rt2x00: Don't kick TX queue after each frame
[linux-2.6/btrfs-unstable.git] / drivers / net / wireless / rt2x00 / rt61pci.c
blob746f87c8e704fdb75dad51ed151bae79ce422cb6
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt61pci
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt61pci.h"
41 * Register access.
42 * BBP and RF register require indirect register access,
43 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
44 * These indirect registers work with busy bits,
45 * and we will try maximal REGISTER_BUSY_COUNT times to access
46 * the register while taking a REGISTER_BUSY_DELAY us delay
47 * between each attampt. When the busy bit is still set at that time,
48 * the access attempt is considered to have failed,
49 * and we will print an error.
51 static u32 rt61pci_bbp_check(struct rt2x00_dev *rt2x00dev)
53 u32 reg;
54 unsigned int i;
56 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
57 rt2x00pci_register_read(rt2x00dev, PHY_CSR3, &reg);
58 if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
59 break;
60 udelay(REGISTER_BUSY_DELAY);
63 return reg;
66 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
67 const unsigned int word, const u8 value)
69 u32 reg;
72 * Wait until the BBP becomes ready.
74 reg = rt61pci_bbp_check(rt2x00dev);
75 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
76 ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
77 return;
81 * Write the data into the BBP.
83 reg = 0;
84 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
85 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
86 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
87 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
89 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
92 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
93 const unsigned int word, u8 *value)
95 u32 reg;
98 * Wait until the BBP becomes ready.
100 reg = rt61pci_bbp_check(rt2x00dev);
101 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
102 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
103 return;
107 * Write the request into the BBP.
109 reg = 0;
110 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
111 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
112 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
114 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
117 * Wait until the BBP becomes ready.
119 reg = rt61pci_bbp_check(rt2x00dev);
120 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
121 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
122 *value = 0xff;
123 return;
126 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
129 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
130 const unsigned int word, const u32 value)
132 u32 reg;
133 unsigned int i;
135 if (!word)
136 return;
138 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
139 rt2x00pci_register_read(rt2x00dev, PHY_CSR4, &reg);
140 if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
141 goto rf_write;
142 udelay(REGISTER_BUSY_DELAY);
145 ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
146 return;
148 rf_write:
149 reg = 0;
150 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
151 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
152 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
153 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
155 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
156 rt2x00_rf_write(rt2x00dev, word, value);
159 #ifdef CONFIG_RT61PCI_LEDS
161 * This function is only called from rt61pci_led_brightness()
162 * make gcc happy by placing this function inside the
163 * same ifdef statement as the caller.
165 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
166 const u8 command, const u8 token,
167 const u8 arg0, const u8 arg1)
169 u32 reg;
171 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, &reg);
173 if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) {
174 ERROR(rt2x00dev, "mcu request error. "
175 "Request 0x%02x failed for token 0x%02x.\n",
176 command, token);
177 return;
180 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
181 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
182 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
183 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
184 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
186 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
187 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
188 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
189 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
191 #endif /* CONFIG_RT61PCI_LEDS */
193 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
195 struct rt2x00_dev *rt2x00dev = eeprom->data;
196 u32 reg;
198 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
200 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
201 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
202 eeprom->reg_data_clock =
203 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
204 eeprom->reg_chip_select =
205 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
208 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
210 struct rt2x00_dev *rt2x00dev = eeprom->data;
211 u32 reg = 0;
213 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
214 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
215 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
216 !!eeprom->reg_data_clock);
217 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
218 !!eeprom->reg_chip_select);
220 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
223 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
224 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
226 static void rt61pci_read_csr(struct rt2x00_dev *rt2x00dev,
227 const unsigned int word, u32 *data)
229 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
232 static void rt61pci_write_csr(struct rt2x00_dev *rt2x00dev,
233 const unsigned int word, u32 data)
235 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
238 static const struct rt2x00debug rt61pci_rt2x00debug = {
239 .owner = THIS_MODULE,
240 .csr = {
241 .read = rt61pci_read_csr,
242 .write = rt61pci_write_csr,
243 .word_size = sizeof(u32),
244 .word_count = CSR_REG_SIZE / sizeof(u32),
246 .eeprom = {
247 .read = rt2x00_eeprom_read,
248 .write = rt2x00_eeprom_write,
249 .word_size = sizeof(u16),
250 .word_count = EEPROM_SIZE / sizeof(u16),
252 .bbp = {
253 .read = rt61pci_bbp_read,
254 .write = rt61pci_bbp_write,
255 .word_size = sizeof(u8),
256 .word_count = BBP_SIZE / sizeof(u8),
258 .rf = {
259 .read = rt2x00_rf_read,
260 .write = rt61pci_rf_write,
261 .word_size = sizeof(u32),
262 .word_count = RF_SIZE / sizeof(u32),
265 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
267 #ifdef CONFIG_RT61PCI_RFKILL
268 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
270 u32 reg;
272 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
273 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
275 #else
276 #define rt61pci_rfkill_poll NULL
277 #endif /* CONFIG_RT61PCI_RFKILL */
279 #ifdef CONFIG_RT61PCI_LEDS
280 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
281 enum led_brightness brightness)
283 struct rt2x00_led *led =
284 container_of(led_cdev, struct rt2x00_led, led_dev);
285 unsigned int enabled = brightness != LED_OFF;
286 unsigned int a_mode =
287 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
288 unsigned int bg_mode =
289 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
291 if (led->type == LED_TYPE_RADIO) {
292 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
293 MCU_LEDCS_RADIO_STATUS, enabled);
295 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
296 (led->rt2x00dev->led_mcu_reg & 0xff),
297 ((led->rt2x00dev->led_mcu_reg >> 8)));
298 } else if (led->type == LED_TYPE_ASSOC) {
299 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
300 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
301 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
302 MCU_LEDCS_LINK_A_STATUS, a_mode);
304 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
305 (led->rt2x00dev->led_mcu_reg & 0xff),
306 ((led->rt2x00dev->led_mcu_reg >> 8)));
307 } else if (led->type == LED_TYPE_QUALITY) {
309 * The brightness is divided into 6 levels (0 - 5),
310 * this means we need to convert the brightness
311 * argument into the matching level within that range.
