cramfs: fix MTD dependency
[linux-2.6/btrfs-unstable.git] / net / openvswitch / flow.c
blobdbe2379329c5517fb164b6024d40fabebe7855c8
1 /*
2 * Copyright (c) 2007-2014 Nicira, Inc.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
19 #include <linux/uaccess.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <net/llc_pdu.h>
25 #include <linux/kernel.h>
26 #include <linux/jhash.h>
27 #include <linux/jiffies.h>
28 #include <linux/llc.h>
29 #include <linux/module.h>
30 #include <linux/in.h>
31 #include <linux/rcupdate.h>
32 #include <linux/cpumask.h>
33 #include <linux/if_arp.h>
34 #include <linux/ip.h>
35 #include <linux/ipv6.h>
36 #include <linux/mpls.h>
37 #include <linux/sctp.h>
38 #include <linux/smp.h>
39 #include <linux/tcp.h>
40 #include <linux/udp.h>
41 #include <linux/icmp.h>
42 #include <linux/icmpv6.h>
43 #include <linux/rculist.h>
44 #include <net/ip.h>
45 #include <net/ip_tunnels.h>
46 #include <net/ipv6.h>
47 #include <net/mpls.h>
48 #include <net/ndisc.h>
49 #include <net/nsh.h>
51 #include "conntrack.h"
52 #include "datapath.h"
53 #include "flow.h"
54 #include "flow_netlink.h"
55 #include "vport.h"
57 u64 ovs_flow_used_time(unsigned long flow_jiffies)
59 struct timespec cur_ts;
60 u64 cur_ms, idle_ms;
62 ktime_get_ts(&cur_ts);
63 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
64 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
65 cur_ts.tv_nsec / NSEC_PER_MSEC;
67 return cur_ms - idle_ms;
70 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
72 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
73 const struct sk_buff *skb)
75 struct flow_stats *stats;
76 unsigned int cpu = smp_processor_id();
77 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
79 stats = rcu_dereference(flow->stats[cpu]);
81 /* Check if already have CPU-specific stats. */
82 if (likely(stats)) {
83 spin_lock(&stats->lock);
84 /* Mark if we write on the pre-allocated stats. */
85 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
86 flow->stats_last_writer = cpu;
87 } else {
88 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
89 spin_lock(&stats->lock);
91 /* If the current CPU is the only writer on the
92 * pre-allocated stats keep using them.
94 if (unlikely(flow->stats_last_writer != cpu)) {
95 /* A previous locker may have already allocated the
96 * stats, so we need to check again. If CPU-specific
97 * stats were already allocated, we update the pre-
98 * allocated stats as we have already locked them.
100 if (likely(flow->stats_last_writer != -1) &&
101 likely(!rcu_access_pointer(flow->stats[cpu]))) {
102 /* Try to allocate CPU-specific stats. */
103 struct flow_stats *new_stats;
105 new_stats =
106 kmem_cache_alloc_node(flow_stats_cache,
107 GFP_NOWAIT |
108 __GFP_THISNODE |
109 __GFP_NOWARN |
110 __GFP_NOMEMALLOC,
111 numa_node_id());
112 if (likely(new_stats)) {
113 new_stats->used = jiffies;
114 new_stats->packet_count = 1;
115 new_stats->byte_count = len;
116 new_stats->tcp_flags = tcp_flags;
117 spin_lock_init(&new_stats->lock);
119 rcu_assign_pointer(flow->stats[cpu],
120 new_stats);
121 cpumask_set_cpu(cpu, &flow->cpu_used_mask);
122 goto unlock;
125 flow->stats_last_writer = cpu;
129 stats->used = jiffies;
130 stats->packet_count++;
131 stats->byte_count += len;
132 stats->tcp_flags |= tcp_flags;
133 unlock:
134 spin_unlock(&stats->lock);
137 /* Must be called with rcu_read_lock or ovs_mutex. */
138 void ovs_flow_stats_get(const struct sw_flow *flow,
139 struct ovs_flow_stats *ovs_stats,
140 unsigned long *used, __be16 *tcp_flags)
142 int cpu;
144 *used = 0;
145 *tcp_flags = 0;
146 memset(ovs_stats, 0, sizeof(*ovs_stats));
148 /* We open code this to make sure cpu 0 is always considered */
149 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
150 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
152 if (stats) {
153 /* Local CPU may write on non-local stats, so we must
154 * block bottom-halves here.
