perf/x86: Check if user fp is valid
[linux-2.6/btrfs-unstable.git] / arch / x86 / kernel / cpu / perf_event.c
blobc4706cf9c011d8fd068d205ed0b669142c112400
1 /*
2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/timer.h>
36 #include "perf_event.h"
38 #if 0
39 #undef wrmsrl
40 #define wrmsrl(msr, val) \
41 do { \
42 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
43 (unsigned long)(val)); \
44 native_write_msr((msr), (u32)((u64)(val)), \
45 (u32)((u64)(val) >> 32)); \
46 } while (0)
47 #endif
49 struct x86_pmu x86_pmu __read_mostly;
51 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
52 .enabled = 1,
55 u64 __read_mostly hw_cache_event_ids
56 [PERF_COUNT_HW_CACHE_MAX]
57 [PERF_COUNT_HW_CACHE_OP_MAX]
58 [PERF_COUNT_HW_CACHE_RESULT_MAX];
59 u64 __read_mostly hw_cache_extra_regs
60 [PERF_COUNT_HW_CACHE_MAX]
61 [PERF_COUNT_HW_CACHE_OP_MAX]
62 [PERF_COUNT_HW_CACHE_RESULT_MAX];
65 * Propagate event elapsed time into the generic event.
66 * Can only be executed on the CPU where the event is active.
67 * Returns the delta events processed.
69 u64 x86_perf_event_update(struct perf_event *event)
71 struct hw_perf_event *hwc = &event->hw;
72 int shift = 64 - x86_pmu.cntval_bits;
73 u64 prev_raw_count, new_raw_count;
74 int idx = hwc->idx;
75 s64 delta;
77 if (idx == X86_PMC_IDX_FIXED_BTS)
78 return 0;
81 * Careful: an NMI might modify the previous event value.
83 * Our tactic to handle this is to first atomically read and
84 * exchange a new raw count - then add that new-prev delta
85 * count to the generic event atomically:
87 again:
88 prev_raw_count = local64_read(&hwc->prev_count);
89 rdmsrl(hwc->event_base, new_raw_count);
91 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
92 new_raw_count) != prev_raw_count)
93 goto again;
96 * Now we have the new raw value and have updated the prev
97 * timestamp already. We can now calculate the elapsed delta
98 * (event-)time and add that to the generic event.
100 * Careful, not all hw sign-extends above the physical width
101 * of the count.
103 delta = (new_raw_count << shift) - (prev_raw_count << shift);
104 delta >>= shift;
106 local64_add(delta, &event->count);
107 local64_sub(delta, &hwc->period_left);
109 return new_raw_count;
113 * Find and validate any extra registers to set up.
115 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
117 struct hw_perf_event_extra *reg;
118 struct extra_reg *er;
120 reg = &event->hw.extra_reg;
122 if (!x86_pmu.extra_regs)
123 return 0;
125 for (er = x86_pmu.extra_regs; er->msr; er++) {
126 if (er->event != (config & er->config_mask))
127 continue;
128 if (event->attr.config1 & ~er->valid_mask)
129 return -EINVAL;
131 reg->idx = er->idx;
132 reg->config = event->attr.config1;
133 reg->reg = er->msr;
134 break;
136 return 0;
139 static atomic_t active_events;
140 static DEFINE_MUTEX(pmc_reserve_mutex);
142 #ifdef CONFIG_X86_LOCAL_APIC
144 static bool reserve_pmc_hardware(void)
146 int i;
148 for (i = 0; i < x86_pmu.num_counters; i++) {
149 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
150 goto perfctr_fail;
153 for (i = 0; i < x86_pmu.num_counters; i++) {
154 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
155 goto eventsel_fail;
158 return true;
160 eventsel_fail:
161 for (i--; i >= 0; i--)
162 release_evntsel_nmi(x86_pmu_config_addr(i));
164 i = x86_pmu.num_counters;
166 perfctr_fail:
167 for (i--; i >= 0; i--)
168 release_perfctr_nmi(x86_pmu_event_addr(i));
170 return false;
173 static void release_pmc_hardware(void)
175 int i;
177 for (i = 0; i < x86_pmu.num_counters; i++) {
178 release_perfctr_nmi(x86_pmu_event_addr(i));
179 release_evntsel_nmi(x86_pmu_config_addr(i));
183 #else
185 static bool reserve_pmc_hardware(void) { return true; }
186 static void release_pmc_hardware(void) {}
188 #endif
190 static bool check_hw_exists(void)
192 u64 val, val_new = 0;
193 int i, reg, ret = 0;
196 * Check to see if the BIOS enabled any of the counters, if so
197 * complain and bail.
199 for (i = 0; i < x86_pmu.num_counters; i++) {
200 reg = x86_pmu_config_addr(i);
201 ret = rdmsrl_safe(reg, &val);
202 if (ret)
203 goto msr_fail;
204 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
205 goto bios_fail;
208 if (x86_pmu.num_counters_fixed) {
209 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
210 ret = rdmsrl_safe(reg, &val);
211 if (ret)
212 goto msr_fail;
213 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
214 if (val & (0x03 << i*4))
215 goto bios_fail;
220 * Now write a value and read it back to see if it matches,
221 * this is needed to detect certain hardware emulators (qemu/kvm)
222 * that don't trap on the MSR access and always return 0s.
