Btrfs: add tree modification log functions
[linux-2.6/btrfs-unstable.git] / fs / btrfs / ctree.c
blob72b9f97e2fdcff590d3ec96b86752a9874ebb620
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 *root, struct btrfs_key *ins_key,
32 struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
35 struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41 struct btrfs_path *path, int level, int slot);
43 struct btrfs_path *btrfs_alloc_path(void)
45 struct btrfs_path *path;
46 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
47 return path;
51 * set all locked nodes in the path to blocking locks. This should
52 * be done before scheduling
54 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
56 int i;
57 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
58 if (!p->nodes[i] || !p->locks[i])
59 continue;
60 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
61 if (p->locks[i] == BTRFS_READ_LOCK)
62 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
63 else if (p->locks[i] == BTRFS_WRITE_LOCK)
64 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
69 * reset all the locked nodes in the patch to spinning locks.
71 * held is used to keep lockdep happy, when lockdep is enabled
72 * we set held to a blocking lock before we go around and
73 * retake all the spinlocks in the path. You can safely use NULL
74 * for held
76 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
77 struct extent_buffer *held, int held_rw)
79 int i;
81 #ifdef CONFIG_DEBUG_LOCK_ALLOC
82 /* lockdep really cares that we take all of these spinlocks
83 * in the right order. If any of the locks in the path are not
84 * currently blocking, it is going to complain. So, make really
85 * really sure by forcing the path to blocking before we clear
86 * the path blocking.
88 if (held) {
89 btrfs_set_lock_blocking_rw(held, held_rw);
90 if (held_rw == BTRFS_WRITE_LOCK)
91 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
92 else if (held_rw == BTRFS_READ_LOCK)
93 held_rw = BTRFS_READ_LOCK_BLOCKING;
95 btrfs_set_path_blocking(p);
96 #endif
98 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
99 if (p->nodes[i] && p->locks[i]) {
100 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
101 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
102 p->locks[i] = BTRFS_WRITE_LOCK;
103 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
104 p->locks[i] = BTRFS_READ_LOCK;
108 #ifdef CONFIG_DEBUG_LOCK_ALLOC
109 if (held)
110 btrfs_clear_lock_blocking_rw(held, held_rw);
111 #endif
114 /* this also releases the path */
115 void btrfs_free_path(struct btrfs_path *p)
117 if (!p)
118 return;
119 btrfs_release_path(p);
120 kmem_cache_free(btrfs_path_cachep, p);
124 * path release drops references on the extent buffers in the path
125 * and it drops any locks held by this path
127 * It is safe to call this on paths that no locks or extent buffers held.
129 noinline void btrfs_release_path(struct btrfs_path *p)
131 int i;
133 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
134 p->slots[i] = 0;
135 if (!p->nodes[i])
136 continue;
137 if (p->locks[i]) {
138 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
139 p->locks[i] = 0;
141 free_extent_buffer(p->nodes[i]);
142 p->nodes[i] = NULL;
147 * safely gets a reference on the root node of a tree. A lock
148 * is not taken, so a concurrent writer may put a different node
149 * at the root of the tree. See btrfs_lock_root_node for the
150 * looping required.
152 * The extent buffer returned by this has a reference taken, so
153 * it won't disappear. It may stop being the root of the tree
154 * at any time because there are no locks held.
156 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
158 struct extent_buffer *eb;
160 while (1) {
161 rcu_read_lock();
162 eb = rcu_dereference(root->node);
165 * RCU really hurts here, we could free up the root node because
166 * it was cow'ed but we may not get the new root node yet so do
167 * the inc_not_zero dance and if it doesn't work then
168 * synchronize_rcu and try again.
170 if (atomic_inc_not_zero(&eb->refs)) {
171 rcu_read_unlock();
172 break;
174 rcu_read_unlock();
175 synchronize_rcu();
177 return eb;
180 /* loop around taking references on and locking the root node of the
181 * tree until you end up with a lock on the root. A locked buffer
182 * is returned, with a reference held.
184 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
186 struct extent_buffer *eb;
188 while (1) {
189 eb = btrfs_root_node(root);
190 btrfs_tree_lock(eb);
191 if (eb == root->node)
192 break;
193 btrfs_tree_unlock(eb);
194 free_extent_buffer(eb);
196 return eb;
199 /* loop around taking references on and locking the root node of the
200 * tree until you end up with a lock on the root. A locked buffer
201 * is returned, with a reference held.
203 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
205 struct extent_buffer *eb;
207 while (1) {
208 eb = btrfs_root_node(root);
209 btrfs_tree_read_lock(eb);
210 if (eb == root->node)
211 break;
212 btrfs_tree_read_unlock(eb);
213 free_extent_buffer(eb);
215 return eb;
218 /* cowonly root (everything not a reference counted cow subvolume), just get
219 * put onto a simple dirty list. transaction.c walks this to make sure they
220 * get properly updated on disk.
222 static void add_root_to_dirty_list(struct btrfs_root *root)
224 spin_lock(&root->fs_info->trans_lock);
225 if (root->track_dirty && list_empty(&root->dirty_list)) {
226 list_add(&root->dirty_list,
227 &root->fs_info->dirty_cowonly_roots);
229 spin_unlock(&root->fs_info->trans_lock);
233 * used by snapshot creation to make a copy of a root for a tree with
234 * a given objectid. The buffer with the new root node is returned in
235 * cow_ret, and this func returns zero on success or a negative error code.
237 int btrfs_copy_root(struct btrfs_trans_handle *trans,
238 struct btrfs_root *root,
239 struct extent_buffer *buf,
240 struct extent_buffer **cow_ret, u64 new_root_objectid)
242 struct extent_buffer *cow;
243 int ret = 0;
244 int level;
245 struct btrfs_disk_key disk_key;
247 WARN_ON(root->ref_cows && trans->transid !=
248 root->fs_info->running_transaction->transid);
249 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
251 level = btrfs_header_level(buf);
252 if (level == 0)
253 btrfs_item_key(buf, &disk_key, 0);
254 else
255 btrfs_node_key(buf, &disk_key, 0);
257 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
258 new_root_objectid, &disk_key, level,
259 buf->start, 0);
260 if (IS_ERR(cow))
261 return PTR_ERR(cow);
263 copy_extent_buffer(cow, buf, 0, 0, cow->len);
264 btrfs_set_header_bytenr(cow, cow->start);
265 btrfs_set_header_generation(cow, trans->transid);
266 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
267 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
268 BTRFS_HEADER_FLAG_RELOC);
269 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
270 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
271 else
272 btrfs_set_header_owner(cow, new_root_objectid);
274 write_extent_buffer(cow, root->fs_info->fsid,
275 (unsigned long)btrfs_header_fsid(cow),
276 BTRFS_FSID_SIZE);
278 WARN_ON(btrfs_header_generation(buf) > trans->transid);
279 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
280 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
281 else
282 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
284 if (ret)
285 return ret;
287 btrfs_mark_buffer_dirty(cow);
288 *cow_ret = cow;
289 return 0;
292 enum mod_log_op {
293 MOD_LOG_KEY_REPLACE,
294 MOD_LOG_KEY_ADD,
295 MOD_LOG_KEY_REMOVE,
296 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
297 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
298 MOD_LOG_MOVE_KEYS,
299 MOD_LOG_ROOT_REPLACE,
302 struct tree_mod_move {
303 int dst_slot;
304 int nr_items;
307 struct tree_mod_root {
308 u64 logical;
309 u8 level;
312 struct tree_mod_elem {
313 struct rb_node node;
314 u64 index; /* shifted logical */
315 struct seq_list elem;
316 enum mod_log_op op;
318 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
319 int slot;
321 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
322 u64 generation;
324 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
325 struct btrfs_disk_key key;
326 u64 blockptr;
328 /* this is used for op == MOD_LOG_MOVE_KEYS */
329 struct tree_mod_move move;
331 /* this is used for op == MOD_LOG_ROOT_REPLACE */
332 struct tree_mod_root old_root;
335 static inline void
336 __get_tree_mod_seq(struct btrfs_fs_info *fs_info, struct seq_list *elem)
338 elem->seq = atomic_inc_return(&fs_info->tree_mod_seq);
339 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
342 void btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
343 struct seq_list *elem)
345 elem->flags = 1;
346 spin_lock(&fs_info->tree_mod_seq_lock);
347 __get_tree_mod_seq(fs_info, elem);
348 spin_unlock(&fs_info->tree_mod_seq_lock);
351 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
352 struct seq_list *elem)
354 struct rb_root *tm_root;
355 struct rb_node *node;
356 struct rb_node *next;
357 struct seq_list *cur_elem;
358 struct tree_mod_elem *tm;
359 u64 min_seq = (u64)-1;
360 u64 seq_putting = elem->seq;
362 if (!seq_putting)
363 return;
365 BUG_ON(!(elem->flags & 1));
366 spin_lock(&fs_info->tree_mod_seq_lock);
367 list_del(&elem->list);
369 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
370 if ((cur_elem->flags & 1) && cur_elem->seq < min_seq) {
371 if (seq_putting > cur_elem->seq) {
373 * blocker with lower sequence number exists, we
374 * cannot remove anything from the log
376 goto out;
378 min_seq = cur_elem->seq;
383 * anything that's lower than the lowest existing (read: blocked)
384 * sequence number can be removed from the tree.
386 write_lock(&fs_info->tree_mod_log_lock);
387 tm_root = &fs_info->tree_mod_log;
388 for (node = rb_first(tm_root); node; node = next) {
389 next = rb_next(node);
390 tm = container_of(node, struct tree_mod_elem, node);
391 if (tm->elem.seq > min_seq)
392 continue;
393 rb_erase(node, tm_root);
394 list_del(&tm->elem.list);
395 kfree(tm);
397 write_unlock(&fs_info->tree_mod_log_lock);
398 out:
399 spin_unlock(&fs_info->tree_mod_seq_lock);
403 * key order of the log:
404 * index -> sequence
406 * the index is the shifted logical of the *new* root node for root replace
407 * operations, or the shifted logical of the affected block for all other
408 * operations.
410 static noinline int
411 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
413 struct rb_root *tm_root;
414 struct rb_node **new;
415 struct rb_node *parent = NULL;
416 struct tree_mod_elem *cur;
417 int ret = 0;
419 BUG_ON(!tm || !tm->elem.seq);
421 write_lock(&fs_info->tree_mod_log_lock);
422 tm_root = &fs_info->tree_mod_log;
423 new = &tm_root->rb_node;
424 while (*new) {
425 cur = container_of(*new, struct tree_mod_elem, node);
426 parent = *new;
427 if (cur->index < tm->index)
428 new = &((*new)->rb_left);
429 else if (cur->index > tm->index)
430 new = &((*new)->rb_right);
431 else if (cur->elem.seq < tm->elem.seq)
432 new = &((*new)->rb_left);
433 else if (cur->elem.seq > tm->elem.seq)
434 new = &((*new)->rb_right);
435 else {
436 kfree(tm);
437 ret = -EEXIST;
438 goto unlock;
442 rb_link_node(&tm->node, parent, new);
443 rb_insert_color(&tm->node, tm_root);
444 unlock:
445 write_unlock(&fs_info->tree_mod_log_lock);
446 return ret;
449 int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
450 struct tree_mod_elem **tm_ret)
452 struct tree_mod_elem *tm;
453 u64 seq = 0;
455 smp_mb();
456 if (list_empty(&fs_info->tree_mod_seq_list))
457 return 0;
459 tm = *tm_ret = kzalloc(sizeof(*tm), flags);
460 if (!tm)
461 return -ENOMEM;
463 __get_tree_mod_seq(fs_info, &tm->elem);
464 seq = tm->elem.seq;
465 tm->elem.flags = 0;
467 return seq;
470 static noinline int
471 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
472 struct extent_buffer *eb, int slot,
473 enum mod_log_op op, gfp_t flags)
475 struct tree_mod_elem *tm;
476 int ret;
478 ret = tree_mod_alloc(fs_info, flags, &tm);
479 if (ret <= 0)
480 return ret;
482 tm->index = eb->start >> PAGE_CACHE_SHIFT;
483 if (op != MOD_LOG_KEY_ADD) {
484 btrfs_node_key(eb, &tm->key, slot);
485 tm->blockptr = btrfs_node_blockptr(eb, slot);
487 tm->op = op;
488 tm->slot = slot;
489 tm->generation = btrfs_node_ptr_generation(eb, slot);
491 return __tree_mod_log_insert(fs_info, tm);
494 static noinline int
495 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
496 int slot, enum mod_log_op op)
498 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
501 static noinline int
502 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
503 struct extent_buffer *eb, int dst_slot, int src_slot,
504 int nr_items, gfp_t flags)
506 struct tree_mod_elem *tm;
507 int ret;
508 int i;
510 ret = tree_mod_alloc(fs_info, flags, &tm);
511 if (ret <= 0)
512 return ret;
514 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
515 ret = tree_mod_log_insert_key(fs_info, eb, i + dst_slot,
516 MOD_LOG_KEY_REMOVE_WHILE_MOVING);
517 BUG_ON(ret < 0);
520 tm->index = eb->start >> PAGE_CACHE_SHIFT;
521 tm->slot = src_slot;
522 tm->move.dst_slot = dst_slot;
523 tm->move.nr_items = nr_items;
524 tm->op = MOD_LOG_MOVE_KEYS;
526 return __tree_mod_log_insert(fs_info, tm);
529 static noinline int
530 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
531 struct extent_buffer *old_root,
532 struct extent_buffer *new_root, gfp_t flags)
534 struct tree_mod_elem *tm;
535 int ret;
537 ret = tree_mod_alloc(fs_info, flags, &tm);
538 if (ret <= 0)
539 return ret;
541 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
542 tm->old_root.logical = old_root->start;
543 tm->old_root.level = btrfs_header_level(old_root);
544 tm->generation = btrfs_header_generation(old_root);
545 tm->op = MOD_LOG_ROOT_REPLACE;
547 return __tree_mod_log_insert(fs_info, tm);
550 static struct tree_mod_elem *
551 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
552 int smallest)
554 struct rb_root *tm_root;
555 struct rb_node *node;
556 struct tree_mod_elem *cur = NULL;
557 struct tree_mod_elem *found = NULL;
558 u64 index = start >> PAGE_CACHE_SHIFT;
560 read_lock(&fs_info->tree_mod_log_lock);
561 tm_root = &fs_info->tree_mod_log;
562 node = tm_root->rb_node;
563 while (node) {
564 cur = container_of(node, struct tree_mod_elem, node);
565 if (cur->index < index) {
566 node = node->rb_left;
567 } else if (cur->index > index) {
568 node = node->rb_right;
569 } else if (cur->elem.seq < min_seq) {
570 node = node->rb_left;
571 } else if (!smallest) {
572 /* we want the node with the highest seq */
573 if (found)
574 BUG_ON(found->elem.seq > cur->elem.seq);
575 found = cur;
576 node = node->rb_left;
577 } else if (cur->elem.seq > min_seq) {
578 /* we want the node with the smallest seq */
579 if (found)
580 BUG_ON(found->elem.seq < cur->elem.seq);
581 found = cur;
582 node = node->rb_right;
583 } else {
584 found = cur;
585 break;
588 read_unlock(&fs_info->tree_mod_log_lock);
590 return found;
594 * this returns the element from the log with the smallest time sequence
595 * value that's in the log (the oldest log item). any element with a time
596 * sequence lower than min_seq will be ignored.
598 static struct tree_mod_elem *
599 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
600 u64 min_seq)
602 return __tree_mod_log_search(fs_info, start, min_seq, 1);
606 * this returns the element from the log with the largest time sequence
607 * value that's in the log (the most recent log item). any element with
608 * a time sequence lower than min_seq will be ignored.
