2 * Memory merging support.
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
7 * Copyright (C) 2008-2009 Red Hat, Inc.
14 * This work is licensed under the terms of the GNU GPL, version 2.
17 #include <linux/errno.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
43 #include <asm/tlbflush.h>
48 #define DO_NUMA(x) do { (x); } while (0)
51 #define DO_NUMA(x) do { } while (0)
55 * A few notes about the KSM scanning process,
56 * to make it easier to understand the data structures below:
58 * In order to reduce excessive scanning, KSM sorts the memory pages by their
59 * contents into a data structure that holds pointers to the pages' locations.
61 * Since the contents of the pages may change at any moment, KSM cannot just
62 * insert the pages into a normal sorted tree and expect it to find anything.
63 * Therefore KSM uses two data structures - the stable and the unstable tree.
65 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66 * by their contents. Because each such page is write-protected, searching on
67 * this tree is fully assured to be working (except when pages are unmapped),
68 * and therefore this tree is called the stable tree.
70 * In addition to the stable tree, KSM uses a second data structure called the
71 * unstable tree: this tree holds pointers to pages which have been found to
72 * be "unchanged for a period of time". The unstable tree sorts these pages
73 * by their contents, but since they are not write-protected, KSM cannot rely
74 * upon the unstable tree to work correctly - the unstable tree is liable to
75 * be corrupted as its contents are modified, and so it is called unstable.
77 * KSM solves this problem by several techniques:
79 * 1) The unstable tree is flushed every time KSM completes scanning all
80 * memory areas, and then the tree is rebuilt again from the beginning.
81 * 2) KSM will only insert into the unstable tree, pages whose hash value
82 * has not changed since the previous scan of all memory areas.
83 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84 * colors of the nodes and not on their contents, assuring that even when
85 * the tree gets "corrupted" it won't get out of balance, so scanning time
86 * remains the same (also, searching and inserting nodes in an rbtree uses
87 * the same algorithm, so we have no overhead when we flush and rebuild).
88 * 4) KSM never flushes the stable tree, which means that even if it were to
89 * take 10 attempts to find a page in the unstable tree, once it is found,
90 * it is secured in the stable tree. (When we scan a new page, we first
91 * compare it against the stable tree, and then against the unstable tree.)
93 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94 * stable trees and multiple unstable trees: one of each for each NUMA node.
98 * struct mm_slot - ksm information per mm that is being scanned
99 * @link: link to the mm_slots hash list
100 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
101 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
102 * @mm: the mm that this information is valid for
105 struct hlist_node link
;
106 struct list_head mm_list
;
107 struct rmap_item
*rmap_list
;
108 struct mm_struct
*mm
;
112 * struct ksm_scan - cursor for scanning
113 * @mm_slot: the current mm_slot we are scanning
114 * @address: the next address inside that to be scanned
115 * @rmap_list: link to the next rmap to be scanned in the rmap_list
116 * @seqnr: count of completed full scans (needed when removing unstable node)
118 * There is only the one ksm_scan instance of this cursor structure.
121 struct mm_slot
*mm_slot
;
122 unsigned long address
;
123 struct rmap_item
**rmap_list
;
128 * struct stable_node - node of the stable rbtree
129 * @node: rb node of this ksm page in the stable tree
130 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
131 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
132 * @list: linked into migrate_nodes, pending placement in the proper node tree
133 * @hlist: hlist head of rmap_items using this ksm page
134 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
135 * @chain_prune_time: time of the last full garbage collection
136 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
137 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
141 struct rb_node node
; /* when node of stable tree */
142 struct { /* when listed for migration */
143 struct list_head
*head
;
145 struct hlist_node hlist_dup
;
146 struct list_head list
;
150 struct hlist_head hlist
;
153 unsigned long chain_prune_time
;
156 * STABLE_NODE_CHAIN can be any negative number in
157 * rmap_hlist_len negative range, but better not -1 to be able
158 * to reliably detect underflows.
160 #define STABLE_NODE_CHAIN -1024
168 * struct rmap_item - reverse mapping item for virtual addresses
169 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
170 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
171 * @nid: NUMA node id of unstable tree in which linked (may not match page)
172 * @mm: the memory structure this rmap_item is pointing into
173 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
174 * @oldchecksum: previous checksum of the page at that virtual address
175 * @node: rb node of this rmap_item in the unstable tree
176 * @head: pointer to stable_node heading this list in the stable tree
177 * @hlist: link into hlist of rmap_items hanging off that stable_node
180 struct rmap_item
*rmap_list
;
182 struct anon_vma
*anon_vma
; /* when stable */
184 int nid
; /* when node of unstable tree */
187 struct mm_struct
*mm
;
188 unsigned long address
; /* + low bits used for flags below */
189 unsigned int oldchecksum
; /* when unstable */
191 struct rb_node node
; /* when node of unstable tree */
192 struct { /* when listed from stable tree */
193 struct stable_node
*head
;
194 struct hlist_node hlist
;
199 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
200 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
201 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
203 /* The stable and unstable tree heads */
204 static struct rb_root one_stable_tree
[1] = { RB_ROOT
};
205 static struct rb_root one_unstable_tree
[1] = { RB_ROOT
};
206 static struct rb_root
