net: rfkill: kernel-doc warning fixes
[linux-2.6/btrfs-unstable.git] / net / socket.c
blobffd9cb46902b3640c5a52947391ad16c5d0c69b9
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
116 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
117 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
118 unsigned long nr_segs, loff_t pos);
119 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
120 unsigned long nr_segs, loff_t pos);
121 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
123 static int sock_close(struct inode *inode, struct file *file);
124 static unsigned int sock_poll(struct file *file,
125 struct poll_table_struct *wait);
126 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
127 #ifdef CONFIG_COMPAT
128 static long compat_sock_ioctl(struct file *file,
129 unsigned int cmd, unsigned long arg);
130 #endif
131 static int sock_fasync(int fd, struct file *filp, int on);
132 static ssize_t sock_sendpage(struct file *file, struct page *page,
133 int offset, size_t size, loff_t *ppos, int more);
134 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
135 struct pipe_inode_info *pipe, size_t len,
136 unsigned int flags);
139 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
140 * in the operation structures but are done directly via the socketcall() multiplexor.
143 static const struct file_operations socket_file_ops = {
144 .owner = THIS_MODULE,
145 .llseek = no_llseek,
146 .aio_read = sock_aio_read,
147 .aio_write = sock_aio_write,
148 .poll = sock_poll,
149 .unlocked_ioctl = sock_ioctl,
150 #ifdef CONFIG_COMPAT
151 .compat_ioctl = compat_sock_ioctl,
152 #endif
153 .mmap = sock_mmap,
154 .open = sock_no_open, /* special open code to disallow open via /proc */
155 .release = sock_close,
156 .fasync = sock_fasync,
157 .sendpage = sock_sendpage,
158 .splice_write = generic_splice_sendpage,
159 .splice_read = sock_splice_read,
163 * The protocol list. Each protocol is registered in here.
166 static DEFINE_SPINLOCK(net_family_lock);
167 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
170 * Statistics counters of the socket lists
173 static DEFINE_PER_CPU(int, sockets_in_use);
176 * Support routines.
177 * Move socket addresses back and forth across the kernel/user
178 * divide and look after the messy bits.
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 return -EINVAL;
196 if (ulen == 0)
197 return 0;
198 if (copy_from_user(kaddr, uaddr, ulen))
199 return -EFAULT;
200 return audit_sockaddr(ulen, kaddr);
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
214 * accessible.
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 void __user *uaddr, int __user *ulen)
223 int err;
224 int len;
226 BUG_ON(klen > sizeof(struct sockaddr_storage));
227 err = get_user(len, ulen);
228 if (err)
229 return err;
230 if (len > klen)
231 len = klen;
232 if (len < 0)
233 return -EINVAL;
234 if (len) {
235 if (audit_sockaddr(klen, kaddr))
236 return -ENOMEM;
237 if (copy_to_user(uaddr, kaddr, len))
238 return -EFAULT;
241 * "fromlen shall refer to the value before truncation.."
242 * 1003.1g
244 return __put_user(klen, ulen);
247 static struct kmem_cache *sock_inode_cachep __read_mostly;
249 static struct inode *sock_alloc_inode(struct super_block *sb)
251 struct socket_alloc *ei;
252 struct socket_wq *wq;
254 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
255 if (!ei)
256 return NULL;
257 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
258 if (!wq) {
259 kmem_cache_free(sock_inode_cachep, ei);
260 return NULL;
262 init_waitqueue_head(&wq->wait);
263 wq->fasync_list = NULL;
264 RCU_INIT_POINTER(ei->socket.wq, wq);
266 ei->socket.state = SS_UNCONNECTED;
267 ei->socket.flags = 0;
268 ei->socket.ops = NULL;
269 ei->socket.sk = NULL;
270 ei->socket.file = NULL;
272 return &ei->vfs_inode;
275 static void sock_destroy_inode(struct inode *inode)
277 struct socket_alloc *ei;
278 struct socket_wq *wq;
280 ei = container_of(inode, struct socket_alloc, vfs_inode);
281 wq = rcu_dereference_protected(ei->socket.wq, 1);
282 kfree_rcu(wq, rcu);
283 kmem_cache_free(sock_inode_cachep, ei);
286 static void init_once(void *foo)
288 struct socket_alloc *ei = (struct socket_alloc *)foo;
290 inode_init_once(&ei->vfs_inode);
293 static int init_inodecache(void)
295 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
296 sizeof(struct socket_alloc),
298 (SLAB_HWCACHE_ALIGN |
299 SLAB_RECLAIM_ACCOUNT |
300 SLAB_MEM_SPREAD),
301 init_once);
302 if (sock_inode_cachep == NULL)
303 return -ENOMEM;
304 return 0;
307 static const struct super_operations sockfs_ops = {
308 .alloc_inode = sock_alloc_inode,
309 .destroy_inode = sock_destroy_inode,
310 .statfs = simple_statfs,
314 * sockfs_dname() is called from d_path().
316 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
318 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
319 dentry->d_inode->i_ino);
322 static const struct dentry_operations sockfs_dentry_operations = {
323 .d_dname = sockfs_dname,
326 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
327 int flags, const char *dev_name, void *data)
329 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
330 &sockfs_dentry_operations, SOCKFS_MAGIC);
333 static struct vfsmount *sock_mnt __read_mostly;
335 static struct file_system_type sock_fs_type = {
336 .name = "sockfs",
337 .mount = sockfs_mount,
338 .kill_sb = kill_anon_super,
342 * Obtains the first available file descriptor and sets it up for use.
344 * These functions create file structures and maps them to fd space
345 * of the current process. On success it returns file descriptor
346 * and file struct implicitly stored in sock->file.
347 * Note that another thread may close file descriptor before we return
348 * from this function. We use the fact that now we do not refer
349 * to socket after mapping. If one day we will need it, this
350 * function will increment ref. count on file by 1.
352 * In any case returned fd MAY BE not valid!
353 * This race condition is unavoidable
354 * with shared fd spaces, we cannot solve it inside kernel,
355 * but we take care of internal coherence yet.
358 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
360 struct qstr name = { .name = "" };
361 struct path path;
362 struct file *file;
364 if (dname) {
365 name.name = dname;
366 name.len = strlen(name.name);
367 } else if (sock->sk) {
368 name.name = sock->sk->sk_prot_creator->name;
369 name.len = strlen(name.name);
371 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
372 if (unlikely(!path.dentry))
373 return ERR_PTR(-ENOMEM);
374 path.mnt = mntget(sock_mnt);
376 d_instantiate(path.dentry, SOCK_INODE(sock));
377 SOCK_INODE(sock)->i_fop = &socket_file_ops;
379 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
380 &socket_file_ops);
381 if (unlikely(IS_ERR(file))) {
382 /* drop dentry, keep inode */
383 ihold(path.dentry->d_inode);
384 path_put(&path);
385 return file;
388 sock->file = file;
389 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
390 file->private_data = sock;
391 return file;
393 EXPORT_SYMBOL(sock_alloc_file);
395 static int sock_map_fd(struct socket *sock, int flags)
397 struct file *newfile;
398 int fd = get_unused_fd_flags(flags);
399 if (unlikely(fd < 0))
400 return fd;
402 newfile = sock_alloc_file(sock, flags, NULL);
403 if (likely(!IS_ERR(newfile))) {
404 fd_install(fd, newfile);
405 return fd;
408 put_unused_fd(fd);
409 return PTR_ERR(newfile);
412 struct socket *sock_from_file(struct file *file, int *err)
414 if (file->f_op == &socket_file_ops)
415 return file->private_data; /* set in sock_map_fd */
417 *err = -ENOTSOCK;
418 return NULL;
420 EXPORT_SYMBOL(sock_from_file);
423 * sockfd_lookup - Go from a file number to its socket slot
424 * @fd: file handle
425 * @err: pointer to an error code return
427 * The file handle passed in is locked and the socket it is bound
428 * too is returned. If an error occurs the err pointer is overwritten
429 * with a negative errno code and NULL is returned. The function checks
430 * for both invalid handles and passing a handle which is not a socket.
432 * On a success the socket object pointer is returned.
435 struct socket *sockfd_lookup(int fd, int *err)
437 struct file *file;
438 struct socket *sock;
440 file = fget(fd);
441 if (!file) {
442 *err = -EBADF;
443 return NULL;
446 sock = sock_from_file(file, err);
447 if (!sock)
448 fput(file);
449 return sock;
451 EXPORT_SYMBOL(sockfd_lookup);
453 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
455 struct fd f = fdget(fd);
456 struct socket *sock;
458 *err = -EBADF;
459 if (f.file) {
460 sock = sock_from_file(f.file, err);
461 if (likely(sock)) {
462 *fput_needed = f.flags;
463 return sock;
465 fdput(f);
467 return NULL;
470 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
471 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
472 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
473 static ssize_t sockfs_getxattr(struct dentry *dentry,
474 const char *name, void *value, size_t size)
476 const char *proto_name;
477 size_t proto_size;
478 int error;
480 error = -ENODATA;
481 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
482 proto_name = dentry->d_name.name;
483 proto_size = strlen(proto_name);
485 if (value) {
486 error = -ERANGE;
487 if (proto_size + 1 > size)
488 goto out;
490 strncpy(value, proto_name, proto_size + 1);
492 error = proto_size + 1;
495 out:
496 return error;
499 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
500 size_t size)
502 ssize_t len;
503 ssize_t used = 0;
505 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
506 if (len < 0)
507 return len;
508 used += len;
509 if (buffer) {
510 if (size < used)
511 return -ERANGE;
512 buffer += len;
515 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
516 used += len;
517 if (buffer) {
518 if (size < used)
519 return -ERANGE;
520 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
521 buffer += len;
524 return used;
527 static const struct inode_operations sockfs_inode_ops = {
528 .getxattr = sockfs_getxattr,
529 .listxattr = sockfs_listxattr,
533 * sock_alloc - allocate a socket
535 * Allocate a new inode and socket object. The two are bound together
536 * and initialised. The socket is then returned. If we are out of inodes
537 * NULL is returned.
540 static struct socket *sock_alloc(void)
542 struct inode *inode;
543 struct socket *sock;
545 inode = new_inode_pseudo(sock_mnt->mnt_sb);
546 if (!inode)
547 return NULL;
549 sock = SOCKET_I(inode);
551 kmemcheck_annotate_bitfield(sock, type);
552 inode->i_ino = get_next_ino();
553 inode->i_mode = S_IFSOCK | S_IRWXUGO;
554 inode->i_uid = current_fsuid();
555 inode->i_gid = current_fsgid();
556 inode->i_op = &sockfs_inode_ops;
558 this_cpu_add(sockets_in_use, 1);
559 return sock;
563 * In theory you can't get an open on this inode, but /proc provides
564 * a back door. Remember to keep it shut otherwise you'll let the
565 * creepy crawlies in.
