arm64: KVM: add trap handlers for AArch32 debug registers
[linux-2.6/btrfs-unstable.git] / arch / arm64 / kvm / sys_regs.c
bloba4fd5267c65b4565db177eac4d0143805f84eb30
1 /*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
23 #include <linux/mm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/uaccess.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_host.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_coproc.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cputype.h>
33 #include <asm/debug-monitors.h>
34 #include <trace/events/kvm.h>
36 #include "sys_regs.h"
39 * All of this file is extremly similar to the ARM coproc.c, but the
40 * types are different. My gut feeling is that it should be pretty
41 * easy to merge, but that would be an ABI breakage -- again. VFP
42 * would also need to be abstracted.
44 * For AArch32, we only take care of what is being trapped. Anything
45 * that has to do with init and userspace access has to go via the
46 * 64bit interface.
49 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
50 static u32 cache_levels;
52 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
53 #define CSSELR_MAX 12
55 /* Which cache CCSIDR represents depends on CSSELR value. */
56 static u32 get_ccsidr(u32 csselr)
58 u32 ccsidr;
60 /* Make sure noone else changes CSSELR during this! */
61 local_irq_disable();
62 /* Put value into CSSELR */
63 asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
64 isb();
65 /* Read result out of CCSIDR */
66 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
67 local_irq_enable();
69 return ccsidr;
72 static void do_dc_cisw(u32 val)
74 asm volatile("dc cisw, %x0" : : "r" (val));
75 dsb(ish);
78 static void do_dc_csw(u32 val)
80 asm volatile("dc csw, %x0" : : "r" (val));
81 dsb(ish);
84 /* See note at ARM ARM B1.14.4 */
85 static bool access_dcsw(struct kvm_vcpu *vcpu,
86 const struct sys_reg_params *p,
87 const struct sys_reg_desc *r)
89 unsigned long val;
90 int cpu;
92 if (!p->is_write)
93 return read_from_write_only(vcpu, p);
95 cpu = get_cpu();
97 cpumask_setall(&vcpu->arch.require_dcache_flush);
98 cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
100 /* If we were already preempted, take the long way around */
101 if (cpu != vcpu->arch.last_pcpu) {
102 flush_cache_all();
103 goto done;
106 val = *vcpu_reg(vcpu, p->Rt);
108 switch (p->CRm) {
109 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
110 case 14: /* DCCISW */
111 do_dc_cisw(val);
112 break;
114 case 10: /* DCCSW */
115 do_dc_csw(val);
116 break;
119 done:
120 put_cpu();
122 return true;
126 * Generic accessor for VM registers. Only called as long as HCR_TVM
127 * is set.
129 static bool access_vm_reg(struct kvm_vcpu *vcpu,
130 const struct sys_reg_params *p,
131 const struct sys_reg_desc *r)
133 unsigned long val;
135 BUG_ON(!p->is_write);
137 val = *vcpu_reg(vcpu, p->Rt);
138 if (!p->is_aarch32 || !p->is_32bit)
139 vcpu_sys_reg(vcpu, r->reg) = val;
140 else
141 vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
143 return true;
147 * SCTLR_EL1 accessor. Only called as long as HCR_TVM is set. If the
148 * guest enables the MMU, we stop trapping the VM sys_regs and leave
149 * it in complete control of the caches.
151 static bool access_sctlr(struct kvm_vcpu *vcpu,
152 const struct sys_reg_params *p,
153 const struct sys_reg_desc *r)
155 access_vm_reg(vcpu, p, r);
157 if (vcpu_has_cache_enabled(vcpu)) { /* MMU+Caches enabled? */
158 vcpu->arch.hcr_el2 &= ~HCR_TVM;
159 stage2_flush_vm(vcpu->kvm);
162 return true;
165 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
166 const struct sys_reg_params *p,
167 const struct sys_reg_desc *r)
169 if (p->is_write)
170 return ignore_write(vcpu, p);
171 else
172 return read_zero(vcpu, p);
175 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
176 const struct sys_reg_params *p,
177 const struct sys_reg_desc *r)
179 if (p->is_write) {
180 return ignore_write(vcpu, p);
181 } else {
182 *vcpu_reg(vcpu, p->Rt) = (1 << 3);
183 return true;
187 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
188 const struct sys_reg_params *p,
189 const struct sys_reg_desc *r)
191 if (p->is_write) {
192 return ignore_write(vcpu, p);
193 } else {
194 u32 val;
195 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
196 *vcpu_reg(vcpu, p->Rt) = val;
197 return true;
202 * We want to avoid world-switching all the DBG registers all the
203 * time:
205 * - If we've touched any debug register, it is likely that we're
206 * going to touch more of them. It then makes sense to disable the
207 * traps and start doing the save/restore dance
208 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
209 * then mandatory to save/restore the registers, as the guest
210 * depends on them.
212 * For this, we use a DIRTY bit, indicating the guest has modified the
213 * debug registers, used as follow:
215 * On guest entry:
216 * - If the dirty bit is set (because we're coming back from trapping),
217 * disable the traps, save host registers, restore guest registers.