224 val = 0xabcdUL;
225 ret = checking_wrmsrl(x86_pmu_event_addr(0), val);
226 ret |= rdmsrl_safe(x86_pmu_event_addr(0), &val_new);
227 if (ret || val != val_new)
228 goto msr_fail;
230 return true;
232 bios_fail:
234 * We still allow the PMU driver to operate:
236 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
237 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
239 return true;
241 msr_fail:
242 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
244 return false;
247 static void hw_perf_event_destroy(struct perf_event *event)
249 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
250 release_pmc_hardware();
251 release_ds_buffers();
252 mutex_unlock(&pmc_reserve_mutex);
256 static inline int x86_pmu_initialized(void)
258 return x86_pmu.handle_irq != NULL;
261 static inline int
262 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
264 struct perf_event_attr *attr = &event->attr;
265 unsigned int cache_type, cache_op, cache_result;
266 u64 config, val;
268 config = attr->config;
270 cache_type = (config >> 0) & 0xff;
271 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
272 return -EINVAL;
274 cache_op = (config >> 8) & 0xff;
275 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
276 return -EINVAL;
278 cache_result = (config >> 16) & 0xff;
279 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
280 return -EINVAL;
282 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
284 if (val == 0)
285 return -ENOENT;
287 if (val == -1)
288 return -EINVAL;
290 hwc->config |= val;
291 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
292 return x86_pmu_extra_regs(val, event);
295 int x86_setup_perfctr(struct perf_event *event)
297 struct perf_event_attr *attr = &event->attr;
298 struct hw_perf_event *hwc = &event->hw;
299 u64 config;
301 if (!is_sampling_event(event)) {
302 hwc->sample_period = x86_pmu.max_period;
303 hwc->last_period = hwc->sample_period;
304 local64_set(&hwc->period_left, hwc->sample_period);
305 } else {
307 * If we have a PMU initialized but no APIC
308 * interrupts, we cannot sample hardware
309 * events (user-space has to fall back and
310 * sample via a hrtimer based software event):
312 if (!x86_pmu.apic)
313 return -EOPNOTSUPP;
316 if (attr->type == PERF_TYPE_RAW)
317 return x86_pmu_extra_regs(event->attr.config, event);
319 if (attr->type == PERF_TYPE_HW_CACHE)
320 return set_ext_hw_attr(hwc, event);
322 if (attr->config >= x86_pmu.max_events)
323 return -EINVAL;
326 * The generic map:
328 config = x86_pmu.event_map(attr->config);
330 if (config == 0)
331 return -ENOENT;
333 if (config == -1LL)
334 return -EINVAL;
337 * Branch tracing:
339 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
340 !attr->freq && hwc->sample_period == 1) {
341 /* BTS is not supported by this architecture. */
342 if (!x86_pmu.bts_active)
343 return -EOPNOTSUPP;
345 /* BTS is currently only allowed for user-mode. */
346 if (!attr->exclude_kernel)
347 return -EOPNOTSUPP;
350 hwc->config |= config;
352 return 0;
356 * check that branch_sample_type is compatible with
357 * settings needed for precise_ip > 1 which implies
358 * using the LBR to capture ALL taken branches at the
359 * priv levels of the measurement
361 static inline int precise_br_compat(struct perf_event *event)
363 u64 m = event->attr.branch_sample_type;
364 u64 b = 0;
366 /* must capture all branches */
367 if (!(m & PERF_SAMPLE_BRANCH_ANY))
368 return 0;
370 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
372 if (!event->attr.exclude_user)
373 b |= PERF_SAMPLE_BRANCH_USER;
375 if (!event->attr.exclude_kernel)
376 b |= PERF_SAMPLE_BRANCH_KERNEL;
379 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
382 return m == b;
385 int x86_pmu_hw_config(struct perf_event *event)
387 if (event->attr.precise_ip) {
388 int precise = 0;
390 /* Support for constant skid */
391 if (x86_pmu.pebs_active) {
392 precise++;
394 /* Support for IP fixup */
395 if (x86_pmu.lbr_nr)
396 precise++;
399 if (event->attr.precise_ip > precise)
400 return -EOPNOTSUPP;
402 * check that PEBS LBR correction does not conflict with
403 * whatever the user is asking with attr->branch_sample_type
405 if (event->attr.precise_ip > 1) {
406 u64 *br_type = &event->attr.branch_sample_type;
408 if (has_branch_stack(event)) {
409 if (!precise_br_compat(event))
410 return -EOPNOTSUPP;
412 /* branch_sample_type is compatible */
414 } else {
416 * user did not specify branch_sample_type
418 * For PEBS fixups, we capture all
419 * the branches at the priv level of the
420 * event.