313 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
314 brightness / (LED_FULL / 6), 0);
318 static int rt61pci_blink_set(struct led_classdev *led_cdev,
319 unsigned long *delay_on,
320 unsigned long *delay_off)
322 struct rt2x00_led *led =
323 container_of(led_cdev, struct rt2x00_led, led_dev);
324 u32 reg;
326 rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
327 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
328 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
329 rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
331 return 0;
334 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
335 struct rt2x00_led *led,
336 enum led_type type)
338 led->rt2x00dev = rt2x00dev;
339 led->type = type;
340 led->led_dev.brightness_set = rt61pci_brightness_set;
341 led->led_dev.blink_set = rt61pci_blink_set;
342 led->flags = LED_INITIALIZED;
344 #endif /* CONFIG_RT61PCI_LEDS */
347 * Configuration handlers.
349 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
350 const unsigned int filter_flags)
352 u32 reg;
355 * Start configuration steps.
356 * Note that the version error will always be dropped
357 * and broadcast frames will always be accepted since
358 * there is no filter for it at this time.
360 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
361 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
362 !(filter_flags & FIF_FCSFAIL));
363 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
364 !(filter_flags & FIF_PLCPFAIL));
365 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
366 !(filter_flags & FIF_CONTROL));
367 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
368 !(filter_flags & FIF_PROMISC_IN_BSS));
369 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
370 !(filter_flags & FIF_PROMISC_IN_BSS) &&
371 !rt2x00dev->intf_ap_count);
372 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
373 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
374 !(filter_flags & FIF_ALLMULTI));
375 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
376 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
377 !(filter_flags & FIF_CONTROL));
378 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
381 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
382 struct rt2x00_intf *intf,
383 struct rt2x00intf_conf *conf,
384 const unsigned int flags)
386 unsigned int beacon_base;
387 u32 reg;
389 if (flags & CONFIG_UPDATE_TYPE) {
391 * Clear current synchronisation setup.
392 * For the Beacon base registers we only need to clear
393 * the first byte since that byte contains the VALID and OWNER
394 * bits which (when set to 0) will invalidate the entire beacon.
396 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
397 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
400 * Enable synchronisation.
402 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
403 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
404 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
405 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
406 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
409 if (flags & CONFIG_UPDATE_MAC) {
410 reg = le32_to_cpu(conf->mac[1]);
411 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
412 conf->mac[1] = cpu_to_le32(reg);
414 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
415 conf->mac, sizeof(conf->mac));
418 if (flags & CONFIG_UPDATE_BSSID) {
419 reg = le32_to_cpu(conf->bssid[1]);
420 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
421 conf->bssid[1] = cpu_to_le32(reg);
423 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
424 conf->bssid, sizeof(conf->bssid));
428 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
429 struct rt2x00lib_erp *erp)
431 u32 reg;
433 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
434 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
435 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
437 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
438 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
439 !!erp->short_preamble);
440 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
443 static void rt61pci_config_phymode(struct rt2x00_dev *rt2x00dev,
444 const int basic_rate_mask)
446 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, basic_rate_mask);
449 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
450 struct rf_channel *rf, const int txpower)
452 u8 r3;
453 u8 r94;
454 u8 smart;
456 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
457 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
459 smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
460 rt2x00_rf(&rt2x00dev->chip, RF2527));
462 rt61pci_bbp_read(rt2x00dev, 3, &r3);
463 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
464 rt61pci_bbp_write(rt2x00dev, 3, r3);
466 r94 = 6;
467 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
468 r94 += txpower - MAX_TXPOWER;
469 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
470 r94 += txpower;
471 rt61pci_bbp_write(rt2x00dev, 94, r94);
473 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
474 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
475 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
476 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
478 udelay(200);
480 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
481 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
482 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
483 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
485 udelay(200);
487 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
488 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
489 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
490 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
492 msleep(1);
495 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
496 const int txpower)
498 struct rf_channel rf;
500 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
501 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
502 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
503 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
505 rt61pci_config_channel(rt2x00dev, &rf, txpower);
508 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
509 struct antenna_setup *ant)
511 u8 r3;
512 u8 r4;
513 u8 r77;
515 rt61pci_bbp_read(rt2x00dev, 3, &r3);
516 rt61pci_bbp_read(rt2x00dev, 4, &r4);
517 rt61pci_bbp_read(rt2x00dev, 77, &r77);
519 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
520 rt2x00_rf(&rt2x00dev->chip, RF5325));
523 * Configure the RX antenna.
525 switch (ant->rx) {
526 case ANTENNA_HW_DIVERSITY:
527 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
528 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
529 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
530 break;
531 case ANTENNA_A:
532 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
533 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
534 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
535 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
536 else
537 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
538 break;
539 case ANTENNA_B:
540 default:
541 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
542 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
543 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
544 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
545 else
546 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
547 break;
550 rt61pci_bbp_write(rt2x00dev, 77, r77);
551 rt61pci_bbp_write(rt2x00dev, 3, r3);
552 rt61pci_bbp_write(rt2x00dev, 4, r4);
555 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
556 struct antenna_setup *ant)
558 u8 r3;
559 u8 r4;
560 u8 r77;
562 rt61pci_bbp_read(rt2x00dev, 3, &r3);
563 rt61pci_bbp_read(rt2x00dev, 4, &r4);
564 rt61pci_bbp_read(rt2x00dev, 77, &r77);
566 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
567 rt2x00_rf(&rt2x00dev->chip, RF2529));
568 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
569 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
572 * Configure the RX antenna.
574 switch (ant->rx) {
575 case ANTENNA_HW_DIVERSITY:
576 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
577 break;
578 case ANTENNA_A:
579 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
580 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
581 break;
582 case ANTENNA_B:
583 default:
584 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
585 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
586 break;
589 rt61pci_bbp_write(rt2x00dev, 77, r77);
590 rt61pci_bbp_write(rt2x00dev, 3, r3);
591 rt61pci_bbp_write(rt2x00dev, 4, r4);
594 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
595 const int p1, const int p2)
597 u32 reg;
599 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
601 rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
602 rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
604 rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
605 rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
607 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
610 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
611 struct antenna_setup *ant)
613 u8 r3;
614 u8 r4;
615 u8 r77;
617 rt61pci_bbp_read(rt2x00dev, 3, &r3);
618 rt61pci_bbp_read(rt2x00dev, 4, &r4);
619 rt61pci_bbp_read(rt2x00dev, 77, &r77);
622 * Configure the RX antenna.
624 switch (ant->rx) {
625 case ANTENNA_A:
626 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
627 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
628 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
629 break;
630 case ANTENNA_HW_DIVERSITY:
632 * FIXME: Antenna selection for the rf 2529 is very confusing
633 * in the legacy driver. Just default to antenna B until the
634 * legacy code can be properly translated into rt2x00 code.