*root_stable_tree
= one_stable_tree
;
207 static struct rb_root
*root_unstable_tree
= one_unstable_tree
;
209 /* Recently migrated nodes of stable tree, pending proper placement */
210 static LIST_HEAD(migrate_nodes
);
211 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
213 #define MM_SLOTS_HASH_BITS 10
214 static DEFINE_HASHTABLE(mm_slots_hash
, MM_SLOTS_HASH_BITS
);
216 static struct mm_slot ksm_mm_head
= {
217 .mm_list
= LIST_HEAD_INIT(ksm_mm_head
.mm_list
),
219 static struct ksm_scan ksm_scan
= {
220 .mm_slot
= &ksm_mm_head
,
223 static struct kmem_cache
*rmap_item_cache
;
224 static struct kmem_cache
*stable_node_cache
;
225 static struct kmem_cache
*mm_slot_cache
;
227 /* The number of nodes in the stable tree */
228 static unsigned long ksm_pages_shared
;
230 /* The number of page slots additionally sharing those nodes */
231 static unsigned long ksm_pages_sharing
;
233 /* The number of nodes in the unstable tree */
234 static unsigned long ksm_pages_unshared
;
236 /* The number of rmap_items in use: to calculate pages_volatile */
237 static unsigned long ksm_rmap_items
;
239 /* The number of stable_node chains */
240 static unsigned long ksm_stable_node_chains
;
242 /* The number of stable_node dups linked to the stable_node chains */
243 static unsigned long ksm_stable_node_dups
;
245 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
246 static int ksm_stable_node_chains_prune_millisecs
= 2000;
248 /* Maximum number of page slots sharing a stable node */
249 static int ksm_max_page_sharing
= 256;
251 /* Number of pages ksmd should scan in one batch */
252 static unsigned int ksm_thread_pages_to_scan
= 100;
254 /* Milliseconds ksmd should sleep between batches */
255 static unsigned int ksm_thread_sleep_millisecs
= 20;
257 /* Checksum of an empty (zeroed) page */
258 static unsigned int zero_checksum __read_mostly
;
260 /* Whether to merge empty (zeroed) pages with actual zero pages */
261 static bool ksm_use_zero_pages __read_mostly
;
264 /* Zeroed when merging across nodes is not allowed */
265 static unsigned int ksm_merge_across_nodes
= 1;
266 static int ksm_nr_node_ids
= 1;
268 #define ksm_merge_across_nodes 1U
269 #define ksm_nr_node_ids 1
272 #define KSM_RUN_STOP 0
273 #define KSM_RUN_MERGE 1
274 #define KSM_RUN_UNMERGE 2
275 #define KSM_RUN_OFFLINE 4
276 static unsigned long ksm_run
= KSM_RUN_STOP
;
277 static void wait_while_offlining(void);
279 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait
);
280 static DEFINE_MUTEX(ksm_thread_mutex
);
281 static DEFINE_SPINLOCK(ksm_mmlist_lock
);
283 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
284 sizeof(struct __struct), __alignof__(struct __struct),\
287 static int __init
ksm_slab_init(void)
289 rmap_item_cache
= KSM_KMEM_CACHE(rmap_item
, 0);
290 if (!rmap_item_cache
)
293 stable_node_cache
= KSM_KMEM_CACHE(stable_node
, 0);
294 if (!stable_node_cache
)
297 mm_slot_cache
= KSM_KMEM_CACHE(mm_slot
, 0);
304 kmem_cache_destroy(stable_node_cache
);
306 kmem_cache_destroy(rmap_item_cache
);
311 static void __init
ksm_slab_free(void)
313 kmem_cache_destroy(mm_slot_cache
);
314 kmem_cache_destroy(stable_node_cache
);
315 kmem_cache_destroy(rmap_item_cache
);
316 mm_slot_cache
= NULL
;
319 static __always_inline
bool is_stable_node_chain(struct stable_node
*chain
)
321 return chain
->rmap_hlist_len
== STABLE_NODE_CHAIN
;
324 static __always_inline
bool is_stable_node_dup(struct stable_node
*dup
)
326 return dup
->head
== STABLE_NODE_DUP_HEAD
;
329 static inline void stable_node_chain_add_dup(struct stable_node
*dup
,
330 struct stable_node
*chain
)
332 VM_BUG_ON(is_stable_node_dup(dup
));
333 dup
->head
= STABLE_NODE_DUP_HEAD
;
334 VM_BUG_ON(!is_stable_node_chain(chain
));
335 hlist_add_head(&dup
->hlist_dup
, &chain
->hlist
);
336 ksm_stable_node_dups
++;
339 static inline void __stable_node_dup_del(struct stable_node
*dup
)
341 VM_BUG_ON(!is_stable_node_dup(dup
));
342 hlist_del(&dup
->hlist_dup
);
343 ksm_stable_node_dups
--;
346 static inline void stable_node_dup_del(struct stable_node
*dup
)
348 VM_BUG_ON(is_stable_node_chain(dup
));
349 if (is_stable_node_dup(dup
))
350 __stable_node_dup_del(dup
);
352 rb_erase(&dup
->node
, root_stable_tree
+ NUMA(dup
->nid
));
353 #ifdef CONFIG_DEBUG_VM
358 static inline struct rmap_item
*alloc_rmap_item(void)
360 struct rmap_item
*rmap_item
;
362 rmap_item
= kmem_cache_zalloc(rmap_item_cache
, GFP_KERNEL
|
363 __GFP_NORETRY
| __GFP_NOWARN
);
369 static inline void free_rmap_item(struct rmap_item
*rmap_item
)
372 rmap_item
->mm
= NULL
; /* debug safety */
373 kmem_cache_free(rmap_item_cache
, rmap_item
);
376 static inline struct stable_node
*alloc_stable_node(void)
379 * The allocation can take too long with GFP_KERNEL when memory is under
380 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
381 * grants access to memory reserves, helping to avoid this problem.
383 return kmem_cache_alloc(stable_node_cache
, GFP_KERNEL
| __GFP_HIGH
);
386 static inline void free_stable_node(struct stable_node
*stable_node
)
388 VM_BUG_ON(stable_node
->rmap_hlist_len
&&
389 !is_stable_node_chain(stable_node
));
390 kmem_cache_free(stable_node_cache
, stable_node
);
393 static inline struct mm_slot
*alloc_mm_slot(void)
395 if (!mm_slot_cache
) /* initialization failed */
397 return kmem_cache_zalloc(mm_slot_cache
, GFP_KERNEL
);
400 static inline void free_mm_slot(struct mm_slot
*mm_slot
)
402 kmem_cache_free(mm_slot_cache
, mm_slot
);
405 static struct mm_slot
*get_mm_slot(struct mm_struct
*mm
)
407 struct mm_slot
*slot
;
409 hash_for_each_possible(mm_slots_hash
, slot
, link
, (unsigned long)mm
)
416 static void insert_to_mm_slots_hash(struct mm_struct
*mm
,
417 struct mm_slot
*mm_slot
)
420 hash_add(mm_slots_hash
, &mm_slot
->link
, (unsigned long)mm
);
424 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
425 * page tables after it has passed through ksm_exit() - which, if necessary,
426 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
427 * a special flag: they can just back out as soon as mm_users goes to zero.
428 * ksm_test_exit() is used throughout to make this test for exit: in some
429 * places for correctness, in some places just to avoid unnecessary work.