610 static struct tree_mod_elem *
611 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
613 return __tree_mod_log_search(fs_info, start, min_seq, 0);
616 static inline void
617 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
618 struct extent_buffer *src, unsigned long dst_offset,
619 unsigned long src_offset, int nr_items)
621 int ret;
622 int i;
624 smp_mb();
625 if (list_empty(&fs_info->tree_mod_seq_list))
626 return;
628 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
629 return;
631 /* speed this up by single seq for all operations? */
632 for (i = 0; i < nr_items; i++) {
633 ret = tree_mod_log_insert_key(fs_info, src, i + src_offset,
634 MOD_LOG_KEY_REMOVE);
635 BUG_ON(ret < 0);
636 ret = tree_mod_log_insert_key(fs_info, dst, i + dst_offset,
637 MOD_LOG_KEY_ADD);
638 BUG_ON(ret < 0);
642 static inline void
643 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
644 int dst_offset, int src_offset, int nr_items)
646 int ret;
647 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
648 nr_items, GFP_NOFS);
649 BUG_ON(ret < 0);
652 static inline void
653 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
654 struct extent_buffer *eb,
655 struct btrfs_disk_key *disk_key, int slot, int atomic)
657 int ret;
659 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
660 MOD_LOG_KEY_REPLACE,
661 atomic ? GFP_ATOMIC : GFP_NOFS);
662 BUG_ON(ret < 0);
665 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
666 struct extent_buffer *eb)
668 int i;
669 int ret;
670 u32 nritems;
672 smp_mb();
673 if (list_empty(&fs_info->tree_mod_seq_list))
674 return;
676 if (btrfs_header_level(eb) == 0)
677 return;
679 nritems = btrfs_header_nritems(eb);
680 for (i = nritems - 1; i >= 0; i--) {
681 ret = tree_mod_log_insert_key(fs_info, eb, i,
682 MOD_LOG_KEY_REMOVE_WHILE_FREEING);
683 BUG_ON(ret < 0);
687 static inline void
688 tree_mod_log_set_root_pointer(struct btrfs_root *root,
689 struct extent_buffer *new_root_node)
691 int ret;
692 tree_mod_log_free_eb(root->fs_info, root->node);
693 ret = tree_mod_log_insert_root(root->fs_info, root->node,
694 new_root_node, GFP_NOFS);
695 BUG_ON(ret < 0);
699 * check if the tree block can be shared by multiple trees
701 int btrfs_block_can_be_shared(struct btrfs_root *root,
702 struct extent_buffer *buf)
705 * Tree blocks not in refernece counted trees and tree roots
706 * are never shared. If a block was allocated after the last
707 * snapshot and the block was not allocated by tree relocation,
708 * we know the block is not shared.
710 if (root->ref_cows &&
711 buf != root->node && buf != root->commit_root &&
712 (btrfs_header_generation(buf) <=
713 btrfs_root_last_snapshot(&root->root_item) ||
714 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
715 return 1;
716 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
717 if (root->ref_cows &&
718 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
719 return 1;
720 #endif
721 return 0;
724 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
725 struct btrfs_root *root,
726 struct extent_buffer *buf,
727 struct extent_buffer *cow,
728 int *last_ref)
730 u64 refs;
731 u64 owner;
732 u64 flags;
733 u64 new_flags = 0;
734 int ret;
737 * Backrefs update rules:
739 * Always use full backrefs for extent pointers in tree block
740 * allocated by tree relocation.
742 * If a shared tree block is no longer referenced by its owner
743 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
744 * use full backrefs for extent pointers in tree block.
746 * If a tree block is been relocating
747 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
748 * use full backrefs for extent pointers in tree block.
749 * The reason for this is some operations (such as drop tree)
750 * are only allowed for blocks use full backrefs.
753 if (btrfs_block_can_be_shared(root, buf)) {
754 ret = btrfs_lookup_extent_info(trans, root, buf->start,
755 buf->len, &refs, &flags);
756 if (ret)
757 return ret;
758 if (refs == 0) {
759 ret = -EROFS;
760 btrfs_std_error(root->fs_info, ret);
761 return ret;
763 } else {
764 refs = 1;
765 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
766 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
767 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
768 else
769 flags = 0;
772 owner = btrfs_header_owner(buf);
773 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
774 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
776 if (refs > 1) {
777 if ((owner == root->root_key.objectid ||
778 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
779 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
780 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
781 BUG_ON(ret); /* -ENOMEM */
783 if (root->root_key.objectid ==
784 BTRFS_TREE_RELOC_OBJECTID) {
785 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
786 BUG_ON(ret); /* -ENOMEM */
787 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
788 BUG_ON(ret); /* -ENOMEM */
790 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
791 } else {
793 if (root->root_key.objectid ==
794 BTRFS_TREE_RELOC_OBJECTID)
795 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
796 else
797 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
798 BUG_ON(ret); /* -ENOMEM */
800 if (new_flags != 0) {
801 ret = btrfs_set_disk_extent_flags(trans, root,
802 buf->start,
803 buf->len,
804 new_flags, 0);
805 if (ret)
806 return ret;
808 } else {
809 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
810 if (root->root_key.objectid ==
811 BTRFS_TREE_RELOC_OBJECTID)
812 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
813 else
814 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
815 BUG_ON(ret); /* -ENOMEM */
816 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
817 BUG_ON(ret); /* -ENOMEM */
819 clean_tree_block(trans, root, buf);
820 *last_ref = 1;
822 return 0;
826 * does the dirty work in cow of a single block. The parent block (if
827 * supplied) is updated to point to the new cow copy. The new buffer is marked
828 * dirty and returned locked. If you modify the block it needs to be marked
829 * dirty again.
831 * search_start -- an allocation hint for the new block
833 * empty_size -- a hint that you plan on doing more cow. This is the size in
834 * bytes the allocator should try to find free next to the block it returns.
835 * This is just a hint and may be ignored by the allocator.
837 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
838 struct btrfs_root *root,
839 struct extent_buffer *buf,
840 struct extent_buffer *parent, int parent_slot,
841 struct extent_buffer **cow_ret,
842 u64 search_start, u64 empty_size)
844 struct btrfs_disk_key disk_key;
845 struct extent_buffer *cow;
846 int level, ret;
847 int last_ref = 0;
848 int unlock_orig = 0;
849 u64 parent_start;
851 if (*cow_ret == buf)
852 unlock_orig = 1;
854 btrfs_assert_tree_locked(buf);
856 WARN_ON(root->ref_cows && trans->transid !=
857 root->fs_info->running_transaction->transid);
858 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
860 level = btrfs_header_level(buf);
862 if (level == 0)
863 btrfs_item_key(buf, &disk_key, 0);
864 else
865 btrfs_node_key(buf, &disk_key, 0);
867 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
868 if (parent)
869 parent_start = parent->start;
870 else
871 parent_start = 0;
872 } else
873 parent_start = 0;
875 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
876 root->root_key.objectid, &disk_key,
877 level, search_start, empty_size);
878 if (IS_ERR(cow))
879 return PTR_ERR(cow);
881 /* cow is set to blocking by btrfs_init_new_buffer */
883 copy_extent_buffer(cow, buf, 0, 0, cow->len);
884 btrfs_set_header_bytenr(cow, cow->start);
885 btrfs_set_header_generation(cow, trans->transid);
886 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
887 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
888 BTRFS_HEADER_FLAG_RELOC);
889 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
890 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
891 else
892 btrfs_set_header_owner(cow, root->root_key.objectid);
894 write_extent_buffer(cow, root->fs_info->fsid,
895 (unsigned long)btrfs_header_fsid(cow),
896 BTRFS_FSID_SIZE);
898 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
899 if (ret) {
900 btrfs_abort_transaction(trans, root, ret);
901 return ret;
904 if (root->ref_cows)
905 btrfs_reloc_cow_block(trans, root, buf, cow);
907 if (buf == root->node) {
908 WARN_ON(parent && parent != buf);
909 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
910 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
911 parent_start = buf->start;
912 else
913 parent_start = 0;
915 extent_buffer_get(cow);
916 rcu_assign_pointer(root->node, cow);
918 btrfs_free_tree_block(trans, root, buf, parent_start,
919 last_ref);
920 free_extent_buffer(buf);
921 add_root_to_dirty_list(root);
922 } else {
923 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
924 parent_start = parent->start;
925 else
926 parent_start = 0;
928 WARN_ON(trans->transid != btrfs_header_generation(parent));
929 btrfs_set_node_blockptr(parent, parent_slot,
930 cow->start);
931 btrfs_set_node_ptr_generation(parent, parent_slot,
932 trans->transid);
933 btrfs_mark_buffer_dirty(parent);
934 btrfs_free_tree_block(trans, root, buf, parent_start,
935 last_ref);
937 if (unlock_orig)
938 btrfs_tree_unlock(buf);
939 free_extent_buffer_stale(buf);
940 btrfs_mark_buffer_dirty(cow);
941 *cow_ret = cow;
942 return 0;
945 static inline int should_cow_block(struct btrfs_trans_handle *trans,
946 struct btrfs_root *root,
947 struct extent_buffer *buf)
949 /* ensure we can see the force_cow */
950 smp_rmb();
953 * We do not need to cow a block if
954 * 1) this block is not created or changed in this transaction;
955 * 2) this block does not belong to TREE_RELOC tree;
956 * 3) the root is not forced COW.
958 * What is forced COW:
959 * when we create snapshot during commiting the transaction,
960 * after we've finished coping src root, we must COW the shared
961 * block to ensure the metadata consistency.
963 if (btrfs_header_generation(buf) == trans->transid &&
964 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
965 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
966 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
967 !root->force_cow)
968 return 0;
969 return 1;
973 * cows a single block, see __btrfs_cow_block for the real work.
974 * This version of it has extra checks so that a block isn't cow'd more than
975 * once per transaction, as long as it hasn't been written yet
977 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
978 struct btrfs_root *root, struct extent_buffer *buf,
979 struct extent_buffer *parent, int parent_slot,
980 struct extent_buffer **cow_ret)
982 u64 search_start;
983 int ret;
985 if (trans->transaction != root->fs_info->running_transaction) {
986 printk(KERN_CRIT "trans %llu running %llu\n",
987 (unsigned long long)trans->transid,
988 (unsigned long long)
989 root->fs_info->running_transaction->transid);
990 WARN_ON(1);
992 if (trans->transid != root->fs_info->generation) {
993 printk(KERN_CRIT "trans %llu running %llu\n",
994 (unsigned long long)trans->transid,
995 (unsigned long long)root->fs_info->generation);
996 WARN_ON(1);
999 if (!should_cow_block(trans, root, buf)) {
1000 *cow_ret = buf;
1001 return 0;
1004 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1006 if (parent)
1007 btrfs_set_lock_blocking(parent);
1008 btrfs_set_lock_blocking(buf);
1010 ret = __btrfs_cow_block(trans, root, buf, parent,
1011 parent_slot, cow_ret, search_start, 0);
1013 trace_btrfs_cow_block(root, buf, *cow_ret);
1015 return ret;
1019 * helper function for defrag to decide if two blocks pointed to by a
1020 * node are actually close by
1022 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1024 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1025 return 1;
1026 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1027 return 1;
1028 return 0;
1032 * compare two keys in a memcmp fashion
1034 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1036 struct btrfs_key k1;
1038 btrfs_disk_key_to_cpu(&k1, disk);
1040 return btrfs_comp_cpu_keys(&k1, k2);
1044 * same as comp_keys only with two btrfs_key's
1046 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1048 if (k1->objectid > k2->objectid)
1049 return 1;
1050 if (k1->objectid < k2->objectid)
1051 return -1;
1052 if (k1->type > k2->type)
1053 return 1;
1054 if (k1->type < k2->type)
1055 return -1;
1056 if (k1->offset > k2->offset)
1057 return 1;
1058 if (k1->offset < k2->offset)
1059 return -1;
1060 return 0;
1064 * this is used by the defrag code to go through all the
1065 * leaves pointed to by a node and reallocate them so that
1066 * disk order is close to key order
1068 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1069 struct btrfs_root *root, struct extent_buffer *parent,
1070 int start_slot, int cache_only, u64 *last_ret,
1071 struct btrfs_key *progress)
1073 struct extent_buffer *cur;
1074 u64 blocknr;
1075 u64 gen;
1076 u64 search_start = *last_ret;
1077 u64 last_block = 0;
1078 u64 other;
1079 u32 parent_nritems;
1080 int end_slot;
1081 int i;
1082 int err = 0;
1083 int parent_level;
1084 int uptodate;
1085 u32 blocksize;
1086 int progress_passed = 0;
1087 struct btrfs_disk_key disk_key;
1089 parent_level = btrfs_header_level(parent);
1090 if (cache_only && parent_level != 1)
1091 return 0;
1093 if (trans->transaction != root->fs_info->running_transaction)
1094 WARN_ON(1);
1095 if (trans->transid != root->fs_info->generation)
1096 WARN_ON(1);
1098 parent_nritems = btrfs_header_nritems(parent);
1099 blocksize = btrfs_level_size(root, parent_level - 1);
1100 end_slot = parent_nritems;
1102 if (parent_nritems == 1)
1103 return 0;
1105 btrfs_set_lock_blocking(parent);
1107 for (i = start_slot; i < end_slot; i++) {
1108 int close = 1;
1110 btrfs_node_key(parent, &disk_key, i);
1111 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1112 continue;
1114 progress_passed = 1;
1115 blocknr = btrfs_node_blockptr(parent, i);
1116 gen = btrfs_node_ptr_generation(parent, i);
1117 if (last_block == 0)
1118 last_block = blocknr;
1120 if (i > 0) {
1121 other = btrfs_node_blockptr(parent, i - 1);
1122 close = close_blocks(blocknr, other, blocksize);
1124 if (!close && i < end_slot - 2) {
1125 other = btrfs_node_blockptr(parent, i + 1);
1126 close = close_blocks(blocknr, other, blocksize);
1128 if (close) {
1129 last_block = blocknr;
1130 continue;
1133 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1134 if (cur)
1135 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1136 else
1137 uptodate = 0;
1138 if (!cur || !uptodate) {
1139 if (cache_only) {
1140 free_extent_buffer(cur);
1141 continue;
1143 if (!cur) {
1144 cur = read_tree_block(root, blocknr,
1145 blocksize, gen);
1146 if (!cur)
1147 return -EIO;
1148 } else if (!uptodate) {
1149 btrfs_read_buffer(cur, gen);
1152 if (search_start == 0)
1153 search_start = last_block;
1155 btrfs_tree_lock(cur);
1156 btrfs_set_lock_blocking(cur);
1157 err = __btrfs_cow_block(trans, root, cur, parent, i,
1158 &cur, search_start,
1159 min(16 * blocksize,
1160 (end_slot - i) * blocksize));
1161 if (err) {
1162 btrfs_tree_unlock(cur);
1163 free_extent_buffer(cur);
1164 break;
1166 search_start = cur->start;
1167 last_block = cur->start;
1168 *last_ret = search_start;
1169 btrfs_tree_unlock(cur);
1170 free_extent_buffer(cur);
1172 return err;
1176 * The leaf data grows from end-to-front in the node.
1177 * this returns the address of the start of the last item,
1178 * which is the stop of the leaf data stack
1180 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1181 struct extent_buffer *leaf)
1183 u32 nr = btrfs_header_nritems(leaf);
1184 if (nr == 0)
1185 return BTRFS_LEAF_DATA_SIZE(root);
1186 return btrfs_item_offset_nr(leaf, nr - 1);
1191 * search for key in the extent_buffer. The items start at offset p,
1192 * and they are item_size apart. There are 'max' items in p.
1194 * the slot in the array is returned via slot, and it points to
1195 * the place where you would insert key if it is not found in
1196 * the array.
1198 * slot may point to max if the key is bigger than all of the keys
1200 static noinline int generic_bin_search(struct extent_buffer *eb,
1201 unsigned long p,
1202 int item_size, struct btrfs_key *key,
1203 int max, int *slot)
1205 int low = 0;
1206 int high = max;
1207 int mid;
1208 int ret;
1209 struct btrfs_disk_key *tmp = NULL;
1210 struct btrfs_disk_key unaligned;
1211 unsigned long offset;
1212 char *kaddr = NULL;
1213 unsigned long map_start = 0;
1214 unsigned long map_len = 0;
1215 int err;
1217 while (low < high) {
1218 mid = (low + high) / 2;
1219 offset = p + mid * item_size;
1221 if (!kaddr || offset < map_start ||
1222 (offset + sizeof(struct btrfs_disk_key)) >
1223 map_start + map_len) {
1225 err = map_private_extent_buffer(eb, offset,
1226 sizeof(struct btrfs_disk_key),
1227 &kaddr, &map_start, &map_len);
1229 if (!err) {
1230 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1231 map_start);
1232 } else {
1233 read_extent_buffer(eb, &unaligned,
1234 offset, sizeof(unaligned));
1235 tmp = &unaligned;
1238 } else {
1239 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1240 map_start);
1242 ret = comp_keys(tmp, key);
1244 if (ret < 0)
1245 low = mid + 1;
1246 else if (ret > 0)
1247 high = mid;
1248 else {
1249 *slot = mid;
1250 return 0;
1253 *slot = low;
1254 return 1;
1258 * simple bin_search frontend that does the right thing for
1259 * leaves vs nodes
1261 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1262 int level, int *slot)
1264 if (level == 0) {
1265 return generic_bin_search(eb,
1266 offsetof(struct btrfs_leaf, items),
1267 sizeof(struct btrfs_item),
1268 key, btrfs_header_nritems(eb),
1269 slot);
1270 } else {
1271 return generic_bin_search(eb,
1272 offsetof(struct btrfs_node, ptrs),
1273 sizeof(struct btrfs_key_ptr),
1274 key, btrfs_header_nritems(eb),
1275 slot);
1277 return -1;
1280 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1281 int level, int *slot)
1283 return bin_search(eb, key, level, slot);
1286 static void root_add_used(struct btrfs_root *root, u32 size)
1288 spin_lock(&root->accounting_lock);
1289 btrfs_set_root_used(&root->root_item,
1290 btrfs_root_used(&root->root_item) + size);
1291 spin_unlock(&root->accounting_lock);
1294 static void root_sub_used(struct btrfs_root *root, u32 size)
1296 spin_lock(&root->accounting_lock);
1297 btrfs_set_root_used(&root->root_item,
1298 btrfs_root_used(&root->root_item) - size);
1299 spin_unlock(&root->accounting_lock);
1302 /* given a node and slot number, this reads the blocks it points to. The
1303 * extent buffer is returned with a reference taken (but unlocked).