218 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
219 * set the dirty bit, disable the traps, save host registers,
220 * restore guest registers.
221 * - Otherwise, enable the traps
223 * On guest exit:
224 * - If the dirty bit is set, save guest registers, restore host
225 * registers and clear the dirty bit. This ensure that the host can
226 * now use the debug registers.
228 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
229 const struct sys_reg_params *p,
230 const struct sys_reg_desc *r)
232 if (p->is_write) {
233 vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
234 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
235 } else {
236 *vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg);
239 return true;
242 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
244 u64 amair;
246 asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
247 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
250 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
253 * Simply map the vcpu_id into the Aff0 field of the MPIDR.
255 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
258 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
259 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
260 /* DBGBVRn_EL1 */ \
261 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
262 trap_debug_regs, reset_val, (DBGBVR0_EL1 + (n)), 0 }, \
263 /* DBGBCRn_EL1 */ \
264 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
265 trap_debug_regs, reset_val, (DBGBCR0_EL1 + (n)), 0 }, \
266 /* DBGWVRn_EL1 */ \
267 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
268 trap_debug_regs, reset_val, (DBGWVR0_EL1 + (n)), 0 }, \
269 /* DBGWCRn_EL1 */ \
270 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
271 trap_debug_regs, reset_val, (DBGWCR0_EL1 + (n)), 0 }
274 * Architected system registers.
275 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
277 * We could trap ID_DFR0 and tell the guest we don't support performance
278 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
279 * NAKed, so it will read the PMCR anyway.
281 * Therefore we tell the guest we have 0 counters. Unfortunately, we
282 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
283 * all PM registers, which doesn't crash the guest kernel at least.
285 * Debug handling: We do trap most, if not all debug related system
286 * registers. The implementation is good enough to ensure that a guest
287 * can use these with minimal performance degradation. The drawback is
288 * that we don't implement any of the external debug, none of the
289 * OSlock protocol. This should be revisited if we ever encounter a
290 * more demanding guest...
292 static const struct sys_reg_desc sys_reg_descs[] = {
293 /* DC ISW */
294 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
295 access_dcsw },
296 /* DC CSW */
297 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
298 access_dcsw },
299 /* DC CISW */
300 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
301 access_dcsw },
303 DBG_BCR_BVR_WCR_WVR_EL1(0),
304 DBG_BCR_BVR_WCR_WVR_EL1(1),
305 /* MDCCINT_EL1 */
306 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
307 trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
308 /* MDSCR_EL1 */
309 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
310 trap_debug_regs, reset_val, MDSCR_EL1, 0 },
311 DBG_BCR_BVR_WCR_WVR_EL1(2),
312 DBG_BCR_BVR_WCR_WVR_EL1(3),
313 DBG_BCR_BVR_WCR_WVR_EL1(4),
314 DBG_BCR_BVR_WCR_WVR_EL1(5),
315 DBG_BCR_BVR_WCR_WVR_EL1(6),
316 DBG_BCR_BVR_WCR_WVR_EL1(7),
317 DBG_BCR_BVR_WCR_WVR_EL1(8),
318 DBG_BCR_BVR_WCR_WVR_EL1(9),
319 DBG_BCR_BVR_WCR_WVR_EL1(10),
320 DBG_BCR_BVR_WCR_WVR_EL1(11),
321 DBG_BCR_BVR_WCR_WVR_EL1(12),
322 DBG_BCR_BVR_WCR_WVR_EL1(13),
323 DBG_BCR_BVR_WCR_WVR_EL1(14),
324 DBG_BCR_BVR_WCR_WVR_EL1(15),
326 /* MDRAR_EL1 */
327 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
328 trap_raz_wi },
329 /* OSLAR_EL1 */
330 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
331 trap_raz_wi },
332 /* OSLSR_EL1 */
333 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
334 trap_oslsr_el1 },
335 /* OSDLR_EL1 */
336 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
337 trap_raz_wi },
338 /* DBGPRCR_EL1 */
339 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
340 trap_raz_wi },
341 /* DBGCLAIMSET_EL1 */
342 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
343 trap_raz_wi },
344 /* DBGCLAIMCLR_EL1 */
345 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
346 trap_raz_wi },
347 /* DBGAUTHSTATUS_EL1 */
348 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
349 trap_dbgauthstatus_el1 },
351 /* TEECR32_EL1 */
352 { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
353 NULL, reset_val, TEECR32_EL1, 0 },
354 /* TEEHBR32_EL1 */
355 { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
356 NULL, reset_val, TEEHBR32_EL1, 0 },
358 /* MDCCSR_EL1 */
359 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
360 trap_raz_wi },
361 /* DBGDTR_EL0 */
362 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
363 trap_raz_wi },
364 /* DBGDTR[TR]X_EL0 */
365 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
366 trap_raz_wi },
368 /* DBGVCR32_EL2 */
369 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
370 NULL, reset_val, DBGVCR32_EL2, 0 },
372 /* MPIDR_EL1 */
373 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
374 NULL, reset_mpidr, MPIDR_EL1 },
375 /* SCTLR_EL1 */
376 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
377 access_sctlr, reset_val, SCTLR_EL1, 0x00C50078 },
378 /* CPACR_EL1 */
379 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
380 NULL, reset_val, CPACR_EL1, 0 },
381 /* TTBR0_EL1 */