431 static inline bool ksm_test_exit(struct mm_struct
*mm
)
433 return atomic_read(&mm
->mm_users
) == 0;
437 * We use break_ksm to break COW on a ksm page: it's a stripped down
439 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
442 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
443 * in case the application has unmapped and remapped mm,addr meanwhile.
444 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
445 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
447 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
448 * of the process that owns 'vma'. We also do not want to enforce
449 * protection keys here anyway.
451 static int break_ksm(struct vm_area_struct
*vma
, unsigned long addr
)
458 page
= follow_page(vma
, addr
,
459 FOLL_GET
| FOLL_MIGRATION
| FOLL_REMOTE
);
460 if (IS_ERR_OR_NULL(page
))
463 ret
= handle_mm_fault(vma
, addr
,
464 FAULT_FLAG_WRITE
| FAULT_FLAG_REMOTE
);
466 ret
= VM_FAULT_WRITE
;
468 } while (!(ret
& (VM_FAULT_WRITE
| VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
| VM_FAULT_OOM
)));
470 * We must loop because handle_mm_fault() may back out if there's
471 * any difficulty e.g. if pte accessed bit gets updated concurrently.
473 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
474 * COW has been broken, even if the vma does not permit VM_WRITE;
475 * but note that a concurrent fault might break PageKsm for us.
477 * VM_FAULT_SIGBUS could occur if we race with truncation of the
478 * backing file, which also invalidates anonymous pages: that's
479 * okay, that truncation will have unmapped the PageKsm for us.
481 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
482 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
483 * current task has TIF_MEMDIE set, and will be OOM killed on return
484 * to user; and ksmd, having no mm, would never be chosen for that.
486 * But if the mm is in a limited mem_cgroup, then the fault may fail
487 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
488 * even ksmd can fail in this way - though it's usually breaking ksm
489 * just to undo a merge it made a moment before, so unlikely to oom.
491 * That's a pity: we might therefore have more kernel pages allocated
492 * than we're counting as nodes in the stable tree; but ksm_do_scan
493 * will retry to break_cow on each pass, so should recover the page
494 * in due course. The important thing is to not let VM_MERGEABLE
495 * be cleared while any such pages might remain in the area.
497 return (ret
& VM_FAULT_OOM
) ? -ENOMEM
: 0;
500 static struct vm_area_struct
*find_mergeable_vma(struct mm_struct
*mm
,
503 struct vm_area_struct
*vma
;
504 if (ksm_test_exit(mm
))
506 vma
= find_vma(mm
, addr
);
507 if (!vma
|| vma
->vm_start
> addr
)
509 if (!(vma
->vm_flags
& VM_MERGEABLE
) || !vma
->anon_vma
)
514 static void break_cow(struct rmap_item
*rmap_item
)
516 struct mm_struct
*mm
= rmap_item
->mm
;
517 unsigned long addr
= rmap_item
->address
;
518 struct vm_area_struct
*vma
;
521 * It is not an accident that whenever we want to break COW
522 * to undo, we also need to drop a reference to the anon_vma.
524 put_anon_vma(rmap_item
->anon_vma
);
526 down_read(&mm
->mmap_sem
);
527 vma
= find_mergeable_vma(mm
, addr
);
529 break_ksm(vma
, addr
);
530 up_read(&mm
->mmap_sem
);
533 static struct page
*get_mergeable_page(struct rmap_item
*rmap_item
)
535 struct mm_struct
*mm
= rmap_item
->mm
;
536 unsigned long addr
= rmap_item
->address
;
537 struct vm_area_struct
*vma
;
540 down_read(&mm
->mmap_sem
);
541 vma
= find_mergeable_vma(mm
, addr
);
545 page
= follow_page(vma
, addr
, FOLL_GET
);
546 if (IS_ERR_OR_NULL(page
))
548 if (PageAnon(page
)) {
549 flush_anon_page(vma
, page
, addr
);
550 flush_dcache_page(page
);
556 up_read(&mm
->mmap_sem
);
561 * This helper is used for getting right index into array of tree roots.
562 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
563 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
564 * every node has its own stable and unstable tree.
566 static inline int get_kpfn_nid(unsigned long kpfn
)
568 return ksm_merge_across_nodes
? 0 : NUMA(pfn_to_nid(kpfn
));
571 static struct stable_node
*alloc_stable_node_chain(struct stable_node
*dup
,
572 struct rb_root
*root
)
574 struct stable_node
*chain
= alloc_stable_node();
575 VM_BUG_ON(is_stable_node_chain(dup
));
577 INIT_HLIST_HEAD(&chain
->hlist
);
578 chain
->chain_prune_time
= jiffies
;
579 chain
->rmap_hlist_len
= STABLE_NODE_CHAIN
;
580 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
581 chain
->nid
= -1; /* debug */
583 ksm_stable_node_chains
++;
586 * Put the stable node chain in the first dimension of
587 * the stable tree and at the same time remove the old
590 rb_replace_node(&dup
->node
, &chain
->node
, root
);
593 * Move the old stable node to the second dimension
594 * queued in the hlist_dup. The invariant is that all
595 * dup stable_nodes in the chain->hlist point to pages
596 * that are wrprotected and have the exact same
599 stable_node_chain_add_dup(dup
, chain
);
604 static inline void free_stable_node_chain(struct stable_node
*chain
,
605 struct rb_root
*root
)
607 rb_erase(&chain
->node
, root
);
608 free_stable_node(chain
);
609 ksm_stable_node_chains
--;
612 static void remove_node_from_stable_tree(struct stable_node
*stable_node
)
614 struct rmap_item
*rmap_item
;
616 /* check it's not STABLE_NODE_CHAIN or negative */
617 BUG_ON(stable_node
->rmap_hlist_len
< 0);
619 hlist_for_each_entry(rmap_item
, &stable_node
->hlist
, hlist
) {
620 if (rmap_item
->hlist
.next
)
624 VM_BUG_ON(stable_node
->rmap_hlist_len
<= 0);
625 stable_node
->rmap_hlist_len
--;
626 put_anon_vma(rmap_item
->anon_vma
);
627 rmap_item
->address
&= PAGE_MASK
;
632 * We need the second aligned pointer of the migrate_nodes
633 * list_head to stay clear from the rb_parent_color union
634 * (aligned and different than any node) and also different
635 * from &migrate_nodes. This will verify that future list.h changes
636 * don't break STABLE_NODE_DUP_HEAD.