568 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
570 return -ENXIO;
573 const struct file_operations bad_sock_fops = {
574 .owner = THIS_MODULE,
575 .open = sock_no_open,
576 .llseek = noop_llseek,
580 * sock_release - close a socket
581 * @sock: socket to close
583 * The socket is released from the protocol stack if it has a release
584 * callback, and the inode is then released if the socket is bound to
585 * an inode not a file.
588 void sock_release(struct socket *sock)
590 if (sock->ops) {
591 struct module *owner = sock->ops->owner;
593 sock->ops->release(sock);
594 sock->ops = NULL;
595 module_put(owner);
598 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
599 pr_err("%s: fasync list not empty!\n", __func__);
601 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
602 return;
604 this_cpu_sub(sockets_in_use, 1);
605 if (!sock->file) {
606 iput(SOCK_INODE(sock));
607 return;
609 sock->file = NULL;
611 EXPORT_SYMBOL(sock_release);
613 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
615 u8 flags = *tx_flags;
617 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
618 flags |= SKBTX_HW_TSTAMP;
620 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
621 flags |= SKBTX_SW_TSTAMP;
623 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
624 flags |= SKBTX_SCHED_TSTAMP;
626 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
627 flags |= SKBTX_ACK_TSTAMP;
629 *tx_flags = flags;
631 EXPORT_SYMBOL(__sock_tx_timestamp);
633 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
634 struct msghdr *msg, size_t size)
636 struct sock_iocb *si = kiocb_to_siocb(iocb);
638 si->sock = sock;
639 si->scm = NULL;
640 si->msg = msg;
641 si->size = size;
643 return sock->ops->sendmsg(iocb, sock, msg, size);
646 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
647 struct msghdr *msg, size_t size)
649 int err = security_socket_sendmsg(sock, msg, size);
651 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
654 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
656 struct kiocb iocb;
657 struct sock_iocb siocb;
658 int ret;
660 init_sync_kiocb(&iocb, NULL);
661 iocb.private = &siocb;
662 ret = __sock_sendmsg(&iocb, sock, msg, size);
663 if (-EIOCBQUEUED == ret)
664 ret = wait_on_sync_kiocb(&iocb);
665 return ret;
667 EXPORT_SYMBOL(sock_sendmsg);
669 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
671 struct kiocb iocb;
672 struct sock_iocb siocb;
673 int ret;
675 init_sync_kiocb(&iocb, NULL);
676 iocb.private = &siocb;
677 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
678 if (-EIOCBQUEUED == ret)
679 ret = wait_on_sync_kiocb(&iocb);
680 return ret;
683 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
684 struct kvec *vec, size_t num, size_t size)
686 mm_segment_t oldfs = get_fs();
687 int result;
689 set_fs(KERNEL_DS);
691 * the following is safe, since for compiler definitions of kvec and
692 * iovec are identical, yielding the same in-core layout and alignment
694 msg->msg_iov = (struct iovec *)vec;
695 msg->msg_iovlen = num;
696 result = sock_sendmsg(sock, msg, size);
697 set_fs(oldfs);
698 return result;
700 EXPORT_SYMBOL(kernel_sendmsg);
703 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
705 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
706 struct sk_buff *skb)
708 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
709 struct scm_timestamping tss;
710 int empty = 1;
711 struct skb_shared_hwtstamps *shhwtstamps =
712 skb_hwtstamps(skb);
714 /* Race occurred between timestamp enabling and packet
715 receiving. Fill in the current time for now. */
716 if (need_software_tstamp && skb->tstamp.tv64 == 0)
717 __net_timestamp(skb);
719 if (need_software_tstamp) {
720 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
721 struct timeval tv;
722 skb_get_timestamp(skb, &tv);
723 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
724 sizeof(tv), &tv);
725 } else {
726 struct timespec ts;
727 skb_get_timestampns(skb, &ts);
728 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
729 sizeof(ts), &ts);
733 memset(&tss, 0, sizeof(tss));
734 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
735 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
736 empty = 0;
737 if (shhwtstamps &&
738 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
739 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
740 empty = 0;
741 if (!empty)
742 put_cmsg(msg, SOL_SOCKET,
743 SCM_TIMESTAMPING, sizeof(tss), &tss);
745 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
747 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
748 struct sk_buff *skb)
750 int ack;
752 if (!sock_flag(sk, SOCK_WIFI_STATUS))
753 return;
754 if (!skb->wifi_acked_valid)
755 return;
757 ack = skb->wifi_acked;
759 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
761 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
763 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
764 struct sk_buff *skb)
766 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
767 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
768 sizeof(__u32), &skb->dropcount);
771 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
772 struct sk_buff *skb)
774 sock_recv_timestamp(msg, sk, skb);
775 sock_recv_drops(msg, sk, skb);
777 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
779 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
780 struct msghdr *msg, size_t size, int flags)
782 struct sock_iocb *si = kiocb_to_siocb(iocb);
784 si->sock = sock;
785 si->scm = NULL;
786 si->msg = msg;
787 si->size = size;
788 si->flags = flags;
790 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
793 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
794 struct msghdr *msg, size_t size, int flags)
796 int err = security_socket_recvmsg(sock, msg, size, flags);
798 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
801 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
802 size_t size, int flags)
804 struct kiocb iocb;
805 struct sock_iocb siocb;
806 int ret;
808 init_sync_kiocb(&iocb, NULL);
809 iocb.private = &siocb;
810 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
811 if (-EIOCBQUEUED == ret)
812 ret = wait_on_sync_kiocb(&iocb);
813 return ret;
815 EXPORT_SYMBOL(sock_recvmsg);
817 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
818 size_t size, int flags)
820 struct kiocb iocb;
821 struct sock_iocb siocb;
822 int ret;
824 init_sync_kiocb(&iocb, NULL);
825 iocb.private = &siocb;
826 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
827 if (-EIOCBQUEUED == ret)
828 ret = wait_on_sync_kiocb(&iocb);
829 return ret;
833 * kernel_recvmsg - Receive a message from a socket (kernel space)
834 * @sock: The socket to receive the message from
835 * @msg: Received message
836 * @vec: Input s/g array for message data
837 * @num: Size of input s/g array
838 * @size: Number of bytes to read
839 * @flags: Message flags (MSG_DONTWAIT, etc...)
841 * On return the msg structure contains the scatter/gather array passed in the
842 * vec argument. The array is modified so that it consists of the unfilled
843 * portion of the original array.
845 * The returned value is the total number of bytes received, or an error.
847 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
848 struct kvec *vec, size_t num, size_t size, int flags)
850 mm_segment_t oldfs = get_fs();
851 int result;
853 set_fs(KERNEL_DS);
855 * the following is safe, since for compiler definitions of kvec and
856 * iovec are identical, yielding the same in-core layout and alignment
858 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
859 result = sock_recvmsg(sock, msg, size, flags);
860 set_fs(oldfs);
861 return result;
863 EXPORT_SYMBOL(kernel_recvmsg);
865 static ssize_t sock_sendpage(struct file *file, struct page *page,
866 int offset, size_t size, loff_t *ppos, int more)
868 struct socket *sock;
869 int flags;
871 sock = file->private_data;
873 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
874 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
875 flags |= more;
877 return kernel_sendpage(sock, page, offset, size, flags);
880 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
881 struct pipe_inode_info *pipe, size_t len,
882 unsigned int flags)
884 struct socket *sock = file->private_data;
886 if (unlikely(!sock->ops->splice_read))
887 return -EINVAL;
889 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
892 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
893 struct sock_iocb *siocb)
895 if (!is_sync_kiocb(iocb))
896 BUG();
898 siocb->kiocb = iocb;
899 iocb->private = siocb;
900 return siocb;
903 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
904 struct file *file, const struct iovec *iov,
905 unsigned long nr_segs)
907 struct socket *sock = file->private_data;
908 size_t size = 0;
909 int i;
911 for (i = 0; i < nr_segs; i++)
912 size += iov[i].iov_len;
914 msg->msg_name = NULL;
915 msg->msg_namelen = 0;
916 msg->msg_control = NULL;
917 msg->msg_controllen = 0;
918 msg->msg_iov = (struct iovec *)iov;
919 msg->msg_iovlen = nr_segs;
920 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
922 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
925 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
926 unsigned long nr_segs, loff_t pos)
928 struct sock_iocb siocb, *x;
930 if (pos != 0)
931 return -ESPIPE;
933 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
934 return 0;
937 x = alloc_sock_iocb(iocb, &siocb);
938 if (!x)
939 return -ENOMEM;
940 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
943 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
944 struct file *file, const struct iovec *iov,
945 unsigned long nr_segs)
947 struct socket *sock = file->private_data;
948 size_t size = 0;
949 int i;
951 for (i = 0; i < nr_segs; i++)
952 size += iov[i].iov_len;
954 msg->msg_name = NULL;
955 msg->msg_namelen = 0;
956 msg->msg_control = NULL;
957 msg->msg_controllen = 0;
958 msg->msg_iov = (struct iovec *)iov;
959 msg->msg_iovlen = nr_segs;
960 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
961 if (sock->type == SOCK_SEQPACKET)
962 msg->msg_flags |= MSG_EOR;
964 return __sock_sendmsg(iocb, sock, msg, size);
967 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
968 unsigned long nr_segs, loff_t pos)
970 struct sock_iocb siocb, *x;
972 if (pos != 0)
973 return -ESPIPE;
975 x = alloc_sock_iocb(iocb, &siocb);
976 if (!x)
977 return -ENOMEM;
979 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
983 * Atomic setting of ioctl hooks to avoid race
984 * with module unload.
