ALSA: x86: Remove superfluous irqsave flags
[linux-2.6/btrfs-unstable.git] / drivers / block / pktcdvd.c
blob1b94c1ca5c5f1ee1bc00e0fe5103cf6ef0a4dafe
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
12 * Theory of operation:
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
45 *************************************************************************/
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 #include <linux/pktcdvd.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/compat.h>
54 #include <linux/kthread.h>
55 #include <linux/errno.h>
56 #include <linux/spinlock.h>
57 #include <linux/file.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/miscdevice.h>
61 #include <linux/freezer.h>
62 #include <linux/mutex.h>
63 #include <linux/slab.h>
64 #include <linux/backing-dev.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_ioctl.h>
67 #include <scsi/scsi.h>
68 #include <linux/debugfs.h>
69 #include <linux/device.h>
71 #include <linux/uaccess.h>
73 #define DRIVER_NAME "pktcdvd"
75 #define pkt_err(pd, fmt, ...) \
76 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
77 #define pkt_notice(pd, fmt, ...) \
78 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
79 #define pkt_info(pd, fmt, ...) \
80 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
82 #define pkt_dbg(level, pd, fmt, ...) \
83 do { \
84 if (level == 2 && PACKET_DEBUG >= 2) \
85 pr_notice("%s: %s():" fmt, \
86 pd->name, __func__, ##__VA_ARGS__); \
87 else if (level == 1 && PACKET_DEBUG >= 1) \
88 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \
89 } while (0)
91 #define MAX_SPEED 0xffff
93 static DEFINE_MUTEX(pktcdvd_mutex);
94 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
95 static struct proc_dir_entry *pkt_proc;
96 static int pktdev_major;
97 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
98 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
99 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
100 static mempool_t *psd_pool;
102 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
103 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
105 /* forward declaration */
106 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
107 static int pkt_remove_dev(dev_t pkt_dev);
108 static int pkt_seq_show(struct seq_file *m, void *p);
110 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
112 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
116 * create and register a pktcdvd kernel object.
118 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
119 const char* name,
120 struct kobject* parent,
121 struct kobj_type* ktype)
123 struct pktcdvd_kobj *p;
124 int error;
126 p = kzalloc(sizeof(*p), GFP_KERNEL);
127 if (!p)
128 return NULL;
129 p->pd = pd;
130 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
131 if (error) {
132 kobject_put(&p->kobj);
133 return NULL;
135 kobject_uevent(&p->kobj, KOBJ_ADD);
136 return p;
139 * remove a pktcdvd kernel object.
141 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
143 if (p)
144 kobject_put(&p->kobj);
147 * default release function for pktcdvd kernel objects.
149 static void pkt_kobj_release(struct kobject *kobj)
151 kfree(to_pktcdvdkobj(kobj));
155 /**********************************************************
157 * sysfs interface for pktcdvd
158 * by (C) 2006 Thomas Maier <balagi@justmail.de>
160 **********************************************************/
162 #define DEF_ATTR(_obj,_name,_mode) \
163 static struct attribute _obj = { .name = _name, .mode = _mode }
165 /**********************************************************
166 /sys/class/pktcdvd/pktcdvd[0-7]/
167 stat/reset
168 stat/packets_started
169 stat/packets_finished
170 stat/kb_written
171 stat/kb_read
172 stat/kb_read_gather
173 write_queue/size
174 write_queue/congestion_off
175 write_queue/congestion_on
176 **********************************************************/
178 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
179 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
180 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
181 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
182 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
183 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
185 static struct attribute *kobj_pkt_attrs_stat[] = {
186 &kobj_pkt_attr_st1,
187 &kobj_pkt_attr_st2,
188 &kobj_pkt_attr_st3,
189 &kobj_pkt_attr_st4,
190 &kobj_pkt_attr_st5,
191 &kobj_pkt_attr_st6,
192 NULL
195 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
196 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
197 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
199 static struct attribute *kobj_pkt_attrs_wqueue[] = {
200 &kobj_pkt_attr_wq1,
201 &kobj_pkt_attr_wq2,
202 &kobj_pkt_attr_wq3,
203 NULL
206 static ssize_t kobj_pkt_show(struct kobject *kobj,
207 struct attribute *attr, char *data)
209 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
210 int n = 0;
211 int v;
212 if (strcmp(attr->name, "packets_started") == 0) {
213 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
215 } else if (strcmp(attr->name, "packets_finished") == 0) {
216 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
218 } else if (strcmp(attr->name, "kb_written") == 0) {
219 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
221 } else if (strcmp(attr->name, "kb_read") == 0) {
222 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
224 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
225 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
227 } else if (strcmp(attr->name, "size") == 0) {
228 spin_lock(&pd->lock);
229 v = pd->bio_queue_size;
230 spin_unlock(&pd->lock);
231 n = sprintf(data, "%d\n", v);
233 } else if (strcmp(attr->name, "congestion_off") == 0) {
234 spin_lock(&pd->lock);
235 v = pd->write_congestion_off;
236 spin_unlock(&pd->lock);
237 n = sprintf(data, "%d\n", v);
239 } else if (strcmp(attr->name, "congestion_on") == 0) {
240 spin_lock(&pd->lock);
241 v = pd->write_congestion_on;
242 spin_unlock(&pd->lock);
243 n = sprintf(data, "%d\n", v);
245 return n;
248 static void init_write_congestion_marks(int* lo, int* hi)
250 if (*hi > 0) {
251 *hi = max(*hi, 500);
252 *hi = min(*hi, 1000000);
253 if (*lo <= 0)
254 *lo = *hi - 100;
255 else {
256 *lo = min(*lo, *hi - 100);
257 *lo = max(*lo, 100);
259 } else {
260 *hi = -1;
261 *lo = -1;
265 static ssize_t kobj_pkt_store(struct kobject *kobj,
266 struct attribute *attr,
267 const char *data, size_t len)
269 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
270 int val;
272 if (strcmp(attr->name, "reset") == 0 && len > 0) {
273 pd->stats.pkt_started = 0;
274 pd->stats.pkt_ended = 0;
275 pd->stats.secs_w = 0;
276 pd->stats.secs_rg = 0;
277 pd->stats.secs_r = 0;
279 } else if (strcmp(attr->name, "congestion_off") == 0
280 && sscanf(data, "%d", &val) == 1) {
281 spin_lock(&pd->lock);
282 pd->write_congestion_off = val;
283 init_write_congestion_marks(&pd->write_congestion_off,
284 &pd->write_congestion_on);
285 spin_unlock(&pd->lock);
287 } else if (strcmp(attr->name, "congestion_on") == 0
288 && sscanf(data, "%d", &val) == 1) {
289 spin_lock(&pd->lock);
290 pd->write_congestion_on = val;
291 init_write_congestion_marks(&pd->write_congestion_off,
292 &pd->write_congestion_on);
293 spin_unlock(&pd->lock);
295 return len;
298 static const struct sysfs_ops kobj_pkt_ops = {
299 .show = kobj_pkt_show,
300 .store = kobj_pkt_store
302 static struct kobj_type kobj_pkt_type_stat = {
303 .release = pkt_kobj_release,
304 .sysfs_ops = &kobj_pkt_ops,
305 .default_attrs = kobj_pkt_attrs_stat
307 static struct kobj_type kobj_pkt_type_wqueue = {
308 .release = pkt_kobj_release,
309 .sysfs_ops = &kobj_pkt_ops,
310 .default_attrs = kobj_pkt_attrs_wqueue
313 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
315 if (class_pktcdvd) {
316 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
317 "%s", pd->name);
318 if (IS_ERR(pd->dev))
319 pd->dev = NULL;
321 if (pd->dev) {
322 pd->kobj_stat = pkt_kobj_create(pd, "stat",
323 &pd->dev->kobj,
324 &kobj_pkt_type_stat);
325 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
326 &pd->dev->kobj,
327 &kobj_pkt_type_wqueue);
331 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
333 pkt_kobj_remove(pd->kobj_stat);
334 pkt_kobj_remove(pd->kobj_wqueue);
335 if (class_pktcdvd)
336 device_unregister(pd->dev);
340 /********************************************************************
341 /sys/class/pktcdvd/
342 add map block device
343 remove unmap packet dev
344 device_map show mappings
345 *******************************************************************/
347 static void class_pktcdvd_release(struct class *cls)
349 kfree(cls);
351 static ssize_t class_pktcdvd_show_map(struct class *c,
352 struct class_attribute *attr,
353 char *data)
355 int n = 0;
356 int idx;
357 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
358 for (idx = 0; idx < MAX_WRITERS; idx++) {
359 struct pktcdvd_device *pd = pkt_devs[idx];
360 if (!pd)
361 continue;
362 n += sprintf(data+n, "%s %u:%u %u:%u\n",
363 pd->name,
364 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
365 MAJOR(pd->bdev->bd_dev),
366 MINOR(pd->bdev->bd_dev));
368 mutex_unlock(&ctl_mutex);
369 return n;
372 static ssize_t class_pktcdvd_store_add(struct class *c,
373 struct class_attribute *attr,
374 const char *buf,
375 size_t count)
377 unsigned int major, minor;
379 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
380 /* pkt_setup_dev() expects caller to hold reference to self */
381 if (!try_module_get(THIS_MODULE))
382 return -ENODEV;
384 pkt_setup_dev(MKDEV(major, minor), NULL);
386 module_put(THIS_MODULE);
388 return count;
391 return -EINVAL;
394 static ssize_t class_pktcdvd_store_remove(struct class *c,
395 struct class_attribute *attr,
396 const char *buf,
397 size_t count)
399 unsigned int major, minor;
400 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
401 pkt_remove_dev(MKDEV(major, minor));
402 return count;
404 return -EINVAL;
407 static struct class_attribute class_pktcdvd_attrs[] = {
408 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
409 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
410 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
411 __ATTR_NULL
415 static int pkt_sysfs_init(void)
417 int ret = 0;
420 * create control files in sysfs
421 * /sys/class/pktcdvd/...
