE_CANCELLED;
475 orb->callback(orb, NULL);
478 return retval;
481 static void
482 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
484 struct sbp2_management_orb *orb =
485 container_of(base_orb, struct sbp2_management_orb, base);
487 if (status)
488 memcpy(&orb->status, status, sizeof(*status));
489 complete(&orb->done);
492 static int
493 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
494 int generation, int function, int lun_or_login_id,
495 void *response)
497 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
498 struct sbp2_management_orb *orb;
499 unsigned int timeout;
500 int retval = -ENOMEM;
502 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
503 return 0;
505 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
506 if (orb == NULL)
507 return -ENOMEM;
509 kref_init(&orb->base.kref);
510 orb->response_bus =
511 dma_map_single(device->card->device, &orb->response,
512 sizeof(orb->response), DMA_FROM_DEVICE);
513 if (dma_mapping_error(orb->response_bus))
514 goto fail_mapping_response;
516 orb->request.response.high = 0;
517 orb->request.response.low = orb->response_bus;
519 orb->request.misc =
520 MANAGEMENT_ORB_NOTIFY |
521 MANAGEMENT_ORB_FUNCTION(function) |
522 MANAGEMENT_ORB_LUN(lun_or_login_id);
523 orb->request.length =
524 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
526 orb->request.status_fifo.high = lu->address_handler.offset >> 32;
527 orb->request.status_fifo.low = lu->address_handler.offset;
529 if (function == SBP2_LOGIN_REQUEST) {
530 /* Ask for 2^2 == 4 seconds reconnect grace period */
531 orb->request.misc |=
532 MANAGEMENT_ORB_RECONNECT(2) |
533 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login);
534 timeout = lu->tgt->mgt_orb_timeout;
535 } else {
536 timeout = SBP2_ORB_TIMEOUT;
539 fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
541 init_completion(&orb->done);
542 orb->base.callback = complete_management_orb;
544 orb->base.request_bus =
545 dma_map_single(device->card->device, &orb->request,
546 sizeof(orb->request), DMA_TO_DEVICE);
547 if (dma_mapping_error(orb->base.request_bus))
548 goto fail_mapping_request;
550 sbp2_send_orb(&orb->base, lu, node_id, generation,
551 lu->tgt->management_agent_address);
553 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
555 retval = -EIO;
556 if (sbp2_cancel_orbs(lu) == 0) {
557 fw_error("orb reply timed out, rcode=0x%02x\n",
558 orb->base.rcode);
559 goto out;
562 if (orb->base.rcode != RCODE_COMPLETE) {
563 fw_error("management write failed, rcode 0x%02x\n",
564 orb->base.rcode);
565 goto out;
568 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
569 STATUS_GET_SBP_STATUS(orb->status) != 0) {
570 fw_error("error status: %d:%d\n",
571 STATUS_GET_RESPONSE(orb->status),
572 STATUS_GET_SBP_STATUS(orb->status));
573 goto out;
576 retval = 0;
577 out:
578 dma_unmap_single(device->card->device, orb->base.request_bus,
579 sizeof(orb->request), DMA_TO_DEVICE);
580 fail_mapping_request:
581 dma_unmap_single(device->card->device, orb->response_bus,
582 sizeof(orb->response), DMA_FROM_DEVICE);
583 fail_mapping_response:
584 if (response)
585 fw_memcpy_from_be32(response,
586 orb->response, sizeof(orb->response));
587 kref_put(&orb->base.kref, free_orb);
589 return retval;
592 static void
593 complete_agent_reset_write(struct fw_card *card, int rcode,
594 void *payload, size_t length, void *data)
596 struct fw_transaction *t = data;
598 kfree(t);
601 static int sbp2_agent_reset(struct sbp2_logical_unit *lu)
603 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
604 struct fw_transaction *t;
605 static u32 zero;
607 t = kzalloc(sizeof(*t), GFP_ATOMIC);
608 if (t == NULL)
609 return -ENOMEM;
611 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
612 lu->tgt->node_id, lu->generation, device->max_speed,
613 lu->command_block_agent_address + SBP2_AGENT_RESET,
614 &zero, sizeof(zero), complete_agent_reset_write, t);
616 return 0;
619 static void sbp2_release_target(struct kref *kref)
621 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
622 struct sbp2_logical_unit *lu, *next;
623 struct Scsi_Host *shost =
624 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
626 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
627 if (lu->sdev)
628 scsi_remove_device(lu->sdev);
630 sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
631 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
633 fw_core_remove_address_handler(&lu->address_handler);
634 list_del(&lu->link);
635 kfree(lu);
637 scsi_remove_host(shost);
638 fw_notify("released %s\n", tgt->unit->device.bus_id);
640 put_device(&tgt->unit->device);
641 scsi_host_put(shost);
644 static struct workqueue_struct *sbp2_wq;
647 * Always get the target's kref when scheduling work on one its units.