636 case ANTENNA_B:
637 default:
638 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
639 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
640 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
641 break;
644 rt61pci_bbp_write(rt2x00dev, 77, r77);
645 rt61pci_bbp_write(rt2x00dev, 3, r3);
646 rt61pci_bbp_write(rt2x00dev, 4, r4);
649 struct antenna_sel {
650 u8 word;
652 * value[0] -> non-LNA
653 * value[1] -> LNA
655 u8 value[2];
658 static const struct antenna_sel antenna_sel_a[] = {
659 { 96, { 0x58, 0x78 } },
660 { 104, { 0x38, 0x48 } },
661 { 75, { 0xfe, 0x80 } },
662 { 86, { 0xfe, 0x80 } },
663 { 88, { 0xfe, 0x80 } },
664 { 35, { 0x60, 0x60 } },
665 { 97, { 0x58, 0x58 } },
666 { 98, { 0x58, 0x58 } },
669 static const struct antenna_sel antenna_sel_bg[] = {
670 { 96, { 0x48, 0x68 } },
671 { 104, { 0x2c, 0x3c } },
672 { 75, { 0xfe, 0x80 } },
673 { 86, { 0xfe, 0x80 } },
674 { 88, { 0xfe, 0x80 } },
675 { 35, { 0x50, 0x50 } },
676 { 97, { 0x48, 0x48 } },
677 { 98, { 0x48, 0x48 } },
680 static void rt61pci_config_antenna(struct rt2x00_dev *rt2x00dev,
681 struct antenna_setup *ant)
683 const struct antenna_sel *sel;
684 unsigned int lna;
685 unsigned int i;
686 u32 reg;
689 * We should never come here because rt2x00lib is supposed
690 * to catch this and send us the correct antenna explicitely.
692 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
693 ant->tx == ANTENNA_SW_DIVERSITY);
695 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
696 sel = antenna_sel_a;
697 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
698 } else {
699 sel = antenna_sel_bg;
700 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
703 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
704 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
706 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
708 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
709 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
710 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
711 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
713 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
715 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
716 rt2x00_rf(&rt2x00dev->chip, RF5325))
717 rt61pci_config_antenna_5x(rt2x00dev, ant);
718 else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
719 rt61pci_config_antenna_2x(rt2x00dev, ant);
720 else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
721 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
722 rt61pci_config_antenna_2x(rt2x00dev, ant);
723 else
724 rt61pci_config_antenna_2529(rt2x00dev, ant);
728 static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
729 struct rt2x00lib_conf *libconf)
731 u32 reg;
733 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
734 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, libconf->slot_time);
735 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
737 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
738 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, libconf->sifs);
739 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
740 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, libconf->eifs);
741 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
743 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
744 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
745 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
747 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
748 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
749 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
751 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
752 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
753 libconf->conf->beacon_int * 16);
754 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
757 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
758 struct rt2x00lib_conf *libconf,
759 const unsigned int flags)
761 if (flags & CONFIG_UPDATE_PHYMODE)
762 rt61pci_config_phymode(rt2x00dev, libconf->basic_rates);
763 if (flags & CONFIG_UPDATE_CHANNEL)
764 rt61pci_config_channel(rt2x00dev, &libconf->rf,
765 libconf->conf->power_level);
766 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
767 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
768 if (flags & CONFIG_UPDATE_ANTENNA)
769 rt61pci_config_antenna(rt2x00dev, &libconf->ant);
770 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
771 rt61pci_config_duration(rt2x00dev, libconf);
775 * Link tuning
777 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
778 struct link_qual *qual)
780 u32 reg;
783 * Update FCS error count from register.
785 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
786 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
789 * Update False CCA count from register.
791 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
792 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
795 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
797 rt61pci_bbp_write(rt2x00dev, 17, 0x20);
798 rt2x00dev->link.vgc_level = 0x20;
801 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
803 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
804 u8 r17;
805 u8 up_bound;
806 u8 low_bound;
808 rt61pci_bbp_read(rt2x00dev, 17, &r17);
811 * Determine r17 bounds.
813 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
814 low_bound = 0x28;
815 up_bound = 0x48;
816 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
817 low_bound += 0x10;
818 up_bound += 0x10;
820 } else {
821 low_bound = 0x20;
822 up_bound = 0x40;
823 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
824 low_bound += 0x10;
825 up_bound += 0x10;
830 * If we are not associated, we should go straight to the
831 * dynamic CCA tuning.
833 if (!rt2x00dev->intf_associated)
834 goto dynamic_cca_tune;
837 * Special big-R17 for very short distance
839 if (rssi >= -35) {
840 if (r17 != 0x60)
841 rt61pci_bbp_write(rt2x00dev, 17, 0x60);
842 return;
846 * Special big-R17 for short distance
848 if (rssi >= -58) {
849 if (r17 != up_bound)
850 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
851 return;
855 * Special big-R17 for middle-short distance
857 if (rssi >= -66) {
858 low_bound += 0x10;
859 if (r17 != low_bound)
860 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
861 return;
865 * Special mid-R17 for middle distance
867 if (rssi >= -74) {
868 low_bound += 0x08;
869 if (r17 != low_bound)
870 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
871 return;
875 * Special case: Change up_bound based on the rssi.
876 * Lower up_bound when rssi is weaker then -74 dBm.
878 up_bound -= 2 * (-74 - rssi);
879 if (low_bound > up_bound)
880 up_bound = low_bound;
882 if (r17 > up_bound) {
883 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
884 return;
887 dynamic_cca_tune:
890 * r17 does not yet exceed upper limit, continue and base
891 * the r17 tuning on the false CCA count.
893 if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
894 if (++r17 > up_bound)
895 r17 = up_bound;
896 rt61pci_bbp_write(rt2x00dev, 17, r17);
897 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
898 if (--r17 < low_bound)
899 r17 = low_bound;
900 rt61pci_bbp_write(rt2x00dev, 17, r17);
905 * Firmware functions
907 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
909 char *fw_name;
911 switch (rt2x00dev->chip.rt) {
912 case RT2561:
913 fw_name = FIRMWARE_RT2561;
914 break;
915 case RT2561s:
916 fw_name = FIRMWARE_RT2561s;
917 break;
918 case RT2661:
919 fw_name = FIRMWARE_RT2661;
920 break;
921 default:
922 fw_name = NULL;
923 break;
926 return fw_name;
929 static u16 rt61pci_get_firmware_crc(void *data, const size_t len)
931 u16 crc;
934 * Use the crc itu-t algorithm.