423 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
424 if (!class_pktcdvd)
425 return -ENOMEM;
426 class_pktcdvd->name = DRIVER_NAME;
427 class_pktcdvd->owner = THIS_MODULE;
428 class_pktcdvd->class_release = class_pktcdvd_release;
429 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
430 ret = class_register(class_pktcdvd);
431 if (ret) {
432 kfree(class_pktcdvd);
433 class_pktcdvd = NULL;
434 pr_err("failed to create class pktcdvd\n");
435 return ret;
437 return 0;
440 static void pkt_sysfs_cleanup(void)
442 if (class_pktcdvd)
443 class_destroy(class_pktcdvd);
444 class_pktcdvd = NULL;
447 /********************************************************************
448 entries in debugfs
450 /sys/kernel/debug/pktcdvd[0-7]/
451 info
453 *******************************************************************/
455 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
457 return pkt_seq_show(m, p);
460 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
462 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
465 static const struct file_operations debug_fops = {
466 .open = pkt_debugfs_fops_open,
467 .read = seq_read,
468 .llseek = seq_lseek,
469 .release = single_release,
470 .owner = THIS_MODULE,
473 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
475 if (!pkt_debugfs_root)
476 return;
477 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
478 if (!pd->dfs_d_root)
479 return;
481 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
482 pd->dfs_d_root, pd, &debug_fops);
485 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
487 if (!pkt_debugfs_root)
488 return;
489 debugfs_remove(pd->dfs_f_info);
490 debugfs_remove(pd->dfs_d_root);
491 pd->dfs_f_info = NULL;
492 pd->dfs_d_root = NULL;
495 static void pkt_debugfs_init(void)
497 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
500 static void pkt_debugfs_cleanup(void)
502 debugfs_remove(pkt_debugfs_root);
503 pkt_debugfs_root = NULL;
506 /* ----------------------------------------------------------*/
509 static void pkt_bio_finished(struct pktcdvd_device *pd)
511 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
512 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
513 pkt_dbg(2, pd, "queue empty\n");
514 atomic_set(&pd->iosched.attention, 1);
515 wake_up(&pd->wqueue);
520 * Allocate a packet_data struct
522 static struct packet_data *pkt_alloc_packet_data(int frames)
524 int i;
525 struct packet_data *pkt;
527 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
528 if (!pkt)
529 goto no_pkt;
531 pkt->frames = frames;
532 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
533 if (!pkt->w_bio)
534 goto no_bio;
536 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
537 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
538 if (!pkt->pages[i])
539 goto no_page;
542 spin_lock_init(&pkt->lock);
543 bio_list_init(&pkt->orig_bios);
545 for (i = 0; i < frames; i++) {
546 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
547 if (!bio)
548 goto no_rd_bio;
550 pkt->r_bios[i] = bio;
553 return pkt;
555 no_rd_bio:
556 for (i = 0; i < frames; i++) {
557 struct bio *bio = pkt->r_bios[i];
558 if (bio)
559 bio_put(bio);
562 no_page:
563 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
564 if (pkt->pages[i])
565 __free_page(pkt->pages[i]);
566 bio_put(pkt->w_bio);
567 no_bio:
568 kfree(pkt);
569 no_pkt:
570 return NULL;
574 * Free a packet_data struct
576 static void pkt_free_packet_data(struct packet_data *pkt)
578 int i;
580 for (i = 0; i < pkt->frames; i++) {
581 struct bio *bio = pkt->r_bios[i];
582 if (bio)
583 bio_put(bio);
585 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
586 __free_page(pkt->pages[i]);
587 bio_put(pkt->w_bio);
588 kfree(pkt);
591 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
593 struct packet_data *pkt, *next;
595 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
597 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
598 pkt_free_packet_data(pkt);
600 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
603 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
605 struct packet_data *pkt;
607 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
609 while (nr_packets > 0) {
610 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
611 if (!pkt) {
612 pkt_shrink_pktlist(pd);
613 return 0;
615 pkt->id = nr_packets;
616 pkt->pd = pd;
617 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
618 nr_packets--;
620 return 1;
623 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
625 struct rb_node *n = rb_next(&node->rb_node);
626 if (!n)
627 return NULL;
628 return rb_entry(n, struct pkt_rb_node, rb_node);
631 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
633 rb_erase(&node->rb_node, &pd->bio_queue);
634 mempool_free(node, pd->rb_pool);
635 pd->bio_queue_size--;
636 BUG_ON(pd->bio_queue_size < 0);
640 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
642 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
644 struct rb_node *n = pd->bio_queue.rb_node;
645 struct rb_node *next;
646 struct pkt_rb_node *tmp;
648 if (!n) {
649 BUG_ON(pd->bio_queue_size > 0);
650 return NULL;
653 for (;;) {
654 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
655 if (s <= tmp->bio->bi_iter.bi_sector)
656 next = n->rb_left;
657 else
658 next = n->rb_right;
659 if (!next)
660 break;
661 n = next;
664 if (s > tmp->bio->bi_iter.bi_sector) {
665 tmp = pkt_rbtree_next(tmp);
666 if (!tmp)
667 return NULL;
669 BUG_ON(s > tmp->bio->bi_iter.bi_sector);
670 return tmp;
674 * Insert a node into the pd->bio_queue rb tree.
676 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
678 struct rb_node **p = &pd->bio_queue.rb_node;
679 struct rb_node *parent = NULL;
680 sector_t s = node->bio->bi_iter.bi_sector;
681 struct pkt_rb_node *tmp;
683 while (*p) {
684 parent = *p;
685 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
686 if (s < tmp->bio->bi_iter.bi_sector)
687 p = &(*p)->rb_left;
688 else
689 p = &(*p)->rb_right;
691 rb_link_node(&node->rb_node, parent, p);
692 rb_insert_color(&node->rb_node, &pd->bio_queue);
693 pd->bio_queue_size++;
697 * Send a packet_command to the underlying block device and
698 * wait for completion.
700 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
702 struct request_queue *q = bdev_get_queue(pd->bdev);
703 struct request *rq;
704 int ret = 0;
706 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
707 WRITE : READ, __GFP_RECLAIM);
708 if (IS_ERR(rq))
709 return PTR_ERR(rq);
710 blk_rq_set_block_pc(rq);
712 if (cgc->buflen) {
713 ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
714 __GFP_RECLAIM);
715 if (ret)
716 goto out;
719 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
720 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
722 rq->timeout = 60*HZ;
723 if (cgc->quiet)
724 rq->rq_flags |= RQF_QUIET;
726 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
727 if (rq->errors)
728 ret = -EIO;
729 out:
730 blk_put_request(rq);
731 return ret;
734 static const char *sense_key_string(__u8 index)
736 static const char * const info[] = {
737 "No sense", "Recovered error", "Not ready",
738 "Medium error", "Hardware error", "Illegal request",
739 "Unit attention", "Data protect", "Blank check",
742 return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
746 * A generic sense dump / resolve mechanism should be implemented across
747 * all ATAPI + SCSI devices.
749 static void pkt_dump_sense(struct pktcdvd_device *pd,
750 struct packet_command *cgc)
752 struct request_sense *sense = cgc->sense;
754 if (sense)
755 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
756 CDROM_PACKET_SIZE, cgc->cmd,
757 sense->sense_key, sense->asc, sense->ascq,
758 sense_key_string(sense->sense_key));
759 else
760 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
764 * flush the drive cache to media
766 static int pkt_flush_cache(struct pktcdvd_device *pd)
768 struct packet_command cgc;
770 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
771 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
772 cgc.quiet = 1;
775 * the IMMED bit -- we default to not setting it, although that
776 * would allow a much faster close, this is safer
778 #if 0
779 cgc.cmd[1] = 1 << 1;
780 #endif
781 return pkt_generic_packet(pd, &cgc);
785 * speed is given as the normal factor, e.g. 4 for 4x
787 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
788 unsigned write_speed, unsigned read_speed)
790 struct packet_command cgc;
791 struct request_sense sense;
792 int ret;
794 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
795 cgc.sense = &sense;
796 cgc.cmd[0] = GPCMD_SET_SPEED;
797 cgc.cmd[2] = (read_speed >> 8) & 0xff;
798 cgc.cmd[3] = read_speed & 0xff;
799 cgc.cmd[4] = (write_speed >> 8) & 0xff;
800 cgc.cmd[5] = write_speed & 0xff;
802 if ((ret = pkt_generic_packet(pd, &cgc)))
803 pkt_dump_sense(pd, &cgc);
805 return ret;
809 * Queue a bio for processing by the low-level CD device. Must be called
810 * from process context.