648 * Each workqueue job is responsible to call sbp2_target_put() upon return.
650 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
652 if (queue_delayed_work(sbp2_wq, &lu->work, delay))
653 kref_get(&lu->tgt->kref);
656 static void sbp2_target_put(struct sbp2_target *tgt)
658 kref_put(&tgt->kref, sbp2_release_target);
661 static void sbp2_reconnect(struct work_struct *work);
663 static void sbp2_login(struct work_struct *work)
665 struct sbp2_logical_unit *lu =
666 container_of(work, struct sbp2_logical_unit, work.work);
667 struct Scsi_Host *shost =
668 container_of((void *)lu->tgt, struct Scsi_Host, hostdata[0]);
669 struct scsi_device *sdev;
670 struct scsi_lun eight_bytes_lun;
671 struct fw_unit *unit = lu->tgt->unit;
672 struct fw_device *device = fw_device(unit->device.parent);
673 struct sbp2_login_response response;
674 int generation, node_id, local_node_id;
676 if (fw_device_is_shutdown(device))
677 goto out;
679 generation = device->generation;
680 smp_rmb(); /* node_id must not be older than generation */
681 node_id = device->node_id;
682 local_node_id = device->card->node_id;
684 if (sbp2_send_management_orb(lu, node_id, generation,
685 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
686 if (lu->retries++ < 5)
687 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
688 else
689 fw_error("failed to login to %s LUN %04x\n",
690 unit->device.bus_id, lu->lun);
691 goto out;
694 lu->generation = generation;
695 lu->tgt->node_id = node_id;
696 lu->tgt->address_high = local_node_id << 16;
698 /* Get command block agent offset and login id. */
699 lu->command_block_agent_address =
700 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
701 response.command_block_agent.low;
702 lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
704 fw_notify("logged in to %s LUN %04x (%d retries)\n",
705 unit->device.bus_id, lu->lun, lu->retries);
707 #if 0
708 /* FIXME: The linux1394 sbp2 does this last step. */
709 sbp2_set_busy_timeout(scsi_id);
710 #endif
712 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
713 sbp2_agent_reset(lu);
715 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
716 eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
717 eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
719 sdev = __scsi_add_device(shost, 0, 0,
720 scsilun_to_int(&eight_bytes_lun), lu);
721 if (IS_ERR(sdev)) {
722 smp_rmb(); /* generation may have changed */
723 generation = device->generation;
724 smp_rmb(); /* node_id must not be older than generation */
726 sbp2_send_management_orb(lu, device->node_id, generation,
727 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
729 * Set this back to sbp2_login so we fall back and
730 * retry login on bus reset.