1304 * NULL is returned on error.
1306 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1307 struct extent_buffer *parent, int slot)
1309 int level = btrfs_header_level(parent);
1310 if (slot < 0)
1311 return NULL;
1312 if (slot >= btrfs_header_nritems(parent))
1313 return NULL;
1315 BUG_ON(level == 0);
1317 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1318 btrfs_level_size(root, level - 1),
1319 btrfs_node_ptr_generation(parent, slot));
1323 * node level balancing, used to make sure nodes are in proper order for
1324 * item deletion. We balance from the top down, so we have to make sure
1325 * that a deletion won't leave an node completely empty later on.
1327 static noinline int balance_level(struct btrfs_trans_handle *trans,
1328 struct btrfs_root *root,
1329 struct btrfs_path *path, int level)
1331 struct extent_buffer *right = NULL;
1332 struct extent_buffer *mid;
1333 struct extent_buffer *left = NULL;
1334 struct extent_buffer *parent = NULL;
1335 int ret = 0;
1336 int wret;
1337 int pslot;
1338 int orig_slot = path->slots[level];
1339 u64 orig_ptr;
1341 if (level == 0)
1342 return 0;
1344 mid = path->nodes[level];
1346 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1347 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1348 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1350 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1352 if (level < BTRFS_MAX_LEVEL - 1) {
1353 parent = path->nodes[level + 1];
1354 pslot = path->slots[level + 1];
1358 * deal with the case where there is only one pointer in the root
1359 * by promoting the node below to a root
1361 if (!parent) {
1362 struct extent_buffer *child;
1364 if (btrfs_header_nritems(mid) != 1)
1365 return 0;
1367 /* promote the child to a root */
1368 child = read_node_slot(root, mid, 0);
1369 if (!child) {
1370 ret = -EROFS;
1371 btrfs_std_error(root->fs_info, ret);
1372 goto enospc;
1375 btrfs_tree_lock(child);
1376 btrfs_set_lock_blocking(child);
1377 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1378 if (ret) {
1379 btrfs_tree_unlock(child);
1380 free_extent_buffer(child);
1381 goto enospc;
1384 rcu_assign_pointer(root->node, child);
1386 add_root_to_dirty_list(root);
1387 btrfs_tree_unlock(child);
1389 path->locks[level] = 0;
1390 path->nodes[level] = NULL;
1391 clean_tree_block(trans, root, mid);
1392 btrfs_tree_unlock(mid);
1393 /* once for the path */
1394 free_extent_buffer(mid);
1396 root_sub_used(root, mid->len);
1397 btrfs_free_tree_block(trans, root, mid, 0, 1);
1398 /* once for the root ptr */
1399 free_extent_buffer_stale(mid);
1400 return 0;
1402 if (btrfs_header_nritems(mid) >
1403 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1404 return 0;
1406 btrfs_header_nritems(mid);
1408 left = read_node_slot(root, parent, pslot - 1);
1409 if (left) {
1410 btrfs_tree_lock(left);
1411 btrfs_set_lock_blocking(left);
1412 wret = btrfs_cow_block(trans, root, left,
1413 parent, pslot - 1, &left);
1414 if (wret) {
1415 ret = wret;
1416 goto enospc;
1419 right = read_node_slot(root, parent, pslot + 1);
1420 if (right) {
1421 btrfs_tree_lock(right);
1422 btrfs_set_lock_blocking(right);
1423 wret = btrfs_cow_block(trans, root, right,
1424 parent, pslot + 1, &right);
1425 if (wret) {
1426 ret = wret;
1427 goto enospc;
1431 /* first, try to make some room in the middle buffer */
1432 if (left) {
1433 orig_slot += btrfs_header_nritems(left);
1434 wret = push_node_left(trans, root, left, mid, 1);
1435 if (wret < 0)
1436 ret = wret;
1437 btrfs_header_nritems(mid);
1441 * then try to empty the right most buffer into the middle
1443 if (right) {
1444 wret = push_node_left(trans, root, mid, right, 1);
1445 if (wret < 0 && wret != -ENOSPC)
1446 ret = wret;
1447 if (btrfs_header_nritems(right) == 0) {
1448 clean_tree_block(trans, root, right);
1449 btrfs_tree_unlock(right);
1450 del_ptr(trans, root, path, level + 1, pslot + 1);
1451 root_sub_used(root, right->len);
1452 btrfs_free_tree_block(trans, root, right, 0, 1);
1453 free_extent_buffer_stale(right);
1454 right = NULL;
1455 } else {
1456 struct btrfs_disk_key right_key;
1457 btrfs_node_key(right, &right_key, 0);
1458 btrfs_set_node_key(parent, &right_key, pslot + 1);
1459 btrfs_mark_buffer_dirty(parent);
1462 if (btrfs_header_nritems(mid) == 1) {
1464 * we're not allowed to leave a node with one item in the
1465 * tree during a delete. A deletion from lower in the tree
1466 * could try to delete the only pointer in this node.
1467 * So, pull some keys from the left.
1468 * There has to be a left pointer at this point because
1469 * otherwise we would have pulled some pointers from the
1470 * right
1472 if (!left) {
1473 ret = -EROFS;
1474 btrfs_std_error(root->fs_info, ret);
1475 goto enospc;
1477 wret = balance_node_right(trans, root, mid, left);
1478 if (wret < 0) {
1479 ret = wret;
1480 goto enospc;
1482 if (wret == 1) {
1483 wret = push_node_left(trans, root, left, mid, 1);
1484 if (wret < 0)
1485 ret = wret;
1487 BUG_ON(wret == 1);
1489 if (btrfs_header_nritems(mid) == 0) {
1490 clean_tree_block(trans, root, mid);
1491 btrfs_tree_unlock(mid);
1492 del_ptr(trans, root, path, level + 1, pslot);
1493 root_sub_used(root, mid->len);
1494 btrfs_free_tree_block(trans, root, mid, 0, 1);
1495 free_extent_buffer_stale(mid);
1496 mid = NULL;
1497 } else {
1498 /* update the parent key to reflect our changes */
1499 struct btrfs_disk_key mid_key;
1500 btrfs_node_key(mid, &mid_key, 0);
1501 btrfs_set_node_key(parent, &mid_key, pslot);
1502 btrfs_mark_buffer_dirty(parent);
1505 /* update the path */
1506 if (left) {
1507 if (btrfs_header_nritems(left) > orig_slot) {
1508 extent_buffer_get(left);
1509 /* left was locked after cow */
1510 path->nodes[level] = left;
1511 path->slots[level + 1] -= 1;
1512 path->slots[level] = orig_slot;
1513 if (mid) {
1514 btrfs_tree_unlock(mid);
1515 free_extent_buffer(mid);
1517 } else {
1518 orig_slot -= btrfs_header_nritems(left);
1519 path->slots[level] = orig_slot;
1522 /* double check we haven't messed things up */
1523 if (orig_ptr !=
1524 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1525 BUG();
1526 enospc:
1527 if (right) {
1528 btrfs_tree_unlock(right);
1529 free_extent_buffer(right);
1531 if (left) {
1532 if (path->nodes[level] != left)
1533 btrfs_tree_unlock(left);
1534 free_extent_buffer(left);
1536 return ret;
1539 /* Node balancing for insertion. Here we only split or push nodes around
1540 * when they are completely full. This is also done top down, so we
1541 * have to be pessimistic.
1543 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1544 struct btrfs_root *root,
1545 struct btrfs_path *path, int level)
1547 struct extent_buffer *right = NULL;
1548 struct extent_buffer *mid;
1549 struct extent_buffer *left = NULL;
1550 struct extent_buffer *parent = NULL;
1551 int ret = 0;
1552 int wret;
1553 int pslot;
1554 int orig_slot = path->slots[level];
1556 if (level == 0)
1557 return 1;
1559 mid = path->nodes[level];
1560 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1562 if (level < BTRFS_MAX_LEVEL - 1) {
1563 parent = path->nodes[level + 1];
1564 pslot = path->slots[level + 1];
1567 if (!parent)
1568 return 1;
1570 left = read_node_slot(root, parent, pslot - 1);
1572 /* first, try to make some room in the middle buffer */
1573 if (left) {
1574 u32 left_nr;
1576 btrfs_tree_lock(left);
1577 btrfs_set_lock_blocking(left);
1579 left_nr = btrfs_header_nritems(left);
1580 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1581 wret = 1;
1582 } else {
1583 ret = btrfs_cow_block(trans, root, left, parent,
1584 pslot - 1, &left);
1585 if (ret)
1586 wret = 1;
1587 else {
1588 wret = push_node_left(trans, root,
1589 left, mid, 0);
1592 if (wret < 0)
1593 ret = wret;
1594 if (wret == 0) {
1595 struct btrfs_disk_key disk_key;
1596 orig_slot += left_nr;
1597 btrfs_node_key(mid, &disk_key, 0);
1598 btrfs_set_node_key(parent, &disk_key, pslot);
1599 btrfs_mark_buffer_dirty(parent);
1600 if (btrfs_header_nritems(left) > orig_slot) {
1601 path->nodes[level] = left;
1602 path->slots[level + 1] -= 1;
1603 path->slots[level] = orig_slot;
1604 btrfs_tree_unlock(mid);
1605 free_extent_buffer(mid);
1606 } else {
1607 orig_slot -=
1608 btrfs_header_nritems(left);
1609 path->slots[level] = orig_slot;
1610 btrfs_tree_unlock(left);
1611 free_extent_buffer(left);
1613 return 0;
1615 btrfs_tree_unlock(left);
1616 free_extent_buffer(left);
1618 right = read_node_slot(root, parent, pslot + 1);
1621 * then try to empty the right most buffer into the middle
1623 if (right) {
1624 u32 right_nr;
1626 btrfs_tree_lock(right);
1627 btrfs_set_lock_blocking(right);
1629 right_nr = btrfs_header_nritems(right);
1630 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1631 wret = 1;
1632 } else {
1633 ret = btrfs_cow_block(trans, root, right,
1634 parent, pslot + 1,
1635 &right);
1636 if (ret)
1637 wret = 1;
1638 else {
1639 wret = balance_node_right(trans, root,
1640 right, mid);
1643 if (wret < 0)
1644 ret = wret;
1645 if (wret == 0) {
1646 struct btrfs_disk_key disk_key;
1648 btrfs_node_key(right, &disk_key, 0);
1649 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1650 btrfs_mark_buffer_dirty(parent);
1652 if (btrfs_header_nritems(mid) <= orig_slot) {
1653 path->nodes[level] = right;
1654 path->slots[level + 1] += 1;
1655 path->slots[level] = orig_slot -
1656 btrfs_header_nritems(mid);
1657 btrfs_tree_unlock(mid);
1658 free_extent_buffer(mid);
1659 } else {
1660 btrfs_tree_unlock(right);
1661 free_extent_buffer(right);
1663 return 0;
1665 btrfs_tree_unlock(right);
1666 free_extent_buffer(right);
1668 return 1;
1672 * readahead one full node of leaves, finding things that are close
1673 * to the block in 'slot', and triggering ra on them.
1675 static void reada_for_search(struct btrfs_root *root,
1676 struct btrfs_path *path,
1677 int level, int slot, u64 objectid)
1679 struct extent_buffer *node;
1680 struct btrfs_disk_key disk_key;
1681 u32 nritems;
1682 u64 search;
1683 u64 target;
1684 u64 nread = 0;
1685 u64 gen;
1686 int direction = path->reada;
1687 struct extent_buffer *eb;
1688 u32 nr;
1689 u32 blocksize;
1690 u32 nscan = 0;
1692 if (level != 1)
1693 return;
1695 if (!path->nodes[level])
1696 return;
1698 node = path->nodes[level];
1700 search = btrfs_node_blockptr(node, slot);
1701 blocksize = btrfs_level_size(root, level - 1);
1702 eb = btrfs_find_tree_block(root, search, blocksize);
1703 if (eb) {
1704 free_extent_buffer(eb);
1705 return;
1708 target = search;
1710 nritems = btrfs_header_nritems(node);
1711 nr = slot;
1713 while (1) {
1714 if (direction < 0) {
1715 if (nr == 0)
1716 break;
1717 nr--;
1718 } else if (direction > 0) {
1719 nr++;
1720 if (nr >= nritems)
1721 break;
1723 if (path->reada < 0 && objectid) {
1724 btrfs_node_key(node, &disk_key, nr);
1725 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1726 break;
1728 search = btrfs_node_blockptr(node, nr);
1729 if ((search <= target && target - search <= 65536) ||
1730 (search > target && search - target <= 65536)) {
1731 gen = btrfs_node_ptr_generation(node, nr);
1732 readahead_tree_block(root, search, blocksize, gen);
1733 nread += blocksize;
1735 nscan++;
1736 if ((nread > 65536 || nscan > 32))
1737 break;
1742 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1743 * cache
1745 static noinline int reada_for_balance(struct btrfs_root *root,
1746 struct btrfs_path *path, int level)
1748 int slot;
1749 int nritems;
1750 struct extent_buffer *parent;
1751 struct extent_buffer *eb;
1752 u64 gen;
1753 u64 block1 = 0;
1754 u64 block2 = 0;
1755 int ret = 0;
1756 int blocksize;
1758 parent = path->nodes[level + 1];
1759 if (!parent)
1760 return 0;
1762 nritems = btrfs_header_nritems(parent);
1763 slot = path->slots[level + 1];
1764 blocksize = btrfs_level_size(root, level);
1766 if (slot > 0) {
1767 block1 = btrfs_node_blockptr(parent, slot - 1);
1768 gen = btrfs_node_ptr_generation(parent, slot - 1);
1769 eb = btrfs_find_tree_block(root, block1, blocksize);
1771 * if we get -eagain from btrfs_buffer_uptodate, we
1772 * don't want to return eagain here. That will loop
1773 * forever
1775 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
1776 block1 = 0;
1777 free_extent_buffer(eb);
1779 if (slot + 1 < nritems) {
1780 block2 = btrfs_node_blockptr(parent, slot + 1);
1781 gen = btrfs_node_ptr_generation(parent, slot + 1);
1782 eb = btrfs_find_tree_block(root, block2, blocksize);
1783 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
1784 block2 = 0;
1785 free_extent_buffer(eb);
1787 if (block1 || block2) {
1788 ret = -EAGAIN;
1790 /* release the whole path */
1791 btrfs_release_path(path);
1793 /* read the blocks */
1794 if (block1)
1795 readahead_tree_block(root, block1, blocksize, 0);
1796 if (block2)
1797 readahead_tree_block(root, block2, blocksize, 0);
1799 if (block1) {
1800 eb = read_tree_block(root, block1, blocksize, 0);
1801 free_extent_buffer(eb);
1803 if (block2) {
1804 eb = read_tree_block(root, block2, blocksize, 0);
1805 free_extent_buffer(eb);
1808 return ret;
1813 * when we walk down the tree, it is usually safe to unlock the higher layers
1814 * in the tree. The exceptions are when our path goes through slot 0, because
1815 * operations on the tree might require changing key pointers higher up in the
1816 * tree.
1818 * callers might also have set path->keep_locks, which tells this code to keep
1819 * the lock if the path points to the last slot in the block. This is part of
1820 * walking through the tree, and selecting the next slot in the higher block.
1822 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1823 * if lowest_unlock is 1, level 0 won't be unlocked
1825 static noinline void unlock_up(struct btrfs_path *path, int level,
1826 int lowest_unlock, int min_write_lock_level,
1827 int *write_lock_level)
1829 int i;
1830 int skip_level = level;
1831 int no_skips = 0;
1832 struct extent_buffer *t;
1834 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1835 if (!path->nodes[i])
1836 break;
1837 if (!path->locks[i])
1838 break;
1839 if (!no_skips && path->slots[i] == 0) {
1840 skip_level = i + 1;
1841 continue;
1843 if (!no_skips && path->keep_locks) {
1844 u32 nritems;
1845 t = path->nodes[i];
1846 nritems = btrfs_header_nritems(t);
1847 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1848 skip_level = i + 1;
1849 continue;
1852 if (skip_level < i && i >= lowest_unlock)
1853 no_skips = 1;
1855 t = path->nodes[i];
1856 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1857 btrfs_tree_unlock_rw(t, path->locks[i]);
1858 path->locks[i] = 0;
1859 if (write_lock_level &&
1860 i > min_write_lock_level &&
1861 i <= *write_lock_level) {
1862 *write_lock_level = i - 1;
1869 * This releases any locks held in the path starting at level and
1870 * going all the way up to the root.