812 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
814 spin_lock(&pd->iosched.lock);
815 if (bio_data_dir(bio) == READ)
816 bio_list_add(&pd->iosched.read_queue, bio);
817 else
818 bio_list_add(&pd->iosched.write_queue, bio);
819 spin_unlock(&pd->iosched.lock);
821 atomic_set(&pd->iosched.attention, 1);
822 wake_up(&pd->wqueue);
826 * Process the queued read/write requests. This function handles special
827 * requirements for CDRW drives:
828 * - A cache flush command must be inserted before a read request if the
829 * previous request was a write.
830 * - Switching between reading and writing is slow, so don't do it more often
831 * than necessary.
832 * - Optimize for throughput at the expense of latency. This means that streaming
833 * writes will never be interrupted by a read, but if the drive has to seek
834 * before the next write, switch to reading instead if there are any pending
835 * read requests.
836 * - Set the read speed according to current usage pattern. When only reading
837 * from the device, it's best to use the highest possible read speed, but
838 * when switching often between reading and writing, it's better to have the
839 * same read and write speeds.
841 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
844 if (atomic_read(&pd->iosched.attention) == 0)
845 return;
846 atomic_set(&pd->iosched.attention, 0);
848 for (;;) {
849 struct bio *bio;
850 int reads_queued, writes_queued;
852 spin_lock(&pd->iosched.lock);
853 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
854 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
855 spin_unlock(&pd->iosched.lock);
857 if (!reads_queued && !writes_queued)
858 break;
860 if (pd->iosched.writing) {
861 int need_write_seek = 1;
862 spin_lock(&pd->iosched.lock);
863 bio = bio_list_peek(&pd->iosched.write_queue);
864 spin_unlock(&pd->iosched.lock);
865 if (bio && (bio->bi_iter.bi_sector ==
866 pd->iosched.last_write))
867 need_write_seek = 0;
868 if (need_write_seek && reads_queued) {
869 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
870 pkt_dbg(2, pd, "write, waiting\n");
871 break;
873 pkt_flush_cache(pd);
874 pd->iosched.writing = 0;
876 } else {
877 if (!reads_queued && writes_queued) {
878 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
879 pkt_dbg(2, pd, "read, waiting\n");
880 break;
882 pd->iosched.writing = 1;
886 spin_lock(&pd->iosched.lock);
887 if (pd->iosched.writing)
888 bio = bio_list_pop(&pd->iosched.write_queue);
889 else
890 bio = bio_list_pop(&pd->iosched.read_queue);
891 spin_unlock(&pd->iosched.lock);
893 if (!bio)
894 continue;
896 if (bio_data_dir(bio) == READ)
897 pd->iosched.successive_reads +=
898 bio->bi_iter.bi_size >> 10;
899 else {
900 pd->iosched.successive_reads = 0;
901 pd->iosched.last_write = bio_end_sector(bio);
903 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
904 if (pd->read_speed == pd->write_speed) {
905 pd->read_speed = MAX_SPEED;
906 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
908 } else {
909 if (pd->read_speed != pd->write_speed) {
910 pd->read_speed = pd->write_speed;
911 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
915 atomic_inc(&pd->cdrw.pending_bios);
916 generic_make_request(bio);
921 * Special care is needed if the underlying block device has a small
922 * max_phys_segments value.
924 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
926 if ((pd->settings.size << 9) / CD_FRAMESIZE
927 <= queue_max_segments(q)) {
929 * The cdrom device can handle one segment/frame
931 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
932 return 0;
933 } else if ((pd->settings.size << 9) / PAGE_SIZE
934 <= queue_max_segments(q)) {
936 * We can handle this case at the expense of some extra memory
937 * copies during write operations
939 set_bit(PACKET_MERGE_SEGS, &pd->flags);
940 return 0;
941 } else {
942 pkt_err(pd, "cdrom max_phys_segments too small\n");
943 return -EIO;
947 static void pkt_end_io_read(struct bio *bio)
949 struct packet_data *pkt = bio->bi_private;
950 struct pktcdvd_device *pd = pkt->pd;
951 BUG_ON(!pd);
953 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
954 bio, (unsigned long long)pkt->sector,
955 (unsigned long long)bio->bi_iter.bi_sector, bio->bi_error);
957 if (bio->bi_error)
958 atomic_inc(&pkt->io_errors);
959 if (atomic_dec_and_test(&pkt->io_wait)) {
960 atomic_inc(&pkt->run_sm);
961 wake_up(&pd->wqueue);
963 pkt_bio_finished(pd);
966 static void pkt_end_io_packet_write(struct bio *bio)
968 struct packet_data *pkt = bio->bi_private;
969 struct pktcdvd_device *pd = pkt->pd;
970 BUG_ON(!pd);
972 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, bio->bi_error);
974 pd->stats.pkt_ended++;
976 pkt_bio_finished(pd);
977 atomic_dec(&pkt->io_wait);
978 atomic_inc(&pkt->run_sm);
979 wake_up(&pd->wqueue);
983 * Schedule reads for the holes in a packet
985 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
987 int frames_read = 0;
988 struct bio *bio;
989 int f;
990 char written[PACKET_MAX_SIZE];
992 BUG_ON(bio_list_empty(&pkt->orig_bios));
994 atomic_set(&pkt->io_wait, 0);
995 atomic_set(&pkt->io_errors, 0);
998 * Figure out which frames we need to read before we can write.
1000 memset(written, 0, sizeof(written));
1001 spin_lock(&pkt->lock);
1002 bio_list_for_each(bio, &pkt->orig_bios) {
1003 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1004 (CD_FRAMESIZE >> 9);
1005 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1006 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1007 BUG_ON(first_frame < 0);
1008 BUG_ON(first_frame + num_frames > pkt->frames);
1009 for (f = first_frame; f < first_frame + num_frames; f++)
1010 written[f] = 1;
1012 spin_unlock(&pkt->lock);
1014 if (pkt->cache_valid) {
1015 pkt_dbg(2, pd, "zone %llx cached\n",
1016 (unsigned long long)pkt->sector);
1017 goto out_account;
1021 * Schedule reads for missing parts of the packet.
1023 for (f = 0; f < pkt->frames; f++) {
1024 int p, offset;
1026 if (written[f])
1027 continue;
1029 bio = pkt->r_bios[f];
1030 bio_reset(bio);
1031 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1032 bio->bi_bdev = pd->bdev;
1033 bio->bi_end_io = pkt_end_io_read;
1034 bio->bi_private = pkt;
1036 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1037 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1038 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1039 f, pkt->pages[p], offset);
1040 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1041 BUG();
1043 atomic_inc(&pkt->io_wait);
1044 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1045 pkt_queue_bio(pd, bio);
1046 frames_read++;
1049 out_account:
1050 pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1051 frames_read, (unsigned long long)pkt->sector);
1052 pd->stats.pkt_started++;
1053 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1057 * Find a packet matching zone, or the least recently used packet if
1058 * there is no match.
1060 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1062 struct packet_data *pkt;
1064 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1065 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1066 list_del_init(&pkt->list);
1067 if (pkt->sector != zone)
1068 pkt->cache_valid = 0;
1069 return pkt;
1072 BUG();
1073 return NULL;
1076 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1078 if (pkt->cache_valid) {
1079 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1080 } else {
1081 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1086 * recover a failed write, query for relocation if possible
1088 * returns 1 if recovery is possible, or 0 if not
1091 static int pkt_start_recovery(struct packet_data *pkt)
1094 * FIXME. We need help from the file system to implement
1095 * recovery handling.
1097 return 0;
1098 #if 0
1099 struct request *rq = pkt->rq;
1100 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1101 struct block_device *pkt_bdev;
1102 struct super_block *sb = NULL;
1103 unsigned long old_block, new_block;
1104 sector_t new_sector;
1106 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1107 if (pkt_bdev) {
1108 sb = get_super(pkt_bdev);
1109 bdput(pkt_bdev);
1112 if (!sb)
1113 return 0;
1115 if (!sb->s_op->relocate_blocks)
1116 goto out;
1118 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1119 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1120 goto out;
1122 new_sector = new_block * (CD_FRAMESIZE >> 9);
1123 pkt->sector = new_sector;
1125 bio_reset(pkt->bio);
1126 pkt->bio->bi_bdev = pd->bdev;
1127 bio_set_op_attrs(pkt->bio, REQ_OP_WRITE, 0);
1128 pkt->bio->bi_iter.bi_sector = new_sector;
1129 pkt->bio->bi_iter.bi_size = pkt->frames * CD_FRAMESIZE;
1130 pkt->bio->bi_vcnt = pkt->frames;
1132 pkt->bio->bi_end_io = pkt_end_io_packet_write;
1133 pkt->bio->bi_private = pkt;
1135 drop_super(sb);
1136 return 1;
1138 out:
1139 drop_super(sb);
1140 return 0;
1141 #endif
1144 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1146 #if PACKET_DEBUG > 1
1147 static const char *state_name[] = {
1148 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1150 enum packet_data_state old_state = pkt->state;
1151 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1152 pkt->id, (unsigned long long)pkt->sector,
1153 state_name[old_state], state_name[state]);
1154 #endif
1155 pkt->state = state;
1159 * Scan the work queue to see if we can start a new packet.
1160 * returns non-zero if any work was done.
1162 static int pkt_handle_queue(struct pktcdvd_device *pd)
1164 struct packet_data *pkt, *p;
1165 struct bio *bio = NULL;
1166 sector_t zone = 0; /* Suppress gcc warning */
1167 struct pkt_rb_node *node, *first_node;
1168 struct rb_node *n;
1169 int wakeup;
1171 atomic_set(&pd->scan_queue, 0);
1173 if (list_empty(&pd->cdrw.pkt_free_list)) {
1174 pkt_dbg(2, pd, "no pkt\n");
1175 return 0;
1179 * Try to find a zone we are not already working on.