422 *br_type = PERF_SAMPLE_BRANCH_ANY;
424 if (!event->attr.exclude_user)
425 *br_type |= PERF_SAMPLE_BRANCH_USER;
427 if (!event->attr.exclude_kernel)
428 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
434 * Generate PMC IRQs:
435 * (keep 'enabled' bit clear for now)
437 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
440 * Count user and OS events unless requested not to
442 if (!event->attr.exclude_user)
443 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
444 if (!event->attr.exclude_kernel)
445 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
447 if (event->attr.type == PERF_TYPE_RAW)
448 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
450 return x86_setup_perfctr(event);
454 * Setup the hardware configuration for a given attr_type
456 static int __x86_pmu_event_init(struct perf_event *event)
458 int err;
460 if (!x86_pmu_initialized())
461 return -ENODEV;
463 err = 0;
464 if (!atomic_inc_not_zero(&active_events)) {
465 mutex_lock(&pmc_reserve_mutex);
466 if (atomic_read(&active_events) == 0) {
467 if (!reserve_pmc_hardware())
468 err = -EBUSY;
469 else
470 reserve_ds_buffers();
472 if (!err)
473 atomic_inc(&active_events);
474 mutex_unlock(&pmc_reserve_mutex);
476 if (err)
477 return err;
479 event->destroy = hw_perf_event_destroy;
481 event->hw.idx = -1;
482 event->hw.last_cpu = -1;
483 event->hw.last_tag = ~0ULL;
485 /* mark unused */
486 event->hw.extra_reg.idx = EXTRA_REG_NONE;
487 event->hw.branch_reg.idx = EXTRA_REG_NONE;
489 return x86_pmu.hw_config(event);
492 void x86_pmu_disable_all(void)
494 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
495 int idx;
497 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
498 u64 val;
500 if (!test_bit(idx, cpuc->active_mask))
501 continue;
502 rdmsrl(x86_pmu_config_addr(idx), val);
503 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
504 continue;
505 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
506 wrmsrl(x86_pmu_config_addr(idx), val);
510 static void x86_pmu_disable(struct pmu *pmu)
512 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
514 if (!x86_pmu_initialized())
515 return;
517 if (!cpuc->enabled)
518 return;
520 cpuc->n_added = 0;
521 cpuc->enabled = 0;
522 barrier();
524 x86_pmu.disable_all();
527 void x86_pmu_enable_all(int added)
529 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
530 int idx;
532 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
533 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
535 if (!test_bit(idx, cpuc->active_mask))
536 continue;
538 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
542 static struct pmu pmu;
544 static inline int is_x86_event(struct perf_event *event)
546 return event->pmu == &pmu;
550 * Event scheduler state:
552 * Assign events iterating over all events and counters, beginning
553 * with events with least weights first. Keep the current iterator
554 * state in struct sched_state.
556 struct sched_state {
557 int weight;
558 int event; /* event index */
559 int counter; /* counter index */
560 int unassigned; /* number of events to be assigned left */
561 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
564 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
565 #define SCHED_STATES_MAX 2
567 struct perf_sched {
568 int max_weight;
569 int max_events;
570 struct event_constraint **constraints;
571 struct sched_state state;
572 int saved_states;
573 struct sched_state saved[SCHED_STATES_MAX];
577 * Initialize interator that runs through all events and counters.
579 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **c,
580 int num, int wmin, int wmax)
582 int idx;
584 memset(sched, 0, sizeof(*sched));
585 sched->max_events = num;
586 sched->max_weight = wmax;
587 sched->constraints = c;
589 for (idx = 0; idx < num; idx++) {
590 if (c[idx]->weight == wmin)
591 break;
594 sched->state.event = idx; /* start with min weight */
595 sched->state.weight = wmin;
596 sched->state.unassigned = num;
599 static void perf_sched_save_state(struct perf_sched *sched)
601 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
602 return;
604 sched->saved[sched->saved_states] = sched->state;
605 sched->saved_states++;
608 static bool perf_sched_restore_state(struct perf_sched *sched)
610 if (!sched->saved_states)
611 return false;
613 sched->saved_states--;
614 sched->state = sched->saved[sched->saved_states];
616 /* continue with next counter: */
617 clear_bit(sched->state.counter++, sched->state.used);
619 return true;
623 * Select a counter for the current event to schedule. Return true on
624 * success.
626 static bool __perf_sched_find_counter(struct perf_sched *sched)
628 struct event_constraint *c;
629 int idx;
631 if (!sched->state.unassigned)
632 return false;
634 if (sched->state.event >= sched->max_events)
635 return false;
637 c = sched->constraints[sched->state.event];
639 /* Prefer fixed purpose counters */
640 if (x86_pmu.num_counters_fixed) {
641 idx = X86_PMC_IDX_FIXED;
642 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
643 if (!__test_and_set_bit(idx, sched->state.used))
644 goto done;
647 /* Grab the first unused counter starting with idx */
648 idx = sched->state.counter;
649 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_FIXED) {
650 if (!__test_and_set_bit(idx, sched->state.used))
651 goto done;
654 return false;
656 done:
657 sched->state.counter = idx;
659 if (c->overlap)
660 perf_sched_save_state(sched);
662 return true;
665 static bool perf_sched_find_counter(struct perf_sched *sched)
667 while (!__perf_sched_find_counter(sched)) {
668 if (!perf_sched_restore_state(sched))
669 return false;
672 return true;
676 * Go through all unassigned events and find the next one to schedule.
677 * Take events with the least weight first. Return true on success.
679 static bool perf_sched_next_event(struct perf_sched *sched)
681 struct event_constraint *c;
683 if (!sched->state.unassigned || !--sched->state.unassigned)
684 return false;
686 do {
687 /* next event */
688 sched->state.event++;
689 if (sched->state.event >= sched->max_events) {
690 /* next weight */
691 sched->state.event = 0;
692 sched->state.weight++;
693 if (sched->state.weight > sched->max_weight)
694 return false;
696 c = sched->constraints[sched->state.event];
697 } while (c->weight != sched->state.weight);
699 sched->state.counter = 0; /* start with first counter */
701 return true;
705 * Assign a counter for each event.