987 static DEFINE_MUTEX(br_ioctl_mutex);
988 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
990 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
992 mutex_lock(&br_ioctl_mutex);
993 br_ioctl_hook = hook;
994 mutex_unlock(&br_ioctl_mutex);
996 EXPORT_SYMBOL(brioctl_set);
998 static DEFINE_MUTEX(vlan_ioctl_mutex);
999 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1001 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1003 mutex_lock(&vlan_ioctl_mutex);
1004 vlan_ioctl_hook = hook;
1005 mutex_unlock(&vlan_ioctl_mutex);
1007 EXPORT_SYMBOL(vlan_ioctl_set);
1009 static DEFINE_MUTEX(dlci_ioctl_mutex);
1010 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1012 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1014 mutex_lock(&dlci_ioctl_mutex);
1015 dlci_ioctl_hook = hook;
1016 mutex_unlock(&dlci_ioctl_mutex);
1018 EXPORT_SYMBOL(dlci_ioctl_set);
1020 static long sock_do_ioctl(struct net *net, struct socket *sock,
1021 unsigned int cmd, unsigned long arg)
1023 int err;
1024 void __user *argp = (void __user *)arg;
1026 err = sock->ops->ioctl(sock, cmd, arg);
1029 * If this ioctl is unknown try to hand it down
1030 * to the NIC driver.
1032 if (err == -ENOIOCTLCMD)
1033 err = dev_ioctl(net, cmd, argp);
1035 return err;
1039 * With an ioctl, arg may well be a user mode pointer, but we don't know
1040 * what to do with it - that's up to the protocol still.
1043 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1045 struct socket *sock;
1046 struct sock *sk;
1047 void __user *argp = (void __user *)arg;
1048 int pid, err;
1049 struct net *net;
1051 sock = file->private_data;
1052 sk = sock->sk;
1053 net = sock_net(sk);
1054 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1055 err = dev_ioctl(net, cmd, argp);
1056 } else
1057 #ifdef CONFIG_WEXT_CORE
1058 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1059 err = dev_ioctl(net, cmd, argp);
1060 } else
1061 #endif
1062 switch (cmd) {
1063 case FIOSETOWN:
1064 case SIOCSPGRP:
1065 err = -EFAULT;
1066 if (get_user(pid, (int __user *)argp))
1067 break;
1068 err = f_setown(sock->file, pid, 1);
1069 break;
1070 case FIOGETOWN:
1071 case SIOCGPGRP:
1072 err = put_user(f_getown(sock->file),
1073 (int __user *)argp);
1074 break;
1075 case SIOCGIFBR:
1076 case SIOCSIFBR:
1077 case SIOCBRADDBR:
1078 case SIOCBRDELBR:
1079 err = -ENOPKG;
1080 if (!br_ioctl_hook)
1081 request_module("bridge");
1083 mutex_lock(&br_ioctl_mutex);
1084 if (br_ioctl_hook)
1085 err = br_ioctl_hook(net, cmd, argp);
1086 mutex_unlock(&br_ioctl_mutex);
1087 break;
1088 case SIOCGIFVLAN:
1089 case SIOCSIFVLAN:
1090 err = -ENOPKG;
1091 if (!vlan_ioctl_hook)
1092 request_module("8021q");
1094 mutex_lock(&vlan_ioctl_mutex);
1095 if (vlan_ioctl_hook)
1096 err = vlan_ioctl_hook(net, argp);
1097 mutex_unlock(&vlan_ioctl_mutex);
1098 break;
1099 case SIOCADDDLCI:
1100 case SIOCDELDLCI:
1101 err = -ENOPKG;
1102 if (!dlci_ioctl_hook)
1103 request_module("dlci");
1105 mutex_lock(&dlci_ioctl_mutex);
1106 if (dlci_ioctl_hook)
1107 err = dlci_ioctl_hook(cmd, argp);
1108 mutex_unlock(&dlci_ioctl_mutex);
1109 break;
1110 default:
1111 err = sock_do_ioctl(net, sock, cmd, arg);
1112 break;
1114 return err;
1117 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1119 int err;
1120 struct socket *sock = NULL;
1122 err = security_socket_create(family, type, protocol, 1);
1123 if (err)
1124 goto out;
1126 sock = sock_alloc();
1127 if (!sock) {
1128 err = -ENOMEM;
1129 goto out;
1132 sock->type = type;
1133 err = security_socket_post_create(sock, family, type, protocol, 1);
1134 if (err)
1135 goto out_release;
1137 out:
1138 *res = sock;
1139 return err;
1140 out_release:
1141 sock_release(sock);
1142 sock = NULL;
1143 goto out;
1145 EXPORT_SYMBOL(sock_create_lite);
1147 /* No kernel lock held - perfect */
1148 static unsigned int sock_poll(struct file *file, poll_table *wait)
1150 unsigned int busy_flag = 0;
1151 struct socket *sock;
1154 * We can't return errors to poll, so it's either yes or no.
1156 sock = file->private_data;
1158 if (sk_can_busy_loop(sock->sk)) {
1159 /* this socket can poll_ll so tell the system call */
1160 busy_flag = POLL_BUSY_LOOP;
1162 /* once, only if requested by syscall */
1163 if (wait && (wait->_key & POLL_BUSY_LOOP))
1164 sk_busy_loop(sock->sk, 1);
1167 return busy_flag | sock->ops->poll(file, sock, wait);
1170 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1172 struct socket *sock = file->private_data;
1174 return sock->ops->mmap(file, sock, vma);
1177 static int sock_close(struct inode *inode, struct file *filp)
1179 sock_release(SOCKET_I(inode));
1180 return 0;
1184 * Update the socket async list
1186 * Fasync_list locking strategy.
1188 * 1. fasync_list is modified only under process context socket lock
1189 * i.e. under semaphore.
1190 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1191 * or under socket lock
1194 static int sock_fasync(int fd, struct file *filp, int on)
1196 struct socket *sock = filp->private_data;
1197 struct sock *sk = sock->sk;
1198 struct socket_wq *wq;
1200 if (sk == NULL)
1201 return -EINVAL;
1203 lock_sock(sk);
1204 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1205 fasync_helper(fd, filp, on, &wq->fasync_list);
1207 if (!wq->fasync_list)
1208 sock_reset_flag(sk, SOCK_FASYNC);
1209 else
1210 sock_set_flag(sk, SOCK_FASYNC);
1212 release_sock(sk);
1213 return 0;
1216 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1218 int sock_wake_async(struct socket *sock, int how, int band)
1220 struct socket_wq *wq;
1222 if (!sock)
1223 return -1;
1224 rcu_read_lock();
1225 wq = rcu_dereference(sock->wq);
1226 if (!wq || !wq->fasync_list) {
1227 rcu_read_unlock();
1228 return -1;
1230 switch (how) {
1231 case SOCK_WAKE_WAITD:
1232 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1233 break;
1234 goto call_kill;
1235 case SOCK_WAKE_SPACE:
1236 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1237 break;
1238 /* fall through */
1239 case SOCK_WAKE_IO:
1240 call_kill:
1241 kill_fasync(&wq->fasync_list, SIGIO, band);
1242 break;
1243 case SOCK_WAKE_URG:
1244 kill_fasync(&wq->fasync_list, SIGURG, band);
1246 rcu_read_unlock();
1247 return 0;
1249 EXPORT_SYMBOL(sock_wake_async);
1251 int __sock_create(struct net *net, int family, int type, int protocol,
1252 struct socket **res, int kern)
1254 int err;
1255 struct socket *sock;
1256 const struct net_proto_family *pf;
1259 * Check protocol is in range
1261 if (family < 0 || family >= NPROTO)
1262 return -EAFNOSUPPORT;
1263 if (type < 0 || type >= SOCK_MAX)
1264 return -EINVAL;
1266 /* Compatibility.
1268 This uglymoron is moved from INET layer to here to avoid
1269 deadlock in module load.
1271 if (family == PF_INET && type == SOCK_PACKET) {
1272 static int warned;
1273 if (!warned) {
1274 warned = 1;
1275 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1276 current->comm);
1278 family = PF_PACKET;
1281 err = security_socket_create(family, type, protocol, kern);
1282 if (err)
1283 return err;
1286 * Allocate the socket and allow the family to set things up. if
1287 * the protocol is 0, the family is instructed to select an appropriate
1288 * default.
1290 sock = sock_alloc();
1291 if (!sock) {
1292 net_warn_ratelimited("socket: no more sockets\n");
1293 return -ENFILE; /* Not exactly a match, but its the
1294 closest posix thing */
1297 sock->type = type;
1299 #ifdef CONFIG_MODULES
1300 /* Attempt to load a protocol module if the find failed.
1302 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1303 * requested real, full-featured networking support upon configuration.
1304 * Otherwise module support will break!
1306 if (rcu_access_pointer(net_families[family]) == NULL)
1307 request_module("net-pf-%d", family);
1308 #endif
1310 rcu_read_lock();
1311 pf = rcu_dereference(net_families[family]);
1312 err = -EAFNOSUPPORT;
1313 if (!pf)
1314 goto out_release;
1317 * We will call the ->create function, that possibly is in a loadable
1318 * module, so we have to bump that loadable module refcnt first.
1320 if (!try_module_get(pf->owner))
1321 goto out_release;
1323 /* Now protected by module ref count */
1324 rcu_read_unlock();
1326 err = pf->create(net, sock, protocol, kern);
1327 if (err < 0)
1328 goto out_module_put;
1331 * Now to bump the refcnt of the [loadable] module that owns this
1332 * socket at sock_release time we decrement its refcnt.
1334 if (!try_module_get(sock->ops->owner))
1335 goto out_module_busy;
1338 * Now that we're done with the ->create function, the [loadable]
1339 * module can have its refcnt decremented
1341 module_put(pf->owner);
1342 err = security_socket_post_create(sock, family, type, protocol, kern);
1343 if (err)
1344 goto out_sock_release;
1345 *res = sock;
1347 return 0;
1349 out_module_busy:
1350 err = -EAFNOSUPPORT;
1351 out_module_put:
1352 sock->ops = NULL;
1353 module_put(pf->owner);
1354 out_sock_release:
1355 sock_release(sock);
1356 return err;
1358 out_release:
1359 rcu_read_unlock();
1360 goto out_sock_release;
1362 EXPORT_SYMBOL(__sock_create);
1364 int sock_create(int family, int type, int protocol, struct socket **res)
1366 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1368 EXPORT_SYMBOL(sock_create);
1370 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1372 return __sock_create(&init_net, family, type, protocol, res, 1);
1374 EXPORT_SYMBOL(sock_create_kern);
1376 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1378 int retval;
1379 struct socket *sock;
1380 int flags;
1382 /* Check the SOCK_* constants for consistency. */
1383 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1384 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1385 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1386 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1388 flags = type & ~SOCK_TYPE_MASK;
1389 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1390 return -EINVAL;
1391 type &= SOCK_TYPE_MASK;
1393 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1394 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1396 retval = sock_create(family, type, protocol, &sock);
1397 if (retval < 0)
1398 goto out;
1400 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1401 if (retval < 0)
1402 goto out_release;
1404 out:
1405 /* It may be already another descriptor 8) Not kernel problem. */
1406 return retval;
1408 out_release:
1409 sock_release(sock);
1410 return retval;
1414 * Create a pair of connected sockets.