1181 spin_lock(&pd->lock);
1182 first_node = pkt_rbtree_find(pd, pd->current_sector);
1183 if (!first_node) {
1184 n = rb_first(&pd->bio_queue);
1185 if (n)
1186 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1188 node = first_node;
1189 while (node) {
1190 bio = node->bio;
1191 zone = get_zone(bio->bi_iter.bi_sector, pd);
1192 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1193 if (p->sector == zone) {
1194 bio = NULL;
1195 goto try_next_bio;
1198 break;
1199 try_next_bio:
1200 node = pkt_rbtree_next(node);
1201 if (!node) {
1202 n = rb_first(&pd->bio_queue);
1203 if (n)
1204 node = rb_entry(n, struct pkt_rb_node, rb_node);
1206 if (node == first_node)
1207 node = NULL;
1209 spin_unlock(&pd->lock);
1210 if (!bio) {
1211 pkt_dbg(2, pd, "no bio\n");
1212 return 0;
1215 pkt = pkt_get_packet_data(pd, zone);
1217 pd->current_sector = zone + pd->settings.size;
1218 pkt->sector = zone;
1219 BUG_ON(pkt->frames != pd->settings.size >> 2);
1220 pkt->write_size = 0;
1223 * Scan work queue for bios in the same zone and link them
1224 * to this packet.
1226 spin_lock(&pd->lock);
1227 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1228 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1229 bio = node->bio;
1230 pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long)
1231 get_zone(bio->bi_iter.bi_sector, pd));
1232 if (get_zone(bio->bi_iter.bi_sector, pd) != zone)
1233 break;
1234 pkt_rbtree_erase(pd, node);
1235 spin_lock(&pkt->lock);
1236 bio_list_add(&pkt->orig_bios, bio);
1237 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1238 spin_unlock(&pkt->lock);
1240 /* check write congestion marks, and if bio_queue_size is
1241 below, wake up any waiters */
1242 wakeup = (pd->write_congestion_on > 0
1243 && pd->bio_queue_size <= pd->write_congestion_off);
1244 spin_unlock(&pd->lock);
1245 if (wakeup) {
1246 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1247 BLK_RW_ASYNC);
1250 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1251 pkt_set_state(pkt, PACKET_WAITING_STATE);
1252 atomic_set(&pkt->run_sm, 1);
1254 spin_lock(&pd->cdrw.active_list_lock);
1255 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1256 spin_unlock(&pd->cdrw.active_list_lock);
1258 return 1;
1262 * Assemble a bio to write one packet and queue the bio for processing
1263 * by the underlying block device.
1265 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1267 int f;
1269 bio_reset(pkt->w_bio);
1270 pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1271 pkt->w_bio->bi_bdev = pd->bdev;
1272 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1273 pkt->w_bio->bi_private = pkt;
1275 /* XXX: locking? */
1276 for (f = 0; f < pkt->frames; f++) {
1277 struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1278 unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1280 if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1281 BUG();
1283 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1286 * Fill-in bvec with data from orig_bios.
1288 spin_lock(&pkt->lock);
1289 bio_copy_data(pkt->w_bio, pkt->orig_bios.head);
1291 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1292 spin_unlock(&pkt->lock);
1294 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1295 pkt->write_size, (unsigned long long)pkt->sector);
1297 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1298 pkt->cache_valid = 1;
1299 else
1300 pkt->cache_valid = 0;
1302 /* Start the write request */
1303 atomic_set(&pkt->io_wait, 1);
1304 bio_set_op_attrs(pkt->w_bio, REQ_OP_WRITE, 0);
1305 pkt_queue_bio(pd, pkt->w_bio);
1308 static void pkt_finish_packet(struct packet_data *pkt, int error)
1310 struct bio *bio;
1312 if (error)
1313 pkt->cache_valid = 0;
1315 /* Finish all bios corresponding to this packet */
1316 while ((bio = bio_list_pop(&pkt->orig_bios))) {
1317 bio->bi_error = error;
1318 bio_endio(bio);
1322 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1324 pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1326 for (;;) {
1327 switch (pkt->state) {
1328 case PACKET_WAITING_STATE:
1329 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1330 return;
1332 pkt->sleep_time = 0;
1333 pkt_gather_data(pd, pkt);
1334 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1335 break;
1337 case PACKET_READ_WAIT_STATE:
1338 if (atomic_read(&pkt->io_wait) > 0)
1339 return;
1341 if (atomic_read(&pkt->io_errors) > 0) {
1342 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1343 } else {
1344 pkt_start_write(pd, pkt);
1346 break;
1348 case PACKET_WRITE_WAIT_STATE:
1349 if (atomic_read(&pkt->io_wait) > 0)
1350 return;
1352 if (!pkt->w_bio->bi_error) {
1353 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1354 } else {
1355 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1357 break;
1359 case PACKET_RECOVERY_STATE:
1360 if (pkt_start_recovery(pkt)) {
1361 pkt_start_write(pd, pkt);
1362 } else {
1363 pkt_dbg(2, pd, "No recovery possible\n");
1364 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1366 break;
1368 case PACKET_FINISHED_STATE:
1369 pkt_finish_packet(pkt, pkt->w_bio->bi_error);
1370 return;
1372 default:
1373 BUG();
1374 break;
1379 static void pkt_handle_packets(struct pktcdvd_device *pd)
1381 struct packet_data *pkt, *next;
1384 * Run state machine for active packets
1386 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1387 if (atomic_read(&pkt->run_sm) > 0) {
1388 atomic_set(&pkt->run_sm, 0);
1389 pkt_run_state_machine(pd, pkt);
1394 * Move no longer active packets to the free list
1396 spin_lock(&pd->cdrw.active_list_lock);
1397 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1398 if (pkt->state == PACKET_FINISHED_STATE) {
1399 list_del(&pkt->list);
1400 pkt_put_packet_data(pd, pkt);
1401 pkt_set_state(pkt, PACKET_IDLE_STATE);
1402 atomic_set(&pd->scan_queue, 1);
1405 spin_unlock(&pd->cdrw.active_list_lock);
1408 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1410 struct packet_data *pkt;
1411 int i;
1413 for (i = 0; i < PACKET_NUM_STATES; i++)
1414 states[i] = 0;
1416 spin_lock(&pd->cdrw.active_list_lock);
1417 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1418 states[pkt->state]++;
1420 spin_unlock(&pd->cdrw.active_list_lock);
1424 * kcdrwd is woken up when writes have been queued for one of our
1425 * registered devices
1427 static int kcdrwd(void *foobar)
1429 struct pktcdvd_device *pd = foobar;
1430 struct packet_data *pkt;
1431 long min_sleep_time, residue;
1433 set_user_nice(current, MIN_NICE);
1434 set_freezable();
1436 for (;;) {
1437 DECLARE_WAITQUEUE(wait, current);
1440 * Wait until there is something to do
1442 add_wait_queue(&pd->wqueue, &wait);
1443 for (;;) {
1444 set_current_state(TASK_INTERRUPTIBLE);
1446 /* Check if we need to run pkt_handle_queue */
1447 if (atomic_read(&pd->scan_queue) > 0)
1448 goto work_to_do;
1450 /* Check if we need to run the state machine for some packet */
1451 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1452 if (atomic_read(&pkt->run_sm) > 0)
1453 goto work_to_do;
1456 /* Check if we need to process the iosched queues */
1457 if (atomic_read(&pd->iosched.attention) != 0)
1458 goto work_to_do;
1460 /* Otherwise, go to sleep */
1461 if (PACKET_DEBUG > 1) {
1462 int states[PACKET_NUM_STATES];
1463 pkt_count_states(pd, states);
1464 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1465 states[0], states[1], states[2],
1466 states[3], states[4], states[5]);
1469 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1470 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1471 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1472 min_sleep_time = pkt->sleep_time;
1475 pkt_dbg(2, pd, "sleeping\n");
1476 residue = schedule_timeout(min_sleep_time);
1477 pkt_dbg(2, pd, "wake up\n");
1479 /* make swsusp happy with our thread */
1480 try_to_freeze();
1482 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1483 if (!pkt->sleep_time)
1484 continue;
1485 pkt->sleep_time -= min_sleep_time - residue;
1486 if (pkt->sleep_time <= 0) {
1487 pkt->sleep_time = 0;
1488 atomic_inc(&pkt->run_sm);
1492 if (kthread_should_stop())
1493 break;
1495 work_to_do:
1496 set_current_state(TASK_RUNNING);
1497 remove_wait_queue(&pd->wqueue, &wait);
1499 if (kthread_should_stop())
1500 break;
1503 * if pkt_handle_queue returns true, we can queue
1504 * another request.