707 static int perf_assign_events(struct event_constraint **constraints, int n,
708 int wmin, int wmax, int *assign)
710 struct perf_sched sched;
712 perf_sched_init(&sched, constraints, n, wmin, wmax);
714 do {
715 if (!perf_sched_find_counter(&sched))
716 break; /* failed */
717 if (assign)
718 assign[sched.state.event] = sched.state.counter;
719 } while (perf_sched_next_event(&sched));
721 return sched.state.unassigned;
724 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
726 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
727 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
728 int i, wmin, wmax, num = 0;
729 struct hw_perf_event *hwc;
731 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
733 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
734 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
735 constraints[i] = c;
736 wmin = min(wmin, c->weight);
737 wmax = max(wmax, c->weight);
741 * fastpath, try to reuse previous register
743 for (i = 0; i < n; i++) {
744 hwc = &cpuc->event_list[i]->hw;
745 c = constraints[i];
747 /* never assigned */
748 if (hwc->idx == -1)
749 break;
751 /* constraint still honored */
752 if (!test_bit(hwc->idx, c->idxmsk))
753 break;
755 /* not already used */
756 if (test_bit(hwc->idx, used_mask))
757 break;
759 __set_bit(hwc->idx, used_mask);
760 if (assign)
761 assign[i] = hwc->idx;
764 /* slow path */
765 if (i != n)
766 num = perf_assign_events(constraints, n, wmin, wmax, assign);
769 * scheduling failed or is just a simulation,
770 * free resources if necessary
772 if (!assign || num) {
773 for (i = 0; i < n; i++) {
774 if (x86_pmu.put_event_constraints)
775 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
778 return num ? -EINVAL : 0;
782 * dogrp: true if must collect siblings events (group)
783 * returns total number of events and error code
785 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
787 struct perf_event *event;
788 int n, max_count;
790 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
792 /* current number of events already accepted */
793 n = cpuc->n_events;
795 if (is_x86_event(leader)) {
796 if (n >= max_count)
797 return -EINVAL;
798 cpuc->event_list[n] = leader;
799 n++;
801 if (!dogrp)
802 return n;
804 list_for_each_entry(event, &leader->sibling_list, group_entry) {
805 if (!is_x86_event(event) ||
806 event->state <= PERF_EVENT_STATE_OFF)
807 continue;
809 if (n >= max_count)
810 return -EINVAL;
812 cpuc->event_list[n] = event;
813 n++;
815 return n;
818 static inline void x86_assign_hw_event(struct perf_event *event,
819 struct cpu_hw_events *cpuc, int i)
821 struct hw_perf_event *hwc = &event->hw;
823 hwc->idx = cpuc->assign[i];
824 hwc->last_cpu = smp_processor_id();
825 hwc->last_tag = ++cpuc->tags[i];
827 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
828 hwc->config_base = 0;
829 hwc->event_base = 0;
830 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
831 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
832 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - X86_PMC_IDX_FIXED);
833 } else {
834 hwc->config_base = x86_pmu_config_addr(hwc->idx);
835 hwc->event_base = x86_pmu_event_addr(hwc->idx);
839 static inline int match_prev_assignment(struct hw_perf_event *hwc,
840 struct cpu_hw_events *cpuc,
841 int i)
843 return hwc->idx == cpuc->assign[i] &&
844 hwc->last_cpu == smp_processor_id() &&
845 hwc->last_tag == cpuc->tags[i];
848 static void x86_pmu_start(struct perf_event *event, int flags);
850 static void x86_pmu_enable(struct pmu *pmu)
852 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
853 struct perf_event *event;
854 struct hw_perf_event *hwc;
855 int i, added = cpuc->n_added;
857 if (!x86_pmu_initialized())
858 return;
860 if (cpuc->enabled)
861 return;
863 if (cpuc->n_added) {
864 int n_running = cpuc->n_events - cpuc->n_added;
866 * apply assignment obtained either from
867 * hw_perf_group_sched_in() or x86_pmu_enable()
869 * step1: save events moving to new counters
870 * step2: reprogram moved events into new counters
872 for (i = 0; i < n_running; i++) {
873 event = cpuc->event_list[i];
874 hwc = &event->hw;
877 * we can avoid reprogramming counter if:
878 * - assigned same counter as last time
879 * - running on same CPU as last time
880 * - no other event has used the counter since
882 if (hwc->idx == -1 ||
883 match_prev_assignment(hwc, cpuc, i))
884 continue;
887 * Ensure we don't accidentally enable a stopped
888 * counter simply because we rescheduled.
890 if (hwc->state & PERF_HES_STOPPED)
891 hwc->state |= PERF_HES_ARCH;
893 x86_pmu_stop(event, PERF_EF_UPDATE);
896 for (i = 0; i < cpuc->n_events; i++) {
897 event = cpuc->event_list[i];
898 hwc = &event->hw;
900 if (!match_prev_assignment(hwc, cpuc, i))
901 x86_assign_hw_event(event, cpuc, i);
902 else if (i < n_running)
903 continue;
905 if (hwc->state & PERF_HES_ARCH)
906 continue;
908 x86_pmu_start(event, PERF_EF_RELOAD);
910 cpuc->n_added = 0;
911 perf_events_lapic_init();
914 cpuc->enabled = 1;
915 barrier();
917 x86_pmu.enable_all(added);
920 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
923 * Set the next IRQ period, based on the hwc->period_left value.
924 * To be called with the event disabled in hw:
926 int x86_perf_event_set_period(struct perf_event *event)
928 struct hw_perf_event *hwc = &event->hw;
929 s64 left = local64_read(&hwc->period_left);
930 s64 period = hwc->sample_period;
931 int ret = 0, idx = hwc->idx;
933 if (idx == X86_PMC_IDX_FIXED_BTS)
934 return 0;
937 * If we are way outside a reasonable range then just skip forward:
939 if (unlikely(left <= -period)) {
940 left = period;
941 local64_set(&hwc->period_left, left);
942 hwc->last_period = period;
943 ret = 1;
946 if (unlikely(left <= 0)) {
947 left += period;
948 local64_set(&hwc->period_left, left);
949 hwc->last_period = period;
950 ret = 1;
953 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
955 if (unlikely(left < 2))
956 left = 2;
958 if (left > x86_pmu.max_period)
959 left = x86_pmu.max_period;
961 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
964 * The hw event starts counting from this event offset,
965 * mark it to be able to extra future deltas:
967 local64_set(&hwc->prev_count, (u64)-left);
969 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
972 * Due to erratum on certan cpu we need
973 * a second write to be sure the register
974 * is updated properly
976 if (x86_pmu.perfctr_second_write) {
977 wrmsrl(hwc->event_base,
978 (u64)(-left) & x86_pmu.cntval_mask);
981 perf_event_update_userpage(event);
983 return ret;
986 void x86_pmu_enable_event(struct perf_event *event)
988 if (__this_cpu_read(cpu_hw_events.enabled))
989 __x86_pmu_enable_event(&event->hw,
990 ARCH_PERFMON_EVENTSEL_ENABLE);
994 * Add a single event to the PMU.
