mlxsw: reg: Add Router Interface Counter Register
[linux-2.6/btrfs-unstable.git] / block / blk-mq-sched.c
blob09af8ff18719a42c662cbb9267812975b71666b0
1 /*
2 * blk-mq scheduling framework
4 * Copyright (C) 2016 Jens Axboe
5 */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
10 #include <trace/events/block.h>
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-sched.h"
15 #include "blk-mq-tag.h"
16 #include "blk-wbt.h"
18 void blk_mq_sched_free_hctx_data(struct request_queue *q,
19 void (*exit)(struct blk_mq_hw_ctx *))
21 struct blk_mq_hw_ctx *hctx;
22 int i;
24 queue_for_each_hw_ctx(q, hctx, i) {
25 if (exit && hctx->sched_data)
26 exit(hctx);
27 kfree(hctx->sched_data);
28 hctx->sched_data = NULL;
31 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
33 int blk_mq_sched_init_hctx_data(struct request_queue *q, size_t size,
34 int (*init)(struct blk_mq_hw_ctx *),
35 void (*exit)(struct blk_mq_hw_ctx *))
37 struct blk_mq_hw_ctx *hctx;
38 int ret;
39 int i;
41 queue_for_each_hw_ctx(q, hctx, i) {
42 hctx->sched_data = kmalloc_node(size, GFP_KERNEL, hctx->numa_node);
43 if (!hctx->sched_data) {
44 ret = -ENOMEM;
45 goto error;
48 if (init) {
49 ret = init(hctx);
50 if (ret) {
52 * We don't want to give exit() a partially
53 * initialized sched_data. init() must clean up
54 * if it fails.
56 kfree(hctx->sched_data);
57 hctx->sched_data = NULL;
58 goto error;
63 return 0;
64 error:
65 blk_mq_sched_free_hctx_data(q, exit);
66 return ret;
68 EXPORT_SYMBOL_GPL(blk_mq_sched_init_hctx_data);
70 static void __blk_mq_sched_assign_ioc(struct request_queue *q,
71 struct request *rq,
72 struct bio *bio,
73 struct io_context *ioc)
75 struct io_cq *icq;
77 spin_lock_irq(q->queue_lock);
78 icq = ioc_lookup_icq(ioc, q);
79 spin_unlock_irq(q->queue_lock);
81 if (!icq) {
82 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
83 if (!icq)
84 return;
87 rq->elv.icq = icq;
88 if (!blk_mq_sched_get_rq_priv(q, rq, bio)) {
89 rq->rq_flags |= RQF_ELVPRIV;
90 get_io_context(icq->ioc);
91 return;
94 rq->elv.icq = NULL;
97 static void blk_mq_sched_assign_ioc(struct request_queue *q,
98 struct request *rq, struct bio *bio)
100 struct io_context *ioc;
102 ioc = rq_ioc(bio);
103 if (ioc)
104 __blk_mq_sched_assign_ioc(q, rq, bio, ioc);
107 struct request *blk_mq_sched_get_request(struct request_queue *q,
108 struct bio *bio,
109 unsigned int op,
110 struct blk_mq_alloc_data *data)
112 struct elevator_queue *e = q->elevator;
113 struct request *rq;
115 blk_queue_enter_live(q);
116 data->q = q;
117 if (likely(!data->ctx))
118 data->ctx = blk_mq_get_ctx(q);
119 if (likely(!data->hctx))
120 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
122 if (e) {
123 data->flags |= BLK_MQ_REQ_INTERNAL;
126 * Flush requests are special and go directly to the
127 * dispatch list.
129 if (!op_is_flush(op) && e->type->ops.mq.get_request) {
130 rq = e->type->ops.mq.get_request(q, op, data);
131 if (rq)
132 rq->rq_flags |= RQF_QUEUED;
133 } else
134 rq = __blk_mq_alloc_request(data, op);
135 } else {
136 rq = __blk_mq_alloc_request(data, op);
139 if (rq) {
140 if (!op_is_flush(op)) {
141 rq->elv.icq = NULL;
142 if (e && e->type->icq_cache)
143 blk_mq_sched_assign_ioc(q, rq, bio);
145 data->hctx->queued++;
146 return rq;
149 blk_queue_exit(q);
150 return NULL;
153 void blk_mq_sched_put_request(struct request *rq)
155 struct request_queue *q = rq->q;
156 struct elevator_queue *e = q->elevator;
158 if (rq->rq_flags & RQF_ELVPRIV) {
159 blk_mq_sched_put_rq_priv(rq->q, rq);
160 if (rq->elv.icq) {
161 put_io_context(rq->elv.icq->ioc);
162 rq->elv.icq = NULL;
166 if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request)
167 e->type->ops.mq.put_request(rq);
168 else
169 blk_mq_finish_request(rq);
172 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
174 struct elevator_queue *e = hctx->queue->elevator;
175 const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
176 bool did_work = false;
177 LIST_HEAD(rq_list);
179 if (unlikely(blk_mq_hctx_stopped(hctx)))
180 return;
182 hctx->run++;
185 * If we have previous entries on our dispatch list, grab them first for
186 * more fair dispatch.