935 * The last 2 bytes in the firmware array are the crc checksum itself,
936 * this means that we should never pass those 2 bytes to the crc
937 * algorithm.
939 crc = crc_itu_t(0, data, len - 2);
940 crc = crc_itu_t_byte(crc, 0);
941 crc = crc_itu_t_byte(crc, 0);
943 return crc;
946 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, void *data,
947 const size_t len)
949 int i;
950 u32 reg;
953 * Wait for stable hardware.
955 for (i = 0; i < 100; i++) {
956 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
957 if (reg)
958 break;
959 msleep(1);
962 if (!reg) {
963 ERROR(rt2x00dev, "Unstable hardware.\n");
964 return -EBUSY;
968 * Prepare MCU and mailbox for firmware loading.
970 reg = 0;
971 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
972 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
973 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
974 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
975 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
978 * Write firmware to device.
980 reg = 0;
981 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
982 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
983 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
985 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
986 data, len);
988 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
989 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
991 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
992 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
994 for (i = 0; i < 100; i++) {
995 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
996 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
997 break;
998 msleep(1);
1001 if (i == 100) {
1002 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1003 return -EBUSY;
1007 * Reset MAC and BBP registers.
1009 reg = 0;
1010 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1011 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1012 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1014 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1015 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1016 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1017 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1019 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1020 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1021 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1023 return 0;
1027 * Initialization functions.
1029 static void rt61pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
1030 struct queue_entry *entry)
1032 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1033 u32 word;
1035 rt2x00_desc_read(entry_priv->desc, 5, &word);
1036 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1037 entry_priv->data_dma);
1038 rt2x00_desc_write(entry_priv->desc, 5, word);
1040 rt2x00_desc_read(entry_priv->desc, 0, &word);
1041 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1042 rt2x00_desc_write(entry_priv->desc, 0, word);
1045 static void rt61pci_init_txentry(struct rt2x00_dev *rt2x00dev,
1046 struct queue_entry *entry)
1048 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1049 u32 word;
1051 rt2x00_desc_read(entry_priv->desc, 0, &word);
1052 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1053 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1054 rt2x00_desc_write(entry_priv->desc, 0, word);
1057 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1059 struct queue_entry_priv_pci *entry_priv;
1060 u32 reg;
1063 * Initialize registers.
1065 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1066 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1067 rt2x00dev->tx[0].limit);
1068 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1069 rt2x00dev->tx[1].limit);
1070 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1071 rt2x00dev->tx[2].limit);
1072 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1073 rt2x00dev->tx[3].limit);
1074 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1076 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1077 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1078 rt2x00dev->tx[0].desc_size / 4);
1079 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1081 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1082 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1083 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1084 entry_priv->desc_dma);
1085 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1087 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1088 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1089 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1090 entry_priv->desc_dma);
1091 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1093 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1094 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1095 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1096 entry_priv->desc_dma);
1097 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1099 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1100 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1101 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1102 entry_priv->desc_dma);
1103 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1105 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1106 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1107 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1108 rt2x00dev->rx->desc_size / 4);
1109 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1110 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1112 entry_priv = rt2x00dev->rx->entries[0].priv_data;
1113 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1114 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1115 entry_priv->desc_dma);
1116 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1118 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1119 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1120 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1121 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1122 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1123 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1125 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1126 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1127 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1128 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1129 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1130 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1132 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1133 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1134 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1136 return 0;
1139 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1141 u32 reg;
1143 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1144 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1145 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1146 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1147 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1149 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1150 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1151 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1152 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1153 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1154 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1155 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1156 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1157 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1158 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1161 * CCK TXD BBP registers
1163 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1164 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1165 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1166 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1167 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1168 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1169 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1170 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1171 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1172 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1175 * OFDM TXD BBP registers
1177 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1178 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1179 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1180 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1181 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1182 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1183 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1184 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1186 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1187 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1188 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1189 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1190 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1191 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1193 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1194 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1195 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1196 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1197 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1198 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1200 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1202 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1204 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1205 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1206 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1208 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1210 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1211 return -EBUSY;
1213 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1216 * Invalidate all Shared Keys (SEC_CSR0),
1217 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1219 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1220 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1221 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1223 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1224 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1225 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1226 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1228 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1230 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1232 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1234 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
1235 rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC0_TX_OP, 0);
1236 rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC1_TX_OP, 0);
1237 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
1239 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
1240 rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC2_TX_OP, 192);
1241 rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC3_TX_OP, 48);
1242 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
1245 * Clear all beacons
1246 * For the Beacon base registers we only need to clear
1247 * the first byte since that byte contains the VALID and OWNER
1248 * bits which (when set to 0) will invalidate the entire beacon.
1250 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1251 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1252 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1253 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1256 * We must clear the error counters.
1257 * These registers are cleared on read,
1258 * so we may pass a useless variable to store the value.
1260 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1261 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1262 rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1265 * Reset MAC and BBP registers.
1267 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1268 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1269 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1270 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1272 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1273 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1274 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1275 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1277 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1278 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1279 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1281 return 0;
1284 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1286 unsigned int i;
1287 u8 value;
1289 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1290 rt61pci_bbp_read(rt2x00dev, 0, &value);
1291 if ((value != 0xff) && (value != 0x00))
1292 return 0;
1293 udelay(REGISTER_BUSY_DELAY);
1296 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1297 return -EACCES;
1300 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1302 unsigned int i;
1303 u16 eeprom;
1304 u8 reg_id;
1305 u8 value;
1307 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1308 return -EACCES;
1310 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1311 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1312 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1313 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1314 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1315 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1316 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1317 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1318 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1319 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1320 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1321 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1322 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1323 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1324 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1325 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1326 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1327 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1328 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1329 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1330 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1331 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1332 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1333 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1335 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1336 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1338 if (eeprom != 0xffff && eeprom != 0x0000) {
1339 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1340 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1341 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1345 return 0;
1349 * Device state switch handlers.
1351 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1352 enum dev_state state)
1354 u32 reg;
1356 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1357 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1358 (state == STATE_RADIO_RX_OFF) ||
1359 (state == STATE_RADIO_RX_OFF_LINK));
1360 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1363 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1364 enum dev_state state)
1366 int mask = (state == STATE_RADIO_IRQ_OFF);
1367 u32 reg;
1370 * When interrupts are being enabled, the interrupt registers
1371 * should clear the register to assure a clean state.