156 spin_lock_bh(&stats->lock);
157 if (!*used || time_after(stats->used, *used))
158 *used = stats->used;
159 *tcp_flags |= stats->tcp_flags;
160 ovs_stats->n_packets += stats->packet_count;
161 ovs_stats->n_bytes += stats->byte_count;
162 spin_unlock_bh(&stats->lock);
167 /* Called with ovs_mutex. */
168 void ovs_flow_stats_clear(struct sw_flow *flow)
170 int cpu;
172 /* We open code this to make sure cpu 0 is always considered */
173 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
174 struct flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
176 if (stats) {
177 spin_lock_bh(&stats->lock);
178 stats->used = 0;
179 stats->packet_count = 0;
180 stats->byte_count = 0;
181 stats->tcp_flags = 0;
182 spin_unlock_bh(&stats->lock);
187 static int check_header(struct sk_buff *skb, int len)
189 if (unlikely(skb->len < len))
190 return -EINVAL;
191 if (unlikely(!pskb_may_pull(skb, len)))
192 return -ENOMEM;
193 return 0;
196 static bool arphdr_ok(struct sk_buff *skb)
198 return pskb_may_pull(skb, skb_network_offset(skb) +
199 sizeof(struct arp_eth_header));
202 static int check_iphdr(struct sk_buff *skb)
204 unsigned int nh_ofs = skb_network_offset(skb);
205 unsigned int ip_len;
206 int err;
208 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
209 if (unlikely(err))
210 return err;
212 ip_len = ip_hdrlen(skb);
213 if (unlikely(ip_len < sizeof(struct iphdr) ||
214 skb->len < nh_ofs + ip_len))
215 return -EINVAL;
217 skb_set_transport_header(skb, nh_ofs + ip_len);
218 return 0;
221 static bool tcphdr_ok(struct sk_buff *skb)
223 int th_ofs = skb_transport_offset(skb);
224 int tcp_len;
226 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
227 return false;
229 tcp_len = tcp_hdrlen(skb);
230 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
231 skb->len < th_ofs + tcp_len))
232 return false;
234 return true;
237 static bool udphdr_ok(struct sk_buff *skb)
239 return pskb_may_pull(skb, skb_transport_offset(skb) +
240 sizeof(struct udphdr));
243 static bool sctphdr_ok(struct sk_buff *skb)
245 return pskb_may_pull(skb, skb_transport_offset(skb) +
246 sizeof(struct sctphdr));
249 static bool icmphdr_ok(struct sk_buff *skb)
251 return pskb_may_pull(skb, skb_transport_offset(skb) +
252 sizeof(struct icmphdr));
255 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
257 unsigned int nh_ofs = skb_network_offset(skb);
258 unsigned int nh_len;
259 int payload_ofs;
260 struct ipv6hdr *nh;
261 uint8_t nexthdr;
262 __be16 frag_off;
263 int err;
265 err = check_header(skb, nh_ofs + sizeof(*nh));
266 if (unlikely(err))
267 return err;
269 nh = ipv6_hdr(skb);
270 nexthdr = nh->nexthdr;
271 payload_ofs = (u8 *)(nh + 1) - skb->data;
273 key->ip.proto = NEXTHDR_NONE;
274 key->ip.tos = ipv6_get_dsfield(nh);
275 key->ip.ttl = nh->hop_limit;
276 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
277 key->ipv6.addr.src = nh->saddr;
278 key->ipv6.addr.dst = nh->daddr;
280 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
282 if (frag_off) {
283 if (frag_off & htons(~0x7))
284 key->ip.frag = OVS_FRAG_TYPE_LATER;
285 else
286 key->ip.frag = OVS_FRAG_TYPE_FIRST;
287 } else {
288 key->ip.frag = OVS_FRAG_TYPE_NONE;
291 /* Delayed handling of error in ipv6_skip_exthdr() as it
292 * always sets frag_off to a valid value which may be
293 * used to set key->ip.frag above.
295 if (unlikely(payload_ofs < 0))
296 return -EPROTO;
298 nh_len = payload_ofs - nh_ofs;
299 skb_set_transport_header(skb, nh_ofs + nh_len);
300 key->ip.proto = nexthdr;
301 return nh_len;
304 static bool icmp6hdr_ok(struct sk_buff *skb)
306 return pskb_may_pull(skb, skb_transport_offset(skb) +
307 sizeof(struct icmp6hdr));
311 * Parse vlan tag from vlan header.
312 * Returns ERROR on memory error.
313 * Returns 0 if it encounters a non-vlan or incomplete packet.