638 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */
639 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD
<= &migrate_nodes
);
640 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD
>= &migrate_nodes
+ 1);
643 if (stable_node
->head
== &migrate_nodes
)
644 list_del(&stable_node
->list
);
646 stable_node_dup_del(stable_node
);
647 free_stable_node(stable_node
);
651 * get_ksm_page: checks if the page indicated by the stable node
652 * is still its ksm page, despite having held no reference to it.
653 * In which case we can trust the content of the page, and it
654 * returns the gotten page; but if the page has now been zapped,
655 * remove the stale node from the stable tree and return NULL.
656 * But beware, the stable node's page might be being migrated.
658 * You would expect the stable_node to hold a reference to the ksm page.
659 * But if it increments the page's count, swapping out has to wait for
660 * ksmd to come around again before it can free the page, which may take
661 * seconds or even minutes: much too unresponsive. So instead we use a
662 * "keyhole reference": access to the ksm page from the stable node peeps
663 * out through its keyhole to see if that page still holds the right key,
664 * pointing back to this stable node. This relies on freeing a PageAnon
665 * page to reset its page->mapping to NULL, and relies on no other use of
666 * a page to put something that might look like our key in page->mapping.
667 * is on its way to being freed; but it is an anomaly to bear in mind.
669 static struct page
*get_ksm_page(struct stable_node
*stable_node
, bool lock_it
)
672 void *expected_mapping
;
675 expected_mapping
= (void *)((unsigned long)stable_node
|
678 kpfn
= READ_ONCE(stable_node
->kpfn
);
679 page
= pfn_to_page(kpfn
);
682 * page is computed from kpfn, so on most architectures reading
683 * page->mapping is naturally ordered after reading node->kpfn,
684 * but on Alpha we need to be more careful.
686 smp_read_barrier_depends();
687 if (READ_ONCE(page
->mapping
) != expected_mapping
)
691 * We cannot do anything with the page while its refcount is 0.
692 * Usually 0 means free, or tail of a higher-order page: in which
693 * case this node is no longer referenced, and should be freed;
694 * however, it might mean that the page is under page_freeze_refs().
695 * The __remove_mapping() case is easy, again the node is now stale;
696 * but if page is swapcache in migrate_page_move_mapping(), it might
697 * still be our page, in which case it's essential to keep the node.
699 while (!get_page_unless_zero(page
)) {
701 * Another check for page->mapping != expected_mapping would
702 * work here too. We have chosen the !PageSwapCache test to
703 * optimize the common case, when the page is or is about to
704 * be freed: PageSwapCache is cleared (under spin_lock_irq)
705 * in the freeze_refs section of __remove_mapping(); but Anon
706 * page->mapping reset to NULL later, in free_pages_prepare().
708 if (!PageSwapCache(page
))
713 if (READ_ONCE(page
->mapping
) != expected_mapping
) {
720 if (READ_ONCE(page
->mapping
) != expected_mapping
) {
730 * We come here from above when page->mapping or !PageSwapCache
731 * suggests that the node is stale; but it might be under migration.
732 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
733 * before checking whether node->kpfn has been changed.
736 if (READ_ONCE(stable_node
->kpfn
) != kpfn
)
738 remove_node_from_stable_tree(stable_node
);
743 * Removing rmap_item from stable or unstable tree.
744 * This function will clean the information from the stable/unstable tree.
746 static void remove_rmap_item_from_tree(struct rmap_item
*rmap_item
)
748 if (rmap_item
->address
& STABLE_FLAG
) {
749 struct stable_node
*stable_node
;
752 stable_node
= rmap_item
->head
;
753 page
= get_ksm_page(stable_node
, true);
757 hlist_del(&rmap_item
->hlist
);
761 if (!hlist_empty(&stable_node
->hlist
))
765 VM_BUG_ON(stable_node
->rmap_hlist_len
<= 0);
766 stable_node
->rmap_hlist_len
--;
768 put_anon_vma(rmap_item
->anon_vma
);
769 rmap_item
->address
&= PAGE_MASK
;
771 } else if (rmap_item
->address
& UNSTABLE_FLAG
) {
774 * Usually ksmd can and must skip the rb_erase, because
775 * root_unstable_tree was already reset to RB_ROOT.
776 * But be careful when an mm is exiting: do the rb_erase
777 * if this rmap_item was inserted by this scan, rather
778 * than left over from before.
780 age
= (unsigned char)(ksm_scan
.seqnr
- rmap_item
->address
);
783 rb_erase(&rmap_item
->node
,
784 root_unstable_tree
+ NUMA(rmap_item
->nid
));
785 ksm_pages_unshared
--;
786 rmap_item
->address
&= PAGE_MASK
;
789 cond_resched(); /* we're called from many long loops */
792 static void remove_trailing_rmap_items(struct mm_slot
*mm_slot
,
793 struct rmap_item
**rmap_list
)
796 struct rmap_item
*rmap_item
= *rmap_list
;
797 *rmap_list
= rmap_item
->rmap_list
;
798 remove_rmap_item_from_tree(rmap_item
);
799 free_rmap_item(rmap_item
);
804 * Though it's very tempting to unmerge rmap_items from stable tree rather
805 * than check every pte of a given vma, the locking doesn't quite work for
806 * that - an rmap_item is assigned to the stable tree after inserting ksm
807 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
808 * rmap_items from parent to child at fork time (so as not to waste time
809 * if exit comes before the next scan reaches it).
811 * Similarly, although we'd like to remove rmap_items (so updating counts
812 * and freeing memory) when unmerging an area, it's easier to leave that
813 * to the next pass of ksmd - consider, for example, how ksmd might be
814 * in cmp_and_merge_page on one of the rmap_items we would be removing.
816 static int unmerge_ksm_pages(struct vm_area_struct
*vma
,
817 unsigned long start
, unsigned long end
)
822 for (addr
= start
; addr
< end
&& !err
; addr
+= PAGE_SIZE
) {
823 if (ksm_test_exit(vma
->vm_mm
))
825 if (signal_pending(current
))
828 err
= break_ksm(vma
, addr
);
835 * Only called through the sysfs control interface:
837 static int remove_stable_node(struct stable_node
*stable_node
)
842 page
= get_ksm_page(stable_node
, true);
845 * get_ksm_page did remove_node_from_stable_tree itself.