996 * The event is added to the group of enabled events
997 * but only if it can be scehduled with existing events.
999 static int x86_pmu_add(struct perf_event *event, int flags)
1001 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1002 struct hw_perf_event *hwc;
1003 int assign[X86_PMC_IDX_MAX];
1004 int n, n0, ret;
1006 hwc = &event->hw;
1008 perf_pmu_disable(event->pmu);
1009 n0 = cpuc->n_events;
1010 ret = n = collect_events(cpuc, event, false);
1011 if (ret < 0)
1012 goto out;
1014 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1015 if (!(flags & PERF_EF_START))
1016 hwc->state |= PERF_HES_ARCH;
1019 * If group events scheduling transaction was started,
1020 * skip the schedulability test here, it will be performed
1021 * at commit time (->commit_txn) as a whole
1023 if (cpuc->group_flag & PERF_EVENT_TXN)
1024 goto done_collect;
1026 ret = x86_pmu.schedule_events(cpuc, n, assign);
1027 if (ret)
1028 goto out;
1030 * copy new assignment, now we know it is possible
1031 * will be used by hw_perf_enable()
1033 memcpy(cpuc->assign, assign, n*sizeof(int));
1035 done_collect:
1036 cpuc->n_events = n;
1037 cpuc->n_added += n - n0;
1038 cpuc->n_txn += n - n0;
1040 ret = 0;
1041 out:
1042 perf_pmu_enable(event->pmu);
1043 return ret;
1046 static void x86_pmu_start(struct perf_event *event, int flags)
1048 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1049 int idx = event->hw.idx;
1051 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1052 return;
1054 if (WARN_ON_ONCE(idx == -1))
1055 return;
1057 if (flags & PERF_EF_RELOAD) {
1058 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1059 x86_perf_event_set_period(event);
1062 event->hw.state = 0;
1064 cpuc->events[idx] = event;
1065 __set_bit(idx, cpuc->active_mask);
1066 __set_bit(idx, cpuc->running);
1067 x86_pmu.enable(event);
1068 perf_event_update_userpage(event);
1071 void perf_event_print_debug(void)
1073 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1074 u64 pebs;
1075 struct cpu_hw_events *cpuc;
1076 unsigned long flags;
1077 int cpu, idx;
1079 if (!x86_pmu.num_counters)
1080 return;
1082 local_irq_save(flags);
1084 cpu = smp_processor_id();
1085 cpuc = &per_cpu(cpu_hw_events, cpu);
1087 if (x86_pmu.version >= 2) {
1088 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1089 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1090 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1091 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1092 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1094 pr_info("\n");
1095 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1096 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1097 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1098 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1099 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1101 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1103 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1104 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1105 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1107 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1109 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1110 cpu, idx, pmc_ctrl);
1111 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1112 cpu, idx, pmc_count);
1113 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1114 cpu, idx, prev_left);
1116 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1117 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1119 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1120 cpu, idx, pmc_count);
1122 local_irq_restore(flags);
1125 void x86_pmu_stop(struct perf_event *event, int flags)
1127 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1128 struct hw_perf_event *hwc = &event->hw;
1130 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1131 x86_pmu.disable(event);
1132 cpuc->events[hwc->idx] = NULL;
1133 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1134 hwc->state |= PERF_HES_STOPPED;
1137 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1139 * Drain the remaining delta count out of a event
1140 * that we are disabling:
1142 x86_perf_event_update(event);
1143 hwc->state |= PERF_HES_UPTODATE;
1147 static void x86_pmu_del(struct perf_event *event, int flags)
1149 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1150 int i;
1153 * If we're called during a txn, we don't need to do anything.
1154 * The events never got scheduled and ->cancel_txn will truncate
1155 * the event_list.
1157 if (cpuc->group_flag & PERF_EVENT_TXN)
1158 return;
1160 x86_pmu_stop(event, PERF_EF_UPDATE);
1162 for (i = 0; i < cpuc->n_events; i++) {
1163 if (event == cpuc->event_list[i]) {
1165 if (x86_pmu.put_event_constraints)
1166 x86_pmu.put_event_constraints(cpuc, event);
1168 while (++i < cpuc->n_events)
1169 cpuc->event_list[i-1] = cpuc->event_list[i];
1171 --cpuc->n_events;
1172 break;
1175 perf_event_update_userpage(event);
1178 int x86_pmu_handle_irq(struct pt_regs *regs)
1180 struct perf_sample_data data;
1181 struct cpu_hw_events *cpuc;
1182 struct perf_event *event;
1183 int idx, handled = 0;
1184 u64 val;
1186 cpuc = &__get_cpu_var(cpu_hw_events);
1189 * Some chipsets need to unmask the LVTPC in a particular spot
1190 * inside the nmi handler. As a result, the unmasking was pushed
1191 * into all the nmi handlers.
1193 * This generic handler doesn't seem to have any issues where the
1194 * unmasking occurs so it was left at the top.