732 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
733 } else {
734 lu->sdev = sdev;
735 scsi_device_put(sdev);
737 out:
738 sbp2_target_put(lu->tgt);
741 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
743 struct sbp2_logical_unit *lu;
745 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
746 if (!lu)
747 return -ENOMEM;
749 lu->address_handler.length = 0x100;
750 lu->address_handler.address_callback = sbp2_status_write;
751 lu->address_handler.callback_data = lu;
753 if (fw_core_add_address_handler(&lu->address_handler,
754 &fw_high_memory_region) < 0) {
755 kfree(lu);
756 return -ENOMEM;
759 lu->tgt = tgt;
760 lu->sdev = NULL;
761 lu->lun = lun_entry & 0xffff;
762 lu->retries = 0;
763 INIT_LIST_HEAD(&lu->orb_list);
764 INIT_DELAYED_WORK(&lu->work, sbp2_login);
766 list_add_tail(&lu->link, &tgt->lu_list);
767 return 0;
770 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
772 struct fw_csr_iterator ci;
773 int key, value;
775 fw_csr_iterator_init(&ci, directory);
776 while (fw_csr_iterator_next(&ci, &key, &value))
777 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
778 sbp2_add_logical_unit(tgt, value) < 0)
779 return -ENOMEM;
780 return 0;
783 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
784 u32 *model, u32 *firmware_revision)
786 struct fw_csr_iterator ci;
787 int key, value;
788 unsigned int timeout;
790 fw_csr_iterator_init(&ci, directory);
791 while (fw_csr_iterator_next(&ci, &key, &value)) {
792 switch (key) {
794 case CSR_DEPENDENT_INFO | CSR_OFFSET:
795 tgt->management_agent_address =
796 CSR_REGISTER_BASE + 4 * value;
797 break;
799 case CSR_DIRECTORY_ID:
800 tgt->directory_id = value;
801 break;
803 case CSR_MODEL:
804 *model = value;
805 break;
807 case SBP2_CSR_FIRMWARE_REVISION:
808 *firmware_revision = value;
809 break;
811 case SBP2_CSR_UNIT_CHARACTERISTICS:
812 /* the timeout value is stored in 500ms units */
813 timeout = ((unsigned int) value >> 8 & 0xff) * 500;
814 timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
815 tgt->mgt_orb_timeout =
816 min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
818 if (timeout > tgt->mgt_orb_timeout)
819 fw_notify("%s: config rom contains %ds "
820 "management ORB timeout, limiting "
821 "to %ds\n", tgt->unit->device.bus_id,
822 timeout / 1000,
823 tgt->mgt_orb_timeout / 1000);
824 break;
826 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
827 if (sbp2_add_logical_unit(tgt, value) < 0)
828 return -ENOMEM;
829 break;
831 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
832 if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
833 return -ENOMEM;
834 break;
837 return 0;
840 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
841 u32 firmware_revision)
843 int i;
844 unsigned int w = sbp2_param_workarounds;
846 if (w)
847 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
848 "if you need the workarounds parameter for %s\n",
849 tgt->unit->device.bus_id);
851 if (w & SBP2_WORKAROUND_OVERRIDE)
852 goto out;
854 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
856 if (sbp2_workarounds_table[i].firmware_revision !=
857 (firmware_revision & 0xffffff00))
858 continue;
860 if (sbp2_workarounds_table[i].model != model &&
861 sbp2_workarounds_table[i].model != ~0)
862 continue;
864 w |= sbp2_workarounds_table[i].workarounds;
865 break;
867 out:
868 if (w)
869 fw_notify("Workarounds for %s: 0x%x "