188 if (!list_empty_careful(&hctx->dispatch)) {
189 spin_lock(&hctx->lock);
190 if (!list_empty(&hctx->dispatch))
191 list_splice_init(&hctx->dispatch, &rq_list);
192 spin_unlock(&hctx->lock);
196 * Only ask the scheduler for requests, if we didn't have residual
197 * requests from the dispatch list. This is to avoid the case where
198 * we only ever dispatch a fraction of the requests available because
199 * of low device queue depth. Once we pull requests out of the IO
200 * scheduler, we can no longer merge or sort them. So it's best to
201 * leave them there for as long as we can. Mark the hw queue as
202 * needing a restart in that case.
204 if (!list_empty(&rq_list)) {
205 blk_mq_sched_mark_restart_hctx(hctx);
206 did_work = blk_mq_dispatch_rq_list(hctx, &rq_list);
207 } else if (!has_sched_dispatch) {
208 blk_mq_flush_busy_ctxs(hctx, &rq_list);
209 blk_mq_dispatch_rq_list(hctx, &rq_list);
213 * We want to dispatch from the scheduler if we had no work left
214 * on the dispatch list, OR if we did have work but weren't able
215 * to make progress.
217 if (!did_work && has_sched_dispatch) {
218 do {
219 struct request *rq;
221 rq = e->type->ops.mq.dispatch_request(hctx);
222 if (!rq)
223 break;
224 list_add(&rq->queuelist, &rq_list);
225 } while (blk_mq_dispatch_rq_list(hctx, &rq_list));
229 void blk_mq_sched_move_to_dispatch(struct blk_mq_hw_ctx *hctx,
230 struct list_head *rq_list,
231 struct request *(*get_rq)(struct blk_mq_hw_ctx *))
233 do {
234 struct request *rq;
236 rq = get_rq(hctx);
237 if (!rq)
238 break;
240 list_add_tail(&rq->queuelist, rq_list);
241 } while (1);
243 EXPORT_SYMBOL_GPL(blk_mq_sched_move_to_dispatch);
245 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
246 struct request **merged_request)
248 struct request *rq;
250 switch (elv_merge(q, &rq, bio)) {
251 case ELEVATOR_BACK_MERGE:
252 if (!blk_mq_sched_allow_merge(q, rq, bio))
253 return false;
254 if (!bio_attempt_back_merge(q, rq, bio))
255 return false;
256 *merged_request = attempt_back_merge(q, rq);
257 if (!*merged_request)
258 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
259 return true;
260 case ELEVATOR_FRONT_MERGE:
261 if (!blk_mq_sched_allow_merge(q, rq, bio))
262 return false;
263 if (!bio_attempt_front_merge(q, rq, bio))
264 return false;
265 *merged_request = attempt_front_merge(q, rq);
266 if (!*merged_request)
267 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
268 return true;
269 default:
270 return false;
273 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
275 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
277 struct elevator_queue *e = q->elevator;
279 if (e->type->ops.mq.bio_merge) {
280 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
281 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
283 blk_mq_put_ctx(ctx);
284 return e->type->ops.mq.bio_merge(hctx, bio);
287 return false;
290 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
292 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
294 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
296 void blk_mq_sched_request_inserted(struct request *rq)
298 trace_block_rq_insert(rq->q, rq);
300 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
302 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
303 struct request *rq)
305 if (rq->tag == -1) {
306 rq->rq_flags |= RQF_SORTED;
307 return false;
311 * If we already have a real request tag, send directly to
312 * the dispatch list.
314 spin_lock(&hctx->lock);
315 list_add(&rq->queuelist, &hctx->dispatch);
316 spin_unlock(&hctx->lock);
317 return true;
320 static void blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
322 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) {
323 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
324 if (blk_mq_hctx_has_pending(hctx))
325 blk_mq_run_hw_queue(hctx, true);
329 void blk_mq_sched_restart_queues(struct blk_mq_hw_ctx *hctx)
331 struct request_queue *q = hctx->queue;
332 unsigned int i;
334 if (test_bit(QUEUE_FLAG_RESTART, &q->queue_flags)) {
335 if (test_and_clear_bit(QUEUE_FLAG_RESTART, &q->queue_flags)) {
336 queue_for_each_hw_ctx(q, hctx, i)
337 blk_mq_sched_restart_hctx(hctx);
339 } else {
340 blk_mq_sched_restart_hctx(hctx);
345 * Add flush/fua to the queue. If we fail getting a driver tag, then
346 * punt to the requeue list. Requeue will re-invoke us from a context
347 * that's safe to block from.