1196 apic_write(APIC_LVTPC, APIC_DM_NMI);
1198 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1199 if (!test_bit(idx, cpuc->active_mask)) {
1201 * Though we deactivated the counter some cpus
1202 * might still deliver spurious interrupts still
1203 * in flight. Catch them:
1205 if (__test_and_clear_bit(idx, cpuc->running))
1206 handled++;
1207 continue;
1210 event = cpuc->events[idx];
1212 val = x86_perf_event_update(event);
1213 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1214 continue;
1217 * event overflow
1219 handled++;
1220 perf_sample_data_init(&data, 0, event->hw.last_period);
1222 if (!x86_perf_event_set_period(event))
1223 continue;
1225 if (perf_event_overflow(event, &data, regs))
1226 x86_pmu_stop(event, 0);
1229 if (handled)
1230 inc_irq_stat(apic_perf_irqs);
1232 return handled;
1235 void perf_events_lapic_init(void)
1237 if (!x86_pmu.apic || !x86_pmu_initialized())
1238 return;
1241 * Always use NMI for PMU
1243 apic_write(APIC_LVTPC, APIC_DM_NMI);
1246 static int __kprobes
1247 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1249 if (!atomic_read(&active_events))
1250 return NMI_DONE;
1252 return x86_pmu.handle_irq(regs);
1255 struct event_constraint emptyconstraint;
1256 struct event_constraint unconstrained;
1258 static int __cpuinit
1259 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1261 unsigned int cpu = (long)hcpu;
1262 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1263 int ret = NOTIFY_OK;
1265 switch (action & ~CPU_TASKS_FROZEN) {
1266 case CPU_UP_PREPARE:
1267 cpuc->kfree_on_online = NULL;
1268 if (x86_pmu.cpu_prepare)
1269 ret = x86_pmu.cpu_prepare(cpu);
1270 break;
1272 case CPU_STARTING:
1273 if (x86_pmu.attr_rdpmc)
1274 set_in_cr4(X86_CR4_PCE);
1275 if (x86_pmu.cpu_starting)
1276 x86_pmu.cpu_starting(cpu);
1277 break;
1279 case CPU_ONLINE:
1280 kfree(cpuc->kfree_on_online);
1281 break;
1283 case CPU_DYING:
1284 if (x86_pmu.cpu_dying)
1285 x86_pmu.cpu_dying(cpu);
1286 break;
1288 case CPU_UP_CANCELED:
1289 case CPU_DEAD:
1290 if (x86_pmu.cpu_dead)
1291 x86_pmu.cpu_dead(cpu);
1292 break;
1294 default:
1295 break;
1298 return ret;
1301 static void __init pmu_check_apic(void)
1303 if (cpu_has_apic)
1304 return;
1306 x86_pmu.apic = 0;
1307 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1308 pr_info("no hardware sampling interrupt available.\n");
1311 static struct attribute_group x86_pmu_format_group = {
1312 .name = "format",
1313 .attrs = NULL,
1316 static int __init init_hw_perf_events(void)
1318 struct x86_pmu_quirk *quirk;
1319 struct event_constraint *c;
1320 int err;
1322 pr_info("Performance Events: ");
1324 switch (boot_cpu_data.x86_vendor) {
1325 case X86_VENDOR_INTEL:
1326 err = intel_pmu_init();
1327 break;
1328 case X86_VENDOR_AMD:
1329 err = amd_pmu_init();
1330 break;
1331 default:
1332 return 0;
1334 if (err != 0) {
1335 pr_cont("no PMU driver, software events only.\n");
1336 return 0;
1339 pmu_check_apic();
1341 /* sanity check that the hardware exists or is emulated */
1342 if (!check_hw_exists())
1343 return 0;
1345 pr_cont("%s PMU driver.\n", x86_pmu.name);
1347 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1348 quirk->func();
1350 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1351 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1352 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1353 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1355 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1357 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1358 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1359 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1360 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1363 x86_pmu.intel_ctrl |=
1364 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1366 perf_events_lapic_init();
1367 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1369 unconstrained = (struct event_constraint)
1370 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1371 0, x86_pmu.num_counters, 0);
1373 if (x86_pmu.event_constraints) {
1375 * event on fixed counter2 (REF_CYCLES) only works on this
1376 * counter, so do not extend mask to generic counters
1378 for_each_event_constraint(c, x86_pmu.event_constraints) {
1379 if (c->cmask != X86_RAW_EVENT_MASK
1380 || c->idxmsk64 == X86_PMC_MSK_FIXED_REF_CYCLES) {
1381 continue;
1384 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1385 c->weight += x86_pmu.num_counters;
1389 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1390 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1392 pr_info("... version: %d\n", x86_pmu.version);
1393 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1394 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1395 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1396 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1397 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1398 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1400 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1401 perf_cpu_notifier(x86_pmu_notifier);
1403 return 0;
1405 early_initcall(init_hw_perf_events);
1407 static inline void x86_pmu_read(struct perf_event *event)
1409 x86_perf_event_update(event);
1413 * Start group events scheduling transaction
1414 * Set the flag to make pmu::enable() not perform the
1415 * schedulability test, it will be performed at commit time
1417 static void x86_pmu_start_txn(struct pmu *pmu)
1419 perf_pmu_disable(pmu);
1420 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1421 __this_cpu_write(cpu_hw_events.n_txn, 0);
1425 * Stop group events scheduling transaction
1426 * Clear the flag and pmu::enable() will perform the
1427 * schedulability test.
1429 static void x86_pmu_cancel_txn(struct pmu *pmu)
1431 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1433 * Truncate the collected events.