870 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
871 tgt->unit->device.bus_id,
872 w, firmware_revision, model);
873 tgt->workarounds = w;
876 static struct scsi_host_template scsi_driver_template;
878 static int sbp2_probe(struct device *dev)
880 struct fw_unit *unit = fw_unit(dev);
881 struct fw_device *device = fw_device(unit->device.parent);
882 struct sbp2_target *tgt;
883 struct sbp2_logical_unit *lu;
884 struct Scsi_Host *shost;
885 u32 model, firmware_revision;
887 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
888 if (shost == NULL)
889 return -ENOMEM;
891 tgt = (struct sbp2_target *)shost->hostdata;
892 unit->device.driver_data = tgt;
893 tgt->unit = unit;
894 kref_init(&tgt->kref);
895 INIT_LIST_HEAD(&tgt->lu_list);
897 if (fw_device_enable_phys_dma(device) < 0)
898 goto fail_shost_put;
900 if (scsi_add_host(shost, &unit->device) < 0)
901 goto fail_shost_put;
903 /* Initialize to values that won't match anything in our table. */
904 firmware_revision = 0xff000000;
905 model = 0xff000000;
907 /* implicit directory ID */
908 tgt->directory_id = ((unit->directory - device->config_rom) * 4
909 + CSR_CONFIG_ROM) & 0xffffff;
911 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
912 &firmware_revision) < 0)
913 goto fail_tgt_put;
915 sbp2_init_workarounds(tgt, model, firmware_revision);
917 get_device(&unit->device);
919 /* Do the login in a workqueue so we can easily reschedule retries. */
920 list_for_each_entry(lu, &tgt->lu_list, link)
921 sbp2_queue_work(lu, 0);
922 return 0;
924 fail_tgt_put:
925 sbp2_target_put(tgt);
926 return -ENOMEM;
928 fail_shost_put:
929 scsi_host_put(shost);
930 return -ENOMEM;
933 static int sbp2_remove(struct device *dev)
935 struct fw_unit *unit = fw_unit(dev);
936 struct sbp2_target *tgt = unit->device.driver_data;
938 sbp2_target_put(tgt);
939 return 0;
942 static void sbp2_reconnect(struct work_struct *work)
944 struct sbp2_logical_unit *lu =
945 container_of(work, struct sbp2_logical_unit, work.work);
946 struct fw_unit *unit = lu->tgt->unit;
947 struct fw_device *device = fw_device(unit->device.parent);
948 int generation, node_id, local_node_id;
950 if (fw_device_is_shutdown(device))
951 goto out;
953 generation = device->generation;
954 smp_rmb(); /* node_id must not be older than generation */
955 node_id = device->node_id;
956 local_node_id = device->card->node_id;
958 if (sbp2_send_management_orb(lu, node_id, generation,
959 SBP2_RECONNECT_REQUEST,
960 lu->login_id, NULL) < 0) {
961 if (lu->retries++ >= 5) {
962 fw_error("failed to reconnect to %s\n",
963 unit->device.bus_id);
964 /* Fall back and try to log in again. */
965 lu->retries = 0;
966 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
968 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
969 goto out;
972 lu->generation = generation;
973 lu->tgt->node_id = node_id;
974 lu->tgt->address_high = local_node_id << 16;
976 fw_notify("reconnected to %s LUN %04x (%d retries)\n",
977 unit->device.bus_id, lu->lun, lu->retries);
979 sbp2_agent_reset(lu);
980 sbp2_cancel_orbs(lu);
981 out:
982 sbp2_target_put(lu->tgt);
985 static void sbp2_update(struct fw_unit *unit)
987 struct sbp2_target *tgt = unit->device.driver_data;
988 struct sbp2_logical_unit *lu;
990 fw_device_enable_phys_dma(fw_device(unit->device.parent));
993 * Fw-core serializes sbp2_update() against sbp2_remove().
994 * Iteration over tgt->lu_list is therefore safe here.