1872 * btrfs_search_slot will keep the lock held on higher nodes in a few
1873 * corner cases, such as COW of the block at slot zero in the node. This
1874 * ignores those rules, and it should only be called when there are no
1875 * more updates to be done higher up in the tree.
1877 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1879 int i;
1881 if (path->keep_locks)
1882 return;
1884 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1885 if (!path->nodes[i])
1886 continue;
1887 if (!path->locks[i])
1888 continue;
1889 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1890 path->locks[i] = 0;
1895 * helper function for btrfs_search_slot. The goal is to find a block
1896 * in cache without setting the path to blocking. If we find the block
1897 * we return zero and the path is unchanged.
1899 * If we can't find the block, we set the path blocking and do some
1900 * reada. -EAGAIN is returned and the search must be repeated.
1902 static int
1903 read_block_for_search(struct btrfs_trans_handle *trans,
1904 struct btrfs_root *root, struct btrfs_path *p,
1905 struct extent_buffer **eb_ret, int level, int slot,
1906 struct btrfs_key *key)
1908 u64 blocknr;
1909 u64 gen;
1910 u32 blocksize;
1911 struct extent_buffer *b = *eb_ret;
1912 struct extent_buffer *tmp;
1913 int ret;
1915 blocknr = btrfs_node_blockptr(b, slot);
1916 gen = btrfs_node_ptr_generation(b, slot);
1917 blocksize = btrfs_level_size(root, level - 1);
1919 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1920 if (tmp) {
1921 /* first we do an atomic uptodate check */
1922 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
1923 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1925 * we found an up to date block without
1926 * sleeping, return
1927 * right away
1929 *eb_ret = tmp;
1930 return 0;
1932 /* the pages were up to date, but we failed
1933 * the generation number check. Do a full
1934 * read for the generation number that is correct.
1935 * We must do this without dropping locks so
1936 * we can trust our generation number
1938 free_extent_buffer(tmp);
1939 btrfs_set_path_blocking(p);
1941 /* now we're allowed to do a blocking uptodate check */
1942 tmp = read_tree_block(root, blocknr, blocksize, gen);
1943 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
1944 *eb_ret = tmp;
1945 return 0;
1947 free_extent_buffer(tmp);
1948 btrfs_release_path(p);
1949 return -EIO;
1954 * reduce lock contention at high levels
1955 * of the btree by dropping locks before
1956 * we read. Don't release the lock on the current
1957 * level because we need to walk this node to figure
1958 * out which blocks to read.
1960 btrfs_unlock_up_safe(p, level + 1);
1961 btrfs_set_path_blocking(p);
1963 free_extent_buffer(tmp);
1964 if (p->reada)
1965 reada_for_search(root, p, level, slot, key->objectid);
1967 btrfs_release_path(p);
1969 ret = -EAGAIN;
1970 tmp = read_tree_block(root, blocknr, blocksize, 0);
1971 if (tmp) {
1973 * If the read above didn't mark this buffer up to date,
1974 * it will never end up being up to date. Set ret to EIO now
1975 * and give up so that our caller doesn't loop forever
1976 * on our EAGAINs.
1978 if (!btrfs_buffer_uptodate(tmp, 0, 0))
1979 ret = -EIO;
1980 free_extent_buffer(tmp);
1982 return ret;
1986 * helper function for btrfs_search_slot. This does all of the checks
1987 * for node-level blocks and does any balancing required based on
1988 * the ins_len.
1990 * If no extra work was required, zero is returned. If we had to
1991 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1992 * start over
1994 static int
1995 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1996 struct btrfs_root *root, struct btrfs_path *p,
1997 struct extent_buffer *b, int level, int ins_len,
1998 int *write_lock_level)
2000 int ret;
2001 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2002 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2003 int sret;
2005 if (*write_lock_level < level + 1) {
2006 *write_lock_level = level + 1;
2007 btrfs_release_path(p);
2008 goto again;
2011 sret = reada_for_balance(root, p, level);
2012 if (sret)
2013 goto again;
2015 btrfs_set_path_blocking(p);
2016 sret = split_node(trans, root, p, level);
2017 btrfs_clear_path_blocking(p, NULL, 0);
2019 BUG_ON(sret > 0);
2020 if (sret) {
2021 ret = sret;
2022 goto done;
2024 b = p->nodes[level];
2025 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2026 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2027 int sret;
2029 if (*write_lock_level < level + 1) {
2030 *write_lock_level = level + 1;
2031 btrfs_release_path(p);
2032 goto again;
2035 sret = reada_for_balance(root, p, level);
2036 if (sret)
2037 goto again;
2039 btrfs_set_path_blocking(p);
2040 sret = balance_level(trans, root, p, level);
2041 btrfs_clear_path_blocking(p, NULL, 0);
2043 if (sret) {
2044 ret = sret;
2045 goto done;
2047 b = p->nodes[level];
2048 if (!b) {
2049 btrfs_release_path(p);
2050 goto again;
2052 BUG_ON(btrfs_header_nritems(b) == 1);
2054 return 0;
2056 again:
2057 ret = -EAGAIN;
2058 done:
2059 return ret;
2063 * look for key in the tree. path is filled in with nodes along the way
2064 * if key is found, we return zero and you can find the item in the leaf
2065 * level of the path (level 0)
2067 * If the key isn't found, the path points to the slot where it should
2068 * be inserted, and 1 is returned. If there are other errors during the
2069 * search a negative error number is returned.
2071 * if ins_len > 0, nodes and leaves will be split as we walk down the
2072 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2073 * possible)
2075 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2076 *root, struct btrfs_key *key, struct btrfs_path *p, int
2077 ins_len, int cow)
2079 struct extent_buffer *b;
2080 int slot;
2081 int ret;
2082 int err;
2083 int level;
2084 int lowest_unlock = 1;
2085 int root_lock;
2086 /* everything at write_lock_level or lower must be write locked */
2087 int write_lock_level = 0;
2088 u8 lowest_level = 0;
2089 int min_write_lock_level;
2091 lowest_level = p->lowest_level;
2092 WARN_ON(lowest_level && ins_len > 0);
2093 WARN_ON(p->nodes[0] != NULL);
2095 if (ins_len < 0) {
2096 lowest_unlock = 2;
2098 /* when we are removing items, we might have to go up to level
2099 * two as we update tree pointers Make sure we keep write
2100 * for those levels as well
2102 write_lock_level = 2;
2103 } else if (ins_len > 0) {
2105 * for inserting items, make sure we have a write lock on
2106 * level 1 so we can update keys
2108 write_lock_level = 1;
2111 if (!cow)
2112 write_lock_level = -1;
2114 if (cow && (p->keep_locks || p->lowest_level))
2115 write_lock_level = BTRFS_MAX_LEVEL;
2117 min_write_lock_level = write_lock_level;
2119 again:
2121 * we try very hard to do read locks on the root
2123 root_lock = BTRFS_READ_LOCK;
2124 level = 0;
2125 if (p->search_commit_root) {
2127 * the commit roots are read only
2128 * so we always do read locks
2130 b = root->commit_root;
2131 extent_buffer_get(b);
2132 level = btrfs_header_level(b);
2133 if (!p->skip_locking)
2134 btrfs_tree_read_lock(b);
2135 } else {
2136 if (p->skip_locking) {
2137 b = btrfs_root_node(root);
2138 level = btrfs_header_level(b);
2139 } else {
2140 /* we don't know the level of the root node
2141 * until we actually have it read locked
2143 b = btrfs_read_lock_root_node(root);
2144 level = btrfs_header_level(b);
2145 if (level <= write_lock_level) {
2146 /* whoops, must trade for write lock */
2147 btrfs_tree_read_unlock(b);
2148 free_extent_buffer(b);
2149 b = btrfs_lock_root_node(root);
2150 root_lock = BTRFS_WRITE_LOCK;
2152 /* the level might have changed, check again */
2153 level = btrfs_header_level(b);
2157 p->nodes[level] = b;
2158 if (!p->skip_locking)
2159 p->locks[level] = root_lock;
2161 while (b) {
2162 level = btrfs_header_level(b);
2165 * setup the path here so we can release it under lock
2166 * contention with the cow code
2168 if (cow) {
2170 * if we don't really need to cow this block
2171 * then we don't want to set the path blocking,
2172 * so we test it here
2174 if (!should_cow_block(trans, root, b))
2175 goto cow_done;
2177 btrfs_set_path_blocking(p);
2180 * must have write locks on this node and the
2181 * parent
2183 if (level + 1 > write_lock_level) {
2184 write_lock_level = level + 1;
2185 btrfs_release_path(p);
2186 goto again;
2189 err = btrfs_cow_block(trans, root, b,
2190 p->nodes[level + 1],
2191 p->slots[level + 1], &b);
2192 if (err) {
2193 ret = err;
2194 goto done;
2197 cow_done:
2198 BUG_ON(!cow && ins_len);
2200 p->nodes[level] = b;
2201 btrfs_clear_path_blocking(p, NULL, 0);
2204 * we have a lock on b and as long as we aren't changing
2205 * the tree, there is no way to for the items in b to change.
2206 * It is safe to drop the lock on our parent before we
2207 * go through the expensive btree search on b.
2209 * If cow is true, then we might be changing slot zero,
2210 * which may require changing the parent. So, we can't
2211 * drop the lock until after we know which slot we're
2212 * operating on.
2214 if (!cow)
2215 btrfs_unlock_up_safe(p, level + 1);
2217 ret = bin_search(b, key, level, &slot);
2219 if (level != 0) {
2220 int dec = 0;
2221 if (ret && slot > 0) {
2222 dec = 1;
2223 slot -= 1;
2225 p->slots[level] = slot;
2226 err = setup_nodes_for_search(trans, root, p, b, level,
2227 ins_len, &write_lock_level);
2228 if (err == -EAGAIN)
2229 goto again;
2230 if (err) {
2231 ret = err;
2232 goto done;
2234 b = p->nodes[level];
2235 slot = p->slots[level];
2238 * slot 0 is special, if we change the key
2239 * we have to update the parent pointer
2240 * which means we must have a write lock
2241 * on the parent
2243 if (slot == 0 && cow &&
2244 write_lock_level < level + 1) {
2245 write_lock_level = level + 1;
2246 btrfs_release_path(p);
2247 goto again;
2250 unlock_up(p, level, lowest_unlock,
2251 min_write_lock_level, &write_lock_level);
2253 if (level == lowest_level) {
2254 if (dec)
2255 p->slots[level]++;
2256 goto done;
2259 err = read_block_for_search(trans, root, p,
2260 &b, level, slot, key);
2261 if (err == -EAGAIN)
2262 goto again;
2263 if (err) {
2264 ret = err;
2265 goto done;
2268 if (!p->skip_locking) {
2269 level = btrfs_header_level(b);
2270 if (level <= write_lock_level) {
2271 err = btrfs_try_tree_write_lock(b);
2272 if (!err) {
2273 btrfs_set_path_blocking(p);
2274 btrfs_tree_lock(b);
2275 btrfs_clear_path_blocking(p, b,
2276 BTRFS_WRITE_LOCK);
2278 p->locks[level] = BTRFS_WRITE_LOCK;
2279 } else {
2280 err = btrfs_try_tree_read_lock(b);
2281 if (!err) {
2282 btrfs_set_path_blocking(p);
2283 btrfs_tree_read_lock(b);
2284 btrfs_clear_path_blocking(p, b,
2285 BTRFS_READ_LOCK);
2287 p->locks[level] = BTRFS_READ_LOCK;
2289 p->nodes[level] = b;
2291 } else {
2292 p->slots[level] = slot;
2293 if (ins_len > 0 &&
2294 btrfs_leaf_free_space(root, b) < ins_len) {
2295 if (write_lock_level < 1) {
2296 write_lock_level = 1;
2297 btrfs_release_path(p);
2298 goto again;
2301 btrfs_set_path_blocking(p);
2302 err = split_leaf(trans, root, key,
2303 p, ins_len, ret == 0);
2304 btrfs_clear_path_blocking(p, NULL, 0);
2306 BUG_ON(err > 0);
2307 if (err) {
2308 ret = err;
2309 goto done;
2312 if (!p->search_for_split)
2313 unlock_up(p, level, lowest_unlock,
2314 min_write_lock_level, &write_lock_level);
2315 goto done;
2318 ret = 1;
2319 done:
2321 * we don't really know what they plan on doing with the path
2322 * from here on, so for now just mark it as blocking
2324 if (!p->leave_spinning)
2325 btrfs_set_path_blocking(p);
2326 if (ret < 0)
2327 btrfs_release_path(p);
2328 return ret;
2332 * adjust the pointers going up the tree, starting at level
2333 * making sure the right key of each node is points to 'key'.
2334 * This is used after shifting pointers to the left, so it stops
2335 * fixing up pointers when a given leaf/node is not in slot 0 of the
2336 * higher levels
2339 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2340 struct btrfs_root *root, struct btrfs_path *path,
2341 struct btrfs_disk_key *key, int level)
2343 int i;
2344 struct extent_buffer *t;
2346 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2347 int tslot = path->slots[i];
2348 if (!path->nodes[i])
2349 break;
2350 t = path->nodes[i];
2351 btrfs_set_node_key(t, key, tslot);
2352 btrfs_mark_buffer_dirty(path->nodes[i]);
2353 if (tslot != 0)
2354 break;
2359 * update item key.
2361 * This function isn't completely safe. It's the caller's responsibility
2362 * that the new key won't break the order
2364 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2365 struct btrfs_root *root, struct btrfs_path *path,
2366 struct btrfs_key *new_key)
2368 struct btrfs_disk_key disk_key;
2369 struct extent_buffer *eb;
2370 int slot;
2372 eb = path->nodes[0];
2373 slot = path->slots[0];
2374 if (slot > 0) {
2375 btrfs_item_key(eb, &disk_key, slot - 1);
2376 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2378 if (slot < btrfs_header_nritems(eb) - 1) {
2379 btrfs_item_key(eb, &disk_key, slot + 1);
2380 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2383 btrfs_cpu_key_to_disk(&disk_key, new_key);
2384 btrfs_set_item_key(eb, &disk_key, slot);
2385 btrfs_mark_buffer_dirty(eb);
2386 if (slot == 0)
2387 fixup_low_keys(trans, root, path, &disk_key, 1);
2391 * try to push data from one node into the next node left in the
2392 * tree.
2394 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2395 * error, and > 0 if there was no room in the left hand block.
2397 static int push_node_left(struct btrfs_trans_handle *trans,
2398 struct btrfs_root *root, struct extent_buffer *dst,
2399 struct extent_buffer *src, int empty)
2401 int push_items = 0;
2402 int src_nritems;
2403 int dst_nritems;
2404 int ret = 0;
2406 src_nritems = btrfs_header_nritems(src);
2407 dst_nritems = btrfs_header_nritems(dst);
2408 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2409 WARN_ON(btrfs_header_generation(src) != trans->transid);
2410 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2412 if (!empty && src_nritems <= 8)
2413 return 1;
2415 if (push_items <= 0)
2416 return 1;
2418 if (empty) {
2419 push_items = min(src_nritems, push_items);
2420 if (push_items < src_nritems) {
2421 /* leave at least 8 pointers in the node if
2422 * we aren't going to empty it
2424 if (src_nritems - push_items < 8) {
2425 if (push_items <= 8)
2426 return 1;
2427 push_items -= 8;
2430 } else
2431 push_items = min(src_nritems - 8, push_items);
2433 copy_extent_buffer(dst, src,
2434 btrfs_node_key_ptr_offset(dst_nritems),
2435 btrfs_node_key_ptr_offset(0),
2436 push_items * sizeof(struct btrfs_key_ptr));
2438 if (push_items < src_nritems) {
2439 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2440 btrfs_node_key_ptr_offset(push_items),
2441 (src_nritems - push_items) *
2442 sizeof(struct btrfs_key_ptr));
2444 btrfs_set_header_nritems(src, src_nritems - push_items);
2445 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2446 btrfs_mark_buffer_dirty(src);
2447 btrfs_mark_buffer_dirty(dst);
2449 return ret;
2453 * try to push data from one node into the next node right in the
2454 * tree.
2456 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2457 * error, and > 0 if there was no room in the right hand block.