1506 while (pkt_handle_queue(pd))
1510 * Handle packet state machine
1512 pkt_handle_packets(pd);
1515 * Handle iosched queues
1517 pkt_iosched_process_queue(pd);
1520 return 0;
1523 static void pkt_print_settings(struct pktcdvd_device *pd)
1525 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1526 pd->settings.fp ? "Fixed" : "Variable",
1527 pd->settings.size >> 2,
1528 pd->settings.block_mode == 8 ? '1' : '2');
1531 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1533 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1535 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1536 cgc->cmd[2] = page_code | (page_control << 6);
1537 cgc->cmd[7] = cgc->buflen >> 8;
1538 cgc->cmd[8] = cgc->buflen & 0xff;
1539 cgc->data_direction = CGC_DATA_READ;
1540 return pkt_generic_packet(pd, cgc);
1543 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1545 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1546 memset(cgc->buffer, 0, 2);
1547 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1548 cgc->cmd[1] = 0x10; /* PF */
1549 cgc->cmd[7] = cgc->buflen >> 8;
1550 cgc->cmd[8] = cgc->buflen & 0xff;
1551 cgc->data_direction = CGC_DATA_WRITE;
1552 return pkt_generic_packet(pd, cgc);
1555 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1557 struct packet_command cgc;
1558 int ret;
1560 /* set up command and get the disc info */
1561 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1562 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1563 cgc.cmd[8] = cgc.buflen = 2;
1564 cgc.quiet = 1;
1566 if ((ret = pkt_generic_packet(pd, &cgc)))
1567 return ret;
1569 /* not all drives have the same disc_info length, so requeue
1570 * packet with the length the drive tells us it can supply
1572 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1573 sizeof(di->disc_information_length);
1575 if (cgc.buflen > sizeof(disc_information))
1576 cgc.buflen = sizeof(disc_information);
1578 cgc.cmd[8] = cgc.buflen;
1579 return pkt_generic_packet(pd, &cgc);
1582 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1584 struct packet_command cgc;
1585 int ret;
1587 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1588 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1589 cgc.cmd[1] = type & 3;
1590 cgc.cmd[4] = (track & 0xff00) >> 8;
1591 cgc.cmd[5] = track & 0xff;
1592 cgc.cmd[8] = 8;
1593 cgc.quiet = 1;
1595 if ((ret = pkt_generic_packet(pd, &cgc)))
1596 return ret;
1598 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1599 sizeof(ti->track_information_length);
1601 if (cgc.buflen > sizeof(track_information))
1602 cgc.buflen = sizeof(track_information);
1604 cgc.cmd[8] = cgc.buflen;
1605 return pkt_generic_packet(pd, &cgc);
1608 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1609 long *last_written)
1611 disc_information di;
1612 track_information ti;
1613 __u32 last_track;
1614 int ret = -1;
1616 if ((ret = pkt_get_disc_info(pd, &di)))
1617 return ret;
1619 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1620 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1621 return ret;
1623 /* if this track is blank, try the previous. */
1624 if (ti.blank) {
1625 last_track--;
1626 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1627 return ret;
1630 /* if last recorded field is valid, return it. */
1631 if (ti.lra_v) {
1632 *last_written = be32_to_cpu(ti.last_rec_address);
1633 } else {
1634 /* make it up instead */
1635 *last_written = be32_to_cpu(ti.track_start) +
1636 be32_to_cpu(ti.track_size);
1637 if (ti.free_blocks)
1638 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1640 return 0;
1644 * write mode select package based on pd->settings
1646 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1648 struct packet_command cgc;
1649 struct request_sense sense;
1650 write_param_page *wp;
1651 char buffer[128];
1652 int ret, size;
1654 /* doesn't apply to DVD+RW or DVD-RAM */
1655 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1656 return 0;
1658 memset(buffer, 0, sizeof(buffer));
1659 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1660 cgc.sense = &sense;
1661 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1662 pkt_dump_sense(pd, &cgc);
1663 return ret;
1666 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1667 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1668 if (size > sizeof(buffer))
1669 size = sizeof(buffer);
1672 * now get it all
1674 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1675 cgc.sense = &sense;
1676 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1677 pkt_dump_sense(pd, &cgc);
1678 return ret;
1682 * write page is offset header + block descriptor length
1684 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1686 wp->fp = pd->settings.fp;
1687 wp->track_mode = pd->settings.track_mode;
1688 wp->write_type = pd->settings.write_type;
1689 wp->data_block_type = pd->settings.block_mode;
1691 wp->multi_session = 0;
1693 #ifdef PACKET_USE_LS
1694 wp->link_size = 7;
1695 wp->ls_v = 1;
1696 #endif
1698 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1699 wp->session_format = 0;
1700 wp->subhdr2 = 0x20;
1701 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1702 wp->session_format = 0x20;
1703 wp->subhdr2 = 8;
1704 #if 0
1705 wp->mcn[0] = 0x80;
1706 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1707 #endif
1708 } else {
1710 * paranoia
1712 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1713 return 1;
1715 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1717 cgc.buflen = cgc.cmd[8] = size;
1718 if ((ret = pkt_mode_select(pd, &cgc))) {
1719 pkt_dump_sense(pd, &cgc);
1720 return ret;
1723 pkt_print_settings(pd);
1724 return 0;
1728 * 1 -- we can write to this track, 0 -- we can't
1730 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1732 switch (pd->mmc3_profile) {
1733 case 0x1a: /* DVD+RW */
1734 case 0x12: /* DVD-RAM */
1735 /* The track is always writable on DVD+RW/DVD-RAM */
1736 return 1;
1737 default:
1738 break;
1741 if (!ti->packet || !ti->fp)
1742 return 0;
1745 * "good" settings as per Mt Fuji.
1747 if (ti->rt == 0 && ti->blank == 0)
1748 return 1;
1750 if (ti->rt == 0 && ti->blank == 1)
1751 return 1;
1753 if (ti->rt == 1 && ti->blank == 0)
1754 return 1;
1756 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1757 return 0;
1761 * 1 -- we can write to this disc, 0 -- we can't
1763 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1765 switch (pd->mmc3_profile) {
1766 case 0x0a: /* CD-RW */
1767 case 0xffff: /* MMC3 not supported */
1768 break;
1769 case 0x1a: /* DVD+RW */
1770 case 0x13: /* DVD-RW */
1771 case 0x12: /* DVD-RAM */
1772 return 1;
1773 default:
1774 pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1775 pd->mmc3_profile);
1776 return 0;
1780 * for disc type 0xff we should probably reserve a new track.
1781 * but i'm not sure, should we leave this to user apps? probably.
1783 if (di->disc_type == 0xff) {
1784 pkt_notice(pd, "unknown disc - no track?\n");
1785 return 0;
1788 if (di->disc_type != 0x20 && di->disc_type != 0) {
1789 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1790 return 0;
1793 if (di->erasable == 0) {
1794 pkt_notice(pd, "disc not erasable\n");
1795 return 0;
1798 if (di->border_status == PACKET_SESSION_RESERVED) {
1799 pkt_err(pd, "can't write to last track (reserved)\n");
1800 return 0;
1803 return 1;
1806 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1808 struct packet_command cgc;
1809 unsigned char buf[12];
1810 disc_information di;
1811 track_information ti;
1812 int ret, track;
1814 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1815 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1816 cgc.cmd[8] = 8;
1817 ret = pkt_generic_packet(pd, &cgc);
1818 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1820 memset(&di, 0, sizeof(disc_information));
1821 memset(&ti, 0, sizeof(track_information));
1823 if ((ret = pkt_get_disc_info(pd, &di))) {
1824 pkt_err(pd, "failed get_disc\n");
1825 return ret;
1828 if (!pkt_writable_disc(pd, &di))
1829 return -EROFS;
1831 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1833 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1834 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1835 pkt_err(pd, "failed get_track\n");
1836 return ret;
1839 if (!pkt_writable_track(pd, &ti)) {
1840 pkt_err(pd, "can't write to this track\n");
1841 return -EROFS;
1845 * we keep packet size in 512 byte units, makes it easier to
1846 * deal with request calculations.
1848 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1849 if (pd->settings.size == 0) {
1850 pkt_notice(pd, "detected zero packet size!\n");
1851 return -ENXIO;
1853 if (pd->settings.size > PACKET_MAX_SECTORS) {
1854 pkt_err(pd, "packet size is too big\n");
1855 return -EROFS;
1857 pd->settings.fp = ti.fp;
1858 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1860 if (ti.nwa_v) {
1861 pd->nwa = be32_to_cpu(ti.next_writable);
1862 set_bit(PACKET_NWA_VALID, &pd->flags);
1866 * in theory we could use lra on -RW media as well and just zero
1867 * blocks that haven't been written yet, but in practice that
1868 * is just a no-go. we'll use that for -R, naturally.