349 static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
350 struct request *rq, bool can_block)
352 if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
353 blk_insert_flush(rq);
354 blk_mq_run_hw_queue(hctx, true);
355 } else
356 blk_mq_add_to_requeue_list(rq, false, true);
359 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
360 bool run_queue, bool async, bool can_block)
362 struct request_queue *q = rq->q;
363 struct elevator_queue *e = q->elevator;
364 struct blk_mq_ctx *ctx = rq->mq_ctx;
365 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
367 if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
368 blk_mq_sched_insert_flush(hctx, rq, can_block);
369 return;
372 if (e && blk_mq_sched_bypass_insert(hctx, rq))
373 goto run;
375 if (e && e->type->ops.mq.insert_requests) {
376 LIST_HEAD(list);
378 list_add(&rq->queuelist, &list);
379 e->type->ops.mq.insert_requests(hctx, &list, at_head);
380 } else {
381 spin_lock(&ctx->lock);
382 __blk_mq_insert_request(hctx, rq, at_head);
383 spin_unlock(&ctx->lock);
386 run:
387 if (run_queue)
388 blk_mq_run_hw_queue(hctx, async);
391 void blk_mq_sched_insert_requests(struct request_queue *q,
392 struct blk_mq_ctx *ctx,
393 struct list_head *list, bool run_queue_async)
395 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
396 struct elevator_queue *e = hctx->queue->elevator;
398 if (e) {
399 struct request *rq, *next;
402 * We bypass requests that already have a driver tag assigned,
403 * which should only be flushes. Flushes are only ever inserted
404 * as single requests, so we shouldn't ever hit the
405 * WARN_ON_ONCE() below (but let's handle it just in case).
407 list_for_each_entry_safe(rq, next, list, queuelist) {
408 if (WARN_ON_ONCE(rq->tag != -1)) {
409 list_del_init(&rq->queuelist);
410 blk_mq_sched_bypass_insert(hctx, rq);
415 if (e && e->type->ops.mq.insert_requests)
416 e->type->ops.mq.insert_requests(hctx, list, false);
417 else
418 blk_mq_insert_requests(hctx, ctx, list);
420 blk_mq_run_hw_queue(hctx, run_queue_async);
423 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
424 struct blk_mq_hw_ctx *hctx,
425 unsigned int hctx_idx)
427 if (hctx->sched_tags) {
428 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
429 blk_mq_free_rq_map(hctx->sched_tags);
430 hctx->sched_tags = NULL;
434 int blk_mq_sched_setup(struct request_queue *q)
436 struct blk_mq_tag_set *set = q->tag_set;
437 struct blk_mq_hw_ctx *hctx;
438 int ret, i;
441 * Default to 256, since we don't split into sync/async like the
442 * old code did. Additionally, this is a per-hw queue depth.
444 q->nr_requests = 2 * BLKDEV_MAX_RQ;
447 * We're switching to using an IO scheduler, so setup the hctx
448 * scheduler tags and switch the request map from the regular
449 * tags to scheduler tags. First allocate what we need, so we
450 * can safely fail and fallback, if needed.
452 ret = 0;
453 queue_for_each_hw_ctx(q, hctx, i) {
454 hctx->sched_tags = blk_mq_alloc_rq_map(set, i,
455 q->nr_requests, set->reserved_tags);
456 if (!hctx->sched_tags) {
457 ret = -ENOMEM;
458 break;
460 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, i, q->nr_requests);
461 if (ret)
462 break;
466 * If we failed, free what we did allocate
468 if (ret) {
469 queue_for_each_hw_ctx(q, hctx, i) {
470 if (!hctx->sched_tags)
471 continue;
472 blk_mq_sched_free_tags(set, hctx, i);
475 return ret;
478 return 0;
481 void blk_mq_sched_teardown(struct request_queue *q)
483 struct blk_mq_tag_set *set = q->tag_set;
484 struct blk_mq_hw_ctx *hctx;
485 int i;
487 queue_for_each_hw_ctx(q, hctx, i)
488 blk_mq_sched_free_tags(set, hctx, i);
491 int blk_mq_sched_init(struct request_queue *q)
493 int ret;
495 mutex_lock(&q->sysfs_lock);
496 ret = elevator_init(q, NULL);
497 mutex_unlock(&q->sysfs_lock);
499 return ret;