382 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
383 access_vm_reg, reset_unknown, TTBR0_EL1 },
384 /* TTBR1_EL1 */
385 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
386 access_vm_reg, reset_unknown, TTBR1_EL1 },
387 /* TCR_EL1 */
388 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
389 access_vm_reg, reset_val, TCR_EL1, 0 },
391 /* AFSR0_EL1 */
392 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
393 access_vm_reg, reset_unknown, AFSR0_EL1 },
394 /* AFSR1_EL1 */
395 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
396 access_vm_reg, reset_unknown, AFSR1_EL1 },
397 /* ESR_EL1 */
398 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
399 access_vm_reg, reset_unknown, ESR_EL1 },
400 /* FAR_EL1 */
401 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
402 access_vm_reg, reset_unknown, FAR_EL1 },
403 /* PAR_EL1 */
404 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
405 NULL, reset_unknown, PAR_EL1 },
407 /* PMINTENSET_EL1 */
408 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
409 trap_raz_wi },
410 /* PMINTENCLR_EL1 */
411 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
412 trap_raz_wi },
414 /* MAIR_EL1 */
415 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
416 access_vm_reg, reset_unknown, MAIR_EL1 },
417 /* AMAIR_EL1 */
418 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
419 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
421 /* VBAR_EL1 */
422 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
423 NULL, reset_val, VBAR_EL1, 0 },
424 /* CONTEXTIDR_EL1 */
425 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
426 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
427 /* TPIDR_EL1 */
428 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
429 NULL, reset_unknown, TPIDR_EL1 },
431 /* CNTKCTL_EL1 */
432 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
433 NULL, reset_val, CNTKCTL_EL1, 0},
435 /* CSSELR_EL1 */
436 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
437 NULL, reset_unknown, CSSELR_EL1 },
439 /* PMCR_EL0 */
440 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
441 trap_raz_wi },
442 /* PMCNTENSET_EL0 */
443 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
444 trap_raz_wi },
445 /* PMCNTENCLR_EL0 */
446 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
447 trap_raz_wi },
448 /* PMOVSCLR_EL0 */
449 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
450 trap_raz_wi },
451 /* PMSWINC_EL0 */
452 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
453 trap_raz_wi },
454 /* PMSELR_EL0 */
455 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
456 trap_raz_wi },
457 /* PMCEID0_EL0 */
458 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
459 trap_raz_wi },
460 /* PMCEID1_EL0 */
461 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
462 trap_raz_wi },
463 /* PMCCNTR_EL0 */
464 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
465 trap_raz_wi },
466 /* PMXEVTYPER_EL0 */
467 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
468 trap_raz_wi },
469 /* PMXEVCNTR_EL0 */
470 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
471 trap_raz_wi },
472 /* PMUSERENR_EL0 */
473 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
474 trap_raz_wi },
475 /* PMOVSSET_EL0 */
476 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
477 trap_raz_wi },
479 /* TPIDR_EL0 */
480 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
481 NULL, reset_unknown, TPIDR_EL0 },
482 /* TPIDRRO_EL0 */
483 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
484 NULL, reset_unknown, TPIDRRO_EL0 },
486 /* DACR32_EL2 */
487 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
488 NULL, reset_unknown, DACR32_EL2 },
489 /* IFSR32_EL2 */
490 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
491 NULL, reset_unknown, IFSR32_EL2 },
492 /* FPEXC32_EL2 */
493 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
494 NULL, reset_val, FPEXC32_EL2, 0x70 },
497 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
498 const struct sys_reg_params *p,
499 const struct sys_reg_desc *r)
501 if (p->is_write) {
502 return ignore_write(vcpu, p);
503 } else {
504 u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
505 u64 pfr = read_cpuid(ID_AA64PFR0_EL1);
506 u32 el3 = !!((pfr >> 12) & 0xf);
508 *vcpu_reg(vcpu, p->Rt) = ((((dfr >> 20) & 0xf) << 28) |
509 (((dfr >> 12) & 0xf) << 24) |
510 (((dfr >> 28) & 0xf) << 20) |
511 (6 << 16) | (el3 << 14) | (el3 << 12));
512 return true;
516 static bool trap_debug32(struct kvm_vcpu *vcpu,
517 const struct sys_reg_params *p,
518 const struct sys_reg_desc *r)
520 if (p->is_write) {
521 vcpu_cp14(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
522 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
523 } else {
524 *vcpu_reg(vcpu, p->Rt) = vcpu_cp14(vcpu, r->reg);
527 return true;
530 #define DBG_BCR_BVR_WCR_WVR(n) \
531 /* DBGBVRn */ \
532 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_debug32, \
533 NULL, (cp14_DBGBVR0 + (n) * 2) }, \
534 /* DBGBCRn */ \
535 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_debug32, \
536 NULL, (cp14_DBGBCR0 + (n) * 2) }, \
537 /* DBGWVRn */ \
538 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_debug32, \
539 NULL, (cp14_DBGWVR0 + (n) * 2) }, \
540 /* DBGWCRn */ \
541 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_debug32, \
542 NULL, (cp14_DBGWCR0 + (n) * 2) }
544 #define DBGBXVR(n) \
545 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_debug32, \
546 NULL, cp14_DBGBXVR0 + n * 2 }
549 * Trapped cp14 registers. We generally ignore most of the external
550 * debug, on the principle that they don't really make sense to a
551 * guest. Revisit this one day, whould this principle change.