1870 if (ti.lra_v) {
1871 pd->lra = be32_to_cpu(ti.last_rec_address);
1872 set_bit(PACKET_LRA_VALID, &pd->flags);
1873 } else {
1874 pd->lra = 0xffffffff;
1875 set_bit(PACKET_LRA_VALID, &pd->flags);
1879 * fine for now
1881 pd->settings.link_loss = 7;
1882 pd->settings.write_type = 0; /* packet */
1883 pd->settings.track_mode = ti.track_mode;
1886 * mode1 or mode2 disc
1888 switch (ti.data_mode) {
1889 case PACKET_MODE1:
1890 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1891 break;
1892 case PACKET_MODE2:
1893 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1894 break;
1895 default:
1896 pkt_err(pd, "unknown data mode\n");
1897 return -EROFS;
1899 return 0;
1903 * enable/disable write caching on drive
1905 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1906 int set)
1908 struct packet_command cgc;
1909 struct request_sense sense;
1910 unsigned char buf[64];
1911 int ret;
1913 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1914 cgc.sense = &sense;
1915 cgc.buflen = pd->mode_offset + 12;
1918 * caching mode page might not be there, so quiet this command
1920 cgc.quiet = 1;
1922 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1923 return ret;
1925 buf[pd->mode_offset + 10] |= (!!set << 2);
1927 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1928 ret = pkt_mode_select(pd, &cgc);
1929 if (ret) {
1930 pkt_err(pd, "write caching control failed\n");
1931 pkt_dump_sense(pd, &cgc);
1932 } else if (!ret && set)
1933 pkt_notice(pd, "enabled write caching\n");
1934 return ret;
1937 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1939 struct packet_command cgc;
1941 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1942 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1943 cgc.cmd[4] = lockflag ? 1 : 0;
1944 return pkt_generic_packet(pd, &cgc);
1948 * Returns drive maximum write speed
1950 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1951 unsigned *write_speed)
1953 struct packet_command cgc;
1954 struct request_sense sense;
1955 unsigned char buf[256+18];
1956 unsigned char *cap_buf;
1957 int ret, offset;
1959 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1960 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1961 cgc.sense = &sense;
1963 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1964 if (ret) {
1965 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1966 sizeof(struct mode_page_header);
1967 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1968 if (ret) {
1969 pkt_dump_sense(pd, &cgc);
1970 return ret;
1974 offset = 20; /* Obsoleted field, used by older drives */
1975 if (cap_buf[1] >= 28)
1976 offset = 28; /* Current write speed selected */
1977 if (cap_buf[1] >= 30) {
1978 /* If the drive reports at least one "Logical Unit Write
1979 * Speed Performance Descriptor Block", use the information
1980 * in the first block. (contains the highest speed)
1982 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1983 if (num_spdb > 0)
1984 offset = 34;
1987 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1988 return 0;
1991 /* These tables from cdrecord - I don't have orange book */
1992 /* standard speed CD-RW (1-4x) */
1993 static char clv_to_speed[16] = {
1994 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1995 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1997 /* high speed CD-RW (-10x) */
1998 static char hs_clv_to_speed[16] = {
1999 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2000 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2002 /* ultra high speed CD-RW */
2003 static char us_clv_to_speed[16] = {
2004 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2005 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2009 * reads the maximum media speed from ATIP
2011 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2012 unsigned *speed)
2014 struct packet_command cgc;
2015 struct request_sense sense;
2016 unsigned char buf[64];
2017 unsigned int size, st, sp;
2018 int ret;
2020 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2021 cgc.sense = &sense;
2022 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2023 cgc.cmd[1] = 2;
2024 cgc.cmd[2] = 4; /* READ ATIP */
2025 cgc.cmd[8] = 2;
2026 ret = pkt_generic_packet(pd, &cgc);
2027 if (ret) {
2028 pkt_dump_sense(pd, &cgc);
2029 return ret;
2031 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2032 if (size > sizeof(buf))
2033 size = sizeof(buf);
2035 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2036 cgc.sense = &sense;
2037 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2038 cgc.cmd[1] = 2;
2039 cgc.cmd[2] = 4;
2040 cgc.cmd[8] = size;
2041 ret = pkt_generic_packet(pd, &cgc);
2042 if (ret) {
2043 pkt_dump_sense(pd, &cgc);
2044 return ret;
2047 if (!(buf[6] & 0x40)) {
2048 pkt_notice(pd, "disc type is not CD-RW\n");
2049 return 1;
2051 if (!(buf[6] & 0x4)) {
2052 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2053 return 1;
2056 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2058 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2060 /* Info from cdrecord */
2061 switch (st) {
2062 case 0: /* standard speed */
2063 *speed = clv_to_speed[sp];
2064 break;
2065 case 1: /* high speed */
2066 *speed = hs_clv_to_speed[sp];
2067 break;
2068 case 2: /* ultra high speed */
2069 *speed = us_clv_to_speed[sp];
2070 break;
2071 default:
2072 pkt_notice(pd, "unknown disc sub-type %d\n", st);
2073 return 1;
2075 if (*speed) {
2076 pkt_info(pd, "maximum media speed: %d\n", *speed);
2077 return 0;
2078 } else {
2079 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2080 return 1;
2084 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2086 struct packet_command cgc;
2087 struct request_sense sense;
2088 int ret;
2090 pkt_dbg(2, pd, "Performing OPC\n");
2092 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2093 cgc.sense = &sense;
2094 cgc.timeout = 60*HZ;
2095 cgc.cmd[0] = GPCMD_SEND_OPC;
2096 cgc.cmd[1] = 1;
2097 if ((ret = pkt_generic_packet(pd, &cgc)))
2098 pkt_dump_sense(pd, &cgc);
2099 return ret;
2102 static int pkt_open_write(struct pktcdvd_device *pd)
2104 int ret;
2105 unsigned int write_speed, media_write_speed, read_speed;
2107 if ((ret = pkt_probe_settings(pd))) {
2108 pkt_dbg(2, pd, "failed probe\n");
2109 return ret;
2112 if ((ret = pkt_set_write_settings(pd))) {
2113 pkt_dbg(1, pd, "failed saving write settings\n");
2114 return -EIO;
2117 pkt_write_caching(pd, USE_WCACHING);
2119 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2120 write_speed = 16 * 177;
2121 switch (pd->mmc3_profile) {
2122 case 0x13: /* DVD-RW */
2123 case 0x1a: /* DVD+RW */
2124 case 0x12: /* DVD-RAM */
2125 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2126 break;
2127 default:
2128 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2129 media_write_speed = 16;
2130 write_speed = min(write_speed, media_write_speed * 177);
2131 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2132 break;
2134 read_speed = write_speed;
2136 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2137 pkt_dbg(1, pd, "couldn't set write speed\n");
2138 return -EIO;
2140 pd->write_speed = write_speed;
2141 pd->read_speed = read_speed;
2143 if ((ret = pkt_perform_opc(pd))) {
2144 pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2147 return 0;
2151 * called at open time.
2153 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2155 int ret;
2156 long lba;
2157 struct request_queue *q;
2160 * We need to re-open the cdrom device without O_NONBLOCK to be able
2161 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2162 * so bdget() can't fail.
2164 bdget(pd->bdev->bd_dev);
2165 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2166 goto out;
2168 if ((ret = pkt_get_last_written(pd, &lba))) {
2169 pkt_err(pd, "pkt_get_last_written failed\n");
2170 goto out_putdev;
2173 set_capacity(pd->disk, lba << 2);
2174 set_capacity(pd->bdev->bd_disk, lba << 2);
2175 bd_set_size(pd->bdev, (loff_t)lba << 11);
2177 q = bdev_get_queue(pd->bdev);
2178 if (write) {
2179 if ((ret = pkt_open_write(pd)))
2180 goto out_putdev;
2182 * Some CDRW drives can not handle writes larger than one packet,
2183 * even if the size is a multiple of the packet size.
2185 spin_lock_irq(q->queue_lock);
2186 blk_queue_max_hw_sectors(q, pd->settings.size);
2187 spin_unlock_irq(q->queue_lock);
2188 set_bit(PACKET_WRITABLE, &pd->flags);
2189 } else {
2190 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2191 clear_bit(PACKET_WRITABLE, &pd->flags);
2194 if ((ret = pkt_set_segment_merging(pd, q)))
2195 goto out_putdev;
2197 if (write) {
2198 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2199 pkt_err(pd, "not enough memory for buffers\n");
2200 ret = -ENOMEM;
2201 goto out_putdev;
2203 pkt_info(pd, "%lukB available on disc\n", lba << 1);
2206 return 0;
2208 out_putdev:
2209 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2210 out:
2211 return ret;
2215 * called when the device is closed. makes sure that the device flushes
2216 * the internal cache before we close.
2218 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2220 if (flush && pkt_flush_cache(pd))
2221 pkt_dbg(1, pd, "not flushing cache\n");
2223 pkt_lock_door(pd, 0);
2225 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2226 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2228 pkt_shrink_pktlist(pd);
2231 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2233 if (dev_minor >= MAX_WRITERS)
2234 return NULL;
2235 return pkt_devs[dev_minor];
2238 static int pkt_open(struct block_device *bdev, fmode_t mode)
2240 struct pktcdvd_device *pd = NULL;
2241 int ret;
2243 mutex_lock(&pktcdvd_mutex);
2244 mutex_lock(&ctl_mutex);
2245 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2246 if (!pd) {
2247 ret = -ENODEV;
2248 goto out;
2250 BUG_ON(pd->refcnt < 0);
2252 pd->refcnt++;
2253 if (pd->refcnt > 1) {
2254 if ((mode & FMODE_WRITE) &&
2255 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2256 ret = -EBUSY;
2257 goto out_dec;
2259 } else {
2260 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2261 if (ret)
2262 goto out_dec;
2264 * needed here as well, since ext2 (among others) may change
2265 * the blocksize at mount time
2267 set_blocksize(bdev, CD_FRAMESIZE);
2270 mutex_unlock(&ctl_mutex);
2271 mutex_unlock(&pktcdvd_mutex);
2272 return 0;
2274 out_dec:
2275 pd->refcnt--;
2276 out:
2277 mutex_unlock(&ctl_mutex);
2278 mutex_unlock(&pktcdvd_mutex);
2279 return ret;
2282 static void pkt_close(struct gendisk *disk, fmode_t mode)
2284 struct pktcdvd_device *pd = disk->private_data;
2286 mutex_lock(&pktcdvd_mutex);
2287 mutex_lock(&ctl_mutex);
2288 pd->refcnt--;
2289 BUG_ON(pd->refcnt < 0);
2290 if (pd->refcnt == 0) {
2291 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2292 pkt_release_dev(pd, flush);
2294 mutex_unlock(&ctl_mutex);
2295 mutex_unlock(&pktcdvd_mutex);
2299 static void pkt_end_io_read_cloned(struct bio *bio)
2301 struct packet_stacked_data *psd = bio->bi_private;
2302 struct pktcdvd_device *pd = psd->pd;
2304 psd->bio->bi_error = bio->bi_error;
2305 bio_put(bio);
2306 bio_endio(psd->bio);
2307 mempool_free(psd, psd_pool);
2308 pkt_bio_finished(pd);
2311 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2313 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2314 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2316 psd->pd = pd;
2317 psd->bio = bio;
2318 cloned_bio->bi_bdev = pd->bdev;
2319 cloned_bio->bi_private = psd;
2320 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2321 pd->stats.secs_r += bio_sectors(bio);
2322 pkt_queue_bio(pd, cloned_bio);
2325 static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2327 struct pktcdvd_device *pd = q->queuedata;
2328 sector_t zone;
2329 struct packet_data *pkt;
2330 int was_empty, blocked_bio;
2331 struct pkt_rb_node *node;
2333 zone = get_zone(bio->bi_iter.bi_sector, pd);
2336 * If we find a matching packet in state WAITING or READ_WAIT, we can
2337 * just append this bio to that packet.