314 * Returns 1 after successfully parsing vlan tag.
316 static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
317 bool untag_vlan)
319 struct vlan_head *vh = (struct vlan_head *)skb->data;
321 if (likely(!eth_type_vlan(vh->tpid)))
322 return 0;
324 if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
325 return 0;
327 if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
328 sizeof(__be16))))
329 return -ENOMEM;
331 vh = (struct vlan_head *)skb->data;
332 key_vh->tci = vh->tci | htons(VLAN_TAG_PRESENT);
333 key_vh->tpid = vh->tpid;
335 if (unlikely(untag_vlan)) {
336 int offset = skb->data - skb_mac_header(skb);
337 u16 tci;
338 int err;
340 __skb_push(skb, offset);
341 err = __skb_vlan_pop(skb, &tci);
342 __skb_pull(skb, offset);
343 if (err)
344 return err;
345 __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
346 } else {
347 __skb_pull(skb, sizeof(struct vlan_head));
349 return 1;
352 static void clear_vlan(struct sw_flow_key *key)
354 key->eth.vlan.tci = 0;
355 key->eth.vlan.tpid = 0;
356 key->eth.cvlan.tci = 0;
357 key->eth.cvlan.tpid = 0;
360 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
362 int res;
364 if (skb_vlan_tag_present(skb)) {
365 key->eth.vlan.tci = htons(skb->vlan_tci);
366 key->eth.vlan.tpid = skb->vlan_proto;
367 } else {
368 /* Parse outer vlan tag in the non-accelerated case. */
369 res = parse_vlan_tag(skb, &key->eth.vlan, true);
370 if (res <= 0)
371 return res;
374 /* Parse inner vlan tag. */
375 res = parse_vlan_tag(skb, &key->eth.cvlan, false);
376 if (res <= 0)
377 return res;
379 return 0;
382 static __be16 parse_ethertype(struct sk_buff *skb)
384 struct llc_snap_hdr {
385 u8 dsap; /* Always 0xAA */
386 u8 ssap; /* Always 0xAA */
387 u8 ctrl;
388 u8 oui[3];
389 __be16 ethertype;
391 struct llc_snap_hdr *llc;
392 __be16 proto;
394 proto = *(__be16 *) skb->data;
395 __skb_pull(skb, sizeof(__be16));
397 if (eth_proto_is_802_3(proto))
398 return proto;
400 if (skb->len < sizeof(struct llc_snap_hdr))
401 return htons(ETH_P_802_2);
403 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
404 return htons(0);
406 llc = (struct llc_snap_hdr *) skb->data;
407 if (llc->dsap != LLC_SAP_SNAP ||
408 llc->ssap != LLC_SAP_SNAP ||
409 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
410 return htons(ETH_P_802_2);
412 __skb_pull(skb, sizeof(struct llc_snap_hdr));
414 if (eth_proto_is_802_3(llc->ethertype))
415 return llc->ethertype;
417 return htons(ETH_P_802_2);
420 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
421 int nh_len)
423 struct icmp6hdr *icmp = icmp6_hdr(skb);
425 /* The ICMPv6 type and code fields use the 16-bit transport port
426 * fields, so we need to store them in 16-bit network byte order.
428 key->tp.src = htons(icmp->icmp6_type);
429 key->tp.dst = htons(icmp->icmp6_code);
430 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
432 if (icmp->icmp6_code == 0 &&
433 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
434 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
435 int icmp_len = skb->len - skb_transport_offset(skb);
436 struct nd_msg *nd;
437 int offset;
439 /* In order to process neighbor discovery options, we need the
440 * entire packet.
442 if (unlikely(icmp_len < sizeof(*nd)))
443 return 0;
445 if (unlikely(skb_linearize(skb)))
446 return -ENOMEM;
448 nd = (struct nd_msg *)skb_transport_header(skb);
449 key->ipv6.nd.target = nd->target;
451 icmp_len -= sizeof(*nd);
452 offset = 0;
453 while (icmp_len >= 8) {
454 struct nd_opt_hdr *nd_opt =
455 (struct nd_opt_hdr *)(nd->opt + offset);
456 int opt_len = nd_opt->nd_opt_len * 8;
458 if (unlikely(!opt_len || opt_len > icmp_len))
459 return 0;
461 /* Store the link layer address if the appropriate
462 * option is provided. It is considered an error if
463 * the same link layer option is specified twice.