1373 if (state == STATE_RADIO_IRQ_ON) {
1374 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1375 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1377 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1378 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1382 * Only toggle the interrupts bits we are going to use.
1383 * Non-checked interrupt bits are disabled by default.
1385 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1386 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1387 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1388 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1389 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1390 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1392 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1393 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1394 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1395 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1396 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1397 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1398 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1399 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1400 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1401 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1404 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1406 u32 reg;
1409 * Initialize all registers.
1411 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1412 rt61pci_init_registers(rt2x00dev) ||
1413 rt61pci_init_bbp(rt2x00dev)))
1414 return -EIO;
1417 * Enable RX.
1419 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1420 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1421 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1423 return 0;
1426 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1428 u32 reg;
1430 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1433 * Disable synchronisation.
1435 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1438 * Cancel RX and TX.
1440 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1441 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1442 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1443 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1444 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1445 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1448 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1450 u32 reg;
1451 unsigned int i;
1452 char put_to_sleep;
1454 put_to_sleep = (state != STATE_AWAKE);
1456 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1457 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1458 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1459 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1462 * Device is not guaranteed to be in the requested state yet.
1463 * We must wait until the register indicates that the
1464 * device has entered the correct state.
1466 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1467 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1468 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1469 if (state == !put_to_sleep)
1470 return 0;
1471 msleep(10);
1474 return -EBUSY;
1477 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1478 enum dev_state state)
1480 int retval = 0;
1482 switch (state) {
1483 case STATE_RADIO_ON:
1484 retval = rt61pci_enable_radio(rt2x00dev);
1485 break;
1486 case STATE_RADIO_OFF:
1487 rt61pci_disable_radio(rt2x00dev);
1488 break;
1489 case STATE_RADIO_RX_ON:
1490 case STATE_RADIO_RX_ON_LINK:
1491 case STATE_RADIO_RX_OFF:
1492 case STATE_RADIO_RX_OFF_LINK:
1493 rt61pci_toggle_rx(rt2x00dev, state);
1494 break;
1495 case STATE_RADIO_IRQ_ON:
1496 case STATE_RADIO_IRQ_OFF:
1497 rt61pci_toggle_irq(rt2x00dev, state);
1498 break;
1499 case STATE_DEEP_SLEEP:
1500 case STATE_SLEEP:
1501 case STATE_STANDBY:
1502 case STATE_AWAKE:
1503 retval = rt61pci_set_state(rt2x00dev, state);
1504 break;
1505 default:
1506 retval = -ENOTSUPP;
1507 break;
1510 if (unlikely(retval))
1511 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1512 state, retval);
1514 return retval;
1518 * TX descriptor initialization
1520 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1521 struct sk_buff *skb,
1522 struct txentry_desc *txdesc)
1524 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1525 struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1526 __le32 *txd = skbdesc->desc;
1527 u32 word;
1530 * Start writing the descriptor words.
1532 rt2x00_desc_read(txd, 1, &word);
1533 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1534 rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1535 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1536 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1537 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1538 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1);
1539 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1540 rt2x00_desc_write(txd, 1, word);
1542 rt2x00_desc_read(txd, 2, &word);
1543 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1544 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1545 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1546 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1547 rt2x00_desc_write(txd, 2, word);
1549 rt2x00_desc_read(txd, 5, &word);
1550 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1551 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1552 skbdesc->entry->entry_idx);
1553 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1554 TXPOWER_TO_DEV(rt2x00dev->tx_power));
1555 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1556 rt2x00_desc_write(txd, 5, word);
1558 rt2x00_desc_read(txd, 6, &word);
1559 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1560 entry_priv->data_dma);
1561 rt2x00_desc_write(txd, 6, word);
1563 if (skbdesc->desc_len > TXINFO_SIZE) {
1564 rt2x00_desc_read(txd, 11, &word);
1565 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skbdesc->data_len);
1566 rt2x00_desc_write(txd, 11, word);
1569 rt2x00_desc_read(txd, 0, &word);
1570 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1571 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1572 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1573 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1574 rt2x00_set_field32(&word, TXD_W0_ACK,
1575 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1576 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1577 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1578 rt2x00_set_field32(&word, TXD_W0_OFDM,
1579 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1580 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1581 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1582 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1583 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 0);
1584 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1585 rt2x00_set_field32(&word, TXD_W0_BURST,
1586 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1587 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1588 rt2x00_desc_write(txd, 0, word);
1592 * TX data initialization
1594 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1595 const enum data_queue_qid queue)
1597 u32 reg;
1599 if (queue == QID_BEACON) {
1601 * For Wi-Fi faily generated beacons between participating
1602 * stations. Set TBTT phase adaptive adjustment step to 8us.
1604 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1606 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1607 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1608 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1609 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1610 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1611 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1613 return;
1616 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1617 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1618 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1619 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1620 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1621 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1625 * RX control handlers
1627 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1629 u16 eeprom;
1630 u8 offset;
1631 u8 lna;
1633 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1634 switch (lna) {
1635 case 3:
1636 offset = 90;
1637 break;
1638 case 2:
1639 offset = 74;
1640 break;
1641 case 1:
1642 offset = 64;
1643 break;
1644 default:
1645 return 0;
1648 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1649 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
1650 offset += 14;
1652 if (lna == 3 || lna == 2)
1653 offset += 10;
1655 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
1656 offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
1657 } else {
1658 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
1659 offset += 14;
1661 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
1662 offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
1665 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1668 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1669 struct rxdone_entry_desc *rxdesc)
1671 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1672 u32 word0;
1673 u32 word1;
1675 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1676 rt2x00_desc_read(entry_priv->desc, 1, &word1);
1678 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1679 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1682 * Obtain the status about this packet.
1683 * When frame was received with an OFDM bitrate,
1684 * the signal is the PLCP value. If it was received with
1685 * a CCK bitrate the signal is the rate in 100kbit/s.
1687 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1688 rxdesc->rssi = rt61pci_agc_to_rssi(entry->queue->rt2x00dev, word1);
1689 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1691 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1692 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1693 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1694 rxdesc->dev_flags |= RXDONE_MY_BSS;
1698 * Interrupt functions.