2339 spin_lock(&pd->cdrw.active_list_lock);
2340 blocked_bio = 0;
2341 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2342 if (pkt->sector == zone) {
2343 spin_lock(&pkt->lock);
2344 if ((pkt->state == PACKET_WAITING_STATE) ||
2345 (pkt->state == PACKET_READ_WAIT_STATE)) {
2346 bio_list_add(&pkt->orig_bios, bio);
2347 pkt->write_size +=
2348 bio->bi_iter.bi_size / CD_FRAMESIZE;
2349 if ((pkt->write_size >= pkt->frames) &&
2350 (pkt->state == PACKET_WAITING_STATE)) {
2351 atomic_inc(&pkt->run_sm);
2352 wake_up(&pd->wqueue);
2354 spin_unlock(&pkt->lock);
2355 spin_unlock(&pd->cdrw.active_list_lock);
2356 return;
2357 } else {
2358 blocked_bio = 1;
2360 spin_unlock(&pkt->lock);
2363 spin_unlock(&pd->cdrw.active_list_lock);
2366 * Test if there is enough room left in the bio work queue
2367 * (queue size >= congestion on mark).
2368 * If not, wait till the work queue size is below the congestion off mark.
2370 spin_lock(&pd->lock);
2371 if (pd->write_congestion_on > 0
2372 && pd->bio_queue_size >= pd->write_congestion_on) {
2373 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2374 do {
2375 spin_unlock(&pd->lock);
2376 congestion_wait(BLK_RW_ASYNC, HZ);
2377 spin_lock(&pd->lock);
2378 } while(pd->bio_queue_size > pd->write_congestion_off);
2380 spin_unlock(&pd->lock);
2383 * No matching packet found. Store the bio in the work queue.
2385 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2386 node->bio = bio;
2387 spin_lock(&pd->lock);
2388 BUG_ON(pd->bio_queue_size < 0);
2389 was_empty = (pd->bio_queue_size == 0);
2390 pkt_rbtree_insert(pd, node);
2391 spin_unlock(&pd->lock);
2394 * Wake up the worker thread.
2396 atomic_set(&pd->scan_queue, 1);
2397 if (was_empty) {
2398 /* This wake_up is required for correct operation */
2399 wake_up(&pd->wqueue);
2400 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2402 * This wake up is not required for correct operation,
2403 * but improves performance in some cases.
2405 wake_up(&pd->wqueue);
2409 static blk_qc_t pkt_make_request(struct request_queue *q, struct bio *bio)
2411 struct pktcdvd_device *pd;
2412 char b[BDEVNAME_SIZE];
2413 struct bio *split;
2415 blk_queue_bounce(q, &bio);
2417 blk_queue_split(q, &bio, q->bio_split);
2419 pd = q->queuedata;
2420 if (!pd) {
2421 pr_err("%s incorrect request queue\n",
2422 bdevname(bio->bi_bdev, b));
2423 goto end_io;
2426 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2427 (unsigned long long)bio->bi_iter.bi_sector,
2428 (unsigned long long)bio_end_sector(bio));
2431 * Clone READ bios so we can have our own bi_end_io callback.
2433 if (bio_data_dir(bio) == READ) {
2434 pkt_make_request_read(pd, bio);
2435 return BLK_QC_T_NONE;
2438 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2439 pkt_notice(pd, "WRITE for ro device (%llu)\n",
2440 (unsigned long long)bio->bi_iter.bi_sector);
2441 goto end_io;
2444 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2445 pkt_err(pd, "wrong bio size\n");
2446 goto end_io;
2449 do {
2450 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2451 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2453 if (last_zone != zone) {
2454 BUG_ON(last_zone != zone + pd->settings.size);
2456 split = bio_split(bio, last_zone -
2457 bio->bi_iter.bi_sector,
2458 GFP_NOIO, fs_bio_set);
2459 bio_chain(split, bio);
2460 } else {
2461 split = bio;
2464 pkt_make_request_write(q, split);
2465 } while (split != bio);
2467 return BLK_QC_T_NONE;
2468 end_io:
2469 bio_io_error(bio);
2470 return BLK_QC_T_NONE;
2473 static void pkt_init_queue(struct pktcdvd_device *pd)
2475 struct request_queue *q = pd->disk->queue;
2477 blk_queue_make_request(q, pkt_make_request);
2478 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2479 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2480 q->queuedata = pd;
2483 static int pkt_seq_show(struct seq_file *m, void *p)
2485 struct pktcdvd_device *pd = m->private;
2486 char *msg;
2487 char bdev_buf[BDEVNAME_SIZE];
2488 int states[PACKET_NUM_STATES];
2490 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2491 bdevname(pd->bdev, bdev_buf));
2493 seq_printf(m, "\nSettings:\n");
2494 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2496 if (pd->settings.write_type == 0)
2497 msg = "Packet";
2498 else
2499 msg = "Unknown";
2500 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2502 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2503 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2505 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2507 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2508 msg = "Mode 1";
2509 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2510 msg = "Mode 2";
2511 else
2512 msg = "Unknown";
2513 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2515 seq_printf(m, "\nStatistics:\n");
2516 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2517 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2518 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2519 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2520 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2522 seq_printf(m, "\nMisc:\n");
2523 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2524 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2525 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2526 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2527 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2528 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2530 seq_printf(m, "\nQueue state:\n");
2531 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2532 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2533 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2535 pkt_count_states(pd, states);
2536 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2537 states[0], states[1], states[2], states[3], states[4], states[5]);
2539 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2540 pd->write_congestion_off,
2541 pd->write_congestion_on);
2542 return 0;
2545 static int pkt_seq_open(struct inode *inode, struct file *file)
2547 return single_open(file, pkt_seq_show, PDE_DATA(inode));
2550 static const struct file_operations pkt_proc_fops = {
2551 .open = pkt_seq_open,
2552 .read = seq_read,
2553 .llseek = seq_lseek,
2554 .release = single_release
2557 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2559 int i;
2560 int ret = 0;
2561 char b[BDEVNAME_SIZE];
2562 struct block_device *bdev;
2564 if (pd->pkt_dev == dev) {
2565 pkt_err(pd, "recursive setup not allowed\n");
2566 return -EBUSY;
2568 for (i = 0; i < MAX_WRITERS; i++) {
2569 struct pktcdvd_device *pd2 = pkt_devs[i];
2570 if (!pd2)
2571 continue;
2572 if (pd2->bdev->bd_dev == dev) {
2573 pkt_err(pd, "%s already setup\n",
2574 bdevname(pd2->bdev, b));
2575 return -EBUSY;
2577 if (pd2->pkt_dev == dev) {
2578 pkt_err(pd, "can't chain pktcdvd devices\n");
2579 return -EBUSY;
2583 bdev = bdget(dev);
2584 if (!bdev)
2585 return -ENOMEM;
2586 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2587 if (ret)
2588 return ret;
2590 /* This is safe, since we have a reference from open(). */
2591 __module_get(THIS_MODULE);
2593 pd->bdev = bdev;
2594 set_blocksize(bdev, CD_FRAMESIZE);
2596 pkt_init_queue(pd);
2598 atomic_set(&pd->cdrw.pending_bios, 0);
2599 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2600 if (IS_ERR(pd->cdrw.thread)) {
2601 pkt_err(pd, "can't start kernel thread\n");
2602 ret = -ENOMEM;
2603 goto out_mem;
2606 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2607 pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2608 return 0;
2610 out_mem:
2611 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2612 /* This is safe: open() is still holding a reference. */
2613 module_put(THIS_MODULE);
2614 return ret;
2617 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2619 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2620 int ret;
2622 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2623 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2625 mutex_lock(&pktcdvd_mutex);
2626 switch (cmd) {
2627 case CDROMEJECT:
2629 * The door gets locked when the device is opened, so we
2630 * have to unlock it or else the eject command fails.