553 static const struct sys_reg_desc cp14_regs[] = {
554 /* DBGIDR */
555 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
556 /* DBGDTRRXext */
557 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
559 DBG_BCR_BVR_WCR_WVR(0),
560 /* DBGDSCRint */
561 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
562 DBG_BCR_BVR_WCR_WVR(1),
563 /* DBGDCCINT */
564 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
565 /* DBGDSCRext */
566 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
567 DBG_BCR_BVR_WCR_WVR(2),
568 /* DBGDTR[RT]Xint */
569 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
570 /* DBGDTR[RT]Xext */
571 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
572 DBG_BCR_BVR_WCR_WVR(3),
573 DBG_BCR_BVR_WCR_WVR(4),
574 DBG_BCR_BVR_WCR_WVR(5),
575 /* DBGWFAR */
576 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
577 /* DBGOSECCR */
578 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
579 DBG_BCR_BVR_WCR_WVR(6),
580 /* DBGVCR */
581 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
582 DBG_BCR_BVR_WCR_WVR(7),
583 DBG_BCR_BVR_WCR_WVR(8),
584 DBG_BCR_BVR_WCR_WVR(9),
585 DBG_BCR_BVR_WCR_WVR(10),
586 DBG_BCR_BVR_WCR_WVR(11),
587 DBG_BCR_BVR_WCR_WVR(12),
588 DBG_BCR_BVR_WCR_WVR(13),
589 DBG_BCR_BVR_WCR_WVR(14),
590 DBG_BCR_BVR_WCR_WVR(15),
592 /* DBGDRAR (32bit) */
593 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
595 DBGBXVR(0),
596 /* DBGOSLAR */
597 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
598 DBGBXVR(1),
599 /* DBGOSLSR */
600 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
601 DBGBXVR(2),
602 DBGBXVR(3),
603 /* DBGOSDLR */
604 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
605 DBGBXVR(4),
606 /* DBGPRCR */
607 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
608 DBGBXVR(5),
609 DBGBXVR(6),
610 DBGBXVR(7),
611 DBGBXVR(8),
612 DBGBXVR(9),
613 DBGBXVR(10),
614 DBGBXVR(11),
615 DBGBXVR(12),
616 DBGBXVR(13),
617 DBGBXVR(14),
618 DBGBXVR(15),
620 /* DBGDSAR (32bit) */
621 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
623 /* DBGDEVID2 */
624 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
625 /* DBGDEVID1 */
626 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
627 /* DBGDEVID */
628 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
629 /* DBGCLAIMSET */
630 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
631 /* DBGCLAIMCLR */
632 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
633 /* DBGAUTHSTATUS */
634 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
637 /* Trapped cp14 64bit registers */
638 static const struct sys_reg_desc cp14_64_regs[] = {
639 /* DBGDRAR (64bit) */
640 { Op1( 0), CRm( 1), .access = trap_raz_wi },
642 /* DBGDSAR (64bit) */
643 { Op1( 0), CRm( 2), .access = trap_raz_wi },
647 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
648 * depending on the way they are accessed (as a 32bit or a 64bit
649 * register).
651 static const struct sys_reg_desc cp15_regs[] = {
652 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_sctlr, NULL, c1_SCTLR },
653 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
654 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
655 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
656 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
657 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
658 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
659 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
660 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
661 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
662 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
665 * DC{C,I,CI}SW operations:
667 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
668 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
669 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
671 /* PMU */
672 { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
673 { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
674 { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
675 { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
676 { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
677 { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
678 { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
679 { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
680 { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
681 { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
682 { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
683 { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
684 { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
686 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
687 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
688 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
689 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
690 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
693 static const struct sys_reg_desc cp15_64_regs[] = {
694 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
695 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
698 /* Target specific emulation tables */
699 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
701 void kvm_register_target_sys_reg_table(unsigned int target,
702 struct kvm_sys_reg_target_table *table)
704 target_tables[target] = table;
707 /* Get specific register table for this target. */
708 static const struct sys_reg_desc *get_target_table(unsigned target,
709 bool mode_is_64,
710 size_t *num)
712 struct kvm_sys_reg_target_table *table;
714 table = target_tables[target];
715 if (mode_is_64) {
716 *num = table->table64.num;
717 return table->table64.table;
718 } else {
719 *num = table->table32.num;
720 return table->table32.table;
724 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
725 const struct sys_reg_desc table[],
726 unsigned int num)
728 unsigned int i;
730 for (i = 0; i < num; i++) {
731 const struct sys_reg_desc *r = &table[i];
733 if (params->Op0 != r->Op0)
734 continue;
735 if (params->Op1 != r->Op1)
736 continue;
737 if (params->CRn != r->CRn)
738 continue;
739 if (params->CRm != r->CRm)
740 continue;
741 if (params->Op2 != r->Op2)
742 continue;
744 return r;
746 return NULL;
749 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
751 kvm_inject_undefined(vcpu);
752 return 1;
756 * emulate_cp -- tries to match a sys_reg access in a handling table, and
757 * call the corresponding trap handler.