465 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
466 && opt_len == 8) {
467 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
468 goto invalid;
469 ether_addr_copy(key->ipv6.nd.sll,
470 &nd->opt[offset+sizeof(*nd_opt)]);
471 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
472 && opt_len == 8) {
473 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
474 goto invalid;
475 ether_addr_copy(key->ipv6.nd.tll,
476 &nd->opt[offset+sizeof(*nd_opt)]);
479 icmp_len -= opt_len;
480 offset += opt_len;
484 return 0;
486 invalid:
487 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
488 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
489 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
491 return 0;
494 static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
496 struct nshhdr *nh;
497 unsigned int nh_ofs = skb_network_offset(skb);
498 u8 version, length;
499 int err;
501 err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
502 if (unlikely(err))
503 return err;
505 nh = nsh_hdr(skb);
506 version = nsh_get_ver(nh);
507 length = nsh_hdr_len(nh);
509 if (version != 0)
510 return -EINVAL;
512 err = check_header(skb, nh_ofs + length);
513 if (unlikely(err))
514 return err;
516 nh = nsh_hdr(skb);
517 key->nsh.base.flags = nsh_get_flags(nh);
518 key->nsh.base.ttl = nsh_get_ttl(nh);
519 key->nsh.base.mdtype = nh->mdtype;
520 key->nsh.base.np = nh->np;
521 key->nsh.base.path_hdr = nh->path_hdr;
522 switch (key->nsh.base.mdtype) {
523 case NSH_M_TYPE1:
524 if (length != NSH_M_TYPE1_LEN)
525 return -EINVAL;
526 memcpy(key->nsh.context, nh->md1.context,
527 sizeof(nh->md1));
528 break;
529 case NSH_M_TYPE2:
530 memset(key->nsh.context, 0,
531 sizeof(nh->md1));
532 break;
533 default:
534 return -EINVAL;
537 return 0;
541 * key_extract - extracts a flow key from an Ethernet frame.
542 * @skb: sk_buff that contains the frame, with skb->data pointing to the
543 * Ethernet header
544 * @key: output flow key
546 * The caller must ensure that skb->len >= ETH_HLEN.
548 * Returns 0 if successful, otherwise a negative errno value.
550 * Initializes @skb header fields as follows:
552 * - skb->mac_header: the L2 header.
554 * - skb->network_header: just past the L2 header, or just past the
555 * VLAN header, to the first byte of the L2 payload.
557 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
558 * on output, then just past the IP header, if one is present and
559 * of a correct length, otherwise the same as skb->network_header.
560 * For other key->eth.type values it is left untouched.
562 * - skb->protocol: the type of the data starting at skb->network_header.
563 * Equals to key->eth.type.
565 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
567 int error;
568 struct ethhdr *eth;
570 /* Flags are always used as part of stats */
571 key->tp.flags = 0;
573 skb_reset_mac_header(skb);
575 /* Link layer. */
576 clear_vlan(key);
577 if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
578 if (unlikely(eth_type_vlan(skb->protocol)))
579 return -EINVAL;
581 skb_reset_network_header(skb);
582 } else {
583 eth = eth_hdr(skb);
584 ether_addr_copy(key->eth.src, eth->h_source);
585 ether_addr_copy(key->eth.dst, eth->h_dest);
587 __skb_pull(skb, 2 * ETH_ALEN);
588 /* We are going to push all headers that we pull, so no need to
589 * update skb->csum here.
