arm64: dts: Add initial device tree support for exynos7
[linux-2.6/btrfs-unstable.git] / drivers / mtd / bcm47xxpart.c
blobcc13ea5ce4d58f6cb532d151d5f22d9aa46e8c2c
1 /*
2 * BCM47XX MTD partitioning
4 * Copyright © 2012 Rafał Miłecki <zajec5@gmail.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/partitions.h>
19 * NAND flash on Netgear R6250 was verified to contain 15 partitions.
20 * This will result in allocating too big array for some old devices, but the
21 * memory will be freed soon anyway (see mtd_device_parse_register).
23 #define BCM47XXPART_MAX_PARTS 20
26 * Amount of bytes we read when analyzing each block of flash memory.
27 * Set it big enough to allow detecting partition and reading important data.
29 #define BCM47XXPART_BYTES_TO_READ 0x4e8
31 /* Magics */
32 #define BOARD_DATA_MAGIC 0x5246504D /* MPFR */
33 #define BOARD_DATA_MAGIC2 0xBD0D0BBD
34 #define CFE_MAGIC 0x43464531 /* 1EFC */
35 #define FACTORY_MAGIC 0x59544346 /* FCTY */
36 #define NVRAM_HEADER 0x48534C46 /* FLSH */
37 #define POT_MAGIC1 0x54544f50 /* POTT */
38 #define POT_MAGIC2 0x504f /* OP */
39 #define ML_MAGIC1 0x39685a42
40 #define ML_MAGIC2 0x26594131
41 #define TRX_MAGIC 0x30524448
42 #define SQSH_MAGIC 0x71736873 /* shsq */
44 struct trx_header {
45 uint32_t magic;
46 uint32_t length;
47 uint32_t crc32;
48 uint16_t flags;
49 uint16_t version;
50 uint32_t offset[3];
51 } __packed;
53 static void bcm47xxpart_add_part(struct mtd_partition *part, char *name,
54 u64 offset, uint32_t mask_flags)
56 part->name = name;
57 part->offset = offset;
58 part->mask_flags = mask_flags;
61 static int bcm47xxpart_parse(struct mtd_info *master,
62 struct mtd_partition **pparts,
63 struct mtd_part_parser_data *data)
65 struct mtd_partition *parts;
66 uint8_t i, curr_part = 0;
67 uint32_t *buf;
68 size_t bytes_read;
69 uint32_t offset;
70 uint32_t blocksize = master->erasesize;
71 struct trx_header *trx;
72 int trx_part = -1;
73 int last_trx_part = -1;
74 int possible_nvram_sizes[] = { 0x8000, 0xF000, 0x10000, };
76 if (blocksize <= 0x10000)
77 blocksize = 0x10000;
79 /* Alloc */
80 parts = kzalloc(sizeof(struct mtd_partition) * BCM47XXPART_MAX_PARTS,
81 GFP_KERNEL);
82 if (!parts)
83 return -ENOMEM;
85 buf = kzalloc(BCM47XXPART_BYTES_TO_READ, GFP_KERNEL);
86 if (!buf) {
87 kfree(parts);
88 return -ENOMEM;
91 /* Parse block by block looking for magics */
92 for (offset = 0; offset <= master->size - blocksize;
93 offset += blocksize) {
94 /* Nothing more in higher memory */
95 if (offset >= 0x2000000)
96 break;
98 if (curr_part >= BCM47XXPART_MAX_PARTS) {
99 pr_warn("Reached maximum number of partitions, scanning stopped!\n");
100 break;
103 /* Read beginning of the block */
104 if (mtd_read(master, offset, BCM47XXPART_BYTES_TO_READ,
105 &bytes_read, (uint8_t *)buf) < 0) {
106 pr_err("mtd_read error while parsing (offset: 0x%X)!\n",
107 offset);
108 continue;
111 /* Magic or small NVRAM at 0x400 */
112 if ((buf[0x4e0 / 4] == CFE_MAGIC && buf[0x4e4 / 4] == CFE_MAGIC) ||
113 (buf[0x400 / 4] == NVRAM_HEADER)) {
114 bcm47xxpart_add_part(&parts[curr_part++], "boot",
115 offset, MTD_WRITEABLE);
116 continue;
120 * board_data starts with board_id which differs across boards,
121 * but we can use 'MPFR' (hopefully) magic at 0x100
123 if (buf[0x100 / 4] == BOARD_DATA_MAGIC) {
124 bcm47xxpart_add_part(&parts[curr_part++], "board_data",
125 offset, MTD_WRITEABLE);
126 continue;
129 /* Found on Huawei E970 */
130 if (buf[0x000 / 4] == FACTORY_MAGIC) {
131 bcm47xxpart_add_part(&parts[curr_part++], "factory",
132 offset, MTD_WRITEABLE);
133 continue;
136 /* POT(TOP) */
137 if (buf[0x000 / 4] == POT_MAGIC1 &&
138 (buf[0x004 / 4] & 0xFFFF) == POT_MAGIC2) {
139 bcm47xxpart_add_part(&parts[curr_part++], "POT", offset,
140 MTD_WRITEABLE);
141 continue;
144 /* ML */
145 if (buf[0x010 / 4] == ML_MAGIC1 &&
146 buf[0x014 / 4] == ML_MAGIC2) {
147 bcm47xxpart_add_part(&parts[curr_part++], "ML", offset,
148 MTD_WRITEABLE);
149 continue;
152 /* TRX */
153 if (buf[0x000 / 4] == TRX_MAGIC) {
154 if (BCM47XXPART_MAX_PARTS - curr_part < 4) {
155 pr_warn("Not enough partitions left to register trx, scanning stopped!\n");
156 break;
159 trx = (struct trx_header *)buf;
161 trx_part = curr_part;
162 bcm47xxpart_add_part(&parts[curr_part++], "firmware",
163 offset, 0);
165 i = 0;
166 /* We have LZMA loader if offset[2] points to sth */
167 if (trx->offset[2]) {
168 bcm47xxpart_add_part(&parts[curr_part++],
169 "loader",
170 offset + trx->offset[i],
172 i++;
175 if (trx->offset[i]) {
176 bcm47xxpart_add_part(&parts[curr_part++],
177 "linux",
178 offset + trx->offset[i],
180 i++;
184 * Pure rootfs size is known and can be calculated as:
185 * trx->length - trx->offset[i]. We don't fill it as
186 * we want to have jffs2 (overlay) in the same mtd.