850 if (WARN_ON_ONCE(page_mapped(page
))) {
852 * This should not happen: but if it does, just refuse to let
853 * merge_across_nodes be switched - there is no need to panic.
858 * The stable node did not yet appear stale to get_ksm_page(),
859 * since that allows for an unmapped ksm page to be recognized
860 * right up until it is freed; but the node is safe to remove.
861 * This page might be in a pagevec waiting to be freed,
862 * or it might be PageSwapCache (perhaps under writeback),
863 * or it might have been removed from swapcache a moment ago.
865 set_page_stable_node(page
, NULL
);
866 remove_node_from_stable_tree(stable_node
);
875 static int remove_stable_node_chain(struct stable_node
*stable_node
,
876 struct rb_root
*root
)
878 struct stable_node
*dup
;
879 struct hlist_node
*hlist_safe
;
881 if (!is_stable_node_chain(stable_node
)) {
882 VM_BUG_ON(is_stable_node_dup(stable_node
));
883 if (remove_stable_node(stable_node
))
889 hlist_for_each_entry_safe(dup
, hlist_safe
,
890 &stable_node
->hlist
, hlist_dup
) {
891 VM_BUG_ON(!is_stable_node_dup(dup
));
892 if (remove_stable_node(dup
))
895 BUG_ON(!hlist_empty(&stable_node
->hlist
));
896 free_stable_node_chain(stable_node
, root
);
900 static int remove_all_stable_nodes(void)
902 struct stable_node
*stable_node
, *next
;
906 for (nid
= 0; nid
< ksm_nr_node_ids
; nid
++) {
907 while (root_stable_tree
[nid
].rb_node
) {
908 stable_node
= rb_entry(root_stable_tree
[nid
].rb_node
,
909 struct stable_node
, node
);
910 if (remove_stable_node_chain(stable_node
,
911 root_stable_tree
+ nid
)) {
913 break; /* proceed to next nid */
918 list_for_each_entry_safe(stable_node
, next
, &migrate_nodes
, list
) {
919 if (remove_stable_node(stable_node
))
926 static int unmerge_and_remove_all_rmap_items(void)
928 struct mm_slot
*mm_slot
;
929 struct mm_struct
*mm
;
930 struct vm_area_struct
*vma
;
933 spin_lock(&ksm_mmlist_lock
);
934 ksm_scan
.mm_slot
= list_entry(ksm_mm_head
.mm_list
.next
,
935 struct mm_slot
, mm_list
);
936 spin_unlock(&ksm_mmlist_lock
);
938 for (mm_slot
= ksm_scan
.mm_slot
;
939 mm_slot
!= &ksm_mm_head
; mm_slot
= ksm_scan
.mm_slot
) {
941 down_read(&mm
->mmap_sem
);
942 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
943 if (ksm_test_exit(mm
))
945 if (!(vma
->vm_flags
& VM_MERGEABLE
) || !vma
->anon_vma
)
947 err
= unmerge_ksm_pages(vma
,
948 vma
->vm_start
, vma
->vm_end
);
953 remove_trailing_rmap_items(mm_slot
, &mm_slot
->rmap_list
);
954 up_read(&mm
->mmap_sem
);
956 spin_lock(&ksm_mmlist_lock
);
957 ksm_scan
.mm_slot
= list_entry(mm_slot
->mm_list
.next
,
958 struct mm_slot
, mm_list
);
959 if (ksm_test_exit(mm
)) {
960 hash_del(&mm_slot
->link
);
961 list_del(&mm_slot
->mm_list
);
962 spin_unlock(&ksm_mmlist_lock
);
964 free_mm_slot(mm_slot
);
965 clear_bit(MMF_VM_MERGEABLE
, &mm
->flags
);
968 spin_unlock(&ksm_mmlist_lock
);
971 /* Clean up stable nodes, but don't worry if some are still busy */
972 remove_all_stable_nodes();
977 up_read(&mm
->mmap_sem
);
978 spin_lock(&ksm_mmlist_lock
);
979 ksm_scan
.mm_slot
= &ksm_mm_head
;
980 spin_unlock(&ksm_mmlist_lock
);
983 #endif /* CONFIG_SYSFS */
985 static u32
calc_checksum(struct page
*page
)
988 void *addr
= kmap_atomic(page
);
989 checksum
= jhash2(addr
, PAGE_SIZE
/ 4, 17);
994 static int memcmp_pages(struct page
*page1
, struct page
*page2
)
999 addr1
= kmap_atomic(page1
);
1000 addr2
= kmap_atomic(page2
);
1001 ret
= memcmp(addr1
, addr2
, PAGE_SIZE
);
1002 kunmap_atomic(addr2
);
1003 kunmap_atomic(addr1
);
1007 static inline int pages_identical(struct page
*page1
, struct page
*page2
)
1009 return !memcmp_pages(page1
, page2
);
1012 static int write_protect_page(struct vm_area_struct
*vma
, struct page
*page
,
1015 struct mm_struct
*mm
= vma
->vm_mm
;
1016 struct page_vma_mapped_walk pvmw
= {
1022 unsigned long mmun_start
; /* For mmu_notifiers */
1023 unsigned long mmun_end
; /* For mmu_notifiers */
1025 pvmw
.address
= page_address_in_vma(page
, vma
);
1026 if (pvmw
.address
== -EFAULT
)
1029 BUG_ON(PageTransCompound(page
));
1031 mmun_start
= pvmw
.address
;
1032 mmun_end
= pvmw
.address
+ PAGE_SIZE
;
1033 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1035 if (!page_vma_mapped_walk(&pvmw
))
1037 if (WARN_ONCE(!pvmw
.pte
, "Unexpected PMD mapping?"))
1040 if (pte_write(*pvmw
.pte
) || pte_dirty(*pvmw
.pte
) ||
1041 (pte_protnone(*pvmw
.pte
) && pte_savedwrite(*pvmw
.pte
)) ||
1042 mm_tlb_flush_pending(mm
)) {
1045 swapped
= PageSwapCache(page
);
1046 flush_cache_page(vma
, pvmw
.address
, page_to_pfn(page
));
1048 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1049 * take any lock, therefore the check that we are going to make
1050 * with the pagecount against the mapcount is racey and
1051 * O_DIRECT can happen right after the check.
