x86: rename iommu_num_pages function to iommu_nr_pages
[linux-2.6/btrfs-unstable.git] / arch / powerpc / kernel / crash_dump.c
bloba323c9b32ee12f76604631a532e2c5dc85436aa1
1 /*
2 * Routines for doing kexec-based kdump.
4 * Copyright (C) 2005, IBM Corp.
6 * Created by: Michael Ellerman
8 * This source code is licensed under the GNU General Public License,
9 * Version 2. See the file COPYING for more details.
12 #undef DEBUG
14 #include <linux/crash_dump.h>
15 #include <linux/bootmem.h>
16 #include <linux/lmb.h>
17 #include <asm/code-patching.h>
18 #include <asm/kdump.h>
19 #include <asm/prom.h>
20 #include <asm/firmware.h>
21 #include <asm/uaccess.h>
23 #ifdef DEBUG
24 #include <asm/udbg.h>
25 #define DBG(fmt...) udbg_printf(fmt)
26 #else
27 #define DBG(fmt...)
28 #endif
30 void __init reserve_kdump_trampoline(void)
32 lmb_reserve(0, KDUMP_RESERVE_LIMIT);
35 static void __init create_trampoline(unsigned long addr)
37 unsigned int *p = (unsigned int *)addr;
39 /* The maximum range of a single instruction branch, is the current
40 * instruction's address + (32 MB - 4) bytes. For the trampoline we
41 * need to branch to current address + 32 MB. So we insert a nop at
42 * the trampoline address, then the next instruction (+ 4 bytes)
43 * does a branch to (32 MB - 4). The net effect is that when we
44 * branch to "addr" we jump to ("addr" + 32 MB). Although it requires
45 * two instructions it doesn't require any registers.
47 patch_instruction(p, PPC_NOP_INSTR);
48 patch_branch(++p, addr + PHYSICAL_START, 0);
51 void __init setup_kdump_trampoline(void)
53 unsigned long i;
55 DBG(" -> setup_kdump_trampoline()\n");
57 for (i = KDUMP_TRAMPOLINE_START; i < KDUMP_TRAMPOLINE_END; i += 8) {
58 create_trampoline(i);
61 #ifdef CONFIG_PPC_PSERIES
62 create_trampoline(__pa(system_reset_fwnmi) - PHYSICAL_START);
63 create_trampoline(__pa(machine_check_fwnmi) - PHYSICAL_START);
64 #endif /* CONFIG_PPC_PSERIES */
66 DBG(" <- setup_kdump_trampoline()\n");
69 #ifdef CONFIG_PROC_VMCORE
70 static int __init parse_elfcorehdr(char *p)
72 if (p)
73 elfcorehdr_addr = memparse(p, &p);
75 return 1;
77 __setup("elfcorehdr=", parse_elfcorehdr);
78 #endif
80 static int __init parse_savemaxmem(char *p)
82 if (p)
83 saved_max_pfn = (memparse(p, &p) >> PAGE_SHIFT) - 1;
85 return 1;
87 __setup("savemaxmem=", parse_savemaxmem);
90 static size_t copy_oldmem_vaddr(void *vaddr, char *buf, size_t csize,
91 unsigned long offset, int userbuf)
93 if (userbuf) {
94 if (copy_to_user((char __user *)buf, (vaddr + offset), csize))
95 return -EFAULT;
96 } else
97 memcpy(buf, (vaddr + offset), csize);
99 return csize;
103 * copy_oldmem_page - copy one page from "oldmem"
104 * @pfn: page frame number to be copied
105 * @buf: target memory address for the copy; this can be in kernel address
106 * space or user address space (see @userbuf)
107 * @csize: number of bytes to copy
108 * @offset: offset in bytes into the page (based on pfn) to begin the copy
109 * @userbuf: if set, @buf is in user address space, use copy_to_user(),
110 * otherwise @buf is in kernel address space, use memcpy().
112 * Copy a page from "oldmem". For this page, there is no pte mapped
113 * in the current kernel. We stitch up a pte, similar to kmap_atomic.
115 ssize_t copy_oldmem_page(unsigned long pfn, char *buf,
116 size_t csize, unsigned long offset, int userbuf)
118 void *vaddr;
120 if (!csize)
121 return 0;
123 csize = min(csize, PAGE_SIZE);
125 if (pfn < max_pfn) {
126 vaddr = __va(pfn << PAGE_SHIFT);
127 csize = copy_oldmem_vaddr(vaddr, buf, csize, offset, userbuf);
128 } else {
129 vaddr = __ioremap(pfn << PAGE_SHIFT, PAGE_SIZE, 0);
130 csize = copy_oldmem_vaddr(vaddr, buf, csize, offset, userbuf);
131 iounmap(vaddr);
134 return csize;