996 list_for_each_entry(lu, &tgt->lu_list, link) {
997 lu->retries = 0;
998 sbp2_queue_work(lu, 0);
1002 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1003 #define SBP2_SW_VERSION_ENTRY 0x00010483
1005 static const struct fw_device_id sbp2_id_table[] = {
1007 .match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
1008 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1009 .version = SBP2_SW_VERSION_ENTRY,
1014 static struct fw_driver sbp2_driver = {
1015 .driver = {
1016 .owner = THIS_MODULE,
1017 .name = sbp2_driver_name,
1018 .bus = &fw_bus_type,
1019 .probe = sbp2_probe,
1020 .remove = sbp2_remove,
1022 .update = sbp2_update,
1023 .id_table = sbp2_id_table,
1026 static unsigned int
1027 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1029 int sam_status;
1031 sense_data[0] = 0x70;
1032 sense_data[1] = 0x0;
1033 sense_data[2] = sbp2_status[1];
1034 sense_data[3] = sbp2_status[4];
1035 sense_data[4] = sbp2_status[5];
1036 sense_data[5] = sbp2_status[6];
1037 sense_data[6] = sbp2_status[7];
1038 sense_data[7] = 10;
1039 sense_data[8] = sbp2_status[8];
1040 sense_data[9] = sbp2_status[9];
1041 sense_data[10] = sbp2_status[10];
1042 sense_data[11] = sbp2_status[11];
1043 sense_data[12] = sbp2_status[2];
1044 sense_data[13] = sbp2_status[3];
1045 sense_data[14] = sbp2_status[12];
1046 sense_data[15] = sbp2_status[13];
1048 sam_status = sbp2_status[0] & 0x3f;
1050 switch (sam_status) {
1051 case SAM_STAT_GOOD:
1052 case SAM_STAT_CHECK_CONDITION:
1053 case SAM_STAT_CONDITION_MET:
1054 case SAM_STAT_BUSY:
1055 case SAM_STAT_RESERVATION_CONFLICT:
1056 case SAM_STAT_COMMAND_TERMINATED:
1057 return DID_OK << 16 | sam_status;
1059 default:
1060 return DID_ERROR << 16;
1064 static void
1065 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1067 struct sbp2_command_orb *orb =
1068 container_of(base_orb, struct sbp2_command_orb, base);
1069 struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1070 int result;
1072 if (status != NULL) {
1073 if (STATUS_GET_DEAD(*status))
1074 sbp2_agent_reset(orb->lu);
1076 switch (STATUS_GET_RESPONSE(*status)) {
1077 case SBP2_STATUS_REQUEST_COMPLETE:
1078 result = DID_OK << 16;
1079 break;
1080 case SBP2_STATUS_TRANSPORT_FAILURE:
1081 result = DID_BUS_BUSY << 16;
1082 break;
1083 case SBP2_STATUS_ILLEGAL_REQUEST:
1084 case SBP2_STATUS_VENDOR_DEPENDENT:
1085 default:
1086 result = DID_ERROR << 16;
1087 break;
1090 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1091 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1092 orb->cmd->sense_buffer);
1093 } else {
1095 * If the orb completes with status == NULL, something
1096 * went wrong, typically a bus reset happened mid-orb
1097 * or when sending the write (less likely).
1099 result = DID_BUS_BUSY << 16;
1102 dma_unmap_single(device->card->device, orb->base.request_bus,
1103 sizeof(orb->request), DMA_TO_DEVICE);
1105 if (scsi_sg_count(orb->cmd) > 0)
1106 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1107 scsi_sg_count(orb->cmd),
1108 orb->cmd->sc_data_direction);
1110 if (orb->page_table_bus != 0)
1111 dma_unmap_single(device->card->device, orb->page_table_bus,
1112 sizeof(orb->page_table), DMA_TO_DEVICE);
1114 orb->cmd->result = result;
1115 orb->done(orb->cmd);
1118 static int
1119 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1120 struct sbp2_logical_unit *lu)
1122 struct scatterlist *sg;
1123 int sg_len, l, i, j, count;
1124 dma_addr_t sg_addr;
1126 sg = scsi_sglist(orb->cmd);
1127 count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1128 orb->cmd->sc_data_direction);
1129 if (count == 0)
1130 goto fail;
1133 * Handle the special case where there is only one element in
1134 * the scatter list by converting it to an immediate block
1135 * request. This is also a workaround for broken devices such
1136 * as the second generation iPod which doesn't support page
1137 * tables.