1052 * So we clear the pte and flush the tlb before the check
1053 * this assure us that no O_DIRECT can happen after the check
1054 * or in the middle of the check.
1056 * No need to notify as we are downgrading page table to read
1057 * only not changing it to point to a new page.
1059 * See Documentation/vm/mmu_notifier.txt
1061 entry
= ptep_clear_flush(vma
, pvmw
.address
, pvmw
.pte
);
1063 * Check that no O_DIRECT or similar I/O is in progress on the
1066 if (page_mapcount(page
) + 1 + swapped
!= page_count(page
)) {
1067 set_pte_at(mm
, pvmw
.address
, pvmw
.pte
, entry
);
1070 if (pte_dirty(entry
))
1071 set_page_dirty(page
);
1073 if (pte_protnone(entry
))
1074 entry
= pte_mkclean(pte_clear_savedwrite(entry
));
1076 entry
= pte_mkclean(pte_wrprotect(entry
));
1077 set_pte_at_notify(mm
, pvmw
.address
, pvmw
.pte
, entry
);
1079 *orig_pte
= *pvmw
.pte
;
1083 page_vma_mapped_walk_done(&pvmw
);
1085 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1091 * replace_page - replace page in vma by new ksm page
1092 * @vma: vma that holds the pte pointing to page
1093 * @page: the page we are replacing by kpage
1094 * @kpage: the ksm page we replace page by
1095 * @orig_pte: the original value of the pte
1097 * Returns 0 on success, -EFAULT on failure.
1099 static int replace_page(struct vm_area_struct
*vma
, struct page
*page
,
1100 struct page
*kpage
, pte_t orig_pte
)
1102 struct mm_struct
*mm
= vma
->vm_mm
;
1109 unsigned long mmun_start
; /* For mmu_notifiers */
1110 unsigned long mmun_end
; /* For mmu_notifiers */
1112 addr
= page_address_in_vma(page
, vma
);
1113 if (addr
== -EFAULT
)
1116 pmd
= mm_find_pmd(mm
, addr
);
1121 mmun_end
= addr
+ PAGE_SIZE
;
1122 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1124 ptep
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1125 if (!pte_same(*ptep
, orig_pte
)) {
1126 pte_unmap_unlock(ptep
, ptl
);
1131 * No need to check ksm_use_zero_pages here: we can only have a
1132 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1134 if (!is_zero_pfn(page_to_pfn(kpage
))) {
1136 page_add_anon_rmap(kpage
, vma
, addr
, false);
1137 newpte
= mk_pte(kpage
, vma
->vm_page_prot
);
1139 newpte
= pte_mkspecial(pfn_pte(page_to_pfn(kpage
),
1140 vma
->vm_page_prot
));
1143 flush_cache_page(vma
, addr
, pte_pfn(*ptep
));
1145 * No need to notify as we are replacing a read only page with another
1146 * read only page with the same content.
1148 * See Documentation/vm/mmu_notifier.txt
1150 ptep_clear_flush(vma
, addr
, ptep
);
1151 set_pte_at_notify(mm
, addr
, ptep
, newpte
);
1153 page_remove_rmap(page
, false);
1154 if (!page_mapped(page
))
1155 try_to_free_swap(page
);
1158 pte_unmap_unlock(ptep
, ptl
);
1161 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1167 * try_to_merge_one_page - take two pages and merge them into one
1168 * @vma: the vma that holds the pte pointing to page
1169 * @page: the PageAnon page that we want to replace with kpage
1170 * @kpage: the PageKsm page that we want to map instead of page,
1171 * or NULL the first time when we want to use page as kpage.
1173 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1175 static int try_to_merge_one_page(struct vm_area_struct
*vma
,
1176 struct page
*page
, struct page
*kpage
)
1178 pte_t orig_pte
= __pte(0);
1181 if (page
== kpage
) /* ksm page forked */
1184 if (!PageAnon(page
))
1188 * We need the page lock to read a stable PageSwapCache in
1189 * write_protect_page(). We use trylock_page() instead of
1190 * lock_page() because we don't want to wait here - we
1191 * prefer to continue scanning and merging different pages,
1192 * then come back to this page when it is unlocked.
1194 if (!trylock_page(page
))
1197 if (PageTransCompound(page
)) {
1198 if (split_huge_page(page
))
1203 * If this anonymous page is mapped only here, its pte may need
1204 * to be write-protected. If it's mapped elsewhere, all of its
1205 * ptes are necessarily already write-protected. But in either
1206 * case, we need to lock and check page_count is not raised.
1208 if (write_protect_page(vma
, page
, &orig_pte
) == 0) {
1211 * While we hold page lock, upgrade page from
1212 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1213 * stable_tree_insert() will update stable_node.
1215 set_page_stable_node(page
, NULL
);
1216 mark_page_accessed(page
);
1218 * Page reclaim just frees a clean page with no dirty
1219 * ptes: make sure that the ksm page would be swapped.
1221 if (!PageDirty(page
))
1224 } else if (pages_identical(page
, kpage
))
1225 err
= replace_page(vma
, page
, kpage
, orig_pte
);
1228 if ((vma
->vm_flags
& VM_LOCKED
) && kpage
&& !err
) {
1229 munlock_vma_page(page
);
1230 if (!PageMlocked(kpage
)) {
1233 mlock_vma_page(kpage
);
1234 page
= kpage
; /* for final unlock */
1245 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1246 * but no new kernel page is allocated: kpage must already be a ksm page.
1248 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1250 static int try_to_merge_with_ksm_page(struct rmap_item
*rmap_item
,
1251 struct page
*page
, struct page
*kpage
)
1253 struct mm_struct
*mm
= rmap_item
->mm
;
1254 struct vm_area_struct
*vma
;
1257 down_read(&mm
->mmap_sem
);
1258 vma
= find_mergeable_vma(mm
, rmap_item
->address
);
1262 err
= try_to_merge_one_page(vma
, page
, kpage
);
1266 /* Unstable nid is in union with stable anon_vma: remove first */
1267 remove_rmap_item_from_tree(rmap_item
);
1269 /* Must get reference to anon_vma while still holding mmap_sem */
1270 rmap_item
->anon_vma
= vma
->anon_vma
;
1271 get_anon_vma(vma
->anon_vma
);
1273 up_read(&mm
->mmap_sem
);
1278 * try_to_merge_two_pages - take two identical pages and prepare them
1279 * to be merged into one page.