2459 * this will only push up to 1/2 the contents of the left node over
2461 static int balance_node_right(struct btrfs_trans_handle *trans,
2462 struct btrfs_root *root,
2463 struct extent_buffer *dst,
2464 struct extent_buffer *src)
2466 int push_items = 0;
2467 int max_push;
2468 int src_nritems;
2469 int dst_nritems;
2470 int ret = 0;
2472 WARN_ON(btrfs_header_generation(src) != trans->transid);
2473 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2475 src_nritems = btrfs_header_nritems(src);
2476 dst_nritems = btrfs_header_nritems(dst);
2477 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2478 if (push_items <= 0)
2479 return 1;
2481 if (src_nritems < 4)
2482 return 1;
2484 max_push = src_nritems / 2 + 1;
2485 /* don't try to empty the node */
2486 if (max_push >= src_nritems)
2487 return 1;
2489 if (max_push < push_items)
2490 push_items = max_push;
2492 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2493 btrfs_node_key_ptr_offset(0),
2494 (dst_nritems) *
2495 sizeof(struct btrfs_key_ptr));
2497 copy_extent_buffer(dst, src,
2498 btrfs_node_key_ptr_offset(0),
2499 btrfs_node_key_ptr_offset(src_nritems - push_items),
2500 push_items * sizeof(struct btrfs_key_ptr));
2502 btrfs_set_header_nritems(src, src_nritems - push_items);
2503 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2505 btrfs_mark_buffer_dirty(src);
2506 btrfs_mark_buffer_dirty(dst);
2508 return ret;
2512 * helper function to insert a new root level in the tree.
2513 * A new node is allocated, and a single item is inserted to
2514 * point to the existing root
2516 * returns zero on success or < 0 on failure.
2518 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2519 struct btrfs_root *root,
2520 struct btrfs_path *path, int level)
2522 u64 lower_gen;
2523 struct extent_buffer *lower;
2524 struct extent_buffer *c;
2525 struct extent_buffer *old;
2526 struct btrfs_disk_key lower_key;
2528 BUG_ON(path->nodes[level]);
2529 BUG_ON(path->nodes[level-1] != root->node);
2531 lower = path->nodes[level-1];
2532 if (level == 1)
2533 btrfs_item_key(lower, &lower_key, 0);
2534 else
2535 btrfs_node_key(lower, &lower_key, 0);
2537 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2538 root->root_key.objectid, &lower_key,
2539 level, root->node->start, 0);
2540 if (IS_ERR(c))
2541 return PTR_ERR(c);
2543 root_add_used(root, root->nodesize);
2545 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2546 btrfs_set_header_nritems(c, 1);
2547 btrfs_set_header_level(c, level);
2548 btrfs_set_header_bytenr(c, c->start);
2549 btrfs_set_header_generation(c, trans->transid);
2550 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2551 btrfs_set_header_owner(c, root->root_key.objectid);
2553 write_extent_buffer(c, root->fs_info->fsid,
2554 (unsigned long)btrfs_header_fsid(c),
2555 BTRFS_FSID_SIZE);
2557 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2558 (unsigned long)btrfs_header_chunk_tree_uuid(c),
2559 BTRFS_UUID_SIZE);
2561 btrfs_set_node_key(c, &lower_key, 0);
2562 btrfs_set_node_blockptr(c, 0, lower->start);
2563 lower_gen = btrfs_header_generation(lower);
2564 WARN_ON(lower_gen != trans->transid);
2566 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2568 btrfs_mark_buffer_dirty(c);
2570 old = root->node;
2571 rcu_assign_pointer(root->node, c);
2573 /* the super has an extra ref to root->node */
2574 free_extent_buffer(old);
2576 add_root_to_dirty_list(root);
2577 extent_buffer_get(c);
2578 path->nodes[level] = c;
2579 path->locks[level] = BTRFS_WRITE_LOCK;
2580 path->slots[level] = 0;
2581 return 0;
2585 * worker function to insert a single pointer in a node.
2586 * the node should have enough room for the pointer already
2588 * slot and level indicate where you want the key to go, and
2589 * blocknr is the block the key points to.
2591 static void insert_ptr(struct btrfs_trans_handle *trans,
2592 struct btrfs_root *root, struct btrfs_path *path,
2593 struct btrfs_disk_key *key, u64 bytenr,
2594 int slot, int level)
2596 struct extent_buffer *lower;
2597 int nritems;
2599 BUG_ON(!path->nodes[level]);
2600 btrfs_assert_tree_locked(path->nodes[level]);
2601 lower = path->nodes[level];
2602 nritems = btrfs_header_nritems(lower);
2603 BUG_ON(slot > nritems);
2604 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
2605 if (slot != nritems) {
2606 memmove_extent_buffer(lower,
2607 btrfs_node_key_ptr_offset(slot + 1),
2608 btrfs_node_key_ptr_offset(slot),
2609 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2611 btrfs_set_node_key(lower, key, slot);
2612 btrfs_set_node_blockptr(lower, slot, bytenr);
2613 WARN_ON(trans->transid == 0);
2614 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2615 btrfs_set_header_nritems(lower, nritems + 1);
2616 btrfs_mark_buffer_dirty(lower);
2620 * split the node at the specified level in path in two.
2621 * The path is corrected to point to the appropriate node after the split
2623 * Before splitting this tries to make some room in the node by pushing
2624 * left and right, if either one works, it returns right away.
2626 * returns 0 on success and < 0 on failure
2628 static noinline int split_node(struct btrfs_trans_handle *trans,
2629 struct btrfs_root *root,
2630 struct btrfs_path *path, int level)
2632 struct extent_buffer *c;
2633 struct extent_buffer *split;
2634 struct btrfs_disk_key disk_key;
2635 int mid;
2636 int ret;
2637 u32 c_nritems;
2639 c = path->nodes[level];
2640 WARN_ON(btrfs_header_generation(c) != trans->transid);
2641 if (c == root->node) {
2642 /* trying to split the root, lets make a new one */
2643 ret = insert_new_root(trans, root, path, level + 1);
2644 if (ret)
2645 return ret;
2646 } else {
2647 ret = push_nodes_for_insert(trans, root, path, level);
2648 c = path->nodes[level];
2649 if (!ret && btrfs_header_nritems(c) <
2650 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2651 return 0;
2652 if (ret < 0)
2653 return ret;
2656 c_nritems = btrfs_header_nritems(c);
2657 mid = (c_nritems + 1) / 2;
2658 btrfs_node_key(c, &disk_key, mid);
2660 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2661 root->root_key.objectid,
2662 &disk_key, level, c->start, 0);
2663 if (IS_ERR(split))
2664 return PTR_ERR(split);
2666 root_add_used(root, root->nodesize);
2668 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2669 btrfs_set_header_level(split, btrfs_header_level(c));
2670 btrfs_set_header_bytenr(split, split->start);
2671 btrfs_set_header_generation(split, trans->transid);
2672 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2673 btrfs_set_header_owner(split, root->root_key.objectid);
2674 write_extent_buffer(split, root->fs_info->fsid,
2675 (unsigned long)btrfs_header_fsid(split),
2676 BTRFS_FSID_SIZE);
2677 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2678 (unsigned long)btrfs_header_chunk_tree_uuid(split),
2679 BTRFS_UUID_SIZE);
2681 copy_extent_buffer(split, c,
2682 btrfs_node_key_ptr_offset(0),
2683 btrfs_node_key_ptr_offset(mid),
2684 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2685 btrfs_set_header_nritems(split, c_nritems - mid);
2686 btrfs_set_header_nritems(c, mid);
2687 ret = 0;
2689 btrfs_mark_buffer_dirty(c);
2690 btrfs_mark_buffer_dirty(split);
2692 insert_ptr(trans, root, path, &disk_key, split->start,
2693 path->slots[level + 1] + 1, level + 1);
2695 if (path->slots[level] >= mid) {
2696 path->slots[level] -= mid;
2697 btrfs_tree_unlock(c);
2698 free_extent_buffer(c);
2699 path->nodes[level] = split;
2700 path->slots[level + 1] += 1;
2701 } else {
2702 btrfs_tree_unlock(split);
2703 free_extent_buffer(split);
2705 return ret;
2709 * how many bytes are required to store the items in a leaf. start
2710 * and nr indicate which items in the leaf to check. This totals up the
2711 * space used both by the item structs and the item data
2713 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2715 int data_len;
2716 int nritems = btrfs_header_nritems(l);
2717 int end = min(nritems, start + nr) - 1;
2719 if (!nr)
2720 return 0;
2721 data_len = btrfs_item_end_nr(l, start);
2722 data_len = data_len - btrfs_item_offset_nr(l, end);
2723 data_len += sizeof(struct btrfs_item) * nr;
2724 WARN_ON(data_len < 0);
2725 return data_len;
2729 * The space between the end of the leaf items and
2730 * the start of the leaf data. IOW, how much room
2731 * the leaf has left for both items and data
2733 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2734 struct extent_buffer *leaf)
2736 int nritems = btrfs_header_nritems(leaf);
2737 int ret;
2738 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2739 if (ret < 0) {
2740 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2741 "used %d nritems %d\n",
2742 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2743 leaf_space_used(leaf, 0, nritems), nritems);
2745 return ret;
2749 * min slot controls the lowest index we're willing to push to the
2750 * right. We'll push up to and including min_slot, but no lower
2752 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2753 struct btrfs_root *root,
2754 struct btrfs_path *path,
2755 int data_size, int empty,
2756 struct extent_buffer *right,
2757 int free_space, u32 left_nritems,
2758 u32 min_slot)
2760 struct extent_buffer *left = path->nodes[0];
2761 struct extent_buffer *upper = path->nodes[1];
2762 struct btrfs_map_token token;
2763 struct btrfs_disk_key disk_key;
2764 int slot;
2765 u32 i;
2766 int push_space = 0;
2767 int push_items = 0;
2768 struct btrfs_item *item;
2769 u32 nr;
2770 u32 right_nritems;
2771 u32 data_end;
2772 u32 this_item_size;
2774 btrfs_init_map_token(&token);
2776 if (empty)
2777 nr = 0;
2778 else
2779 nr = max_t(u32, 1, min_slot);
2781 if (path->slots[0] >= left_nritems)
2782 push_space += data_size;
2784 slot = path->slots[1];
2785 i = left_nritems - 1;
2786 while (i >= nr) {
2787 item = btrfs_item_nr(left, i);
2789 if (!empty && push_items > 0) {
2790 if (path->slots[0] > i)
2791 break;
2792 if (path->slots[0] == i) {
2793 int space = btrfs_leaf_free_space(root, left);
2794 if (space + push_space * 2 > free_space)
2795 break;
2799 if (path->slots[0] == i)
2800 push_space += data_size;
2802 this_item_size = btrfs_item_size(left, item);
2803 if (this_item_size + sizeof(*item) + push_space > free_space)
2804 break;
2806 push_items++;
2807 push_space += this_item_size + sizeof(*item);
2808 if (i == 0)
2809 break;
2810 i--;
2813 if (push_items == 0)
2814 goto out_unlock;
2816 if (!empty && push_items == left_nritems)
2817 WARN_ON(1);
2819 /* push left to right */
2820 right_nritems = btrfs_header_nritems(right);
2822 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2823 push_space -= leaf_data_end(root, left);
2825 /* make room in the right data area */
2826 data_end = leaf_data_end(root, right);
2827 memmove_extent_buffer(right,
2828 btrfs_leaf_data(right) + data_end - push_space,
2829 btrfs_leaf_data(right) + data_end,
2830 BTRFS_LEAF_DATA_SIZE(root) - data_end);
2832 /* copy from the left data area */
2833 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2834 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2835 btrfs_leaf_data(left) + leaf_data_end(root, left),
2836 push_space);
2838 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2839 btrfs_item_nr_offset(0),
2840 right_nritems * sizeof(struct btrfs_item));
2842 /* copy the items from left to right */
2843 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2844 btrfs_item_nr_offset(left_nritems - push_items),
2845 push_items * sizeof(struct btrfs_item));
2847 /* update the item pointers */
2848 right_nritems += push_items;
2849 btrfs_set_header_nritems(right, right_nritems);
2850 push_space = BTRFS_LEAF_DATA_SIZE(root);
2851 for (i = 0; i < right_nritems; i++) {
2852 item = btrfs_item_nr(right, i);
2853 push_space -= btrfs_token_item_size(right, item, &token);
2854 btrfs_set_token_item_offset(right, item, push_space, &token);
2857 left_nritems -= push_items;
2858 btrfs_set_header_nritems(left, left_nritems);
2860 if (left_nritems)
2861 btrfs_mark_buffer_dirty(left);
2862 else
2863 clean_tree_block(trans, root, left);
2865 btrfs_mark_buffer_dirty(right);
2867 btrfs_item_key(right, &disk_key, 0);
2868 btrfs_set_node_key(upper, &disk_key, slot + 1);
2869 btrfs_mark_buffer_dirty(upper);
2871 /* then fixup the leaf pointer in the path */
2872 if (path->slots[0] >= left_nritems) {
2873 path->slots[0] -= left_nritems;
2874 if (btrfs_header_nritems(path->nodes[0]) == 0)
2875 clean_tree_block(trans, root, path->nodes[0]);
2876 btrfs_tree_unlock(path->nodes[0]);
2877 free_extent_buffer(path->nodes[0]);
2878 path->nodes[0] = right;
2879 path->slots[1] += 1;
2880 } else {
2881 btrfs_tree_unlock(right);
2882 free_extent_buffer(right);
2884 return 0;
2886 out_unlock:
2887 btrfs_tree_unlock(right);
2888 free_extent_buffer(right);
2889 return 1;
2893 * push some data in the path leaf to the right, trying to free up at
2894 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2896 * returns 1 if the push failed because the other node didn't have enough
2897 * room, 0 if everything worked out and < 0 if there were major errors.