1417 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1418 int __user *, usockvec)
1420 struct socket *sock1, *sock2;
1421 int fd1, fd2, err;
1422 struct file *newfile1, *newfile2;
1423 int flags;
1425 flags = type & ~SOCK_TYPE_MASK;
1426 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1427 return -EINVAL;
1428 type &= SOCK_TYPE_MASK;
1430 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1431 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1434 * Obtain the first socket and check if the underlying protocol
1435 * supports the socketpair call.
1438 err = sock_create(family, type, protocol, &sock1);
1439 if (err < 0)
1440 goto out;
1442 err = sock_create(family, type, protocol, &sock2);
1443 if (err < 0)
1444 goto out_release_1;
1446 err = sock1->ops->socketpair(sock1, sock2);
1447 if (err < 0)
1448 goto out_release_both;
1450 fd1 = get_unused_fd_flags(flags);
1451 if (unlikely(fd1 < 0)) {
1452 err = fd1;
1453 goto out_release_both;
1456 fd2 = get_unused_fd_flags(flags);
1457 if (unlikely(fd2 < 0)) {
1458 err = fd2;
1459 goto out_put_unused_1;
1462 newfile1 = sock_alloc_file(sock1, flags, NULL);
1463 if (unlikely(IS_ERR(newfile1))) {
1464 err = PTR_ERR(newfile1);
1465 goto out_put_unused_both;
1468 newfile2 = sock_alloc_file(sock2, flags, NULL);
1469 if (IS_ERR(newfile2)) {
1470 err = PTR_ERR(newfile2);
1471 goto out_fput_1;
1474 err = put_user(fd1, &usockvec[0]);
1475 if (err)
1476 goto out_fput_both;
1478 err = put_user(fd2, &usockvec[1]);
1479 if (err)
1480 goto out_fput_both;
1482 audit_fd_pair(fd1, fd2);
1484 fd_install(fd1, newfile1);
1485 fd_install(fd2, newfile2);
1486 /* fd1 and fd2 may be already another descriptors.
1487 * Not kernel problem.
1490 return 0;
1492 out_fput_both:
1493 fput(newfile2);
1494 fput(newfile1);
1495 put_unused_fd(fd2);
1496 put_unused_fd(fd1);
1497 goto out;
1499 out_fput_1:
1500 fput(newfile1);
1501 put_unused_fd(fd2);
1502 put_unused_fd(fd1);
1503 sock_release(sock2);
1504 goto out;
1506 out_put_unused_both:
1507 put_unused_fd(fd2);
1508 out_put_unused_1:
1509 put_unused_fd(fd1);
1510 out_release_both:
1511 sock_release(sock2);
1512 out_release_1:
1513 sock_release(sock1);
1514 out:
1515 return err;
1519 * Bind a name to a socket. Nothing much to do here since it's
1520 * the protocol's responsibility to handle the local address.
1522 * We move the socket address to kernel space before we call
1523 * the protocol layer (having also checked the address is ok).
1526 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1528 struct socket *sock;
1529 struct sockaddr_storage address;
1530 int err, fput_needed;
1532 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1533 if (sock) {
1534 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1535 if (err >= 0) {
1536 err = security_socket_bind(sock,
1537 (struct sockaddr *)&address,
1538 addrlen);
1539 if (!err)
1540 err = sock->ops->bind(sock,
1541 (struct sockaddr *)
1542 &address, addrlen);
1544 fput_light(sock->file, fput_needed);
1546 return err;
1550 * Perform a listen. Basically, we allow the protocol to do anything
1551 * necessary for a listen, and if that works, we mark the socket as
1552 * ready for listening.
1555 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1557 struct socket *sock;
1558 int err, fput_needed;
1559 int somaxconn;
1561 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1562 if (sock) {
1563 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1564 if ((unsigned int)backlog > somaxconn)
1565 backlog = somaxconn;
1567 err = security_socket_listen(sock, backlog);
1568 if (!err)
1569 err = sock->ops->listen(sock, backlog);
1571 fput_light(sock->file, fput_needed);
1573 return err;
1577 * For accept, we attempt to create a new socket, set up the link
1578 * with the client, wake up the client, then return the new
1579 * connected fd. We collect the address of the connector in kernel
1580 * space and move it to user at the very end. This is unclean because
1581 * we open the socket then return an error.
1583 * 1003.1g adds the ability to recvmsg() to query connection pending
1584 * status to recvmsg. We need to add that support in a way thats
1585 * clean when we restucture accept also.
1588 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1589 int __user *, upeer_addrlen, int, flags)
1591 struct socket *sock, *newsock;
1592 struct file *newfile;
1593 int err, len, newfd, fput_needed;
1594 struct sockaddr_storage address;
1596 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1597 return -EINVAL;
1599 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1600 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1602 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1603 if (!sock)
1604 goto out;
1606 err = -ENFILE;
1607 newsock = sock_alloc();
1608 if (!newsock)
1609 goto out_put;
1611 newsock->type = sock->type;
1612 newsock->ops = sock->ops;
1615 * We don't need try_module_get here, as the listening socket (sock)
1616 * has the protocol module (sock->ops->owner) held.
1618 __module_get(newsock->ops->owner);
1620 newfd = get_unused_fd_flags(flags);
1621 if (unlikely(newfd < 0)) {
1622 err = newfd;
1623 sock_release(newsock);
1624 goto out_put;
1626 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1627 if (unlikely(IS_ERR(newfile))) {
1628 err = PTR_ERR(newfile);
1629 put_unused_fd(newfd);
1630 sock_release(newsock);
1631 goto out_put;
1634 err = security_socket_accept(sock, newsock);
1635 if (err)
1636 goto out_fd;
1638 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1639 if (err < 0)
1640 goto out_fd;
1642 if (upeer_sockaddr) {
1643 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1644 &len, 2) < 0) {
1645 err = -ECONNABORTED;
1646 goto out_fd;
1648 err = move_addr_to_user(&address,
1649 len, upeer_sockaddr, upeer_addrlen);
1650 if (err < 0)
1651 goto out_fd;
1654 /* File flags are not inherited via accept() unlike another OSes. */
1656 fd_install(newfd, newfile);
1657 err = newfd;
1659 out_put:
1660 fput_light(sock->file, fput_needed);
1661 out:
1662 return err;
1663 out_fd:
1664 fput(newfile);
1665 put_unused_fd(newfd);
1666 goto out_put;
1669 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1670 int __user *, upeer_addrlen)
1672 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1676 * Attempt to connect to a socket with the server address. The address
1677 * is in user space so we verify it is OK and move it to kernel space.
1679 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1680 * break bindings
1682 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1683 * other SEQPACKET protocols that take time to connect() as it doesn't
1684 * include the -EINPROGRESS status for such sockets.
1687 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1688 int, addrlen)
1690 struct socket *sock;
1691 struct sockaddr_storage address;
1692 int err, fput_needed;
1694 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1695 if (!sock)
1696 goto out;
1697 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1698 if (err < 0)
1699 goto out_put;
1701 err =
1702 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1703 if (err)
1704 goto out_put;
1706 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1707 sock->file->f_flags);
1708 out_put:
1709 fput_light(sock->file, fput_needed);
1710 out:
1711 return err;
1715 * Get the local address ('name') of a socket object. Move the obtained
1716 * name to user space.
1719 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1720 int __user *, usockaddr_len)
1722 struct socket *sock;
1723 struct sockaddr_storage address;
1724 int len, err, fput_needed;
1726 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1727 if (!sock)
1728 goto out;
1730 err = security_socket_getsockname(sock);
1731 if (err)
1732 goto out_put;
1734 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1735 if (err)
1736 goto out_put;
1737 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1739 out_put:
1740 fput_light(sock->file, fput_needed);
1741 out:
1742 return err;
1746 * Get the remote address ('name') of a socket object. Move the obtained
1747 * name to user space.
1750 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1751 int __user *, usockaddr_len)
1753 struct socket *sock;
1754 struct sockaddr_storage address;
1755 int len, err, fput_needed;
1757 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1758 if (sock != NULL) {
1759 err = security_socket_getpeername(sock);
1760 if (err) {
1761 fput_light(sock->file, fput_needed);
1762 return err;
1765 err =
1766 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1768 if (!err)
1769 err = move_addr_to_user(&address, len, usockaddr,
1770 usockaddr_len);
1771 fput_light(sock->file, fput_needed);
1773 return err;
1777 * Send a datagram to a given address. We move the address into kernel
1778 * space and check the user space data area is readable before invoking
1779 * the protocol.
1782 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1783 unsigned int, flags, struct sockaddr __user *, addr,
1784 int, addr_len)
1786 struct socket *sock;
1787 struct sockaddr_storage address;
1788 int err;
1789 struct msghdr msg;
1790 struct iovec iov;
1791 int fput_needed;
1793 if (len > INT_MAX)
1794 len = INT_MAX;
1795 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1796 if (!sock)
1797 goto out;
1799 iov.iov_base = buff;
1800 iov.iov_len = len;
1801 msg.msg_name = NULL;
1802 msg.msg_iov = &iov;
1803 msg.msg_iovlen = 1;
1804 msg.msg_control = NULL;
1805 msg.msg_controllen = 0;
1806 msg.msg_namelen = 0;
1807 if (addr) {
1808 err = move_addr_to_kernel(addr, addr_len, &address);
1809 if (err < 0)
1810 goto out_put;
1811 msg.msg_name = (struct sockaddr *)&address;
1812 msg.msg_namelen = addr_len;
1814 if (sock->file->f_flags & O_NONBLOCK)
1815 flags |= MSG_DONTWAIT;
1816 msg.msg_flags = flags;
1817 err = sock_sendmsg(sock, &msg, len);
1819 out_put:
1820 fput_light(sock->file, fput_needed);
1821 out:
1822 return err;
1826 * Send a datagram down a socket.
1829 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1830 unsigned int, flags)
1832 return sys_sendto(fd, buff, len, flags, NULL, 0);
1836 * Receive a frame from the socket and optionally record the address of the
1837 * sender. We verify the buffers are writable and if needed move the
1838 * sender address from kernel to user space.