1281 * This function returns the kpage if we successfully merged two identical
1282 * pages into one ksm page, NULL otherwise.
1284 * Note that this function upgrades page to ksm page: if one of the pages
1285 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1287 static struct page
*try_to_merge_two_pages(struct rmap_item
*rmap_item
,
1289 struct rmap_item
*tree_rmap_item
,
1290 struct page
*tree_page
)
1294 err
= try_to_merge_with_ksm_page(rmap_item
, page
, NULL
);
1296 err
= try_to_merge_with_ksm_page(tree_rmap_item
,
1299 * If that fails, we have a ksm page with only one pte
1300 * pointing to it: so break it.
1303 break_cow(rmap_item
);
1305 return err
? NULL
: page
;
1308 static __always_inline
1309 bool __is_page_sharing_candidate(struct stable_node
*stable_node
, int offset
)
1311 VM_BUG_ON(stable_node
->rmap_hlist_len
< 0);
1313 * Check that at least one mapping still exists, otherwise
1314 * there's no much point to merge and share with this
1315 * stable_node, as the underlying tree_page of the other
1316 * sharer is going to be freed soon.
1318 return stable_node
->rmap_hlist_len
&&
1319 stable_node
->rmap_hlist_len
+ offset
< ksm_max_page_sharing
;
1322 static __always_inline
1323 bool is_page_sharing_candidate(struct stable_node
*stable_node
)
1325 return __is_page_sharing_candidate(stable_node
, 0);
1328 struct page
*stable_node_dup(struct stable_node
**_stable_node_dup
,
1329 struct stable_node
**_stable_node
,
1330 struct rb_root
*root
,
1331 bool prune_stale_stable_nodes
)
1333 struct stable_node
*dup
, *found
= NULL
, *stable_node
= *_stable_node
;
1334 struct hlist_node
*hlist_safe
;
1335 struct page
*_tree_page
, *tree_page
= NULL
;
1337 int found_rmap_hlist_len
;
1339 if (!prune_stale_stable_nodes
||
1340 time_before(jiffies
, stable_node
->chain_prune_time
+
1342 ksm_stable_node_chains_prune_millisecs
)))
1343 prune_stale_stable_nodes
= false;
1345 stable_node
->chain_prune_time
= jiffies
;
1347 hlist_for_each_entry_safe(dup
, hlist_safe
,
1348 &stable_node
->hlist
, hlist_dup
) {
1351 * We must walk all stable_node_dup to prune the stale
1352 * stable nodes during lookup.
1354 * get_ksm_page can drop the nodes from the
1355 * stable_node->hlist if they point to freed pages
1356 * (that's why we do a _safe walk). The "dup"
1357 * stable_node parameter itself will be freed from
1358 * under us if it returns NULL.
1360 _tree_page
= get_ksm_page(dup
, false);
1364 if (is_page_sharing_candidate(dup
)) {
1366 dup
->rmap_hlist_len
> found_rmap_hlist_len
) {
1368 put_page(tree_page
);
1370 found_rmap_hlist_len
= found
->rmap_hlist_len
;
1371 tree_page
= _tree_page
;
1373 /* skip put_page for found dup */
1374 if (!prune_stale_stable_nodes
)
1379 put_page(_tree_page
);
1384 * nr is counting all dups in the chain only if
1385 * prune_stale_stable_nodes is true, otherwise we may
1386 * break the loop at nr == 1 even if there are
1389 if (prune_stale_stable_nodes
&& nr
== 1) {
1391 * If there's not just one entry it would
1392 * corrupt memory, better BUG_ON. In KSM
1393 * context with no lock held it's not even
1396 BUG_ON(stable_node
->hlist
.first
->next
);
1399 * There's just one entry and it is below the
1400 * deduplication limit so drop the chain.
1402 rb_replace_node(&stable_node
->node
, &found
->node
,
1404 free_stable_node(stable_node
);
1405 ksm_stable_node_chains
--;
1406 ksm_stable_node_dups
--;
1408 * NOTE: the caller depends on the stable_node
1409 * to be equal to stable_node_dup if the chain
1412 *_stable_node
= found
;
1414 * Just for robustneess as stable_node is
1415 * otherwise left as a stable pointer, the
1416 * compiler shall optimize it away at build
1420 } else if (stable_node
->hlist
.first
!= &found
->hlist_dup
&&
1421 __is_page_sharing_candidate(found
, 1)) {
1423 * If the found stable_node dup can accept one
1424 * more future merge (in addition to the one
1425 * that is underway) and is not at the head of
1426 * the chain, put it there so next search will
1427 * be quicker in the !prune_stale_stable_nodes
1430 * NOTE: it would be inaccurate to use nr > 1
1431 * instead of checking the hlist.first pointer
1432 * directly, because in the
1433 * prune_stale_stable_nodes case "nr" isn't
1434 * the position of the found dup in the chain,
1435 * but the total number of dups in the chain.
1437 hlist_del(&found
->hlist_dup
);
1438 hlist_add_head(&found
->hlist_dup
,
1439 &stable_node
->hlist
);
1443 *_stable_node_dup
= found
;
1447 static struct stable_node
*stable_node_dup_any(struct stable_node
*stable_node
,
1448 struct rb_root
*root
)
1450 if (!is_stable_node_chain(stable_node
))
1452 if (hlist_empty(&stable_node
->hlist
)) {
1453 free_stable_node_chain(stable_node
, root
);
1456 return hlist_entry(stable_node
->hlist
.first
,
1457 typeof(*stable_node
), hlist_dup
);
1461 * Like for get_ksm_page, this function can free the *_stable_node and
1462 * *_stable_node_dup if the returned tree_page is NULL.
1464 * It can also free and overwrite *_stable_node with the found
1465 * stable_node_dup if the chain is collapsed (in which case
1466 * *_stable_node will be equal to *_stable_node_dup like if the chain
1467 * never existed). It's up to the caller to verify tree_page is not
1468 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1470 * *_stable_node_dup is really a second output parameter of this
1471 * function and will be overwritten in all cases, the caller doesn't
1472 * need to initialize it.