2632 if (pd->refcnt == 1)
2633 pkt_lock_door(pd, 0);
2634 /* fallthru */
2636 * forward selected CDROM ioctls to CD-ROM, for UDF
2638 case CDROMMULTISESSION:
2639 case CDROMREADTOCENTRY:
2640 case CDROM_LAST_WRITTEN:
2641 case CDROM_SEND_PACKET:
2642 case SCSI_IOCTL_SEND_COMMAND:
2643 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2644 break;
2646 default:
2647 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2648 ret = -ENOTTY;
2650 mutex_unlock(&pktcdvd_mutex);
2652 return ret;
2655 static unsigned int pkt_check_events(struct gendisk *disk,
2656 unsigned int clearing)
2658 struct pktcdvd_device *pd = disk->private_data;
2659 struct gendisk *attached_disk;
2661 if (!pd)
2662 return 0;
2663 if (!pd->bdev)
2664 return 0;
2665 attached_disk = pd->bdev->bd_disk;
2666 if (!attached_disk || !attached_disk->fops->check_events)
2667 return 0;
2668 return attached_disk->fops->check_events(attached_disk, clearing);
2671 static const struct block_device_operations pktcdvd_ops = {
2672 .owner = THIS_MODULE,
2673 .open = pkt_open,
2674 .release = pkt_close,
2675 .ioctl = pkt_ioctl,
2676 .check_events = pkt_check_events,
2679 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2681 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2685 * Set up mapping from pktcdvd device to CD-ROM device.
2687 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2689 int idx;
2690 int ret = -ENOMEM;
2691 struct pktcdvd_device *pd;
2692 struct gendisk *disk;
2694 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2696 for (idx = 0; idx < MAX_WRITERS; idx++)
2697 if (!pkt_devs[idx])
2698 break;
2699 if (idx == MAX_WRITERS) {
2700 pr_err("max %d writers supported\n", MAX_WRITERS);
2701 ret = -EBUSY;
2702 goto out_mutex;
2705 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2706 if (!pd)
2707 goto out_mutex;
2709 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2710 sizeof(struct pkt_rb_node));
2711 if (!pd->rb_pool)
2712 goto out_mem;
2714 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2715 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2716 spin_lock_init(&pd->cdrw.active_list_lock);
2718 spin_lock_init(&pd->lock);
2719 spin_lock_init(&pd->iosched.lock);
2720 bio_list_init(&pd->iosched.read_queue);
2721 bio_list_init(&pd->iosched.write_queue);
2722 sprintf(pd->name, DRIVER_NAME"%d", idx);
2723 init_waitqueue_head(&pd->wqueue);
2724 pd->bio_queue = RB_ROOT;
2726 pd->write_congestion_on = write_congestion_on;
2727 pd->write_congestion_off = write_congestion_off;
2729 disk = alloc_disk(1);
2730 if (!disk)
2731 goto out_mem;
2732 pd->disk = disk;
2733 disk->major = pktdev_major;
2734 disk->first_minor = idx;
2735 disk->fops = &pktcdvd_ops;
2736 disk->flags = GENHD_FL_REMOVABLE;
2737 strcpy(disk->disk_name, pd->name);
2738 disk->devnode = pktcdvd_devnode;
2739 disk->private_data = pd;
2740 disk->queue = blk_alloc_queue(GFP_KERNEL);
2741 if (!disk->queue)
2742 goto out_mem2;
2744 pd->pkt_dev = MKDEV(pktdev_major, idx);
2745 ret = pkt_new_dev(pd, dev);
2746 if (ret)
2747 goto out_new_dev;
2749 /* inherit events of the host device */
2750 disk->events = pd->bdev->bd_disk->events;
2751 disk->async_events = pd->bdev->bd_disk->async_events;
2753 add_disk(disk);
2755 pkt_sysfs_dev_new(pd);
2756 pkt_debugfs_dev_new(pd);
2758 pkt_devs[idx] = pd;
2759 if (pkt_dev)
2760 *pkt_dev = pd->pkt_dev;
2762 mutex_unlock(&ctl_mutex);
2763 return 0;
2765 out_new_dev:
2766 blk_cleanup_queue(disk->queue);
2767 out_mem2:
2768 put_disk(disk);
2769 out_mem:
2770 mempool_destroy(pd->rb_pool);
2771 kfree(pd);
2772 out_mutex:
2773 mutex_unlock(&ctl_mutex);
2774 pr_err("setup of pktcdvd device failed\n");
2775 return ret;
2779 * Tear down mapping from pktcdvd device to CD-ROM device.
2781 static int pkt_remove_dev(dev_t pkt_dev)
2783 struct pktcdvd_device *pd;
2784 int idx;
2785 int ret = 0;
2787 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2789 for (idx = 0; idx < MAX_WRITERS; idx++) {
2790 pd = pkt_devs[idx];
2791 if (pd && (pd->pkt_dev == pkt_dev))
2792 break;
2794 if (idx == MAX_WRITERS) {
2795 pr_debug("dev not setup\n");
2796 ret = -ENXIO;
2797 goto out;
2800 if (pd->refcnt > 0) {
2801 ret = -EBUSY;
2802 goto out;
2804 if (!IS_ERR(pd->cdrw.thread))
2805 kthread_stop(pd->cdrw.thread);
2807 pkt_devs[idx] = NULL;
2809 pkt_debugfs_dev_remove(pd);
2810 pkt_sysfs_dev_remove(pd);
2812 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2814 remove_proc_entry(pd->name, pkt_proc);
2815 pkt_dbg(1, pd, "writer unmapped\n");
2817 del_gendisk(pd->disk);
2818 blk_cleanup_queue(pd->disk->queue);
2819 put_disk(pd->disk);
2821 mempool_destroy(pd->rb_pool);
2822 kfree(pd);
2824 /* This is safe: open() is still holding a reference. */
2825 module_put(THIS_MODULE);
2827 out:
2828 mutex_unlock(&ctl_mutex);
2829 return ret;
2832 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2834 struct pktcdvd_device *pd;
2836 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2838 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2839 if (pd) {
2840 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2841 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2842 } else {
2843 ctrl_cmd->dev = 0;
2844 ctrl_cmd->pkt_dev = 0;
2846 ctrl_cmd->num_devices = MAX_WRITERS;
2848 mutex_unlock(&ctl_mutex);
2851 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2853 void __user *argp = (void __user *)arg;
2854 struct pkt_ctrl_command ctrl_cmd;
2855 int ret = 0;
2856 dev_t pkt_dev = 0;
2858 if (cmd != PACKET_CTRL_CMD)
2859 return -ENOTTY;
2861 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2862 return -EFAULT;
2864 switch (ctrl_cmd.command) {
2865 case PKT_CTRL_CMD_SETUP:
2866 if (!capable(CAP_SYS_ADMIN))
2867 return -EPERM;
2868 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2869 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2870 break;
2871 case PKT_CTRL_CMD_TEARDOWN:
2872 if (!capable(CAP_SYS_ADMIN))
2873 return -EPERM;
2874 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2875 break;
2876 case PKT_CTRL_CMD_STATUS:
2877 pkt_get_status(&ctrl_cmd);
2878 break;
2879 default:
2880 return -ENOTTY;
2883 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2884 return -EFAULT;
2885 return ret;
2888 #ifdef CONFIG_COMPAT
2889 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2891 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2893 #endif
2895 static const struct file_operations pkt_ctl_fops = {
2896 .open = nonseekable_open,
2897 .unlocked_ioctl = pkt_ctl_ioctl,
2898 #ifdef CONFIG_COMPAT
2899 .compat_ioctl = pkt_ctl_compat_ioctl,
2900 #endif
2901 .owner = THIS_MODULE,
2902 .llseek = no_llseek,
2905 static struct miscdevice pkt_misc = {
2906 .minor = MISC_DYNAMIC_MINOR,
2907 .name = DRIVER_NAME,
2908 .nodename = "pktcdvd/control",
2909 .fops = &pkt_ctl_fops
2912 static int __init pkt_init(void)
2914 int ret;
2916 mutex_init(&ctl_mutex);
2918 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
2919 sizeof(struct packet_stacked_data));
2920 if (!psd_pool)
2921 return -ENOMEM;
2923 ret = register_blkdev(pktdev_major, DRIVER_NAME);
2924 if (ret < 0) {
2925 pr_err("unable to register block device\n");
2926 goto out2;
2928 if (!pktdev_major)
2929 pktdev_major = ret;
2931 ret = pkt_sysfs_init();
2932 if (ret)
2933 goto out;
2935 pkt_debugfs_init();
2937 ret = misc_register(&pkt_misc);
2938 if (ret) {
2939 pr_err("unable to register misc device\n");
2940 goto out_misc;
2943 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2945 return 0;
2947 out_misc:
2948 pkt_debugfs_cleanup();
2949 pkt_sysfs_cleanup();
2950 out:
2951 unregister_blkdev(pktdev_major, DRIVER_NAME);
2952 out2:
2953 mempool_destroy(psd_pool);
2954 return ret;
2957 static void __exit pkt_exit(void)
2959 remove_proc_entry("driver/"DRIVER_NAME, NULL);
2960 misc_deregister(&pkt_misc);
2962 pkt_debugfs_cleanup();
2963 pkt_sysfs_cleanup();
2965 unregister_blkdev(pktdev_major, DRIVER_NAME);
2966 mempool_destroy(psd_pool);
2969 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2970 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2971 MODULE_LICENSE("GPL");
2973 module_init(pkt_init);
2974 module_exit(pkt_exit);