759 * @params: pointer to the descriptor of the access
760 * @table: array of trap descriptors
761 * @num: size of the trap descriptor array
763 * Return 0 if the access has been handled, and -1 if not.
765 static int emulate_cp(struct kvm_vcpu *vcpu,
766 const struct sys_reg_params *params,
767 const struct sys_reg_desc *table,
768 size_t num)
770 const struct sys_reg_desc *r;
772 if (!table)
773 return -1; /* Not handled */
775 r = find_reg(params, table, num);
777 if (r) {
779 * Not having an accessor means that we have
780 * configured a trap that we don't know how to
781 * handle. This certainly qualifies as a gross bug
782 * that should be fixed right away.
784 BUG_ON(!r->access);
786 if (likely(r->access(vcpu, params, r))) {
787 /* Skip instruction, since it was emulated */
788 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
791 /* Handled */
792 return 0;
795 /* Not handled */
796 return -1;
799 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
800 struct sys_reg_params *params)
802 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
803 int cp;
805 switch(hsr_ec) {
806 case ESR_EL2_EC_CP15_32:
807 case ESR_EL2_EC_CP15_64:
808 cp = 15;
809 break;
810 case ESR_EL2_EC_CP14_MR:
811 case ESR_EL2_EC_CP14_64:
812 cp = 14;
813 break;
814 default:
815 WARN_ON((cp = -1));
818 kvm_err("Unsupported guest CP%d access at: %08lx\n",
819 cp, *vcpu_pc(vcpu));
820 print_sys_reg_instr(params);
821 kvm_inject_undefined(vcpu);
825 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
826 * @vcpu: The VCPU pointer
827 * @run: The kvm_run struct
829 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
830 const struct sys_reg_desc *global,
831 size_t nr_global,
832 const struct sys_reg_desc *target_specific,
833 size_t nr_specific)
835 struct sys_reg_params params;
836 u32 hsr = kvm_vcpu_get_hsr(vcpu);
837 int Rt2 = (hsr >> 10) & 0xf;
839 params.is_aarch32 = true;
840 params.is_32bit = false;
841 params.CRm = (hsr >> 1) & 0xf;
842 params.Rt = (hsr >> 5) & 0xf;
843 params.is_write = ((hsr & 1) == 0);
845 params.Op0 = 0;
846 params.Op1 = (hsr >> 16) & 0xf;
847 params.Op2 = 0;
848 params.CRn = 0;
851 * Massive hack here. Store Rt2 in the top 32bits so we only
852 * have one register to deal with. As we use the same trap
853 * backends between AArch32 and AArch64, we get away with it.
855 if (params.is_write) {
856 u64 val = *vcpu_reg(vcpu, params.Rt);
857 val &= 0xffffffff;
858 val |= *vcpu_reg(vcpu, Rt2) << 32;
859 *vcpu_reg(vcpu, params.Rt) = val;
862 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
863 goto out;
864 if (!emulate_cp(vcpu, &params, global, nr_global))
865 goto out;
867 unhandled_cp_access(vcpu, &params);
869 out:
870 /* Do the opposite hack for the read side */
871 if (!params.is_write) {
872 u64 val = *vcpu_reg(vcpu, params.Rt);
873 val >>= 32;
874 *vcpu_reg(vcpu, Rt2) = val;
877 return 1;
881 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
882 * @vcpu: The VCPU pointer
883 * @run: The kvm_run struct
885 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
886 const struct sys_reg_desc *global,
887 size_t nr_global,
888 const struct sys_reg_desc *target_specific,
889 size_t nr_specific)
891 struct sys_reg_params params;
892 u32 hsr = kvm_vcpu_get_hsr(vcpu);
894 params.is_aarch32 = true;
895 params.is_32bit = true;
896 params.CRm = (hsr >> 1) & 0xf;
897 params.Rt = (hsr >> 5) & 0xf;
898 params.is_write = ((hsr & 1) == 0);
899 params.CRn = (hsr >> 10) & 0xf;
900 params.Op0 = 0;
901 params.Op1 = (hsr >> 14) & 0x7;
902 params.Op2 = (hsr >> 17) & 0x7;
904 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
905 return 1;
906 if (!emulate_cp(vcpu, &params, global, nr_global))
907 return 1;
909 unhandled_cp_access(vcpu, &params);
910 return 1;
913 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
915 const struct sys_reg_desc *target_specific;
916 size_t num;
918 target_specific = get_target_table(vcpu->arch.target, false, &num);
919 return kvm_handle_cp_64(vcpu,
920 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
921 target_specific, num);
924 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
926 const struct sys_reg_desc *target_specific;
927 size_t num;
929 target_specific = get_target_table(vcpu->arch.target, false, &num);
930 return kvm_handle_cp_32(vcpu,
931 cp15_regs, ARRAY_SIZE(cp15_regs),
932 target_specific, num);
935 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
937 return kvm_handle_cp_64(vcpu,
938 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
939 NULL, 0);
942 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
944 return kvm_handle_cp_32(vcpu,
945 cp14_regs, ARRAY_SIZE(cp14_regs),
946 NULL, 0);
949 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
950 const struct sys_reg_params *params)
952 size_t num;
953 const struct sys_reg_desc *table, *r;
955 table = get_target_table(vcpu->arch.target, true, &num);
957 /* Search target-specific then generic table. */
958 r = find_reg(params, table, num);
959 if (!r)
960 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
962 if (likely(r)) {
964 * Not having an accessor means that we have
965 * configured a trap that we don't know how to
966 * handle. This certainly qualifies as a gross bug
967 * that should be fixed right away.