1435 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1436 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1437 perf_pmu_enable(pmu);
1441 * Commit group events scheduling transaction
1442 * Perform the group schedulability test as a whole
1443 * Return 0 if success
1445 static int x86_pmu_commit_txn(struct pmu *pmu)
1447 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1448 int assign[X86_PMC_IDX_MAX];
1449 int n, ret;
1451 n = cpuc->n_events;
1453 if (!x86_pmu_initialized())
1454 return -EAGAIN;
1456 ret = x86_pmu.schedule_events(cpuc, n, assign);
1457 if (ret)
1458 return ret;
1461 * copy new assignment, now we know it is possible
1462 * will be used by hw_perf_enable()
1464 memcpy(cpuc->assign, assign, n*sizeof(int));
1466 cpuc->group_flag &= ~PERF_EVENT_TXN;
1467 perf_pmu_enable(pmu);
1468 return 0;
1471 * a fake_cpuc is used to validate event groups. Due to
1472 * the extra reg logic, we need to also allocate a fake
1473 * per_core and per_cpu structure. Otherwise, group events
1474 * using extra reg may conflict without the kernel being
1475 * able to catch this when the last event gets added to
1476 * the group.
1478 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1480 kfree(cpuc->shared_regs);
1481 kfree(cpuc);
1484 static struct cpu_hw_events *allocate_fake_cpuc(void)
1486 struct cpu_hw_events *cpuc;
1487 int cpu = raw_smp_processor_id();
1489 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1490 if (!cpuc)
1491 return ERR_PTR(-ENOMEM);
1493 /* only needed, if we have extra_regs */
1494 if (x86_pmu.extra_regs) {
1495 cpuc->shared_regs = allocate_shared_regs(cpu);
1496 if (!cpuc->shared_regs)
1497 goto error;
1499 cpuc->is_fake = 1;
1500 return cpuc;
1501 error:
1502 free_fake_cpuc(cpuc);
1503 return ERR_PTR(-ENOMEM);
1507 * validate that we can schedule this event
1509 static int validate_event(struct perf_event *event)
1511 struct cpu_hw_events *fake_cpuc;
1512 struct event_constraint *c;
1513 int ret = 0;
1515 fake_cpuc = allocate_fake_cpuc();
1516 if (IS_ERR(fake_cpuc))
1517 return PTR_ERR(fake_cpuc);
1519 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1521 if (!c || !c->weight)
1522 ret = -EINVAL;
1524 if (x86_pmu.put_event_constraints)
1525 x86_pmu.put_event_constraints(fake_cpuc, event);
1527 free_fake_cpuc(fake_cpuc);
1529 return ret;
1533 * validate a single event group
1535 * validation include:
1536 * - check events are compatible which each other
1537 * - events do not compete for the same counter
1538 * - number of events <= number of counters
1540 * validation ensures the group can be loaded onto the
1541 * PMU if it was the only group available.
1543 static int validate_group(struct perf_event *event)
1545 struct perf_event *leader = event->group_leader;
1546 struct cpu_hw_events *fake_cpuc;
1547 int ret = -EINVAL, n;
1549 fake_cpuc = allocate_fake_cpuc();
1550 if (IS_ERR(fake_cpuc))
1551 return PTR_ERR(fake_cpuc);
1553 * the event is not yet connected with its
1554 * siblings therefore we must first collect
1555 * existing siblings, then add the new event
1556 * before we can simulate the scheduling
1558 n = collect_events(fake_cpuc, leader, true);
1559 if (n < 0)
1560 goto out;
1562 fake_cpuc->n_events = n;
1563 n = collect_events(fake_cpuc, event, false);
1564 if (n < 0)
1565 goto out;
1567 fake_cpuc->n_events = n;
1569 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1571 out:
1572 free_fake_cpuc(fake_cpuc);
1573 return ret;
1576 static int x86_pmu_event_init(struct perf_event *event)
1578 struct pmu *tmp;
1579 int err;
1581 switch (event->attr.type) {
1582 case PERF_TYPE_RAW:
1583 case PERF_TYPE_HARDWARE:
1584 case PERF_TYPE_HW_CACHE:
1585 break;
1587 default:
1588 return -ENOENT;
1591 err = __x86_pmu_event_init(event);
1592 if (!err) {
1594 * we temporarily connect event to its pmu
1595 * such that validate_group() can classify
1596 * it as an x86 event using is_x86_event()
1598 tmp = event->pmu;
1599 event->pmu = &pmu;
1601 if (event->group_leader != event)
1602 err = validate_group(event);
1603 else
1604 err = validate_event(event);
1606 event->pmu = tmp;
1608 if (err) {
1609 if (event->destroy)
1610 event->destroy(event);
1613 return err;
1616 static int x86_pmu_event_idx(struct perf_event *event)
1618 int idx = event->hw.idx;
1620 if (!x86_pmu.attr_rdpmc)
1621 return 0;
1623 if (x86_pmu.num_counters_fixed && idx >= X86_PMC_IDX_FIXED) {
1624 idx -= X86_PMC_IDX_FIXED;
1625 idx |= 1 << 30;
1628 return idx + 1;
1631 static ssize_t get_attr_rdpmc(struct device *cdev,
1632 struct device_attribute *attr,
1633 char *buf)
1635 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1638 static void change_rdpmc(void *info)
1640 bool enable = !!(unsigned long)info;
1642 if (enable)
1643 set_in_cr4(X86_CR4_PCE);
1644 else
1645 clear_in_cr4(X86_CR4_PCE);
1648 static ssize_t set_attr_rdpmc(struct device *cdev,
1649 struct device_attribute *attr,
1650 const char *buf, size_t count)
1652 unsigned long val = simple_strtoul(buf, NULL, 0);
1654 if (!!val != !!x86_pmu.attr_rdpmc) {
1655 x86_pmu.attr_rdpmc = !!val;
1656 smp_call_function(change_rdpmc, (void *)val, 1);
1659 return count;
1662 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1664 static struct attribute *x86_pmu_attrs[] = {