188 if (trx->offset[i]) {
189 bcm47xxpart_add_part(&parts[curr_part++],
190 "rootfs",
191 offset + trx->offset[i],
193 i++;
196 last_trx_part = curr_part - 1;
199 * We have whole TRX scanned, skip to the next part. Use
200 * roundown (not roundup), as the loop will increase
201 * offset in next step.
203 offset = rounddown(offset + trx->length, blocksize);
204 continue;
207 /* Squashfs on devices not using TRX */
208 if (buf[0x000 / 4] == SQSH_MAGIC) {
209 bcm47xxpart_add_part(&parts[curr_part++], "rootfs",
210 offset, 0);
211 continue;
215 * New (ARM?) devices may have NVRAM in some middle block. Last
216 * block will be checked later, so skip it.
218 if (offset != master->size - blocksize &&
219 buf[0x000 / 4] == NVRAM_HEADER) {
220 bcm47xxpart_add_part(&parts[curr_part++], "nvram",
221 offset, 0);
222 continue;
225 /* Read middle of the block */
226 if (mtd_read(master, offset + 0x8000, 0x4,
227 &bytes_read, (uint8_t *)buf) < 0) {
228 pr_err("mtd_read error while parsing (offset: 0x%X)!\n",
229 offset);
230 continue;
233 /* Some devices (ex. WNDR3700v3) don't have a standard 'MPFR' */
234 if (buf[0x000 / 4] == BOARD_DATA_MAGIC2) {
235 bcm47xxpart_add_part(&parts[curr_part++], "board_data",
236 offset, MTD_WRITEABLE);
237 continue;
241 /* Look for NVRAM at the end of the last block. */
242 for (i = 0; i < ARRAY_SIZE(possible_nvram_sizes); i++) {
243 if (curr_part >= BCM47XXPART_MAX_PARTS) {
244 pr_warn("Reached maximum number of partitions, scanning stopped!\n");
245 break;
248 offset = master->size - possible_nvram_sizes[i];
249 if (mtd_read(master, offset, 0x4, &bytes_read,
250 (uint8_t *)buf) < 0) {
251 pr_err("mtd_read error while reading at offset 0x%X!\n",
252 offset);
253 continue;
256 /* Standard NVRAM */
257 if (buf[0] == NVRAM_HEADER) {
258 bcm47xxpart_add_part(&parts[curr_part++], "nvram",
259 master->size - blocksize, 0);
260 break;
264 kfree(buf);
267 * Assume that partitions end at the beginning of the one they are
268 * followed by.
270 for (i = 0; i < curr_part; i++) {
271 u64 next_part_offset = (i < curr_part - 1) ?
272 parts[i + 1].offset : master->size;
274 parts[i].size = next_part_offset - parts[i].offset;
275 if (i == last_trx_part && trx_part >= 0)
276 parts[trx_part].size = next_part_offset -
277 parts[trx_part].offset;
280 *pparts = parts;
281 return curr_part;
284 static struct mtd_part_parser bcm47xxpart_mtd_parser = {
285 .owner = THIS_MODULE,
286 .parse_fn = bcm47xxpart_parse,
287 .name = "bcm47xxpart",
290 static int __init bcm47xxpart_init(void)
292 register_mtd_parser(&bcm47xxpart_mtd_parser);
293 return 0;
296 static void __exit bcm47xxpart_exit(void)
298 deregister_mtd_parser(&bcm47xxpart_mtd_parser);
301 module_init(bcm47xxpart_init);
302 module_exit(bcm47xxpart_exit);
304 MODULE_LICENSE("GPL");
305 MODULE_DESCRIPTION("MTD partitioning for BCM47XX flash memories");