1841 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1842 unsigned int, flags, struct sockaddr __user *, addr,
1843 int __user *, addr_len)
1845 struct socket *sock;
1846 struct iovec iov;
1847 struct msghdr msg;
1848 struct sockaddr_storage address;
1849 int err, err2;
1850 int fput_needed;
1852 if (size > INT_MAX)
1853 size = INT_MAX;
1854 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1855 if (!sock)
1856 goto out;
1858 msg.msg_control = NULL;
1859 msg.msg_controllen = 0;
1860 msg.msg_iovlen = 1;
1861 msg.msg_iov = &iov;
1862 iov.iov_len = size;
1863 iov.iov_base = ubuf;
1864 /* Save some cycles and don't copy the address if not needed */
1865 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1866 /* We assume all kernel code knows the size of sockaddr_storage */
1867 msg.msg_namelen = 0;
1868 if (sock->file->f_flags & O_NONBLOCK)
1869 flags |= MSG_DONTWAIT;
1870 err = sock_recvmsg(sock, &msg, size, flags);
1872 if (err >= 0 && addr != NULL) {
1873 err2 = move_addr_to_user(&address,
1874 msg.msg_namelen, addr, addr_len);
1875 if (err2 < 0)
1876 err = err2;
1879 fput_light(sock->file, fput_needed);
1880 out:
1881 return err;
1885 * Receive a datagram from a socket.
1888 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1889 unsigned int, flags)
1891 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1895 * Set a socket option. Because we don't know the option lengths we have
1896 * to pass the user mode parameter for the protocols to sort out.
1899 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1900 char __user *, optval, int, optlen)
1902 int err, fput_needed;
1903 struct socket *sock;
1905 if (optlen < 0)
1906 return -EINVAL;
1908 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1909 if (sock != NULL) {
1910 err = security_socket_setsockopt(sock, level, optname);
1911 if (err)
1912 goto out_put;
1914 if (level == SOL_SOCKET)
1915 err =
1916 sock_setsockopt(sock, level, optname, optval,
1917 optlen);
1918 else
1919 err =
1920 sock->ops->setsockopt(sock, level, optname, optval,
1921 optlen);
1922 out_put:
1923 fput_light(sock->file, fput_needed);
1925 return err;
1929 * Get a socket option. Because we don't know the option lengths we have
1930 * to pass a user mode parameter for the protocols to sort out.
1933 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1934 char __user *, optval, int __user *, optlen)
1936 int err, fput_needed;
1937 struct socket *sock;
1939 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1940 if (sock != NULL) {
1941 err = security_socket_getsockopt(sock, level, optname);
1942 if (err)
1943 goto out_put;
1945 if (level == SOL_SOCKET)
1946 err =
1947 sock_getsockopt(sock, level, optname, optval,
1948 optlen);
1949 else
1950 err =
1951 sock->ops->getsockopt(sock, level, optname, optval,
1952 optlen);
1953 out_put:
1954 fput_light(sock->file, fput_needed);
1956 return err;
1960 * Shutdown a socket.
1963 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1965 int err, fput_needed;
1966 struct socket *sock;
1968 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1969 if (sock != NULL) {
1970 err = security_socket_shutdown(sock, how);
1971 if (!err)
1972 err = sock->ops->shutdown(sock, how);
1973 fput_light(sock->file, fput_needed);
1975 return err;
1978 /* A couple of helpful macros for getting the address of the 32/64 bit
1979 * fields which are the same type (int / unsigned) on our platforms.
1981 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1982 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1983 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1985 struct used_address {
1986 struct sockaddr_storage name;
1987 unsigned int name_len;
1990 static int copy_msghdr_from_user(struct msghdr *kmsg,
1991 struct msghdr __user *umsg)
1993 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1994 return -EFAULT;
1996 if (kmsg->msg_name == NULL)
1997 kmsg->msg_namelen = 0;
1999 if (kmsg->msg_namelen < 0)
2000 return -EINVAL;
2002 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2003 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2004 return 0;
2007 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
2008 struct msghdr *msg_sys, unsigned int flags,
2009 struct used_address *used_address)
2011 struct compat_msghdr __user *msg_compat =
2012 (struct compat_msghdr __user *)msg;
2013 struct sockaddr_storage address;
2014 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2015 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2016 __attribute__ ((aligned(sizeof(__kernel_size_t))));
2017 /* 20 is size of ipv6_pktinfo */
2018 unsigned char *ctl_buf = ctl;
2019 int err, ctl_len, total_len;
2021 err = -EFAULT;
2022 if (MSG_CMSG_COMPAT & flags) {
2023 if (get_compat_msghdr(msg_sys, msg_compat))
2024 return -EFAULT;
2025 } else {
2026 err = copy_msghdr_from_user(msg_sys, msg);
2027 if (err)
2028 return err;
2031 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2032 err = -EMSGSIZE;
2033 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2034 goto out;
2035 err = -ENOMEM;
2036 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2037 GFP_KERNEL);
2038 if (!iov)
2039 goto out;
2042 /* This will also move the address data into kernel space */
2043 if (MSG_CMSG_COMPAT & flags) {
2044 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2045 } else
2046 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2047 if (err < 0)
2048 goto out_freeiov;
2049 total_len = err;
2051 err = -ENOBUFS;
2053 if (msg_sys->msg_controllen > INT_MAX)
2054 goto out_freeiov;
2055 ctl_len = msg_sys->msg_controllen;
2056 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2057 err =
2058 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2059 sizeof(ctl));
2060 if (err)
2061 goto out_freeiov;
2062 ctl_buf = msg_sys->msg_control;
2063 ctl_len = msg_sys->msg_controllen;
2064 } else if (ctl_len) {
2065 if (ctl_len > sizeof(ctl)) {
2066 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2067 if (ctl_buf == NULL)
2068 goto out_freeiov;
2070 err = -EFAULT;
2072 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2073 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2074 * checking falls down on this.
2076 if (copy_from_user(ctl_buf,
2077 (void __user __force *)msg_sys->msg_control,
2078 ctl_len))
2079 goto out_freectl;
2080 msg_sys->msg_control = ctl_buf;
2082 msg_sys->msg_flags = flags;
2084 if (sock->file->f_flags & O_NONBLOCK)
2085 msg_sys->msg_flags |= MSG_DONTWAIT;
2087 * If this is sendmmsg() and current destination address is same as
2088 * previously succeeded address, omit asking LSM's decision.
2089 * used_address->name_len is initialized to UINT_MAX so that the first
2090 * destination address never matches.
2092 if (used_address && msg_sys->msg_name &&
2093 used_address->name_len == msg_sys->msg_namelen &&
2094 !memcmp(&used_address->name, msg_sys->msg_name,
2095 used_address->name_len)) {
2096 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2097 goto out_freectl;
2099 err = sock_sendmsg(sock, msg_sys, total_len);
2101 * If this is sendmmsg() and sending to current destination address was
2102 * successful, remember it.
2104 if (used_address && err >= 0) {
2105 used_address->name_len = msg_sys->msg_namelen;
2106 if (msg_sys->msg_name)
2107 memcpy(&used_address->name, msg_sys->msg_name,
2108 used_address->name_len);
2111 out_freectl:
2112 if (ctl_buf != ctl)
2113 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2114 out_freeiov:
2115 if (iov != iovstack)
2116 kfree(iov);
2117 out:
2118 return err;
2122 * BSD sendmsg interface
2125 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2127 int fput_needed, err;
2128 struct msghdr msg_sys;
2129 struct socket *sock;
2131 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2132 if (!sock)
2133 goto out;
2135 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2137 fput_light(sock->file, fput_needed);
2138 out:
2139 return err;
2142 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2144 if (flags & MSG_CMSG_COMPAT)
2145 return -EINVAL;
2146 return __sys_sendmsg(fd, msg, flags);
2150 * Linux sendmmsg interface
2153 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2154 unsigned int flags)
2156 int fput_needed, err, datagrams;
2157 struct socket *sock;
2158 struct mmsghdr __user *entry;
2159 struct compat_mmsghdr __user *compat_entry;
2160 struct msghdr msg_sys;
2161 struct used_address used_address;
2163 if (vlen > UIO_MAXIOV)
2164 vlen = UIO_MAXIOV;
2166 datagrams = 0;
2168 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2169 if (!sock)
2170 return err;
2172 used_address.name_len = UINT_MAX;
2173 entry = mmsg;
2174 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2175 err = 0;
2177 while (datagrams < vlen) {
2178 if (MSG_CMSG_COMPAT & flags) {
2179 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2180 &msg_sys, flags, &used_address);
2181 if (err < 0)
2182 break;
2183 err = __put_user(err, &compat_entry->msg_len);
2184 ++compat_entry;
2185 } else {
2186 err = ___sys_sendmsg(sock,
2187 (struct msghdr __user *)entry,
2188 &msg_sys, flags, &used_address);
2189 if (err < 0)
2190 break;
2191 err = put_user(err, &entry->msg_len);
2192 ++entry;
2195 if (err)
2196 break;
2197 ++datagrams;
2200 fput_light(sock->file, fput_needed);
2202 /* We only return an error if no datagrams were able to be sent */
2203 if (datagrams != 0)
2204 return datagrams;
2206 return err;
2209 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2210 unsigned int, vlen, unsigned int, flags)
2212 if (flags & MSG_CMSG_COMPAT)
2213 return -EINVAL;
2214 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2217 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2218 struct msghdr *msg_sys, unsigned int flags, int nosec)
2220 struct compat_msghdr __user *msg_compat =
2221 (struct compat_msghdr __user *)msg;
2222 struct iovec iovstack[UIO_FASTIOV];
2223 struct iovec *iov = iovstack;
2224 unsigned long cmsg_ptr;
2225 int err, total_len, len;
2227 /* kernel mode address */
2228 struct sockaddr_storage addr;
2230 /* user mode address pointers */
2231 struct sockaddr __user *uaddr;
2232 int __user *uaddr_len;
2234 if (MSG_CMSG_COMPAT & flags) {
2235 if (get_compat_msghdr(msg_sys, msg_compat))
2236 return -EFAULT;
2237 } else {
2238 err = copy_msghdr_from_user(msg_sys, msg);
2239 if (err)
2240 return err;
2243 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2244 err = -EMSGSIZE;
2245 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2246 goto out;
2247 err = -ENOMEM;
2248 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2249 GFP_KERNEL);
2250 if (!iov)
2251 goto out;
2254 /* Save the user-mode address (verify_iovec will change the
2255 * kernel msghdr to use the kernel address space)
2257 uaddr = (__force void __user *)msg_sys->msg_name;
2258 uaddr_len = COMPAT_NAMELEN(msg);
2259 if (MSG_CMSG_COMPAT & flags)
2260 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2261 else
2262 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2263 if (err < 0)
2264 goto out_freeiov;
2265 total_len = err;
2267 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2268 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2270 /* We assume all kernel code knows the size of sockaddr_storage */
2271 msg_sys->msg_namelen = 0;
2273 if (sock->file->f_flags & O_NONBLOCK)
2274 flags |= MSG_DONTWAIT;
2275 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2276 total_len, flags);
2277 if (err < 0)
2278 goto out_freeiov;
2279 len = err;
2281 if (uaddr != NULL) {
2282 err = move_addr_to_user(&addr,
2283 msg_sys->msg_namelen, uaddr,
2284 uaddr_len);
2285 if (err < 0)
2286 goto out_freeiov;
2288 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2289 COMPAT_FLAGS(msg));
2290 if (err)
2291 goto out_freeiov;
2292 if (MSG_CMSG_COMPAT & flags)
2293 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2294 &msg_compat->msg_controllen);
2295 else
2296 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2297 &msg->msg_controllen);
2298 if (err)
2299 goto out_freeiov;
2300 err = len;
2302 out_freeiov:
2303 if (iov != iovstack)
2304 kfree(iov);
2305 out:
2306 return err;
2310 * BSD recvmsg interface
2313 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2315 int fput_needed, err;
2316 struct msghdr msg_sys;
2317 struct socket *sock;
2319 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2320 if (!sock)
2321 goto out;
2323 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2325 fput_light(sock->file, fput_needed);
2326 out:
2327 return err;
2330 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2331 unsigned int, flags)
2333 if (flags & MSG_CMSG_COMPAT)
2334 return -EINVAL;
2335 return __sys_recvmsg(fd, msg, flags);
2339 * Linux recvmmsg interface
2342 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2343 unsigned int flags, struct timespec *timeout)
2345 int fput_needed, err, datagrams;
2346 struct socket *sock;
2347 struct mmsghdr __user *entry;
2348 struct compat_mmsghdr __user *compat_entry;
2349 struct msghdr msg_sys;
2350 struct timespec end_time;
2352 if (timeout &&
2353 poll_select_set_timeout(&end_time, timeout->tv_sec,
2354 timeout->tv_nsec))
2355 return -EINVAL;
2357 datagrams = 0;
2359 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2360 if (!sock)
2361 return err;
2363 err = sock_error(sock->sk);
2364 if (err)
2365 goto out_put;
2367 entry = mmsg;
2368 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2370 while (datagrams < vlen) {
2372 * No need to ask LSM for more than the first datagram.