1665 &dev_attr_rdpmc.attr,
1666 NULL,
1669 static struct attribute_group x86_pmu_attr_group = {
1670 .attrs = x86_pmu_attrs,
1673 static const struct attribute_group *x86_pmu_attr_groups[] = {
1674 &x86_pmu_attr_group,
1675 &x86_pmu_format_group,
1676 NULL,
1679 static void x86_pmu_flush_branch_stack(void)
1681 if (x86_pmu.flush_branch_stack)
1682 x86_pmu.flush_branch_stack();
1685 static struct pmu pmu = {
1686 .pmu_enable = x86_pmu_enable,
1687 .pmu_disable = x86_pmu_disable,
1689 .attr_groups = x86_pmu_attr_groups,
1691 .event_init = x86_pmu_event_init,
1693 .add = x86_pmu_add,
1694 .del = x86_pmu_del,
1695 .start = x86_pmu_start,
1696 .stop = x86_pmu_stop,
1697 .read = x86_pmu_read,
1699 .start_txn = x86_pmu_start_txn,
1700 .cancel_txn = x86_pmu_cancel_txn,
1701 .commit_txn = x86_pmu_commit_txn,
1703 .event_idx = x86_pmu_event_idx,
1704 .flush_branch_stack = x86_pmu_flush_branch_stack,
1707 void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
1709 userpg->cap_usr_time = 0;
1710 userpg->cap_usr_rdpmc = x86_pmu.attr_rdpmc;
1711 userpg->pmc_width = x86_pmu.cntval_bits;
1713 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1714 return;
1716 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
1717 return;
1719 userpg->cap_usr_time = 1;
1720 userpg->time_mult = this_cpu_read(cyc2ns);
1721 userpg->time_shift = CYC2NS_SCALE_FACTOR;
1722 userpg->time_offset = this_cpu_read(cyc2ns_offset) - now;
1726 * callchain support
1729 static int backtrace_stack(void *data, char *name)
1731 return 0;
1734 static void backtrace_address(void *data, unsigned long addr, int reliable)
1736 struct perf_callchain_entry *entry = data;
1738 perf_callchain_store(entry, addr);
1741 static const struct stacktrace_ops backtrace_ops = {
1742 .stack = backtrace_stack,
1743 .address = backtrace_address,
1744 .walk_stack = print_context_stack_bp,
1747 void
1748 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1750 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1751 /* TODO: We don't support guest os callchain now */
1752 return;
1755 perf_callchain_store(entry, regs->ip);
1757 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1760 static inline int
1761 valid_user_frame(const void __user *fp, unsigned long size)
1763 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1766 #ifdef CONFIG_COMPAT
1768 #include <asm/compat.h>
1770 static inline int
1771 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1773 /* 32-bit process in 64-bit kernel. */
1774 struct stack_frame_ia32 frame;
1775 const void __user *fp;
1777 if (!test_thread_flag(TIF_IA32))
1778 return 0;
1780 fp = compat_ptr(regs->bp);
1781 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1782 unsigned long bytes;
1783 frame.next_frame = 0;
1784 frame.return_address = 0;
1786 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1787 if (bytes != sizeof(frame))
1788 break;
1790 if (!valid_user_frame(fp, sizeof(frame)))
1791 break;
1793 perf_callchain_store(entry, frame.return_address);
1794 fp = compat_ptr(frame.next_frame);
1796 return 1;
1798 #else
1799 static inline int
1800 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1802 return 0;
1804 #endif
1806 void
1807 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1809 struct stack_frame frame;
1810 const void __user *fp;
1812 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1813 /* TODO: We don't support guest os callchain now */
1814 return;
1817 fp = (void __user *)regs->bp;
1819 perf_callchain_store(entry, regs->ip);
1821 if (!current->mm)
1822 return;
1824 if (perf_callchain_user32(regs, entry))
1825 return;
1827 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1828 unsigned long bytes;
1829 frame.next_frame = NULL;
1830 frame.return_address = 0;
1832 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1833 if (bytes != sizeof(frame))
1834 break;
1836 if (!valid_user_frame(fp, sizeof(frame)))
1837 break;
1839 perf_callchain_store(entry, frame.return_address);
1840 fp = frame.next_frame;
1844 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1846 unsigned long ip;
1848 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1849 ip = perf_guest_cbs->get_guest_ip();
1850 else
1851 ip = instruction_pointer(regs);
1853 return ip;
1856 unsigned long perf_misc_flags(struct pt_regs *regs)
1858 int misc = 0;
1860 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1861 if (perf_guest_cbs->is_user_mode())
1862 misc |= PERF_RECORD_MISC_GUEST_USER;
1863 else
1864 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1865 } else {
1866 if (user_mode(regs))
1867 misc |= PERF_RECORD_MISC_USER;
1868 else
1869 misc |= PERF_RECORD_MISC_KERNEL;
1872 if (regs->flags & PERF_EFLAGS_EXACT)
1873 misc |= PERF_RECORD_MISC_EXACT_IP;
1875 return misc;
1878 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
1880 cap->version = x86_pmu.version;
1881 cap->num_counters_gp = x86_pmu.num_counters;
1882 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
1883 cap->bit_width_gp = x86_pmu.cntval_bits;
1884 cap->bit_width_fixed = x86_pmu.cntval_bits;
1885 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
1886 cap->events_mask_len = x86_pmu.events_mask_len;
1888 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);