969 BUG_ON(!r->access);
971 if (likely(r->access(vcpu, params, r))) {
972 /* Skip instruction, since it was emulated */
973 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
974 return 1;
976 /* If access function fails, it should complain. */
977 } else {
978 kvm_err("Unsupported guest sys_reg access at: %lx\n",
979 *vcpu_pc(vcpu));
980 print_sys_reg_instr(params);
982 kvm_inject_undefined(vcpu);
983 return 1;
986 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
987 const struct sys_reg_desc *table, size_t num)
989 unsigned long i;
991 for (i = 0; i < num; i++)
992 if (table[i].reset)
993 table[i].reset(vcpu, &table[i]);
997 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
998 * @vcpu: The VCPU pointer
999 * @run: The kvm_run struct
1001 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1003 struct sys_reg_params params;
1004 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1006 params.is_aarch32 = false;
1007 params.is_32bit = false;
1008 params.Op0 = (esr >> 20) & 3;
1009 params.Op1 = (esr >> 14) & 0x7;
1010 params.CRn = (esr >> 10) & 0xf;
1011 params.CRm = (esr >> 1) & 0xf;
1012 params.Op2 = (esr >> 17) & 0x7;
1013 params.Rt = (esr >> 5) & 0x1f;
1014 params.is_write = !(esr & 1);
1016 return emulate_sys_reg(vcpu, &params);
1019 /******************************************************************************
1020 * Userspace API
1021 *****************************************************************************/
1023 static bool index_to_params(u64 id, struct sys_reg_params *params)
1025 switch (id & KVM_REG_SIZE_MASK) {
1026 case KVM_REG_SIZE_U64:
1027 /* Any unused index bits means it's not valid. */
1028 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1029 | KVM_REG_ARM_COPROC_MASK
1030 | KVM_REG_ARM64_SYSREG_OP0_MASK
1031 | KVM_REG_ARM64_SYSREG_OP1_MASK
1032 | KVM_REG_ARM64_SYSREG_CRN_MASK
1033 | KVM_REG_ARM64_SYSREG_CRM_MASK
1034 | KVM_REG_ARM64_SYSREG_OP2_MASK))
1035 return false;
1036 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1037 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1038 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1039 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1040 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1041 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1042 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1043 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1044 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1045 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1046 return true;
1047 default:
1048 return false;
1052 /* Decode an index value, and find the sys_reg_desc entry. */
1053 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1054 u64 id)
1056 size_t num;
1057 const struct sys_reg_desc *table, *r;
1058 struct sys_reg_params params;
1060 /* We only do sys_reg for now. */
1061 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1062 return NULL;
1064 if (!index_to_params(id, &params))
1065 return NULL;
1067 table = get_target_table(vcpu->arch.target, true, &num);
1068 r = find_reg(&params, table, num);
1069 if (!r)
1070 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1072 /* Not saved in the sys_reg array? */
1073 if (r && !r->reg)
1074 r = NULL;
1076 return r;
1080 * These are the invariant sys_reg registers: we let the guest see the
1081 * host versions of these, so they're part of the guest state.
1083 * A future CPU may provide a mechanism to present different values to
1084 * the guest, or a future kvm may trap them.