2899 * this will push starting from min_slot to the end of the leaf. It won't
2900 * push any slot lower than min_slot
2902 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2903 *root, struct btrfs_path *path,
2904 int min_data_size, int data_size,
2905 int empty, u32 min_slot)
2907 struct extent_buffer *left = path->nodes[0];
2908 struct extent_buffer *right;
2909 struct extent_buffer *upper;
2910 int slot;
2911 int free_space;
2912 u32 left_nritems;
2913 int ret;
2915 if (!path->nodes[1])
2916 return 1;
2918 slot = path->slots[1];
2919 upper = path->nodes[1];
2920 if (slot >= btrfs_header_nritems(upper) - 1)
2921 return 1;
2923 btrfs_assert_tree_locked(path->nodes[1]);
2925 right = read_node_slot(root, upper, slot + 1);
2926 if (right == NULL)
2927 return 1;
2929 btrfs_tree_lock(right);
2930 btrfs_set_lock_blocking(right);
2932 free_space = btrfs_leaf_free_space(root, right);
2933 if (free_space < data_size)
2934 goto out_unlock;
2936 /* cow and double check */
2937 ret = btrfs_cow_block(trans, root, right, upper,
2938 slot + 1, &right);
2939 if (ret)
2940 goto out_unlock;
2942 free_space = btrfs_leaf_free_space(root, right);
2943 if (free_space < data_size)
2944 goto out_unlock;
2946 left_nritems = btrfs_header_nritems(left);
2947 if (left_nritems == 0)
2948 goto out_unlock;
2950 return __push_leaf_right(trans, root, path, min_data_size, empty,
2951 right, free_space, left_nritems, min_slot);
2952 out_unlock:
2953 btrfs_tree_unlock(right);
2954 free_extent_buffer(right);
2955 return 1;
2959 * push some data in the path leaf to the left, trying to free up at
2960 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2962 * max_slot can put a limit on how far into the leaf we'll push items. The
2963 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
2964 * items
2966 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2967 struct btrfs_root *root,
2968 struct btrfs_path *path, int data_size,
2969 int empty, struct extent_buffer *left,
2970 int free_space, u32 right_nritems,
2971 u32 max_slot)
2973 struct btrfs_disk_key disk_key;
2974 struct extent_buffer *right = path->nodes[0];
2975 int i;
2976 int push_space = 0;
2977 int push_items = 0;
2978 struct btrfs_item *item;
2979 u32 old_left_nritems;
2980 u32 nr;
2981 int ret = 0;
2982 u32 this_item_size;
2983 u32 old_left_item_size;
2984 struct btrfs_map_token token;
2986 btrfs_init_map_token(&token);
2988 if (empty)
2989 nr = min(right_nritems, max_slot);
2990 else
2991 nr = min(right_nritems - 1, max_slot);
2993 for (i = 0; i < nr; i++) {
2994 item = btrfs_item_nr(right, i);
2996 if (!empty && push_items > 0) {
2997 if (path->slots[0] < i)
2998 break;
2999 if (path->slots[0] == i) {
3000 int space = btrfs_leaf_free_space(root, right);
3001 if (space + push_space * 2 > free_space)
3002 break;
3006 if (path->slots[0] == i)
3007 push_space += data_size;
3009 this_item_size = btrfs_item_size(right, item);
3010 if (this_item_size + sizeof(*item) + push_space > free_space)
3011 break;
3013 push_items++;
3014 push_space += this_item_size + sizeof(*item);
3017 if (push_items == 0) {
3018 ret = 1;
3019 goto out;
3021 if (!empty && push_items == btrfs_header_nritems(right))
3022 WARN_ON(1);
3024 /* push data from right to left */
3025 copy_extent_buffer(left, right,
3026 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3027 btrfs_item_nr_offset(0),
3028 push_items * sizeof(struct btrfs_item));
3030 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3031 btrfs_item_offset_nr(right, push_items - 1);
3033 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3034 leaf_data_end(root, left) - push_space,
3035 btrfs_leaf_data(right) +
3036 btrfs_item_offset_nr(right, push_items - 1),
3037 push_space);
3038 old_left_nritems = btrfs_header_nritems(left);
3039 BUG_ON(old_left_nritems <= 0);
3041 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3042 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3043 u32 ioff;
3045 item = btrfs_item_nr(left, i);
3047 ioff = btrfs_token_item_offset(left, item, &token);
3048 btrfs_set_token_item_offset(left, item,
3049 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3050 &token);
3052 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3054 /* fixup right node */
3055 if (push_items > right_nritems) {
3056 printk(KERN_CRIT "push items %d nr %u\n", push_items,
3057 right_nritems);
3058 WARN_ON(1);
3061 if (push_items < right_nritems) {
3062 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3063 leaf_data_end(root, right);
3064 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3065 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3066 btrfs_leaf_data(right) +
3067 leaf_data_end(root, right), push_space);
3069 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3070 btrfs_item_nr_offset(push_items),
3071 (btrfs_header_nritems(right) - push_items) *
3072 sizeof(struct btrfs_item));
3074 right_nritems -= push_items;
3075 btrfs_set_header_nritems(right, right_nritems);
3076 push_space = BTRFS_LEAF_DATA_SIZE(root);
3077 for (i = 0; i < right_nritems; i++) {
3078 item = btrfs_item_nr(right, i);
3080 push_space = push_space - btrfs_token_item_size(right,
3081 item, &token);
3082 btrfs_set_token_item_offset(right, item, push_space, &token);
3085 btrfs_mark_buffer_dirty(left);
3086 if (right_nritems)
3087 btrfs_mark_buffer_dirty(right);
3088 else
3089 clean_tree_block(trans, root, right);
3091 btrfs_item_key(right, &disk_key, 0);
3092 fixup_low_keys(trans, root, path, &disk_key, 1);
3094 /* then fixup the leaf pointer in the path */
3095 if (path->slots[0] < push_items) {
3096 path->slots[0] += old_left_nritems;
3097 btrfs_tree_unlock(path->nodes[0]);
3098 free_extent_buffer(path->nodes[0]);
3099 path->nodes[0] = left;
3100 path->slots[1] -= 1;
3101 } else {
3102 btrfs_tree_unlock(left);
3103 free_extent_buffer(left);
3104 path->slots[0] -= push_items;
3106 BUG_ON(path->slots[0] < 0);
3107 return ret;
3108 out:
3109 btrfs_tree_unlock(left);
3110 free_extent_buffer(left);
3111 return ret;
3115 * push some data in the path leaf to the left, trying to free up at
3116 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3118 * max_slot can put a limit on how far into the leaf we'll push items. The
3119 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3120 * items
3122 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3123 *root, struct btrfs_path *path, int min_data_size,
3124 int data_size, int empty, u32 max_slot)
3126 struct extent_buffer *right = path->nodes[0];
3127 struct extent_buffer *left;
3128 int slot;
3129 int free_space;
3130 u32 right_nritems;
3131 int ret = 0;
3133 slot = path->slots[1];
3134 if (slot == 0)
3135 return 1;
3136 if (!path->nodes[1])
3137 return 1;
3139 right_nritems = btrfs_header_nritems(right);
3140 if (right_nritems == 0)
3141 return 1;
3143 btrfs_assert_tree_locked(path->nodes[1]);
3145 left = read_node_slot(root, path->nodes[1], slot - 1);
3146 if (left == NULL)
3147 return 1;
3149 btrfs_tree_lock(left);
3150 btrfs_set_lock_blocking(left);
3152 free_space = btrfs_leaf_free_space(root, left);
3153 if (free_space < data_size) {
3154 ret = 1;
3155 goto out;
3158 /* cow and double check */
3159 ret = btrfs_cow_block(trans, root, left,
3160 path->nodes[1], slot - 1, &left);
3161 if (ret) {
3162 /* we hit -ENOSPC, but it isn't fatal here */
3163 if (ret == -ENOSPC)
3164 ret = 1;
3165 goto out;
3168 free_space = btrfs_leaf_free_space(root, left);
3169 if (free_space < data_size) {
3170 ret = 1;
3171 goto out;
3174 return __push_leaf_left(trans, root, path, min_data_size,
3175 empty, left, free_space, right_nritems,
3176 max_slot);
3177 out:
3178 btrfs_tree_unlock(left);
3179 free_extent_buffer(left);
3180 return ret;
3184 * split the path's leaf in two, making sure there is at least data_size
3185 * available for the resulting leaf level of the path.
3187 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3188 struct btrfs_root *root,
3189 struct btrfs_path *path,
3190 struct extent_buffer *l,
3191 struct extent_buffer *right,
3192 int slot, int mid, int nritems)
3194 int data_copy_size;
3195 int rt_data_off;
3196 int i;
3197 struct btrfs_disk_key disk_key;
3198 struct btrfs_map_token token;
3200 btrfs_init_map_token(&token);
3202 nritems = nritems - mid;
3203 btrfs_set_header_nritems(right, nritems);
3204 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3206 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3207 btrfs_item_nr_offset(mid),
3208 nritems * sizeof(struct btrfs_item));
3210 copy_extent_buffer(right, l,
3211 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3212 data_copy_size, btrfs_leaf_data(l) +
3213 leaf_data_end(root, l), data_copy_size);
3215 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3216 btrfs_item_end_nr(l, mid);
3218 for (i = 0; i < nritems; i++) {
3219 struct btrfs_item *item = btrfs_item_nr(right, i);
3220 u32 ioff;
3222 ioff = btrfs_token_item_offset(right, item, &token);
3223 btrfs_set_token_item_offset(right, item,
3224 ioff + rt_data_off, &token);
3227 btrfs_set_header_nritems(l, mid);
3228 btrfs_item_key(right, &disk_key, 0);
3229 insert_ptr(trans, root, path, &disk_key, right->start,
3230 path->slots[1] + 1, 1);
3232 btrfs_mark_buffer_dirty(right);
3233 btrfs_mark_buffer_dirty(l);
3234 BUG_ON(path->slots[0] != slot);
3236 if (mid <= slot) {
3237 btrfs_tree_unlock(path->nodes[0]);
3238 free_extent_buffer(path->nodes[0]);
3239 path->nodes[0] = right;
3240 path->slots[0] -= mid;
3241 path->slots[1] += 1;
3242 } else {
3243 btrfs_tree_unlock(right);
3244 free_extent_buffer(right);
3247 BUG_ON(path->slots[0] < 0);
3251 * double splits happen when we need to insert a big item in the middle
3252 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3253 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3254 * A B C
3256 * We avoid this by trying to push the items on either side of our target
3257 * into the adjacent leaves. If all goes well we can avoid the double split
3258 * completely.
3260 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3261 struct btrfs_root *root,
3262 struct btrfs_path *path,
3263 int data_size)
3265 int ret;
3266 int progress = 0;
3267 int slot;
3268 u32 nritems;
3270 slot = path->slots[0];
3273 * try to push all the items after our slot into the
3274 * right leaf
3276 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3277 if (ret < 0)
3278 return ret;
3280 if (ret == 0)
3281 progress++;
3283 nritems = btrfs_header_nritems(path->nodes[0]);
3285 * our goal is to get our slot at the start or end of a leaf. If
3286 * we've done so we're done
3288 if (path->slots[0] == 0 || path->slots[0] == nritems)
3289 return 0;
3291 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3292 return 0;
3294 /* try to push all the items before our slot into the next leaf */
3295 slot = path->slots[0];
3296 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3297 if (ret < 0)
3298 return ret;
3300 if (ret == 0)
3301 progress++;
3303 if (progress)
3304 return 0;
3305 return 1;
3309 * split the path's leaf in two, making sure there is at least data_size
3310 * available for the resulting leaf level of the path.
3312 * returns 0 if all went well and < 0 on failure.
3314 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3315 struct btrfs_root *root,
3316 struct btrfs_key *ins_key,
3317 struct btrfs_path *path, int data_size,
3318 int extend)
3320 struct btrfs_disk_key disk_key;
3321 struct extent_buffer *l;
3322 u32 nritems;
3323 int mid;
3324 int slot;
3325 struct extent_buffer *right;
3326 int ret = 0;
3327 int wret;
3328 int split;
3329 int num_doubles = 0;
3330 int tried_avoid_double = 0;
3332 l = path->nodes[0];
3333 slot = path->slots[0];
3334 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3335 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3336 return -EOVERFLOW;
3338 /* first try to make some room by pushing left and right */
3339 if (data_size) {
3340 wret = push_leaf_right(trans, root, path, data_size,
3341 data_size, 0, 0);
3342 if (wret < 0)
3343 return wret;
3344 if (wret) {
3345 wret = push_leaf_left(trans, root, path, data_size,
3346 data_size, 0, (u32)-1);
3347 if (wret < 0)
3348 return wret;
3350 l = path->nodes[0];
3352 /* did the pushes work? */
3353 if (btrfs_leaf_free_space(root, l) >= data_size)
3354 return 0;
3357 if (!path->nodes[1]) {
3358 ret = insert_new_root(trans, root, path, 1);
3359 if (ret)
3360 return ret;
3362 again:
3363 split = 1;
3364 l = path->nodes[0];
3365 slot = path->slots[0];
3366 nritems = btrfs_header_nritems(l);
3367 mid = (nritems + 1) / 2;
3369 if (mid <= slot) {
3370 if (nritems == 1 ||
3371 leaf_space_used(l, mid, nritems - mid) + data_size >
3372 BTRFS_LEAF_DATA_SIZE(root)) {
3373 if (slot >= nritems) {
3374 split = 0;
3375 } else {
3376 mid = slot;
3377 if (mid != nritems &&
3378 leaf_space_used(l, mid, nritems - mid) +
3379 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3380 if (data_size && !tried_avoid_double)
3381 goto push_for_double;
3382 split = 2;
3386 } else {
3387 if (leaf_space_used(l, 0, mid) + data_size >
3388 BTRFS_LEAF_DATA_SIZE(root)) {
3389 if (!extend && data_size && slot == 0) {
3390 split = 0;
3391 } else if ((extend || !data_size) && slot == 0) {
3392 mid = 1;
3393 } else {
3394 mid = slot;
3395 if (mid != nritems &&
3396 leaf_space_used(l, mid, nritems - mid) +
3397 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3398 if (data_size && !tried_avoid_double)
3399 goto push_for_double;
3400 split = 2 ;
3406 if (split == 0)
3407 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3408 else
3409 btrfs_item_key(l, &disk_key, mid);
3411 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3412 root->root_key.objectid,
3413 &disk_key, 0, l->start, 0);
3414 if (IS_ERR(right))
3415 return PTR_ERR(right);
3417 root_add_used(root, root->leafsize);
3419 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3420 btrfs_set_header_bytenr(right, right->start);
3421 btrfs_set_header_generation(right, trans->transid);
3422 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3423 btrfs_set_header_owner(right, root->root_key.objectid);
3424 btrfs_set_header_level(right, 0);
3425 write_extent_buffer(right, root->fs_info->fsid,
3426 (unsigned long)btrfs_header_fsid(right),
3427 BTRFS_FSID_SIZE);
3429 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3430 (unsigned long)btrfs_header_chunk_tree_uuid(right),
3431 BTRFS_UUID_SIZE);
3433 if (split == 0) {
3434 if (mid <= slot) {
3435 btrfs_set_header_nritems(right, 0);
3436 insert_ptr(trans, root, path, &disk_key, right->start,
3437 path->slots[1] + 1, 1);
3438 btrfs_tree_unlock(path->nodes[0]);
3439 free_extent_buffer(path->nodes[0]);
3440 path->nodes[0] = right;
3441 path->slots[0] = 0;
3442 path->slots[1] += 1;
3443 } else {
3444 btrfs_set_header_nritems(right, 0);
3445 insert_ptr(trans, root, path, &disk_key, right->start,
3446 path->slots[1], 1);
3447 btrfs_tree_unlock(path->nodes[0]);
3448 free_extent_buffer(path->nodes[0]);
3449 path->nodes[0] = right;
3450 path->slots[0] = 0;
3451 if (path->slots[1] == 0)
3452 fixup_low_keys(trans, root, path,
3453 &disk_key, 1);
3455 btrfs_mark_buffer_dirty(right);
3456 return ret;
3459 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3461 if (split == 2) {
3462 BUG_ON(num_doubles != 0);
3463 num_doubles++;
3464 goto again;
3467 return 0;
3469 push_for_double:
3470 push_for_double_split(trans, root, path, data_size);
3471 tried_avoid_double = 1;
3472 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3473 return 0;
3474 goto again;
3477 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3478 struct btrfs_root *root,
3479 struct btrfs_path *path, int ins_len)
3481 struct btrfs_key key;
3482 struct extent_buffer *leaf;
3483 struct btrfs_file_extent_item *fi;
3484 u64 extent_len = 0;
3485 u32 item_size;
3486 int ret;
3488 leaf = path->nodes[0];
3489 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3491 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3492 key.type != BTRFS_EXTENT_CSUM_KEY);
3494 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3495 return 0;
3497 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3498 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3499 fi = btrfs_item_ptr(leaf, path->slots[0],
3500 struct btrfs_file_extent_item);
3501 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3503 btrfs_release_path(path);
3505 path->keep_locks = 1;
3506 path->search_for_split = 1;
3507 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3508 path->search_for_split = 0;
3509 if (ret < 0)
3510 goto err;
3512 ret = -EAGAIN;
3513 leaf = path->nodes[0];
3514 /* if our item isn't there or got smaller, return now */
3515 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3516 goto err;
3518 /* the leaf has changed, it now has room. return now */
3519 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3520 goto err;
3522 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3523 fi = btrfs_item_ptr(leaf, path->slots[0],
3524 struct btrfs_file_extent_item);
3525 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3526 goto err;
3529 btrfs_set_path_blocking(path);
3530 ret = split_leaf(trans, root, &key, path, ins_len, 1);
3531 if (ret)
3532 goto err;
3534 path->keep_locks = 0;
3535 btrfs_unlock_up_safe(path, 1);
3536 return 0;
3537 err:
3538 path->keep_locks = 0;
3539 return ret;
3542 static noinline int split_item(struct btrfs_trans_handle *trans,
3543 struct btrfs_root *root,
3544 struct btrfs_path *path,
3545 struct btrfs_key *new_key,
3546 unsigned long split_offset)
3548 struct extent_buffer *leaf;
3549 struct btrfs_item *item;
3550 struct btrfs_item *new_item;
3551 int slot;
3552 char *buf;
3553 u32 nritems;
3554 u32 item_size;
3555 u32 orig_offset;
3556 struct btrfs_disk_key disk_key;
3558 leaf = path->nodes[0];
3559 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3561 btrfs_set_path_blocking(path);
3563 item = btrfs_item_nr(leaf, path->slots[0]);
3564 orig_offset = btrfs_item_offset(leaf, item);
3565 item_size = btrfs_item_size(leaf, item);
3567 buf = kmalloc(item_size, GFP_NOFS);
3568 if (!buf)
3569 return -ENOMEM;
3571 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3572 path->slots[0]), item_size);
3574 slot = path->slots[0] + 1;
3575 nritems = btrfs_header_nritems(leaf);
3576 if (slot != nritems) {
3577 /* shift the items */
3578 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3579 btrfs_item_nr_offset(slot),
3580 (nritems - slot) * sizeof(struct btrfs_item));
3583 btrfs_cpu_key_to_disk(&disk_key, new_key);
3584 btrfs_set_item_key(leaf, &disk_key, slot);
3586 new_item = btrfs_item_nr(leaf, slot);
3588 btrfs_set_item_offset(leaf, new_item, orig_offset);
3589 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3591 btrfs_set_item_offset(leaf, item,
3592 orig_offset + item_size - split_offset);
3593 btrfs_set_item_size(leaf, item, split_offset);
3595 btrfs_set_header_nritems(leaf, nritems + 1);
3597 /* write the data for the start of the original item */
3598 write_extent_buffer(leaf, buf,
3599 btrfs_item_ptr_offset(leaf, path->slots[0]),
3600 split_offset);
3602 /* write the data for the new item */
3603 write_extent_buffer(leaf, buf + split_offset,
3604 btrfs_item_ptr_offset(leaf, slot),
3605 item_size - split_offset);
3606 btrfs_mark_buffer_dirty(leaf);
3608 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3609 kfree(buf);
3610 return 0;
3614 * This function splits a single item into two items,
3615 * giving 'new_key' to the new item and splitting the
3616 * old one at split_offset (from the start of the item).
3618 * The path may be released by this operation. After
3619 * the split, the path is pointing to the old item. The
3620 * new item is going to be in the same node as the old one.