592 if (unlikely(parse_vlan(skb, key)))
593 return -ENOMEM;
595 skb->protocol = parse_ethertype(skb);
596 if (unlikely(skb->protocol == htons(0)))
597 return -ENOMEM;
599 skb_reset_network_header(skb);
600 __skb_push(skb, skb->data - skb_mac_header(skb));
602 skb_reset_mac_len(skb);
603 key->eth.type = skb->protocol;
605 /* Network layer. */
606 if (key->eth.type == htons(ETH_P_IP)) {
607 struct iphdr *nh;
608 __be16 offset;
610 error = check_iphdr(skb);
611 if (unlikely(error)) {
612 memset(&key->ip, 0, sizeof(key->ip));
613 memset(&key->ipv4, 0, sizeof(key->ipv4));
614 if (error == -EINVAL) {
615 skb->transport_header = skb->network_header;
616 error = 0;
618 return error;
621 nh = ip_hdr(skb);
622 key->ipv4.addr.src = nh->saddr;
623 key->ipv4.addr.dst = nh->daddr;
625 key->ip.proto = nh->protocol;
626 key->ip.tos = nh->tos;
627 key->ip.ttl = nh->ttl;
629 offset = nh->frag_off & htons(IP_OFFSET);
630 if (offset) {
631 key->ip.frag = OVS_FRAG_TYPE_LATER;
632 return 0;
634 if (nh->frag_off & htons(IP_MF) ||
635 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
636 key->ip.frag = OVS_FRAG_TYPE_FIRST;
637 else
638 key->ip.frag = OVS_FRAG_TYPE_NONE;
640 /* Transport layer. */
641 if (key->ip.proto == IPPROTO_TCP) {
642 if (tcphdr_ok(skb)) {
643 struct tcphdr *tcp = tcp_hdr(skb);
644 key->tp.src = tcp->source;
645 key->tp.dst = tcp->dest;
646 key->tp.flags = TCP_FLAGS_BE16(tcp);
647 } else {
648 memset(&key->tp, 0, sizeof(key->tp));
651 } else if (key->ip.proto == IPPROTO_UDP) {
652 if (udphdr_ok(skb)) {
653 struct udphdr *udp = udp_hdr(skb);
654 key->tp.src = udp->source;
655 key->tp.dst = udp->dest;
656 } else {
657 memset(&key->tp, 0, sizeof(key->tp));
659 } else if (key->ip.proto == IPPROTO_SCTP) {
660 if (sctphdr_ok(skb)) {
661 struct sctphdr *sctp = sctp_hdr(skb);
662 key->tp.src = sctp->source;
663 key->tp.dst = sctp->dest;
664 } else {
665 memset(&key->tp, 0, sizeof(key->tp));
667 } else if (key->ip.proto == IPPROTO_ICMP) {
668 if (icmphdr_ok(skb)) {
669 struct icmphdr *icmp = icmp_hdr(skb);
670 /* The ICMP type and code fields use the 16-bit
671 * transport port fields, so we need to store
672 * them in 16-bit network byte order. */
673 key->tp.src = htons(icmp->type);
674 key->tp.dst = htons(icmp->code);
675 } else {
676 memset(&key->tp, 0, sizeof(key->tp));
680 } else if (key->eth.type == htons(ETH_P_ARP) ||
681 key->eth.type == htons(ETH_P_RARP)) {
682 struct arp_eth_header *arp;
683 bool arp_available = arphdr_ok(skb);
685 arp = (struct arp_eth_header *)skb_network_header(skb);
687 if (arp_available &&
688 arp->ar_hrd == htons(ARPHRD_ETHER) &&
689 arp->ar_pro == htons(ETH_P_IP) &&
690 arp->ar_hln == ETH_ALEN &&
691 arp->ar_pln == 4) {
693 /* We only match on the lower 8 bits of the opcode. */
694 if (ntohs(arp->ar_op) <= 0xff)
695 key->ip.proto = ntohs(arp->ar_op);
696 else
697 key->ip.proto = 0;
699 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
700 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
701 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
702 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
703 } else {
704 memset(&key->ip, 0, sizeof(key->ip));
705 memset(&key->ipv4, 0, sizeof(key->ipv4));
707 } else if (eth_p_mpls(key->eth.type)) {
708 size_t stack_len = MPLS_HLEN;
710 skb_set_inner_network_header(skb, skb->mac_len);
711 while (1) {
712 __be32 lse;
714 error = check_header(skb, skb->mac_len + stack_len);
715 if (unlikely(error))
716 return 0;
718 memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
720 if (stack_len == MPLS_HLEN)
721 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
723 skb_set_inner_network_header(skb, skb->mac_len + stack_len);
724 if (lse & htonl(MPLS_LS_S_MASK))
725 break;
727 stack_len += MPLS_HLEN;
729 } else if (key->eth.type == htons(ETH_P_IPV6)) {
730 int nh_len; /* IPv6 Header + Extensions */
732 nh_len = parse_ipv6hdr(skb, key);
733 if (unlikely(nh_len < 0)) {
734 switch (nh_len) {
735 case -EINVAL:
736 memset(&key->ip, 0, sizeof(key->ip));
737 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
738 /* fall-through */
739 case -EPROTO:
740 skb->transport_header = skb->network_header;
741 error = 0;
742 break;
743 default:
744 error = nh_len;
746 return error;