1700 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
1702 struct data_queue *queue;
1703 struct queue_entry *entry;
1704 struct queue_entry *entry_done;
1705 struct queue_entry_priv_pci *entry_priv;
1706 struct txdone_entry_desc txdesc;
1707 u32 word;
1708 u32 reg;
1709 u32 old_reg;
1710 int type;
1711 int index;
1714 * During each loop we will compare the freshly read
1715 * STA_CSR4 register value with the value read from
1716 * the previous loop. If the 2 values are equal then
1717 * we should stop processing because the chance it
1718 * quite big that the device has been unplugged and
1719 * we risk going into an endless loop.
1721 old_reg = 0;
1723 while (1) {
1724 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
1725 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
1726 break;
1728 if (old_reg == reg)
1729 break;
1730 old_reg = reg;
1733 * Skip this entry when it contains an invalid
1734 * queue identication number.
1736 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
1737 queue = rt2x00queue_get_queue(rt2x00dev, type);
1738 if (unlikely(!queue))
1739 continue;
1742 * Skip this entry when it contains an invalid
1743 * index number.
1745 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
1746 if (unlikely(index >= queue->limit))
1747 continue;
1749 entry = &queue->entries[index];
1750 entry_priv = entry->priv_data;
1751 rt2x00_desc_read(entry_priv->desc, 0, &word);
1753 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1754 !rt2x00_get_field32(word, TXD_W0_VALID))
1755 return;
1757 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1758 while (entry != entry_done) {
1759 /* Catch up.
1760 * Just report any entries we missed as failed.
1762 WARNING(rt2x00dev,
1763 "TX status report missed for entry %d\n",
1764 entry_done->entry_idx);
1766 txdesc.flags = 0;
1767 __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
1768 txdesc.retry = 0;
1770 rt2x00pci_txdone(rt2x00dev, entry_done, &txdesc);
1771 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1775 * Obtain the status about this packet.
1777 txdesc.flags = 0;
1778 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
1779 case 0: /* Success, maybe with retry */
1780 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1781 break;
1782 case 6: /* Failure, excessive retries */
1783 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1784 /* Don't break, this is a failed frame! */
1785 default: /* Failure */
1786 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1788 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
1790 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1794 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
1796 struct rt2x00_dev *rt2x00dev = dev_instance;
1797 u32 reg_mcu;
1798 u32 reg;
1801 * Get the interrupt sources & saved to local variable.
1802 * Write register value back to clear pending interrupts.
1804 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
1805 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
1807 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1808 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1810 if (!reg && !reg_mcu)
1811 return IRQ_NONE;
1813 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1814 return IRQ_HANDLED;
1817 * Handle interrupts, walk through all bits
1818 * and run the tasks, the bits are checked in order of
1819 * priority.
1823 * 1 - Rx ring done interrupt.
1825 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
1826 rt2x00pci_rxdone(rt2x00dev);
1829 * 2 - Tx ring done interrupt.
1831 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
1832 rt61pci_txdone(rt2x00dev);
1835 * 3 - Handle MCU command done.
1837 if (reg_mcu)
1838 rt2x00pci_register_write(rt2x00dev,
1839 M2H_CMD_DONE_CSR, 0xffffffff);
1841 return IRQ_HANDLED;
1845 * Device probe functions.
1847 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1849 struct eeprom_93cx6 eeprom;
1850 u32 reg;
1851 u16 word;
1852 u8 *mac;
1853 s8 value;
1855 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
1857 eeprom.data = rt2x00dev;
1858 eeprom.register_read = rt61pci_eepromregister_read;
1859 eeprom.register_write = rt61pci_eepromregister_write;
1860 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
1861 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1862 eeprom.reg_data_in = 0;
1863 eeprom.reg_data_out = 0;
1864 eeprom.reg_data_clock = 0;
1865 eeprom.reg_chip_select = 0;
1867 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1868 EEPROM_SIZE / sizeof(u16));
1871 * Start validation of the data that has been read.
1873 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1874 if (!is_valid_ether_addr(mac)) {
1875 DECLARE_MAC_BUF(macbuf);
1877 random_ether_addr(mac);
1878 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1881 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1882 if (word == 0xffff) {
1883 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1884 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1885 ANTENNA_B);
1886 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1887 ANTENNA_B);
1888 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1889 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1890 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1891 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
1892 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1893 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1896 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1897 if (word == 0xffff) {
1898 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
1899 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
1900 rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
1901 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
1902 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1903 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
1904 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1905 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1908 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1909 if (word == 0xffff) {
1910 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1911 LED_MODE_DEFAULT);
1912 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1913 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1916 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1917 if (word == 0xffff) {
1918 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1919 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1920 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1921 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1924 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1925 if (word == 0xffff) {
1926 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1927 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1928 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1929 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1930 } else {
1931 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1932 if (value < -10 || value > 10)
1933 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1934 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1935 if (value < -10 || value > 10)
1936 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1937 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1940 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1941 if (word == 0xffff) {
1942 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1943 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1944 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1945 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1946 } else {
1947 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1948 if (value < -10 || value > 10)
1949 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1950 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1951 if (value < -10 || value > 10)
1952 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1953 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1956 return 0;
1959 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1961 u32 reg;
1962 u16 value;
1963 u16 eeprom;
1964 u16 device;
1967 * Read EEPROM word for configuration.
1969 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1972 * Identify RF chipset.
1973 * To determine the RT chip we have to read the
1974 * PCI header of the device.
1976 pci_read_config_word(rt2x00dev_pci(rt2x00dev),
1977 PCI_CONFIG_HEADER_DEVICE, &device);
1978 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1979 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1980 rt2x00_set_chip(rt2x00dev, device, value, reg);
1982 if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
1983 !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
1984 !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
1985 !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
1986 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1987 return -ENODEV;
1991 * Determine number of antenna's.
1993 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
1994 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
1997 * Identify default antenna configuration.
1999 rt2x00dev->default_ant.tx =
2000 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2001 rt2x00dev->default_ant.rx =
2002 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2005 * Read the Frame type.
2007 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2008 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2011 * Detect if this device has an hardware controlled radio.
2013 #ifdef CONFIG_RT61PCI_RFKILL
2014 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2015 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2016 #endif /* CONFIG_RT61PCI_RFKILL */
2019 * Read frequency offset and RF programming sequence.
2021 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2022 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2023 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2025 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2028 * Read external LNA informations.
2030 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2032 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2033 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2034 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2035 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2038 * When working with a RF2529 chip without double antenna
2039 * the antenna settings should be gathered from the NIC
2040 * eeprom word.