3622 * Note, the item being split must be smaller enough to live alone on
3623 * a tree block with room for one extra struct btrfs_item
3625 * This allows us to split the item in place, keeping a lock on the
3626 * leaf the entire time.
3628 int btrfs_split_item(struct btrfs_trans_handle *trans,
3629 struct btrfs_root *root,
3630 struct btrfs_path *path,
3631 struct btrfs_key *new_key,
3632 unsigned long split_offset)
3634 int ret;
3635 ret = setup_leaf_for_split(trans, root, path,
3636 sizeof(struct btrfs_item));
3637 if (ret)
3638 return ret;
3640 ret = split_item(trans, root, path, new_key, split_offset);
3641 return ret;
3645 * This function duplicate a item, giving 'new_key' to the new item.
3646 * It guarantees both items live in the same tree leaf and the new item
3647 * is contiguous with the original item.
3649 * This allows us to split file extent in place, keeping a lock on the
3650 * leaf the entire time.
3652 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3653 struct btrfs_root *root,
3654 struct btrfs_path *path,
3655 struct btrfs_key *new_key)
3657 struct extent_buffer *leaf;
3658 int ret;
3659 u32 item_size;
3661 leaf = path->nodes[0];
3662 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3663 ret = setup_leaf_for_split(trans, root, path,
3664 item_size + sizeof(struct btrfs_item));
3665 if (ret)
3666 return ret;
3668 path->slots[0]++;
3669 setup_items_for_insert(trans, root, path, new_key, &item_size,
3670 item_size, item_size +
3671 sizeof(struct btrfs_item), 1);
3672 leaf = path->nodes[0];
3673 memcpy_extent_buffer(leaf,
3674 btrfs_item_ptr_offset(leaf, path->slots[0]),
3675 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3676 item_size);
3677 return 0;
3681 * make the item pointed to by the path smaller. new_size indicates
3682 * how small to make it, and from_end tells us if we just chop bytes
3683 * off the end of the item or if we shift the item to chop bytes off
3684 * the front.
3686 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
3687 struct btrfs_root *root,
3688 struct btrfs_path *path,
3689 u32 new_size, int from_end)
3691 int slot;
3692 struct extent_buffer *leaf;
3693 struct btrfs_item *item;
3694 u32 nritems;
3695 unsigned int data_end;
3696 unsigned int old_data_start;
3697 unsigned int old_size;
3698 unsigned int size_diff;
3699 int i;
3700 struct btrfs_map_token token;
3702 btrfs_init_map_token(&token);
3704 leaf = path->nodes[0];
3705 slot = path->slots[0];
3707 old_size = btrfs_item_size_nr(leaf, slot);
3708 if (old_size == new_size)
3709 return;
3711 nritems = btrfs_header_nritems(leaf);
3712 data_end = leaf_data_end(root, leaf);
3714 old_data_start = btrfs_item_offset_nr(leaf, slot);
3716 size_diff = old_size - new_size;
3718 BUG_ON(slot < 0);
3719 BUG_ON(slot >= nritems);
3722 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3724 /* first correct the data pointers */
3725 for (i = slot; i < nritems; i++) {
3726 u32 ioff;
3727 item = btrfs_item_nr(leaf, i);
3729 ioff = btrfs_token_item_offset(leaf, item, &token);
3730 btrfs_set_token_item_offset(leaf, item,
3731 ioff + size_diff, &token);
3734 /* shift the data */
3735 if (from_end) {
3736 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3737 data_end + size_diff, btrfs_leaf_data(leaf) +
3738 data_end, old_data_start + new_size - data_end);
3739 } else {
3740 struct btrfs_disk_key disk_key;
3741 u64 offset;
3743 btrfs_item_key(leaf, &disk_key, slot);
3745 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3746 unsigned long ptr;
3747 struct btrfs_file_extent_item *fi;
3749 fi = btrfs_item_ptr(leaf, slot,
3750 struct btrfs_file_extent_item);
3751 fi = (struct btrfs_file_extent_item *)(
3752 (unsigned long)fi - size_diff);
3754 if (btrfs_file_extent_type(leaf, fi) ==
3755 BTRFS_FILE_EXTENT_INLINE) {
3756 ptr = btrfs_item_ptr_offset(leaf, slot);
3757 memmove_extent_buffer(leaf, ptr,
3758 (unsigned long)fi,
3759 offsetof(struct btrfs_file_extent_item,
3760 disk_bytenr));
3764 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3765 data_end + size_diff, btrfs_leaf_data(leaf) +
3766 data_end, old_data_start - data_end);
3768 offset = btrfs_disk_key_offset(&disk_key);
3769 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3770 btrfs_set_item_key(leaf, &disk_key, slot);
3771 if (slot == 0)
3772 fixup_low_keys(trans, root, path, &disk_key, 1);
3775 item = btrfs_item_nr(leaf, slot);
3776 btrfs_set_item_size(leaf, item, new_size);
3777 btrfs_mark_buffer_dirty(leaf);
3779 if (btrfs_leaf_free_space(root, leaf) < 0) {
3780 btrfs_print_leaf(root, leaf);
3781 BUG();
3786 * make the item pointed to by the path bigger, data_size is the new size.
3788 void btrfs_extend_item(struct btrfs_trans_handle *trans,
3789 struct btrfs_root *root, struct btrfs_path *path,
3790 u32 data_size)
3792 int slot;
3793 struct extent_buffer *leaf;
3794 struct btrfs_item *item;
3795 u32 nritems;
3796 unsigned int data_end;
3797 unsigned int old_data;
3798 unsigned int old_size;
3799 int i;
3800 struct btrfs_map_token token;
3802 btrfs_init_map_token(&token);
3804 leaf = path->nodes[0];
3806 nritems = btrfs_header_nritems(leaf);
3807 data_end = leaf_data_end(root, leaf);
3809 if (btrfs_leaf_free_space(root, leaf) < data_size) {
3810 btrfs_print_leaf(root, leaf);
3811 BUG();
3813 slot = path->slots[0];
3814 old_data = btrfs_item_end_nr(leaf, slot);
3816 BUG_ON(slot < 0);
3817 if (slot >= nritems) {
3818 btrfs_print_leaf(root, leaf);
3819 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3820 slot, nritems);
3821 BUG_ON(1);
3825 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3827 /* first correct the data pointers */
3828 for (i = slot; i < nritems; i++) {
3829 u32 ioff;
3830 item = btrfs_item_nr(leaf, i);
3832 ioff = btrfs_token_item_offset(leaf, item, &token);
3833 btrfs_set_token_item_offset(leaf, item,
3834 ioff - data_size, &token);
3837 /* shift the data */
3838 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3839 data_end - data_size, btrfs_leaf_data(leaf) +
3840 data_end, old_data - data_end);
3842 data_end = old_data;
3843 old_size = btrfs_item_size_nr(leaf, slot);
3844 item = btrfs_item_nr(leaf, slot);
3845 btrfs_set_item_size(leaf, item, old_size + data_size);
3846 btrfs_mark_buffer_dirty(leaf);
3848 if (btrfs_leaf_free_space(root, leaf) < 0) {
3849 btrfs_print_leaf(root, leaf);
3850 BUG();
3855 * Given a key and some data, insert items into the tree.
3856 * This does all the path init required, making room in the tree if needed.
3857 * Returns the number of keys that were inserted.
3859 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3860 struct btrfs_root *root,
3861 struct btrfs_path *path,
3862 struct btrfs_key *cpu_key, u32 *data_size,
3863 int nr)
3865 struct extent_buffer *leaf;
3866 struct btrfs_item *item;
3867 int ret = 0;
3868 int slot;
3869 int i;
3870 u32 nritems;
3871 u32 total_data = 0;
3872 u32 total_size = 0;
3873 unsigned int data_end;
3874 struct btrfs_disk_key disk_key;
3875 struct btrfs_key found_key;
3876 struct btrfs_map_token token;
3878 btrfs_init_map_token(&token);
3880 for (i = 0; i < nr; i++) {
3881 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3882 BTRFS_LEAF_DATA_SIZE(root)) {
3883 break;
3884 nr = i;
3886 total_data += data_size[i];
3887 total_size += data_size[i] + sizeof(struct btrfs_item);
3889 BUG_ON(nr == 0);
3891 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3892 if (ret == 0)
3893 return -EEXIST;
3894 if (ret < 0)
3895 goto out;
3897 leaf = path->nodes[0];
3899 nritems = btrfs_header_nritems(leaf);
3900 data_end = leaf_data_end(root, leaf);
3902 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3903 for (i = nr; i >= 0; i--) {
3904 total_data -= data_size[i];
3905 total_size -= data_size[i] + sizeof(struct btrfs_item);
3906 if (total_size < btrfs_leaf_free_space(root, leaf))
3907 break;
3909 nr = i;
3912 slot = path->slots[0];
3913 BUG_ON(slot < 0);
3915 if (slot != nritems) {
3916 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3918 item = btrfs_item_nr(leaf, slot);
3919 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3921 /* figure out how many keys we can insert in here */
3922 total_data = data_size[0];
3923 for (i = 1; i < nr; i++) {
3924 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3925 break;
3926 total_data += data_size[i];
3928 nr = i;
3930 if (old_data < data_end) {
3931 btrfs_print_leaf(root, leaf);
3932 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3933 slot, old_data, data_end);
3934 BUG_ON(1);
3937 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3939 /* first correct the data pointers */
3940 for (i = slot; i < nritems; i++) {
3941 u32 ioff;
3943 item = btrfs_item_nr(leaf, i);
3944 ioff = btrfs_token_item_offset(leaf, item, &token);
3945 btrfs_set_token_item_offset(leaf, item,
3946 ioff - total_data, &token);
3948 /* shift the items */
3949 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3950 btrfs_item_nr_offset(slot),
3951 (nritems - slot) * sizeof(struct btrfs_item));
3953 /* shift the data */
3954 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3955 data_end - total_data, btrfs_leaf_data(leaf) +
3956 data_end, old_data - data_end);
3957 data_end = old_data;
3958 } else {
3960 * this sucks but it has to be done, if we are inserting at
3961 * the end of the leaf only insert 1 of the items, since we
3962 * have no way of knowing whats on the next leaf and we'd have
3963 * to drop our current locks to figure it out
3965 nr = 1;
3968 /* setup the item for the new data */
3969 for (i = 0; i < nr; i++) {
3970 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3971 btrfs_set_item_key(leaf, &disk_key, slot + i);
3972 item = btrfs_item_nr(leaf, slot + i);
3973 btrfs_set_token_item_offset(leaf, item,
3974 data_end - data_size[i], &token);
3975 data_end -= data_size[i];
3976 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
3978 btrfs_set_header_nritems(leaf, nritems + nr);
3979 btrfs_mark_buffer_dirty(leaf);
3981 ret = 0;
3982 if (slot == 0) {
3983 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3984 fixup_low_keys(trans, root, path, &disk_key, 1);
3987 if (btrfs_leaf_free_space(root, leaf) < 0) {
3988 btrfs_print_leaf(root, leaf);
3989 BUG();
3991 out:
3992 if (!ret)
3993 ret = nr;
3994 return ret;
3998 * this is a helper for btrfs_insert_empty_items, the main goal here is
3999 * to save stack depth by doing the bulk of the work in a function
4000 * that doesn't call btrfs_search_slot
4002 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4003 struct btrfs_root *root, struct btrfs_path *path,
4004 struct btrfs_key *cpu_key, u32 *data_size,
4005 u32 total_data, u32 total_size, int nr)
4007 struct btrfs_item *item;
4008 int i;
4009 u32 nritems;
4010 unsigned int data_end;
4011 struct btrfs_disk_key disk_key;
4012 struct extent_buffer *leaf;
4013 int slot;
4014 struct btrfs_map_token token;
4016 btrfs_init_map_token(&token);
4018 leaf = path->nodes[0];
4019 slot = path->slots[0];
4021 nritems = btrfs_header_nritems(leaf);
4022 data_end = leaf_data_end(root, leaf);
4024 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4025 btrfs_print_leaf(root, leaf);
4026 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4027 total_size, btrfs_leaf_free_space(root, leaf));
4028 BUG();
4031 if (slot != nritems) {
4032 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4034 if (old_data < data_end) {
4035 btrfs_print_leaf(root, leaf);
4036 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4037 slot, old_data, data_end);
4038 BUG_ON(1);
4041 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4043 /* first correct the data pointers */
4044 for (i = slot; i < nritems; i++) {
4045 u32 ioff;
4047 item = btrfs_item_nr(leaf, i);
4048 ioff = btrfs_token_item_offset(leaf, item, &token);
4049 btrfs_set_token_item_offset(leaf, item,
4050 ioff - total_data, &token);
4052 /* shift the items */
4053 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4054 btrfs_item_nr_offset(slot),
4055 (nritems - slot) * sizeof(struct btrfs_item));
4057 /* shift the data */
4058 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4059 data_end - total_data, btrfs_leaf_data(leaf) +
4060 data_end, old_data - data_end);
4061 data_end = old_data;
4064 /* setup the item for the new data */
4065 for (i = 0; i < nr; i++) {
4066 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4067 btrfs_set_item_key(leaf, &disk_key, slot + i);
4068 item = btrfs_item_nr(leaf, slot + i);
4069 btrfs_set_token_item_offset(leaf, item,
4070 data_end - data_size[i], &token);
4071 data_end -= data_size[i];
4072 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4075 btrfs_set_header_nritems(leaf, nritems + nr);
4077 if (slot == 0) {
4078 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4079 fixup_low_keys(trans, root, path, &disk_key, 1);
4081 btrfs_unlock_up_safe(path, 1);
4082 btrfs_mark_buffer_dirty(leaf);
4084 if (btrfs_leaf_free_space(root, leaf) < 0) {
4085 btrfs_print_leaf(root, leaf);
4086 BUG();
4091 * Given a key and some data, insert items into the tree.
4092 * This does all the path init required, making room in the tree if needed.
4094 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4095 struct btrfs_root *root,
4096 struct btrfs_path *path,
4097 struct btrfs_key *cpu_key, u32 *data_size,
4098 int nr)
4100 int ret = 0;
4101 int slot;
4102 int i;
4103 u32 total_size = 0;
4104 u32 total_data = 0;
4106 for (i = 0; i < nr; i++)
4107 total_data += data_size[i];
4109 total_size = total_data + (nr * sizeof(struct btrfs_item));
4110 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4111 if (ret == 0)
4112 return -EEXIST;
4113 if (ret < 0)
4114 return ret;
4116 slot = path->slots[0];
4117 BUG_ON(slot < 0);
4119 setup_items_for_insert(trans, root, path, cpu_key, data_size,
4120 total_data, total_size, nr);
4121 return 0;
4125 * Given a key and some data, insert an item into the tree.
4126 * This does all the path init required, making room in the tree if needed.
4128 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4129 *root, struct btrfs_key *cpu_key, void *data, u32
4130 data_size)
4132 int ret = 0;
4133 struct btrfs_path *path;
4134 struct extent_buffer *leaf;
4135 unsigned long ptr;
4137 path = btrfs_alloc_path();
4138 if (!path)
4139 return -ENOMEM;
4140 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4141 if (!ret) {
4142 leaf = path->nodes[0];
4143 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4144 write_extent_buffer(leaf, data, ptr, data_size);
4145 btrfs_mark_buffer_dirty(leaf);
4147 btrfs_free_path(path);
4148 return ret;
4152 * delete the pointer from a given node.
4154 * the tree should have been previously balanced so the deletion does not
4155 * empty a node.
4157 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4158 struct btrfs_path *path, int level, int slot)
4160 struct extent_buffer *parent = path->nodes[level];
4161 u32 nritems;
4163 nritems = btrfs_header_nritems(parent);
4164 if (slot != nritems - 1) {
4165 memmove_extent_buffer(parent,
4166 btrfs_node_key_ptr_offset(slot),
4167 btrfs_node_key_ptr_offset(slot + 1),
4168 sizeof(struct btrfs_key_ptr) *
4169 (nritems - slot - 1));
4171 nritems--;
4172 btrfs_set_header_nritems(parent, nritems);
4173 if (nritems == 0 && parent == root->node) {
4174 BUG_ON(btrfs_header_level(root->node) != 1);
4175 /* just turn the root into a leaf and break */
4176 btrfs_set_header_level(root->node, 0);
4177 } else if (slot == 0) {
4178 struct btrfs_disk_key disk_key;
4180 btrfs_node_key(parent, &disk_key, 0);
4181 fixup_low_keys(trans, root, path, &disk_key, level + 1);
4183 btrfs_mark_buffer_dirty(parent);
4187 * a helper function to delete the leaf pointed to by path->slots[1] and
4188 * path->nodes[1].
4190 * This deletes the pointer in path->nodes[1] and frees the leaf
4191 * block extent. zero is returned if it all worked out, < 0 otherwise.
4193 * The path must have already been setup for deleting the leaf, including
4194 * all the proper balancing. path->nodes[1] must be locked.