749 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
750 return 0;
751 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
752 key->ip.frag = OVS_FRAG_TYPE_FIRST;
754 /* Transport layer. */
755 if (key->ip.proto == NEXTHDR_TCP) {
756 if (tcphdr_ok(skb)) {
757 struct tcphdr *tcp = tcp_hdr(skb);
758 key->tp.src = tcp->source;
759 key->tp.dst = tcp->dest;
760 key->tp.flags = TCP_FLAGS_BE16(tcp);
761 } else {
762 memset(&key->tp, 0, sizeof(key->tp));
764 } else if (key->ip.proto == NEXTHDR_UDP) {
765 if (udphdr_ok(skb)) {
766 struct udphdr *udp = udp_hdr(skb);
767 key->tp.src = udp->source;
768 key->tp.dst = udp->dest;
769 } else {
770 memset(&key->tp, 0, sizeof(key->tp));
772 } else if (key->ip.proto == NEXTHDR_SCTP) {
773 if (sctphdr_ok(skb)) {
774 struct sctphdr *sctp = sctp_hdr(skb);
775 key->tp.src = sctp->source;
776 key->tp.dst = sctp->dest;
777 } else {
778 memset(&key->tp, 0, sizeof(key->tp));
780 } else if (key->ip.proto == NEXTHDR_ICMP) {
781 if (icmp6hdr_ok(skb)) {
782 error = parse_icmpv6(skb, key, nh_len);
783 if (error)
784 return error;
785 } else {
786 memset(&key->tp, 0, sizeof(key->tp));
789 } else if (key->eth.type == htons(ETH_P_NSH)) {
790 error = parse_nsh(skb, key);
791 if (error)
792 return error;
794 return 0;
797 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
799 int res;
801 res = key_extract(skb, key);
802 if (!res)
803 key->mac_proto &= ~SW_FLOW_KEY_INVALID;
805 return res;
808 static int key_extract_mac_proto(struct sk_buff *skb)
810 switch (skb->dev->type) {
811 case ARPHRD_ETHER:
812 return MAC_PROTO_ETHERNET;
813 case ARPHRD_NONE:
814 if (skb->protocol == htons(ETH_P_TEB))
815 return MAC_PROTO_ETHERNET;
816 return MAC_PROTO_NONE;
818 WARN_ON_ONCE(1);
819 return -EINVAL;
822 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
823 struct sk_buff *skb, struct sw_flow_key *key)
825 int res, err;
827 /* Extract metadata from packet. */
828 if (tun_info) {
829 key->tun_proto = ip_tunnel_info_af(tun_info);
830 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
832 if (tun_info->options_len) {
833 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
834 8)) - 1
835 > sizeof(key->tun_opts));
837 ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
838 tun_info);
839 key->tun_opts_len = tun_info->options_len;
840 } else {
841 key->tun_opts_len = 0;
843 } else {
844 key->tun_proto = 0;
845 key->tun_opts_len = 0;
846 memset(&key->tun_key, 0, sizeof(key->tun_key));
849 key->phy.priority = skb->priority;
850 key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
851 key->phy.skb_mark = skb->mark;
852 key->ovs_flow_hash = 0;
853 res = key_extract_mac_proto(skb);
854 if (res < 0)
855 return res;
856 key->mac_proto = res;
857 key->recirc_id = 0;
859 err = key_extract(skb, key);
860 if (!err)
861 ovs_ct_fill_key(skb, key); /* Must be after key_extract(). */
862 return err;
865 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
866 struct sk_buff *skb,
867 struct sw_flow_key *key, bool log)
869 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
870 u64 attrs = 0;
871 int err;
873 err = parse_flow_nlattrs(attr, a, &attrs, log);
874 if (err)
875 return -EINVAL;
877 /* Extract metadata from netlink attributes. */
878 err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
879 if (err)
880 return err;
882 /* key_extract assumes that skb->protocol is set-up for
883 * layer 3 packets which is the case for other callers,
884 * in particular packets received from the network stack.
885 * Here the correct value can be set from the metadata
886 * extracted above.
887 * For L2 packet key eth type would be zero. skb protocol
888 * would be set to correct value later during key-extact.
891 skb->protocol = key->eth.type;
892 err = key_extract(skb, key);
893 if (err)
894 return err;
896 /* Check that we have conntrack original direction tuple metadata only
897 * for packets for which it makes sense. Otherwise the key may be
898 * corrupted due to overlapping key fields.
900 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
901 key->eth.type != htons(ETH_P_IP))
902 return -EINVAL;
903 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
904 (key->eth.type != htons(ETH_P_IPV6) ||
905 sw_flow_key_is_nd(key)))
906 return -EINVAL;
908 return 0;