2374 if (MSG_CMSG_COMPAT & flags) {
2375 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2376 &msg_sys, flags & ~MSG_WAITFORONE,
2377 datagrams);
2378 if (err < 0)
2379 break;
2380 err = __put_user(err, &compat_entry->msg_len);
2381 ++compat_entry;
2382 } else {
2383 err = ___sys_recvmsg(sock,
2384 (struct msghdr __user *)entry,
2385 &msg_sys, flags & ~MSG_WAITFORONE,
2386 datagrams);
2387 if (err < 0)
2388 break;
2389 err = put_user(err, &entry->msg_len);
2390 ++entry;
2393 if (err)
2394 break;
2395 ++datagrams;
2397 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2398 if (flags & MSG_WAITFORONE)
2399 flags |= MSG_DONTWAIT;
2401 if (timeout) {
2402 ktime_get_ts(timeout);
2403 *timeout = timespec_sub(end_time, *timeout);
2404 if (timeout->tv_sec < 0) {
2405 timeout->tv_sec = timeout->tv_nsec = 0;
2406 break;
2409 /* Timeout, return less than vlen datagrams */
2410 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2411 break;
2414 /* Out of band data, return right away */
2415 if (msg_sys.msg_flags & MSG_OOB)
2416 break;
2419 out_put:
2420 fput_light(sock->file, fput_needed);
2422 if (err == 0)
2423 return datagrams;
2425 if (datagrams != 0) {
2427 * We may return less entries than requested (vlen) if the
2428 * sock is non block and there aren't enough datagrams...
2430 if (err != -EAGAIN) {
2432 * ... or if recvmsg returns an error after we
2433 * received some datagrams, where we record the
2434 * error to return on the next call or if the
2435 * app asks about it using getsockopt(SO_ERROR).
2437 sock->sk->sk_err = -err;
2440 return datagrams;
2443 return err;
2446 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2447 unsigned int, vlen, unsigned int, flags,
2448 struct timespec __user *, timeout)
2450 int datagrams;
2451 struct timespec timeout_sys;
2453 if (flags & MSG_CMSG_COMPAT)
2454 return -EINVAL;
2456 if (!timeout)
2457 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2459 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2460 return -EFAULT;
2462 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2464 if (datagrams > 0 &&
2465 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2466 datagrams = -EFAULT;
2468 return datagrams;
2471 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2472 /* Argument list sizes for sys_socketcall */
2473 #define AL(x) ((x) * sizeof(unsigned long))
2474 static const unsigned char nargs[21] = {
2475 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2476 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2477 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2478 AL(4), AL(5), AL(4)
2481 #undef AL
2484 * System call vectors.
2486 * Argument checking cleaned up. Saved 20% in size.
2487 * This function doesn't need to set the kernel lock because
2488 * it is set by the callees.
2491 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2493 unsigned long a[AUDITSC_ARGS];
2494 unsigned long a0, a1;
2495 int err;
2496 unsigned int len;
2498 if (call < 1 || call > SYS_SENDMMSG)
2499 return -EINVAL;
2501 len = nargs[call];
2502 if (len > sizeof(a))
2503 return -EINVAL;
2505 /* copy_from_user should be SMP safe. */
2506 if (copy_from_user(a, args, len))
2507 return -EFAULT;
2509 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2510 if (err)
2511 return err;
2513 a0 = a[0];
2514 a1 = a[1];
2516 switch (call) {
2517 case SYS_SOCKET:
2518 err = sys_socket(a0, a1, a[2]);
2519 break;
2520 case SYS_BIND:
2521 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2522 break;
2523 case SYS_CONNECT:
2524 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2525 break;
2526 case SYS_LISTEN:
2527 err = sys_listen(a0, a1);
2528 break;
2529 case SYS_ACCEPT:
2530 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2531 (int __user *)a[2], 0);
2532 break;
2533 case SYS_GETSOCKNAME:
2534 err =
2535 sys_getsockname(a0, (struct sockaddr __user *)a1,
2536 (int __user *)a[2]);
2537 break;
2538 case SYS_GETPEERNAME:
2539 err =
2540 sys_getpeername(a0, (struct sockaddr __user *)a1,
2541 (int __user *)a[2]);
2542 break;
2543 case SYS_SOCKETPAIR:
2544 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2545 break;
2546 case SYS_SEND:
2547 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2548 break;
2549 case SYS_SENDTO:
2550 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2551 (struct sockaddr __user *)a[4], a[5]);
2552 break;
2553 case SYS_RECV:
2554 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2555 break;
2556 case SYS_RECVFROM:
2557 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2558 (struct sockaddr __user *)a[4],
2559 (int __user *)a[5]);
2560 break;
2561 case SYS_SHUTDOWN:
2562 err = sys_shutdown(a0, a1);
2563 break;
2564 case SYS_SETSOCKOPT:
2565 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2566 break;
2567 case SYS_GETSOCKOPT:
2568 err =
2569 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2570 (int __user *)a[4]);
2571 break;
2572 case SYS_SENDMSG:
2573 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2574 break;
2575 case SYS_SENDMMSG:
2576 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2577 break;
2578 case SYS_RECVMSG:
2579 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2580 break;
2581 case SYS_RECVMMSG:
2582 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2583 (struct timespec __user *)a[4]);
2584 break;
2585 case SYS_ACCEPT4:
2586 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2587 (int __user *)a[2], a[3]);
2588 break;
2589 default:
2590 err = -EINVAL;
2591 break;
2593 return err;
2596 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2599 * sock_register - add a socket protocol handler
2600 * @ops: description of protocol
2602 * This function is called by a protocol handler that wants to
2603 * advertise its address family, and have it linked into the
2604 * socket interface. The value ops->family corresponds to the
2605 * socket system call protocol family.
2607 int sock_register(const struct net_proto_family *ops)
2609 int err;
2611 if (ops->family >= NPROTO) {
2612 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2613 return -ENOBUFS;
2616 spin_lock(&net_family_lock);
2617 if (rcu_dereference_protected(net_families[ops->family],
2618 lockdep_is_held(&net_family_lock)))
2619 err = -EEXIST;
2620 else {
2621 rcu_assign_pointer(net_families[ops->family], ops);
2622 err = 0;
2624 spin_unlock(&net_family_lock);
2626 pr_info("NET: Registered protocol family %d\n", ops->family);
2627 return err;
2629 EXPORT_SYMBOL(sock_register);
2632 * sock_unregister - remove a protocol handler
2633 * @family: protocol family to remove
2635 * This function is called by a protocol handler that wants to
2636 * remove its address family, and have it unlinked from the
2637 * new socket creation.
2639 * If protocol handler is a module, then it can use module reference
2640 * counts to protect against new references. If protocol handler is not
2641 * a module then it needs to provide its own protection in
2642 * the ops->create routine.
2644 void sock_unregister(int family)
2646 BUG_ON(family < 0 || family >= NPROTO);
2648 spin_lock(&net_family_lock);
2649 RCU_INIT_POINTER(net_families[family], NULL);
2650 spin_unlock(&net_family_lock);
2652 synchronize_rcu();
2654 pr_info("NET: Unregistered protocol family %d\n", family);
2656 EXPORT_SYMBOL(sock_unregister);
2658 static int __init sock_init(void)
2660 int err;
2662 * Initialize the network sysctl infrastructure.
2664 err = net_sysctl_init();
2665 if (err)
2666 goto out;
2669 * Initialize skbuff SLAB cache
2671 skb_init();
2674 * Initialize the protocols module.
2677 init_inodecache();
2679 err = register_filesystem(&sock_fs_type);
2680 if (err)
2681 goto out_fs;
2682 sock_mnt = kern_mount(&sock_fs_type);
2683 if (IS_ERR(sock_mnt)) {
2684 err = PTR_ERR(sock_mnt);
2685 goto out_mount;
2688 /* The real protocol initialization is performed in later initcalls.