2042 if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2043 !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2044 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
2045 case 0:
2046 rt2x00dev->default_ant.tx = ANTENNA_B;
2047 rt2x00dev->default_ant.rx = ANTENNA_A;
2048 break;
2049 case 1:
2050 rt2x00dev->default_ant.tx = ANTENNA_B;
2051 rt2x00dev->default_ant.rx = ANTENNA_B;
2052 break;
2053 case 2:
2054 rt2x00dev->default_ant.tx = ANTENNA_A;
2055 rt2x00dev->default_ant.rx = ANTENNA_A;
2056 break;
2057 case 3:
2058 rt2x00dev->default_ant.tx = ANTENNA_A;
2059 rt2x00dev->default_ant.rx = ANTENNA_B;
2060 break;
2063 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2064 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2065 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2066 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2070 * Store led settings, for correct led behaviour.
2071 * If the eeprom value is invalid,
2072 * switch to default led mode.
2074 #ifdef CONFIG_RT61PCI_LEDS
2075 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2076 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2078 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2079 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2080 if (value == LED_MODE_SIGNAL_STRENGTH)
2081 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2082 LED_TYPE_QUALITY);
2084 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2085 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2086 rt2x00_get_field16(eeprom,
2087 EEPROM_LED_POLARITY_GPIO_0));
2088 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2089 rt2x00_get_field16(eeprom,
2090 EEPROM_LED_POLARITY_GPIO_1));
2091 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2092 rt2x00_get_field16(eeprom,
2093 EEPROM_LED_POLARITY_GPIO_2));
2094 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2095 rt2x00_get_field16(eeprom,
2096 EEPROM_LED_POLARITY_GPIO_3));
2097 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2098 rt2x00_get_field16(eeprom,
2099 EEPROM_LED_POLARITY_GPIO_4));
2100 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2101 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2102 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2103 rt2x00_get_field16(eeprom,
2104 EEPROM_LED_POLARITY_RDY_G));
2105 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2106 rt2x00_get_field16(eeprom,
2107 EEPROM_LED_POLARITY_RDY_A));
2108 #endif /* CONFIG_RT61PCI_LEDS */
2110 return 0;
2114 * RF value list for RF5225 & RF5325
2115 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2117 static const struct rf_channel rf_vals_noseq[] = {
2118 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2119 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2120 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2121 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2122 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2123 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2124 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2125 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2126 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2127 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2128 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2129 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2130 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2131 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2133 /* 802.11 UNI / HyperLan 2 */
2134 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2135 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2136 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2137 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2138 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2139 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2140 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2141 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2143 /* 802.11 HyperLan 2 */
2144 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2145 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2146 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2147 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2148 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2149 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2150 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2151 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2152 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2153 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2155 /* 802.11 UNII */
2156 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2157 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2158 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2159 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2160 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2161 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2163 /* MMAC(Japan)J52 ch 34,38,42,46 */
2164 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2165 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2166 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2167 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2171 * RF value list for RF5225 & RF5325
2172 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2174 static const struct rf_channel rf_vals_seq[] = {
2175 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2176 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2177 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2178 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2179 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2180 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2181 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2182 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2183 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2184 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2185 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2186 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2187 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2188 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2190 /* 802.11 UNI / HyperLan 2 */
2191 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2192 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2193 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2194 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2195 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2196 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2197 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2198 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2200 /* 802.11 HyperLan 2 */
2201 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2202 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2203 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2204 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2205 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2206 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2207 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2208 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2209 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2210 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2212 /* 802.11 UNII */
2213 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2214 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2215 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2216 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2217 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2218 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2220 /* MMAC(Japan)J52 ch 34,38,42,46 */
2221 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2222 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2223 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2224 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2227 static void rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2229 struct hw_mode_spec *spec = &rt2x00dev->spec;
2230 u8 *txpower;
2231 unsigned int i;
2234 * Initialize all hw fields.
2236 rt2x00dev->hw->flags =
2237 IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
2238 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2239 IEEE80211_HW_SIGNAL_DBM;
2240 rt2x00dev->hw->extra_tx_headroom = 0;
2242 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
2243 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2244 rt2x00_eeprom_addr(rt2x00dev,
2245 EEPROM_MAC_ADDR_0));
2248 * Convert tx_power array in eeprom.
2250 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2251 for (i = 0; i < 14; i++)
2252 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
2255 * Initialize hw_mode information.
2257 spec->supported_bands = SUPPORT_BAND_2GHZ;
2258 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2259 spec->tx_power_a = NULL;
2260 spec->tx_power_bg = txpower;
2261 spec->tx_power_default = DEFAULT_TXPOWER;
2263 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2264 spec->num_channels = 14;
2265 spec->channels = rf_vals_noseq;
2266 } else {
2267 spec->num_channels = 14;
2268 spec->channels = rf_vals_seq;
2271 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2272 rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2273 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2274 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2276 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2277 for (i = 0; i < 14; i++)
2278 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
2280 spec->tx_power_a = txpower;
2284 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2286 int retval;
2289 * Allocate eeprom data.
2291 retval = rt61pci_validate_eeprom(rt2x00dev);
2292 if (retval)
2293 return retval;
2295 retval = rt61pci_init_eeprom(rt2x00dev);
2296 if (retval)
2297 return retval;
2300 * Initialize hw specifications.
2302 rt61pci_probe_hw_mode(rt2x00dev);
2305 * This device requires firmware.
2307 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2310 * Set the rssi offset.
2312 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2314 return 0;
2318 * IEEE80211 stack callback functions.
2320 static int rt61pci_set_retry_limit(struct ieee80211_hw *hw,
2321 u32 short_retry, u32 long_retry)
2323 struct rt2x00_dev *rt2x00dev = hw->priv;
2324 u32 reg;
2326 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
2327 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry);
2328 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry);
2329 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
2331 return 0;
2334 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2336 struct rt2x00_dev *rt2x00dev = hw->priv;
2337 u64 tsf;
2338 u32 reg;
2340 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2341 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2342 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2343 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2345 return tsf;
2348 static int rt61pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb)
2350 struct rt2x00_dev *rt2x00dev = hw->priv;
2351 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2352 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
2353 struct queue_entry_priv_pci *entry_priv;
2354 struct skb_frame_desc *skbdesc;
2355 struct txentry_desc txdesc;
2356 unsigned int beacon_base;
2357 u32 reg;
2359 if (unlikely(!intf->beacon))
2360 return -ENOBUFS;
2363 * Copy all TX descriptor information into txdesc,
2364 * after that we are free to use the skb->cb array
2365 * for our information.