1087 #define FUNCTION_INVARIANT(reg) \
1088 static void get_##reg(struct kvm_vcpu *v, \
1089 const struct sys_reg_desc *r) \
1091 u64 val; \
1093 asm volatile("mrs %0, " __stringify(reg) "\n" \
1094 : "=r" (val)); \
1095 ((struct sys_reg_desc *)r)->val = val; \
1098 FUNCTION_INVARIANT(midr_el1)
1099 FUNCTION_INVARIANT(ctr_el0)
1100 FUNCTION_INVARIANT(revidr_el1)
1101 FUNCTION_INVARIANT(id_pfr0_el1)
1102 FUNCTION_INVARIANT(id_pfr1_el1)
1103 FUNCTION_INVARIANT(id_dfr0_el1)
1104 FUNCTION_INVARIANT(id_afr0_el1)
1105 FUNCTION_INVARIANT(id_mmfr0_el1)
1106 FUNCTION_INVARIANT(id_mmfr1_el1)
1107 FUNCTION_INVARIANT(id_mmfr2_el1)
1108 FUNCTION_INVARIANT(id_mmfr3_el1)
1109 FUNCTION_INVARIANT(id_isar0_el1)
1110 FUNCTION_INVARIANT(id_isar1_el1)
1111 FUNCTION_INVARIANT(id_isar2_el1)
1112 FUNCTION_INVARIANT(id_isar3_el1)
1113 FUNCTION_INVARIANT(id_isar4_el1)
1114 FUNCTION_INVARIANT(id_isar5_el1)
1115 FUNCTION_INVARIANT(clidr_el1)
1116 FUNCTION_INVARIANT(aidr_el1)
1118 /* ->val is filled in by kvm_sys_reg_table_init() */
1119 static struct sys_reg_desc invariant_sys_regs[] = {
1120 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1121 NULL, get_midr_el1 },
1122 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1123 NULL, get_revidr_el1 },
1124 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1125 NULL, get_id_pfr0_el1 },
1126 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1127 NULL, get_id_pfr1_el1 },
1128 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1129 NULL, get_id_dfr0_el1 },
1130 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1131 NULL, get_id_afr0_el1 },
1132 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1133 NULL, get_id_mmfr0_el1 },
1134 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1135 NULL, get_id_mmfr1_el1 },
1136 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1137 NULL, get_id_mmfr2_el1 },
1138 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1139 NULL, get_id_mmfr3_el1 },
1140 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1141 NULL, get_id_isar0_el1 },
1142 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1143 NULL, get_id_isar1_el1 },
1144 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1145 NULL, get_id_isar2_el1 },
1146 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1147 NULL, get_id_isar3_el1 },
1148 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1149 NULL, get_id_isar4_el1 },
1150 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1151 NULL, get_id_isar5_el1 },
1152 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1153 NULL, get_clidr_el1 },
1154 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1155 NULL, get_aidr_el1 },
1156 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1157 NULL, get_ctr_el0 },
1160 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1162 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1163 return -EFAULT;
1164 return 0;
1167 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1169 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1170 return -EFAULT;
1171 return 0;
1174 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1176 struct sys_reg_params params;
1177 const struct sys_reg_desc *r;
1179 if (!index_to_params(id, &params))
1180 return -ENOENT;
1182 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1183 if (!r)
1184 return -ENOENT;
1186 return reg_to_user(uaddr, &r->val, id);
1189 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1191 struct sys_reg_params params;
1192 const struct sys_reg_desc *r;
1193 int err;
1194 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1196 if (!index_to_params(id, &params))
1197 return -ENOENT;
1198 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1199 if (!r)
1200 return -ENOENT;
1202 err = reg_from_user(&val, uaddr, id);
1203 if (err)
1204 return err;
1206 /* This is what we mean by invariant: you can't change it. */
1207 if (r->val != val)
1208 return -EINVAL;
1210 return 0;
1213 static bool is_valid_cache(u32 val)
1215 u32 level, ctype;
1217 if (val >= CSSELR_MAX)
1218 return -ENOENT;
1220 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1221 level = (val >> 1);
1222 ctype = (cache_levels >> (level * 3)) & 7;
1224 switch (ctype) {
1225 case 0: /* No cache */
1226 return false;
1227 case 1: /* Instruction cache only */
1228 return (val & 1);
1229 case 2: /* Data cache only */
1230 case 4: /* Unified cache */
1231 return !(val & 1);
1232 case 3: /* Separate instruction and data caches */
1233 return true;
1234 default: /* Reserved: we can't know instruction or data. */
1235 return false;
1239 static int demux_c15_get(u64 id, void __user *uaddr)
1241 u32 val;
1242 u32 __user *uval = uaddr;
1244 /* Fail if we have unknown bits set. */
1245 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1246 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1247 return -ENOENT;
1249 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1250 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1251 if (KVM_REG_SIZE(id) != 4)
1252 return -ENOENT;
1253 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1254 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1255 if (!is_valid_cache(val))
1256 return -ENOENT;
1258 return put_user(get_ccsidr(val), uval);
1259 default:
1260 return -ENOENT;
1264 static int demux_c15_set(u64 id, void __user *uaddr)
1266 u32 val, newval;
1267 u32 __user *uval = uaddr;
1269 /* Fail if we have unknown bits set. */
1270 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1271 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1272 return -ENOENT;
1274 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1275 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1276 if (KVM_REG_SIZE(id) != 4)
1277 return -ENOENT;
1278 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1279 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1280 if (!is_valid_cache(val))
1281 return -ENOENT;
1283 if (get_user(newval, uval))
1284 return -EFAULT;
1286 /* This is also invariant: you can't change it. */
1287 if (newval != get_ccsidr(val))
1288 return -EINVAL;
1289 return 0;
1290 default:
1291 return -ENOENT;
1295 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1297 const struct sys_reg_desc *r;