1139 if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1140 orb->request.data_descriptor.high = lu->tgt->address_high;
1141 orb->request.data_descriptor.low = sg_dma_address(sg);
1142 orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1143 return 0;
1147 * Convert the scatterlist to an sbp2 page table. If any
1148 * scatterlist entries are too big for sbp2, we split them as we
1149 * go. Even if we ask the block I/O layer to not give us sg
1150 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1151 * during DMA mapping, and Linux currently doesn't prevent this.
1153 for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
1154 sg_len = sg_dma_len(sg);
1155 sg_addr = sg_dma_address(sg);
1156 while (sg_len) {
1157 /* FIXME: This won't get us out of the pinch. */
1158 if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1159 fw_error("page table overflow\n");
1160 goto fail_page_table;
1162 l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1163 orb->page_table[j].low = sg_addr;
1164 orb->page_table[j].high = (l << 16);
1165 sg_addr += l;
1166 sg_len -= l;
1167 j++;
1171 fw_memcpy_to_be32(orb->page_table, orb->page_table,
1172 sizeof(orb->page_table[0]) * j);
1173 orb->page_table_bus =
1174 dma_map_single(device->card->device, orb->page_table,
1175 sizeof(orb->page_table), DMA_TO_DEVICE);
1176 if (dma_mapping_error(orb->page_table_bus))
1177 goto fail_page_table;
1180 * The data_descriptor pointer is the one case where we need
1181 * to fill in the node ID part of the address. All other
1182 * pointers assume that the data referenced reside on the
1183 * initiator (i.e. us), but data_descriptor can refer to data
1184 * on other nodes so we need to put our ID in descriptor.high.
1186 orb->request.data_descriptor.high = lu->tgt->address_high;
1187 orb->request.data_descriptor.low = orb->page_table_bus;
1188 orb->request.misc |=
1189 COMMAND_ORB_PAGE_TABLE_PRESENT |
1190 COMMAND_ORB_DATA_SIZE(j);
1192 return 0;
1194 fail_page_table:
1195 dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1196 orb->cmd->sc_data_direction);
1197 fail:
1198 return -ENOMEM;
1201 /* SCSI stack integration */
1203 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1205 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1206 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1207 struct sbp2_command_orb *orb;
1208 unsigned int max_payload;
1209 int retval = SCSI_MLQUEUE_HOST_BUSY;
1212 * Bidirectional commands are not yet implemented, and unknown
1213 * transfer direction not handled.
1215 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1216 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1217 cmd->result = DID_ERROR << 16;
1218 done(cmd);
1219 return 0;
1222 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1223 if (orb == NULL) {
1224 fw_notify("failed to alloc orb\n");
1225 return SCSI_MLQUEUE_HOST_BUSY;
1228 /* Initialize rcode to something not RCODE_COMPLETE. */
1229 orb->base.rcode = -1;
1230 kref_init(&orb->base.kref);
1232 orb->lu = lu;
1233 orb->done = done;
1234 orb->cmd = cmd;
1236 orb->request.next.high = SBP2_ORB_NULL;
1237 orb->request.next.low = 0x0;
1239 * At speed 100 we can do 512 bytes per packet, at speed 200,
1240 * 1024 bytes per packet etc. The SBP-2 max_payload field
1241 * specifies the max payload size as 2 ^ (max_payload + 2), so
1242 * if we set this to max_speed + 7, we get the right value.