2367 intf->beacon->skb = skb;
2368 rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
2370 entry_priv = intf->beacon->priv_data;
2371 memset(entry_priv->desc, 0, intf->beacon->queue->desc_size);
2374 * Fill in skb descriptor
2376 skbdesc = get_skb_frame_desc(skb);
2377 memset(skbdesc, 0, sizeof(*skbdesc));
2378 skbdesc->data = skb->data;
2379 skbdesc->data_len = skb->len;
2380 skbdesc->desc = entry_priv->desc;
2381 skbdesc->desc_len = intf->beacon->queue->desc_size;
2382 skbdesc->entry = intf->beacon;
2385 * Disable beaconing while we are reloading the beacon data,
2386 * otherwise we might be sending out invalid data.
2388 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
2389 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
2390 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
2391 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
2392 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2395 * Write entire beacon with descriptor to register,
2396 * and kick the beacon generator.
2398 rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
2399 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
2400 rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
2401 skbdesc->desc, skbdesc->desc_len);
2402 rt2x00pci_register_multiwrite(rt2x00dev,
2403 beacon_base + skbdesc->desc_len,
2404 skbdesc->data, skbdesc->data_len);
2405 rt61pci_kick_tx_queue(rt2x00dev, QID_BEACON);
2407 return 0;
2410 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2411 .tx = rt2x00mac_tx,
2412 .start = rt2x00mac_start,
2413 .stop = rt2x00mac_stop,
2414 .add_interface = rt2x00mac_add_interface,
2415 .remove_interface = rt2x00mac_remove_interface,
2416 .config = rt2x00mac_config,
2417 .config_interface = rt2x00mac_config_interface,
2418 .configure_filter = rt2x00mac_configure_filter,
2419 .get_stats = rt2x00mac_get_stats,
2420 .set_retry_limit = rt61pci_set_retry_limit,
2421 .bss_info_changed = rt2x00mac_bss_info_changed,
2422 .conf_tx = rt2x00mac_conf_tx,
2423 .get_tx_stats = rt2x00mac_get_tx_stats,
2424 .get_tsf = rt61pci_get_tsf,
2425 .beacon_update = rt61pci_beacon_update,
2428 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2429 .irq_handler = rt61pci_interrupt,
2430 .probe_hw = rt61pci_probe_hw,
2431 .get_firmware_name = rt61pci_get_firmware_name,
2432 .get_firmware_crc = rt61pci_get_firmware_crc,
2433 .load_firmware = rt61pci_load_firmware,
2434 .initialize = rt2x00pci_initialize,
2435 .uninitialize = rt2x00pci_uninitialize,
2436 .init_rxentry = rt61pci_init_rxentry,
2437 .init_txentry = rt61pci_init_txentry,
2438 .set_device_state = rt61pci_set_device_state,
2439 .rfkill_poll = rt61pci_rfkill_poll,
2440 .link_stats = rt61pci_link_stats,
2441 .reset_tuner = rt61pci_reset_tuner,
2442 .link_tuner = rt61pci_link_tuner,
2443 .write_tx_desc = rt61pci_write_tx_desc,
2444 .write_tx_data = rt2x00pci_write_tx_data,
2445 .kick_tx_queue = rt61pci_kick_tx_queue,
2446 .fill_rxdone = rt61pci_fill_rxdone,
2447 .config_filter = rt61pci_config_filter,
2448 .config_intf = rt61pci_config_intf,
2449 .config_erp = rt61pci_config_erp,
2450 .config = rt61pci_config,
2453 static const struct data_queue_desc rt61pci_queue_rx = {
2454 .entry_num = RX_ENTRIES,
2455 .data_size = DATA_FRAME_SIZE,
2456 .desc_size = RXD_DESC_SIZE,
2457 .priv_size = sizeof(struct queue_entry_priv_pci),
2460 static const struct data_queue_desc rt61pci_queue_tx = {
2461 .entry_num = TX_ENTRIES,
2462 .data_size = DATA_FRAME_SIZE,
2463 .desc_size = TXD_DESC_SIZE,
2464 .priv_size = sizeof(struct queue_entry_priv_pci),
2467 static const struct data_queue_desc rt61pci_queue_bcn = {
2468 .entry_num = 4 * BEACON_ENTRIES,
2469 .data_size = 0, /* No DMA required for beacons */
2470 .desc_size = TXINFO_SIZE,
2471 .priv_size = sizeof(struct queue_entry_priv_pci),
2474 static const struct rt2x00_ops rt61pci_ops = {
2475 .name = KBUILD_MODNAME,
2476 .max_sta_intf = 1,
2477 .max_ap_intf = 4,
2478 .eeprom_size = EEPROM_SIZE,
2479 .rf_size = RF_SIZE,
2480 .tx_queues = NUM_TX_QUEUES,
2481 .rx = &rt61pci_queue_rx,
2482 .tx = &rt61pci_queue_tx,
2483 .bcn = &rt61pci_queue_bcn,
2484 .lib = &rt61pci_rt2x00_ops,
2485 .hw = &rt61pci_mac80211_ops,
2486 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2487 .debugfs = &rt61pci_rt2x00debug,
2488 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2492 * RT61pci module information.
2494 static struct pci_device_id rt61pci_device_table[] = {
2495 /* RT2561s */
2496 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2497 /* RT2561 v2 */
2498 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2499 /* RT2661 */
2500 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2501 { 0, }
2504 MODULE_AUTHOR(DRV_PROJECT);
2505 MODULE_VERSION(DRV_VERSION);
2506 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2507 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2508 "PCI & PCMCIA chipset based cards");
2509 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2510 MODULE_FIRMWARE(FIRMWARE_RT2561);
2511 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2512 MODULE_FIRMWARE(FIRMWARE_RT2661);
2513 MODULE_LICENSE("GPL");
2515 static struct pci_driver rt61pci_driver = {
2516 .name = KBUILD_MODNAME,
2517 .id_table = rt61pci_device_table,
2518 .probe = rt2x00pci_probe,
2519 .remove = __devexit_p(rt2x00pci_remove),
2520 .suspend = rt2x00pci_suspend,
2521 .resume = rt2x00pci_resume,
2524 static int __init rt61pci_init(void)
2526 return pci_register_driver(&rt61pci_driver);
2529 static void __exit rt61pci_exit(void)
2531 pci_unregister_driver(&rt61pci_driver);
2534 module_init(rt61pci_init);
2535 module_exit(rt61pci_exit);