1298 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1300 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1301 return demux_c15_get(reg->id, uaddr);
1303 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1304 return -ENOENT;
1306 r = index_to_sys_reg_desc(vcpu, reg->id);
1307 if (!r)
1308 return get_invariant_sys_reg(reg->id, uaddr);
1310 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1313 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1315 const struct sys_reg_desc *r;
1316 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1318 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1319 return demux_c15_set(reg->id, uaddr);
1321 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1322 return -ENOENT;
1324 r = index_to_sys_reg_desc(vcpu, reg->id);
1325 if (!r)
1326 return set_invariant_sys_reg(reg->id, uaddr);
1328 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1331 static unsigned int num_demux_regs(void)
1333 unsigned int i, count = 0;
1335 for (i = 0; i < CSSELR_MAX; i++)
1336 if (is_valid_cache(i))
1337 count++;
1339 return count;
1342 static int write_demux_regids(u64 __user *uindices)
1344 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1345 unsigned int i;
1347 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1348 for (i = 0; i < CSSELR_MAX; i++) {
1349 if (!is_valid_cache(i))
1350 continue;
1351 if (put_user(val | i, uindices))
1352 return -EFAULT;
1353 uindices++;
1355 return 0;
1358 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1360 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1361 KVM_REG_ARM64_SYSREG |
1362 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1363 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1364 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1365 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1366 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1369 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1371 if (!*uind)
1372 return true;
1374 if (put_user(sys_reg_to_index(reg), *uind))
1375 return false;
1377 (*uind)++;
1378 return true;
1381 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
1382 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1384 const struct sys_reg_desc *i1, *i2, *end1, *end2;
1385 unsigned int total = 0;
1386 size_t num;
1388 /* We check for duplicates here, to allow arch-specific overrides. */
1389 i1 = get_target_table(vcpu->arch.target, true, &num);
1390 end1 = i1 + num;
1391 i2 = sys_reg_descs;
1392 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1394 BUG_ON(i1 == end1 || i2 == end2);
1396 /* Walk carefully, as both tables may refer to the same register. */
1397 while (i1 || i2) {
1398 int cmp = cmp_sys_reg(i1, i2);
1399 /* target-specific overrides generic entry. */
1400 if (cmp <= 0) {
1401 /* Ignore registers we trap but don't save. */
1402 if (i1->reg) {
1403 if (!copy_reg_to_user(i1, &uind))
1404 return -EFAULT;
1405 total++;
1407 } else {
1408 /* Ignore registers we trap but don't save. */
1409 if (i2->reg) {
1410 if (!copy_reg_to_user(i2, &uind))
1411 return -EFAULT;
1412 total++;
1416 if (cmp <= 0 && ++i1 == end1)
1417 i1 = NULL;
1418 if (cmp >= 0 && ++i2 == end2)
1419 i2 = NULL;
1421 return total;
1424 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1426 return ARRAY_SIZE(invariant_sys_regs)
1427 + num_demux_regs()
1428 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1431 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1433 unsigned int i;
1434 int err;
1436 /* Then give them all the invariant registers' indices. */
1437 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1438 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1439 return -EFAULT;
1440 uindices++;
1443 err = walk_sys_regs(vcpu, uindices);
1444 if (err < 0)
1445 return err;
1446 uindices += err;
1448 return write_demux_regids(uindices);
1451 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
1453 unsigned int i;
1455 for (i = 1; i < n; i++) {
1456 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
1457 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
1458 return 1;
1462 return 0;
1465 void kvm_sys_reg_table_init(void)
1467 unsigned int i;
1468 struct sys_reg_desc clidr;
1470 /* Make sure tables are unique and in order. */
1471 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
1472 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
1473 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
1474 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1475 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
1476 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
1478 /* We abuse the reset function to overwrite the table itself. */
1479 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1480 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1483 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1485 * If software reads the Cache Type fields from Ctype1
1486 * upwards, once it has seen a value of 0b000, no caches
1487 * exist at further-out levels of the hierarchy. So, for
1488 * example, if Ctype3 is the first Cache Type field with a
1489 * value of 0b000, the values of Ctype4 to Ctype7 must be
1490 * ignored.
1492 get_clidr_el1(NULL, &clidr); /* Ugly... */
1493 cache_levels = clidr.val;
1494 for (i = 0; i < 7; i++)
1495 if (((cache_levels >> (i*3)) & 7) == 0)
1496 break;
1497 /* Clear all higher bits. */
1498 cache_levels &= (1 << (i*3))-1;
1502 * kvm_reset_sys_regs - sets system registers to reset value
1503 * @vcpu: The VCPU pointer
1505 * This function finds the right table above and sets the registers on the
1506 * virtual CPU struct to their architecturally defined reset values.
1508 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1510 size_t num;
1511 const struct sys_reg_desc *table;
1513 /* Catch someone adding a register without putting in reset entry. */
1514 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1516 /* Generic chip reset first (so target could override). */
1517 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1519 table = get_target_table(vcpu->arch.target, true, &num);
1520 reset_sys_reg_descs(vcpu, table, num);
1522 for (num = 1; num < NR_SYS_REGS; num++)
1523 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1524 panic("Didn't reset vcpu_sys_reg(%zi)", num);