2691 #ifdef CONFIG_NETFILTER
2692 err = netfilter_init();
2693 if (err)
2694 goto out;
2695 #endif
2697 ptp_classifier_init();
2699 out:
2700 return err;
2702 out_mount:
2703 unregister_filesystem(&sock_fs_type);
2704 out_fs:
2705 goto out;
2708 core_initcall(sock_init); /* early initcall */
2710 #ifdef CONFIG_PROC_FS
2711 void socket_seq_show(struct seq_file *seq)
2713 int cpu;
2714 int counter = 0;
2716 for_each_possible_cpu(cpu)
2717 counter += per_cpu(sockets_in_use, cpu);
2719 /* It can be negative, by the way. 8) */
2720 if (counter < 0)
2721 counter = 0;
2723 seq_printf(seq, "sockets: used %d\n", counter);
2725 #endif /* CONFIG_PROC_FS */
2727 #ifdef CONFIG_COMPAT
2728 static int do_siocgstamp(struct net *net, struct socket *sock,
2729 unsigned int cmd, void __user *up)
2731 mm_segment_t old_fs = get_fs();
2732 struct timeval ktv;
2733 int err;
2735 set_fs(KERNEL_DS);
2736 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2737 set_fs(old_fs);
2738 if (!err)
2739 err = compat_put_timeval(&ktv, up);
2741 return err;
2744 static int do_siocgstampns(struct net *net, struct socket *sock,
2745 unsigned int cmd, void __user *up)
2747 mm_segment_t old_fs = get_fs();
2748 struct timespec kts;
2749 int err;
2751 set_fs(KERNEL_DS);
2752 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2753 set_fs(old_fs);
2754 if (!err)
2755 err = compat_put_timespec(&kts, up);
2757 return err;
2760 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2762 struct ifreq __user *uifr;
2763 int err;
2765 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2766 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2767 return -EFAULT;
2769 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2770 if (err)
2771 return err;
2773 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2774 return -EFAULT;
2776 return 0;
2779 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2781 struct compat_ifconf ifc32;
2782 struct ifconf ifc;
2783 struct ifconf __user *uifc;
2784 struct compat_ifreq __user *ifr32;
2785 struct ifreq __user *ifr;
2786 unsigned int i, j;
2787 int err;
2789 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2790 return -EFAULT;
2792 memset(&ifc, 0, sizeof(ifc));
2793 if (ifc32.ifcbuf == 0) {
2794 ifc32.ifc_len = 0;
2795 ifc.ifc_len = 0;
2796 ifc.ifc_req = NULL;
2797 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2798 } else {
2799 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2800 sizeof(struct ifreq);
2801 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2802 ifc.ifc_len = len;
2803 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2804 ifr32 = compat_ptr(ifc32.ifcbuf);
2805 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2806 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2807 return -EFAULT;
2808 ifr++;
2809 ifr32++;
2812 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2813 return -EFAULT;
2815 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2816 if (err)
2817 return err;
2819 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2820 return -EFAULT;
2822 ifr = ifc.ifc_req;
2823 ifr32 = compat_ptr(ifc32.ifcbuf);
2824 for (i = 0, j = 0;
2825 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2826 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2827 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2828 return -EFAULT;
2829 ifr32++;
2830 ifr++;
2833 if (ifc32.ifcbuf == 0) {
2834 /* Translate from 64-bit structure multiple to
2835 * a 32-bit one.
2837 i = ifc.ifc_len;
2838 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2839 ifc32.ifc_len = i;
2840 } else {
2841 ifc32.ifc_len = i;
2843 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2844 return -EFAULT;
2846 return 0;
2849 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2851 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2852 bool convert_in = false, convert_out = false;
2853 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2854 struct ethtool_rxnfc __user *rxnfc;
2855 struct ifreq __user *ifr;
2856 u32 rule_cnt = 0, actual_rule_cnt;
2857 u32 ethcmd;
2858 u32 data;
2859 int ret;
2861 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2862 return -EFAULT;
2864 compat_rxnfc = compat_ptr(data);
2866 if (get_user(ethcmd, &compat_rxnfc->cmd))
2867 return -EFAULT;
2869 /* Most ethtool structures are defined without padding.
2870 * Unfortunately struct ethtool_rxnfc is an exception.
2872 switch (ethcmd) {
2873 default:
2874 break;
2875 case ETHTOOL_GRXCLSRLALL:
2876 /* Buffer size is variable */
2877 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2878 return -EFAULT;
2879 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2880 return -ENOMEM;
2881 buf_size += rule_cnt * sizeof(u32);
2882 /* fall through */
2883 case ETHTOOL_GRXRINGS:
2884 case ETHTOOL_GRXCLSRLCNT:
2885 case ETHTOOL_GRXCLSRULE:
2886 case ETHTOOL_SRXCLSRLINS:
2887 convert_out = true;
2888 /* fall through */
2889 case ETHTOOL_SRXCLSRLDEL:
2890 buf_size += sizeof(struct ethtool_rxnfc);
2891 convert_in = true;
2892 break;
2895 ifr = compat_alloc_user_space(buf_size);
2896 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2898 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2899 return -EFAULT;
2901 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2902 &ifr->ifr_ifru.ifru_data))
2903 return -EFAULT;
2905 if (convert_in) {
2906 /* We expect there to be holes between fs.m_ext and
2907 * fs.ring_cookie and at the end of fs, but nowhere else.
2909 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2910 sizeof(compat_rxnfc->fs.m_ext) !=
2911 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2912 sizeof(rxnfc->fs.m_ext));
2913 BUILD_BUG_ON(
2914 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2915 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2916 offsetof(struct ethtool_rxnfc, fs.location) -
2917 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2919 if (copy_in_user(rxnfc, compat_rxnfc,
2920 (void __user *)(&rxnfc->fs.m_ext + 1) -
2921 (void __user *)rxnfc) ||
2922 copy_in_user(&rxnfc->fs.ring_cookie,
2923 &compat_rxnfc->fs.ring_cookie,
2924 (void __user *)(&rxnfc->fs.location + 1) -
2925 (void __user *)&rxnfc->fs.ring_cookie) ||
2926 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2927 sizeof(rxnfc->rule_cnt)))
2928 return -EFAULT;
2931 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2932 if (ret)
2933 return ret;
2935 if (convert_out) {
2936 if (copy_in_user(compat_rxnfc, rxnfc,
2937 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2938 (const void __user *)rxnfc) ||
2939 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2940 &rxnfc->fs.ring_cookie,
2941 (const void __user *)(&rxnfc->fs.location + 1) -
2942 (const void __user *)&rxnfc->fs.ring_cookie) ||
2943 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2944 sizeof(rxnfc->rule_cnt)))
2945 return -EFAULT;
2947 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2948 /* As an optimisation, we only copy the actual
2949 * number of rules that the underlying
2950 * function returned. Since Mallory might
2951 * change the rule count in user memory, we
2952 * check that it is less than the rule count
2953 * originally given (as the user buffer size),
2954 * which has been range-checked.
2956 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2957 return -EFAULT;
2958 if (actual_rule_cnt < rule_cnt)
2959 rule_cnt = actual_rule_cnt;
2960 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2961 &rxnfc->rule_locs[0],
2962 rule_cnt * sizeof(u32)))
2963 return -EFAULT;
2967 return 0;
2970 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2972 void __user *uptr;
2973 compat_uptr_t uptr32;
2974 struct ifreq __user *uifr;
2976 uifr = compat_alloc_user_space(sizeof(*uifr));
2977 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2978 return -EFAULT;
2980 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2981 return -EFAULT;
2983 uptr = compat_ptr(uptr32);
2985 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2986 return -EFAULT;
2988 return dev_ioctl(net, SIOCWANDEV, uifr);
2991 static int bond_ioctl(struct net *net, unsigned int cmd,
2992 struct compat_ifreq __user *ifr32)
2994 struct ifreq kifr;
2995 mm_segment_t old_fs;
2996 int err;
2998 switch (cmd) {
2999 case SIOCBONDENSLAVE:
3000 case SIOCBONDRELEASE:
3001 case SIOCBONDSETHWADDR:
3002 case SIOCBONDCHANGEACTIVE:
3003 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
3004 return -EFAULT;
3006 old_fs = get_fs();
3007 set_fs(KERNEL_DS);
3008 err = dev_ioctl(net, cmd,
3009 (struct ifreq __user __force *) &kifr);
3010 set_fs(old_fs);
3012 return err;
3013 default:
3014 return -ENOIOCTLCMD;
3018 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3019 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3020 struct compat_ifreq __user *u_ifreq32)
3022 struct ifreq __user *u_ifreq64;
3023 char tmp_buf[IFNAMSIZ];
3024 void __user *data64;
3025 u32 data32;
3027 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3028 IFNAMSIZ))
3029 return -EFAULT;
3030 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3031 return -EFAULT;
3032 data64 = compat_ptr(data32);
3034 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3036 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3037 IFNAMSIZ))
3038 return -EFAULT;
3039 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3040 return -EFAULT;
3042 return dev_ioctl(net, cmd, u_ifreq64);
3045 static int dev_ifsioc(struct net *net, struct socket *sock,
3046 unsigned int cmd, struct compat_ifreq __user *uifr32)
3048 struct ifreq __user *uifr;
3049 int err;
3051 uifr = compat_alloc_user_space(sizeof(*uifr));
3052 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3053 return -EFAULT;
3055 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3057 if (!err) {
3058 switch (cmd) {
3059 case SIOCGIFFLAGS:
3060 case SIOCGIFMETRIC:
3061 case SIOCGIFMTU:
3062 case SIOCGIFMEM:
3063 case SIOCGIFHWADDR:
3064 case SIOCGIFINDEX:
3065 case SIOCGIFADDR:
3066 case SIOCGIFBRDADDR:
3067 case SIOCGIFDSTADDR:
3068 case SIOCGIFNETMASK:
3069 case SIOCGIFPFLAGS:
3070 case SIOCGIFTXQLEN:
3071 case SIOCGMIIPHY:
3072 case SIOCGMIIREG:
3073 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3074 err = -EFAULT;
3075 break;
3078 return err;
3081 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3082 struct compat_ifreq __user *uifr32)
3084 struct ifreq ifr;
3085 struct compat_ifmap __user *uifmap32;
3086 mm_segment_t old_fs;
3087 int err;