1244 max_payload = min(device->max_speed + 7,
1245 device->card->max_receive - 1);
1246 orb->request.misc =
1247 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1248 COMMAND_ORB_SPEED(device->max_speed) |
1249 COMMAND_ORB_NOTIFY;
1251 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1252 orb->request.misc |=
1253 COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1254 else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1255 orb->request.misc |=
1256 COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1258 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1259 goto out;
1261 fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1263 memset(orb->request.command_block,
1264 0, sizeof(orb->request.command_block));
1265 memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1267 orb->base.callback = complete_command_orb;
1268 orb->base.request_bus =
1269 dma_map_single(device->card->device, &orb->request,
1270 sizeof(orb->request), DMA_TO_DEVICE);
1271 if (dma_mapping_error(orb->base.request_bus))
1272 goto out;
1274 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1275 lu->command_block_agent_address + SBP2_ORB_POINTER);
1276 retval = 0;
1277 out:
1278 kref_put(&orb->base.kref, free_orb);
1279 return retval;
1282 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1284 struct sbp2_logical_unit *lu = sdev->hostdata;
1286 sdev->allow_restart = 1;
1289 * Update the dma alignment (minimum alignment requirements for
1290 * start and end of DMA transfers) to be a sector
1292 blk_queue_update_dma_alignment(sdev->request_queue, 511);
1294 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1295 sdev->inquiry_len = 36;
1297 return 0;
1300 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1302 struct sbp2_logical_unit *lu = sdev->hostdata;
1304 sdev->use_10_for_rw = 1;
1306 if (sdev->type == TYPE_ROM)
1307 sdev->use_10_for_ms = 1;
1309 if (sdev->type == TYPE_DISK &&
1310 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1311 sdev->skip_ms_page_8 = 1;
1313 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1314 sdev->fix_capacity = 1;
1316 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1317 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1319 return 0;
1323 * Called by scsi stack when something has really gone wrong. Usually
1324 * called when a command has timed-out for some reason.
1326 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1328 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1330 fw_notify("sbp2_scsi_abort\n");
1331 sbp2_agent_reset(lu);
1332 sbp2_cancel_orbs(lu);
1334 return SUCCESS;
1338 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1339 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1341 * This is the concatenation of target port identifier and logical unit
1342 * identifier as per SAM-2...SAM-4 annex A.
1344 static ssize_t
1345 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1346 char *buf)
1348 struct scsi_device *sdev = to_scsi_device(dev);
1349 struct sbp2_logical_unit *lu;
1350 struct fw_device *device;
1352 if (!sdev)
1353 return 0;
1355 lu = sdev->hostdata;
1356 device = fw_device(lu->tgt->unit->device.parent);
1358 return sprintf(buf, "%08x%08x:%06x:%04x\n",
1359 device->config_rom[3], device->config_rom[4],
1360 lu->tgt->directory_id, lu->lun);
1363 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1365 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1366 &dev_attr_ieee1394_id,
1367 NULL
1370 static struct scsi_host_template scsi_driver_template = {
1371 .module = THIS_MODULE,
1372 .name = "SBP-2 IEEE-1394",
1373 .proc_name = sbp2_driver_name,
1374 .queuecommand = sbp2_scsi_queuecommand,
1375 .slave_alloc = sbp2_scsi_slave_alloc,
1376 .slave_configure = sbp2_scsi_slave_configure,
1377 .eh_abort_handler = sbp2_scsi_abort,
1378 .this_id = -1,
1379 .sg_tablesize = SG_ALL,
1380 .use_clustering = ENABLE_CLUSTERING,
1381 .cmd_per_lun = 1,
1382 .can_queue = 1,
1383 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1386 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1387 MODULE_DESCRIPTION("SCSI over IEEE1394");
1388 MODULE_LICENSE("GPL");
1389 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1391 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1392 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1393 MODULE_ALIAS("sbp2");
1394 #endif
1396 static int __init sbp2_init(void)
1398 sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1399 if (!sbp2_wq)
1400 return -ENOMEM;
1402 return driver_register(&sbp2_driver.driver);
1405 static void __exit sbp2_cleanup(void)
1407 driver_unregister(&sbp2_driver.driver);
1408 destroy_workqueue(sbp2_wq);
1411 module_init(sbp2_init);
1412 module_exit(sbp2_cleanup);