4196 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4197 struct btrfs_root *root,
4198 struct btrfs_path *path,
4199 struct extent_buffer *leaf)
4201 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4202 del_ptr(trans, root, path, 1, path->slots[1]);
4205 * btrfs_free_extent is expensive, we want to make sure we
4206 * aren't holding any locks when we call it
4208 btrfs_unlock_up_safe(path, 0);
4210 root_sub_used(root, leaf->len);
4212 extent_buffer_get(leaf);
4213 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4214 free_extent_buffer_stale(leaf);
4217 * delete the item at the leaf level in path. If that empties
4218 * the leaf, remove it from the tree
4220 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4221 struct btrfs_path *path, int slot, int nr)
4223 struct extent_buffer *leaf;
4224 struct btrfs_item *item;
4225 int last_off;
4226 int dsize = 0;
4227 int ret = 0;
4228 int wret;
4229 int i;
4230 u32 nritems;
4231 struct btrfs_map_token token;
4233 btrfs_init_map_token(&token);
4235 leaf = path->nodes[0];
4236 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4238 for (i = 0; i < nr; i++)
4239 dsize += btrfs_item_size_nr(leaf, slot + i);
4241 nritems = btrfs_header_nritems(leaf);
4243 if (slot + nr != nritems) {
4244 int data_end = leaf_data_end(root, leaf);
4246 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4247 data_end + dsize,
4248 btrfs_leaf_data(leaf) + data_end,
4249 last_off - data_end);
4251 for (i = slot + nr; i < nritems; i++) {
4252 u32 ioff;
4254 item = btrfs_item_nr(leaf, i);
4255 ioff = btrfs_token_item_offset(leaf, item, &token);
4256 btrfs_set_token_item_offset(leaf, item,
4257 ioff + dsize, &token);
4260 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4261 btrfs_item_nr_offset(slot + nr),
4262 sizeof(struct btrfs_item) *
4263 (nritems - slot - nr));
4265 btrfs_set_header_nritems(leaf, nritems - nr);
4266 nritems -= nr;
4268 /* delete the leaf if we've emptied it */
4269 if (nritems == 0) {
4270 if (leaf == root->node) {
4271 btrfs_set_header_level(leaf, 0);
4272 } else {
4273 btrfs_set_path_blocking(path);
4274 clean_tree_block(trans, root, leaf);
4275 btrfs_del_leaf(trans, root, path, leaf);
4277 } else {
4278 int used = leaf_space_used(leaf, 0, nritems);
4279 if (slot == 0) {
4280 struct btrfs_disk_key disk_key;
4282 btrfs_item_key(leaf, &disk_key, 0);
4283 fixup_low_keys(trans, root, path, &disk_key, 1);
4286 /* delete the leaf if it is mostly empty */
4287 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4288 /* push_leaf_left fixes the path.
4289 * make sure the path still points to our leaf
4290 * for possible call to del_ptr below
4292 slot = path->slots[1];
4293 extent_buffer_get(leaf);
4295 btrfs_set_path_blocking(path);
4296 wret = push_leaf_left(trans, root, path, 1, 1,
4297 1, (u32)-1);
4298 if (wret < 0 && wret != -ENOSPC)
4299 ret = wret;
4301 if (path->nodes[0] == leaf &&
4302 btrfs_header_nritems(leaf)) {
4303 wret = push_leaf_right(trans, root, path, 1,
4304 1, 1, 0);
4305 if (wret < 0 && wret != -ENOSPC)
4306 ret = wret;
4309 if (btrfs_header_nritems(leaf) == 0) {
4310 path->slots[1] = slot;
4311 btrfs_del_leaf(trans, root, path, leaf);
4312 free_extent_buffer(leaf);
4313 ret = 0;
4314 } else {
4315 /* if we're still in the path, make sure
4316 * we're dirty. Otherwise, one of the
4317 * push_leaf functions must have already
4318 * dirtied this buffer
4320 if (path->nodes[0] == leaf)
4321 btrfs_mark_buffer_dirty(leaf);
4322 free_extent_buffer(leaf);
4324 } else {
4325 btrfs_mark_buffer_dirty(leaf);
4328 return ret;
4332 * search the tree again to find a leaf with lesser keys
4333 * returns 0 if it found something or 1 if there are no lesser leaves.
4334 * returns < 0 on io errors.
4336 * This may release the path, and so you may lose any locks held at the
4337 * time you call it.
4339 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4341 struct btrfs_key key;
4342 struct btrfs_disk_key found_key;
4343 int ret;
4345 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4347 if (key.offset > 0)
4348 key.offset--;
4349 else if (key.type > 0)
4350 key.type--;
4351 else if (key.objectid > 0)
4352 key.objectid--;
4353 else
4354 return 1;
4356 btrfs_release_path(path);
4357 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4358 if (ret < 0)
4359 return ret;
4360 btrfs_item_key(path->nodes[0], &found_key, 0);
4361 ret = comp_keys(&found_key, &key);
4362 if (ret < 0)
4363 return 0;
4364 return 1;
4368 * A helper function to walk down the tree starting at min_key, and looking
4369 * for nodes or leaves that are either in cache or have a minimum
4370 * transaction id. This is used by the btree defrag code, and tree logging
4372 * This does not cow, but it does stuff the starting key it finds back
4373 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4374 * key and get a writable path.
4376 * This does lock as it descends, and path->keep_locks should be set
4377 * to 1 by the caller.
4379 * This honors path->lowest_level to prevent descent past a given level
4380 * of the tree.
4382 * min_trans indicates the oldest transaction that you are interested
4383 * in walking through. Any nodes or leaves older than min_trans are
4384 * skipped over (without reading them).
4386 * returns zero if something useful was found, < 0 on error and 1 if there
4387 * was nothing in the tree that matched the search criteria.
4389 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4390 struct btrfs_key *max_key,
4391 struct btrfs_path *path, int cache_only,
4392 u64 min_trans)
4394 struct extent_buffer *cur;
4395 struct btrfs_key found_key;
4396 int slot;
4397 int sret;
4398 u32 nritems;
4399 int level;
4400 int ret = 1;
4402 WARN_ON(!path->keep_locks);
4403 again:
4404 cur = btrfs_read_lock_root_node(root);
4405 level = btrfs_header_level(cur);
4406 WARN_ON(path->nodes[level]);
4407 path->nodes[level] = cur;
4408 path->locks[level] = BTRFS_READ_LOCK;
4410 if (btrfs_header_generation(cur) < min_trans) {
4411 ret = 1;
4412 goto out;
4414 while (1) {
4415 nritems = btrfs_header_nritems(cur);
4416 level = btrfs_header_level(cur);
4417 sret = bin_search(cur, min_key, level, &slot);
4419 /* at the lowest level, we're done, setup the path and exit */
4420 if (level == path->lowest_level) {
4421 if (slot >= nritems)
4422 goto find_next_key;
4423 ret = 0;
4424 path->slots[level] = slot;
4425 btrfs_item_key_to_cpu(cur, &found_key, slot);
4426 goto out;
4428 if (sret && slot > 0)
4429 slot--;
4431 * check this node pointer against the cache_only and
4432 * min_trans parameters. If it isn't in cache or is too
4433 * old, skip to the next one.
4435 while (slot < nritems) {
4436 u64 blockptr;
4437 u64 gen;
4438 struct extent_buffer *tmp;
4439 struct btrfs_disk_key disk_key;
4441 blockptr = btrfs_node_blockptr(cur, slot);
4442 gen = btrfs_node_ptr_generation(cur, slot);
4443 if (gen < min_trans) {
4444 slot++;
4445 continue;
4447 if (!cache_only)
4448 break;
4450 if (max_key) {
4451 btrfs_node_key(cur, &disk_key, slot);
4452 if (comp_keys(&disk_key, max_key) >= 0) {
4453 ret = 1;
4454 goto out;
4458 tmp = btrfs_find_tree_block(root, blockptr,
4459 btrfs_level_size(root, level - 1));
4461 if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
4462 free_extent_buffer(tmp);
4463 break;
4465 if (tmp)
4466 free_extent_buffer(tmp);
4467 slot++;
4469 find_next_key:
4471 * we didn't find a candidate key in this node, walk forward
4472 * and find another one
4474 if (slot >= nritems) {
4475 path->slots[level] = slot;
4476 btrfs_set_path_blocking(path);
4477 sret = btrfs_find_next_key(root, path, min_key, level,
4478 cache_only, min_trans);
4479 if (sret == 0) {
4480 btrfs_release_path(path);
4481 goto again;
4482 } else {
4483 goto out;
4486 /* save our key for returning back */
4487 btrfs_node_key_to_cpu(cur, &found_key, slot);
4488 path->slots[level] = slot;
4489 if (level == path->lowest_level) {
4490 ret = 0;
4491 unlock_up(path, level, 1, 0, NULL);
4492 goto out;
4494 btrfs_set_path_blocking(path);
4495 cur = read_node_slot(root, cur, slot);
4496 BUG_ON(!cur); /* -ENOMEM */
4498 btrfs_tree_read_lock(cur);
4500 path->locks[level - 1] = BTRFS_READ_LOCK;
4501 path->nodes[level - 1] = cur;
4502 unlock_up(path, level, 1, 0, NULL);
4503 btrfs_clear_path_blocking(path, NULL, 0);
4505 out:
4506 if (ret == 0)
4507 memcpy(min_key, &found_key, sizeof(found_key));
4508 btrfs_set_path_blocking(path);
4509 return ret;
4513 * this is similar to btrfs_next_leaf, but does not try to preserve
4514 * and fixup the path. It looks for and returns the next key in the
4515 * tree based on the current path and the cache_only and min_trans
4516 * parameters.
4518 * 0 is returned if another key is found, < 0 if there are any errors
4519 * and 1 is returned if there are no higher keys in the tree
4521 * path->keep_locks should be set to 1 on the search made before
4522 * calling this function.
4524 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4525 struct btrfs_key *key, int level,
4526 int cache_only, u64 min_trans)
4528 int slot;
4529 struct extent_buffer *c;
4531 WARN_ON(!path->keep_locks);
4532 while (level < BTRFS_MAX_LEVEL) {
4533 if (!path->nodes[level])
4534 return 1;
4536 slot = path->slots[level] + 1;
4537 c = path->nodes[level];
4538 next:
4539 if (slot >= btrfs_header_nritems(c)) {
4540 int ret;
4541 int orig_lowest;
4542 struct btrfs_key cur_key;
4543 if (level + 1 >= BTRFS_MAX_LEVEL ||
4544 !path->nodes[level + 1])
4545 return 1;
4547 if (path->locks[level + 1]) {
4548 level++;
4549 continue;
4552 slot = btrfs_header_nritems(c) - 1;
4553 if (level == 0)
4554 btrfs_item_key_to_cpu(c, &cur_key, slot);
4555 else
4556 btrfs_node_key_to_cpu(c, &cur_key, slot);
4558 orig_lowest = path->lowest_level;
4559 btrfs_release_path(path);
4560 path->lowest_level = level;
4561 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4562 0, 0);
4563 path->lowest_level = orig_lowest;
4564 if (ret < 0)
4565 return ret;
4567 c = path->nodes[level];
4568 slot = path->slots[level];
4569 if (ret == 0)
4570 slot++;
4571 goto next;
4574 if (level == 0)
4575 btrfs_item_key_to_cpu(c, key, slot);
4576 else {
4577 u64 blockptr = btrfs_node_blockptr(c, slot);
4578 u64 gen = btrfs_node_ptr_generation(c, slot);
4580 if (cache_only) {
4581 struct extent_buffer *cur;
4582 cur = btrfs_find_tree_block(root, blockptr,
4583 btrfs_level_size(root, level - 1));
4584 if (!cur ||
4585 btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
4586 slot++;
4587 if (cur)
4588 free_extent_buffer(cur);
4589 goto next;
4591 free_extent_buffer(cur);
4593 if (gen < min_trans) {
4594 slot++;
4595 goto next;
4597 btrfs_node_key_to_cpu(c, key, slot);
4599 return 0;
4601 return 1;
4605 * search the tree again to find a leaf with greater keys
4606 * returns 0 if it found something or 1 if there are no greater leaves.
4607 * returns < 0 on io errors.
4609 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4611 int slot;
4612 int level;
4613 struct extent_buffer *c;
4614 struct extent_buffer *next;
4615 struct btrfs_key key;
4616 u32 nritems;
4617 int ret;
4618 int old_spinning = path->leave_spinning;
4619 int next_rw_lock = 0;
4621 nritems = btrfs_header_nritems(path->nodes[0]);
4622 if (nritems == 0)
4623 return 1;
4625 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4626 again:
4627 level = 1;
4628 next = NULL;
4629 next_rw_lock = 0;
4630 btrfs_release_path(path);
4632 path->keep_locks = 1;
4633 path->leave_spinning = 1;
4635 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4636 path->keep_locks = 0;
4638 if (ret < 0)
4639 return ret;
4641 nritems = btrfs_header_nritems(path->nodes[0]);
4643 * by releasing the path above we dropped all our locks. A balance
4644 * could have added more items next to the key that used to be
4645 * at the very end of the block. So, check again here and
4646 * advance the path if there are now more items available.
4648 if (nritems > 0 && path->slots[0] < nritems - 1) {
4649 if (ret == 0)
4650 path->slots[0]++;
4651 ret = 0;
4652 goto done;
4655 while (level < BTRFS_MAX_LEVEL) {
4656 if (!path->nodes[level]) {
4657 ret = 1;
4658 goto done;
4661 slot = path->slots[level] + 1;
4662 c = path->nodes[level];
4663 if (slot >= btrfs_header_nritems(c)) {
4664 level++;
4665 if (level == BTRFS_MAX_LEVEL) {
4666 ret = 1;
4667 goto done;
4669 continue;
4672 if (next) {
4673 btrfs_tree_unlock_rw(next, next_rw_lock);
4674 free_extent_buffer(next);
4677 next = c;
4678 next_rw_lock = path->locks[level];
4679 ret = read_block_for_search(NULL, root, path, &next, level,
4680 slot, &key);
4681 if (ret == -EAGAIN)
4682 goto again;
4684 if (ret < 0) {
4685 btrfs_release_path(path);
4686 goto done;
4689 if (!path->skip_locking) {
4690 ret = btrfs_try_tree_read_lock(next);
4691 if (!ret) {
4692 btrfs_set_path_blocking(path);
4693 btrfs_tree_read_lock(next);
4694 btrfs_clear_path_blocking(path, next,
4695 BTRFS_READ_LOCK);
4697 next_rw_lock = BTRFS_READ_LOCK;
4699 break;
4701 path->slots[level] = slot;
4702 while (1) {
4703 level--;
4704 c = path->nodes[level];
4705 if (path->locks[level])
4706 btrfs_tree_unlock_rw(c, path->locks[level]);
4708 free_extent_buffer(c);
4709 path->nodes[level] = next;
4710 path->slots[level] = 0;
4711 if (!path->skip_locking)
4712 path->locks[level] = next_rw_lock;
4713 if (!level)
4714 break;
4716 ret = read_block_for_search(NULL, root, path, &next, level,
4717 0, &key);
4718 if (ret == -EAGAIN)
4719 goto again;
4721 if (ret < 0) {
4722 btrfs_release_path(path);
4723 goto done;
4726 if (!path->skip_locking) {
4727 ret = btrfs_try_tree_read_lock(next);
4728 if (!ret) {
4729 btrfs_set_path_blocking(path);
4730 btrfs_tree_read_lock(next);
4731 btrfs_clear_path_blocking(path, next,
4732 BTRFS_READ_LOCK);
4734 next_rw_lock = BTRFS_READ_LOCK;
4737 ret = 0;
4738 done:
4739 unlock_up(path, 0, 1, 0, NULL);
4740 path->leave_spinning = old_spinning;
4741 if (!old_spinning)
4742 btrfs_set_path_blocking(path);
4744 return ret;
4748 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4749 * searching until it gets past min_objectid or finds an item of 'type'
4751 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4753 int btrfs_previous_item(struct btrfs_root *root,
4754 struct btrfs_path *path, u64 min_objectid,
4755 int type)
4757 struct btrfs_key found_key;
4758 struct extent_buffer *leaf;
4759 u32 nritems;
4760 int ret;
4762 while (1) {
4763 if (path->slots[0] == 0) {
4764 btrfs_set_path_blocking(path);
4765 ret = btrfs_prev_leaf(root, path);
4766 if (ret != 0)
4767 return ret;
4768 } else {
4769 path->slots[0]--;
4771 leaf = path->nodes[0];
4772 nritems = btrfs_header_nritems(leaf);
4773 if (nritems == 0)
4774 return 1;
4775 if (path->slots[0] == nritems)
4776 path->slots[0]--;
4778 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4779 if (found_key.objectid < min_objectid)
4780 break;
4781 if (found_key.type == type)
4782 return 0;
4783 if (found_key.objectid == min_objectid &&
4784 found_key.type < type)
4785 break;
4787 return 1;