3089 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3090 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3091 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3092 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3093 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3094 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3095 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3096 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3097 if (err)
3098 return -EFAULT;
3100 old_fs = get_fs();
3101 set_fs(KERNEL_DS);
3102 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3103 set_fs(old_fs);
3105 if (cmd == SIOCGIFMAP && !err) {
3106 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3107 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3108 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3109 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3110 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3111 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3112 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3113 if (err)
3114 err = -EFAULT;
3116 return err;
3119 struct rtentry32 {
3120 u32 rt_pad1;
3121 struct sockaddr rt_dst; /* target address */
3122 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3123 struct sockaddr rt_genmask; /* target network mask (IP) */
3124 unsigned short rt_flags;
3125 short rt_pad2;
3126 u32 rt_pad3;
3127 unsigned char rt_tos;
3128 unsigned char rt_class;
3129 short rt_pad4;
3130 short rt_metric; /* +1 for binary compatibility! */
3131 /* char * */ u32 rt_dev; /* forcing the device at add */
3132 u32 rt_mtu; /* per route MTU/Window */
3133 u32 rt_window; /* Window clamping */
3134 unsigned short rt_irtt; /* Initial RTT */
3137 struct in6_rtmsg32 {
3138 struct in6_addr rtmsg_dst;
3139 struct in6_addr rtmsg_src;
3140 struct in6_addr rtmsg_gateway;
3141 u32 rtmsg_type;
3142 u16 rtmsg_dst_len;
3143 u16 rtmsg_src_len;
3144 u32 rtmsg_metric;
3145 u32 rtmsg_info;
3146 u32 rtmsg_flags;
3147 s32 rtmsg_ifindex;
3150 static int routing_ioctl(struct net *net, struct socket *sock,
3151 unsigned int cmd, void __user *argp)
3153 int ret;
3154 void *r = NULL;
3155 struct in6_rtmsg r6;
3156 struct rtentry r4;
3157 char devname[16];
3158 u32 rtdev;
3159 mm_segment_t old_fs = get_fs();
3161 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3162 struct in6_rtmsg32 __user *ur6 = argp;
3163 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3164 3 * sizeof(struct in6_addr));
3165 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3166 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3167 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3168 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3169 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3170 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3171 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3173 r = (void *) &r6;
3174 } else { /* ipv4 */
3175 struct rtentry32 __user *ur4 = argp;
3176 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3177 3 * sizeof(struct sockaddr));
3178 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3179 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3180 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3181 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3182 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3183 ret |= get_user(rtdev, &(ur4->rt_dev));
3184 if (rtdev) {
3185 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3186 r4.rt_dev = (char __user __force *)devname;
3187 devname[15] = 0;
3188 } else
3189 r4.rt_dev = NULL;
3191 r = (void *) &r4;
3194 if (ret) {
3195 ret = -EFAULT;
3196 goto out;
3199 set_fs(KERNEL_DS);
3200 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3201 set_fs(old_fs);
3203 out:
3204 return ret;
3207 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3208 * for some operations; this forces use of the newer bridge-utils that
3209 * use compatible ioctls
3211 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3213 compat_ulong_t tmp;
3215 if (get_user(tmp, argp))
3216 return -EFAULT;
3217 if (tmp == BRCTL_GET_VERSION)
3218 return BRCTL_VERSION + 1;
3219 return -EINVAL;
3222 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3223 unsigned int cmd, unsigned long arg)
3225 void __user *argp = compat_ptr(arg);
3226 struct sock *sk = sock->sk;
3227 struct net *net = sock_net(sk);
3229 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3230 return compat_ifr_data_ioctl(net, cmd, argp);
3232 switch (cmd) {
3233 case SIOCSIFBR:
3234 case SIOCGIFBR:
3235 return old_bridge_ioctl(argp);
3236 case SIOCGIFNAME:
3237 return dev_ifname32(net, argp);
3238 case SIOCGIFCONF:
3239 return dev_ifconf(net, argp);
3240 case SIOCETHTOOL:
3241 return ethtool_ioctl(net, argp);
3242 case SIOCWANDEV:
3243 return compat_siocwandev(net, argp);
3244 case SIOCGIFMAP:
3245 case SIOCSIFMAP:
3246 return compat_sioc_ifmap(net, cmd, argp);
3247 case SIOCBONDENSLAVE:
3248 case SIOCBONDRELEASE:
3249 case SIOCBONDSETHWADDR:
3250 case SIOCBONDCHANGEACTIVE:
3251 return bond_ioctl(net, cmd, argp);
3252 case SIOCADDRT:
3253 case SIOCDELRT:
3254 return routing_ioctl(net, sock, cmd, argp);
3255 case SIOCGSTAMP:
3256 return do_siocgstamp(net, sock, cmd, argp);
3257 case SIOCGSTAMPNS:
3258 return do_siocgstampns(net, sock, cmd, argp);
3259 case SIOCBONDSLAVEINFOQUERY:
3260 case SIOCBONDINFOQUERY:
3261 case SIOCSHWTSTAMP:
3262 case SIOCGHWTSTAMP:
3263 return compat_ifr_data_ioctl(net, cmd, argp);
3265 case FIOSETOWN:
3266 case SIOCSPGRP:
3267 case FIOGETOWN:
3268 case SIOCGPGRP:
3269 case SIOCBRADDBR:
3270 case SIOCBRDELBR:
3271 case SIOCGIFVLAN:
3272 case SIOCSIFVLAN:
3273 case SIOCADDDLCI:
3274 case SIOCDELDLCI:
3275 return sock_ioctl(file, cmd, arg);
3277 case SIOCGIFFLAGS:
3278 case SIOCSIFFLAGS:
3279 case SIOCGIFMETRIC:
3280 case SIOCSIFMETRIC:
3281 case SIOCGIFMTU:
3282 case SIOCSIFMTU:
3283 case SIOCGIFMEM:
3284 case SIOCSIFMEM:
3285 case SIOCGIFHWADDR:
3286 case SIOCSIFHWADDR:
3287 case SIOCADDMULTI:
3288 case SIOCDELMULTI:
3289 case SIOCGIFINDEX:
3290 case SIOCGIFADDR:
3291 case SIOCSIFADDR:
3292 case SIOCSIFHWBROADCAST:
3293 case SIOCDIFADDR:
3294 case SIOCGIFBRDADDR:
3295 case SIOCSIFBRDADDR:
3296 case SIOCGIFDSTADDR:
3297 case SIOCSIFDSTADDR:
3298 case SIOCGIFNETMASK:
3299 case SIOCSIFNETMASK:
3300 case SIOCSIFPFLAGS:
3301 case SIOCGIFPFLAGS:
3302 case SIOCGIFTXQLEN:
3303 case SIOCSIFTXQLEN:
3304 case SIOCBRADDIF:
3305 case SIOCBRDELIF:
3306 case SIOCSIFNAME:
3307 case SIOCGMIIPHY:
3308 case SIOCGMIIREG:
3309 case SIOCSMIIREG:
3310 return dev_ifsioc(net, sock, cmd, argp);
3312 case SIOCSARP:
3313 case SIOCGARP:
3314 case SIOCDARP:
3315 case SIOCATMARK:
3316 return sock_do_ioctl(net, sock, cmd, arg);
3319 return -ENOIOCTLCMD;
3322 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3323 unsigned long arg)
3325 struct socket *sock = file->private_data;
3326 int ret = -ENOIOCTLCMD;
3327 struct sock *sk;
3328 struct net *net;
3330 sk = sock->sk;
3331 net = sock_net(sk);
3333 if (sock->ops->compat_ioctl)
3334 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3336 if (ret == -ENOIOCTLCMD &&
3337 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3338 ret = compat_wext_handle_ioctl(net, cmd, arg);
3340 if (ret == -ENOIOCTLCMD)
3341 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3343 return ret;
3345 #endif
3347 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3349 return sock->ops->bind(sock, addr, addrlen);
3351 EXPORT_SYMBOL(kernel_bind);
3353 int kernel_listen(struct socket *sock, int backlog)
3355 return sock->ops->listen(sock, backlog);
3357 EXPORT_SYMBOL(kernel_listen);
3359 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3361 struct sock *sk = sock->sk;
3362 int err;
3364 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3365 newsock);
3366 if (err < 0)
3367 goto done;
3369 err = sock->ops->accept(sock, *newsock, flags);
3370 if (err < 0) {
3371 sock_release(*newsock);
3372 *newsock = NULL;
3373 goto done;
3376 (*newsock)->ops = sock->ops;
3377 __module_get((*newsock)->ops->owner);
3379 done:
3380 return err;
3382 EXPORT_SYMBOL(kernel_accept);
3384 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3385 int flags)
3387 return sock->ops->connect(sock, addr, addrlen, flags);
3389 EXPORT_SYMBOL(kernel_connect);
3391 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3392 int *addrlen)
3394 return sock->ops->getname(sock, addr, addrlen, 0);
3396 EXPORT_SYMBOL(kernel_getsockname);
3398 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3399 int *addrlen)
3401 return sock->ops->getname(sock, addr, addrlen, 1);
3403 EXPORT_SYMBOL(kernel_getpeername);
3405 int kernel_getsockopt(struct socket *sock, int level, int optname,
3406 char *optval, int *optlen)
3408 mm_segment_t oldfs = get_fs();
3409 char __user *uoptval;
3410 int __user *uoptlen;
3411 int err;
3413 uoptval = (char __user __force *) optval;
3414 uoptlen = (int __user __force *) optlen;
3416 set_fs(KERNEL_DS);
3417 if (level == SOL_SOCKET)
3418 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3419 else
3420 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3421 uoptlen);
3422 set_fs(oldfs);
3423 return err;
3425 EXPORT_SYMBOL(kernel_getsockopt);
3427 int kernel_setsockopt(struct socket *sock, int level, int optname,
3428 char *optval, unsigned int optlen)
3430 mm_segment_t oldfs = get_fs();
3431 char __user *uoptval;
3432 int err;
3434 uoptval = (char __user __force *) optval;
3436 set_fs(KERNEL_DS);
3437 if (level == SOL_SOCKET)
3438 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3439 else
3440 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3441 optlen);
3442 set_fs(oldfs);
3443 return err;
3445 EXPORT_SYMBOL(kernel_setsockopt);
3447 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3448 size_t size, int flags)
3450 if (sock->ops->sendpage)
3451 return sock->ops->sendpage(sock, page, offset, size, flags);
3453 return sock_no_sendpage(sock, page, offset, size, flags);
3455 EXPORT_SYMBOL(kernel_sendpage);
3457 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3459 mm_segment_t oldfs = get_fs();
3460 int err;
3462 set_fs(KERNEL_DS);
3463 err = sock->ops->ioctl(sock, cmd, arg);
3464 set_fs(oldfs);
3466 return err;
3468 EXPORT_SYMBOL(kernel_sock_ioctl);
3470 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3472 return sock->ops->shutdown(sock, how);
3474 EXPORT_SYMBOL(kernel_sock_shutdown);