1474 static struct page
*__stable_node_chain(struct stable_node
**_stable_node_dup
,
1475 struct stable_node
**_stable_node
,
1476 struct rb_root
*root
,
1477 bool prune_stale_stable_nodes
)
1479 struct stable_node
*stable_node
= *_stable_node
;
1480 if (!is_stable_node_chain(stable_node
)) {
1481 if (is_page_sharing_candidate(stable_node
)) {
1482 *_stable_node_dup
= stable_node
;
1483 return get_ksm_page(stable_node
, false);
1486 * _stable_node_dup set to NULL means the stable_node
1487 * reached the ksm_max_page_sharing limit.
1489 *_stable_node_dup
= NULL
;
1492 return stable_node_dup(_stable_node_dup
, _stable_node
, root
,
1493 prune_stale_stable_nodes
);
1496 static __always_inline
struct page
*chain_prune(struct stable_node
**s_n_d
,
1497 struct stable_node
**s_n
,
1498 struct rb_root
*root
)
1500 return __stable_node_chain(s_n_d
, s_n
, root
, true);
1503 static __always_inline
struct page
*chain(struct stable_node
**s_n_d
,
1504 struct stable_node
*s_n
,
1505 struct rb_root
*root
)
1507 struct stable_node
*old_stable_node
= s_n
;
1508 struct page
*tree_page
;
1510 tree_page
= __stable_node_chain(s_n_d
, &s_n
, root
, false);
1511 /* not pruning dups so s_n cannot have changed */
1512 VM_BUG_ON(s_n
!= old_stable_node
);
1517 * stable_tree_search - search for page inside the stable tree
1519 * This function checks if there is a page inside the stable tree
1520 * with identical content to the page that we are scanning right now.
1522 * This function returns the stable tree node of identical content if found,
1525 static struct page
*stable_tree_search(struct page
*page
)
1528 struct rb_root
*root
;
1529 struct rb_node
**new;
1530 struct rb_node
*parent
;
1531 struct stable_node
*stable_node
, *stable_node_dup
, *stable_node_any
;
1532 struct stable_node
*page_node
;
1534 page_node
= page_stable_node(page
);
1535 if (page_node
&& page_node
->head
!= &migrate_nodes
) {
1536 /* ksm page forked */
1541 nid
= get_kpfn_nid(page_to_pfn(page
));
1542 root
= root_stable_tree
+ nid
;
1544 new = &root
->rb_node
;
1548 struct page
*tree_page
;
1552 stable_node
= rb_entry(*new, struct stable_node
, node
);
1553 stable_node_any
= NULL
;
1554 tree_page
= chain_prune(&stable_node_dup
, &stable_node
, root
);
1556 * NOTE: stable_node may have been freed by
1557 * chain_prune() if the returned stable_node_dup is
1558 * not NULL. stable_node_dup may have been inserted in
1559 * the rbtree instead as a regular stable_node (in
1560 * order to collapse the stable_node chain if a single
1561 * stable_node dup was found in it). In such case the
1562 * stable_node is overwritten by the calleee to point
1563 * to the stable_node_dup that was collapsed in the
1564 * stable rbtree and stable_node will be equal to
1565 * stable_node_dup like if the chain never existed.
1567 if (!stable_node_dup
) {
1569 * Either all stable_node dups were full in
1570 * this stable_node chain, or this chain was
1571 * empty and should be rb_erased.
1573 stable_node_any
= stable_node_dup_any(stable_node
,
1575 if (!stable_node_any
) {
1576 /* rb_erase just run */
1580 * Take any of the stable_node dups page of
1581 * this stable_node chain to let the tree walk
1582 * continue. All KSM pages belonging to the
1583 * stable_node dups in a stable_node chain
1584 * have the same content and they're
1585 * wrprotected at all times. Any will work
1586 * fine to continue the walk.
1588 tree_page
= get_ksm_page(stable_node_any
, false);
1590 VM_BUG_ON(!stable_node_dup
^ !!stable_node_any
);
1593 * If we walked over a stale stable_node,
1594 * get_ksm_page() will call rb_erase() and it
1595 * may rebalance the tree from under us. So
1596 * restart the search from scratch. Returning
1597 * NULL would be safe too, but we'd generate
1598 * false negative insertions just because some
1599 * stable_node was stale.
1604 ret
= memcmp_pages(page
, tree_page
);
1605 put_page(tree_page
);
1609 new = &parent
->rb_left
;
1611 new = &parent
->rb_right
;
1614 VM_BUG_ON(page_node
->head
!= &migrate_nodes
);
1616 * Test if the migrated page should be merged
1617 * into a stable node dup. If the mapcount is
1618 * 1 we can migrate it with another KSM page
1619 * without adding it to the chain.
1621 if (page_mapcount(page
) > 1)
1625 if (!stable_node_dup
) {
1627 * If the stable_node is a chain and
1628 * we got a payload match in memcmp
1629 * but we cannot merge the scanned
1630 * page in any of the existing
1631 * stable_node dups because they're
1632 * all full, we need to wait the
1633 * scanned page to find itself a match
1634 * in the unstable tree to create a
1635 * brand new KSM page to add later to
1636 * the dups of this stable_node.
1642 * Lock and unlock the stable_node's page (which
1643 * might already have been migrated) so that page
1644 * migration is sure to notice its raised count.
1645 * It would be more elegant to return stable_node
1646 * than kpage, but that involves more changes.
1648 tree_page
= get_ksm_page(stable_node_dup
, true);
1649 if (unlikely(!tree_page
))
1651 * The tree may have been rebalanced,
1652 * so re-evaluate parent and new.
1655 unlock_page(tree_page
);
1657 if (get_kpfn_nid(stable_node_dup
->kpfn
) !=
1658 NUMA(stable_node_dup
->nid
)) {
1659 put_page(tree_page
);
1669 list_del(&page_node
->list
);
1670 DO_NUMA(page_node
->nid
= nid
);
1671 rb_link_node(&page_node
->node
, parent
, new);
1672 rb_insert_color(&page_node
->node
, root
);
1674 if (is_page_sharing_candidate(page_node
)) {
1682 * If stable_node was a chain and chain_prune collapsed it,
1683 * stable_node has been updated to be the new regular
1684 * stable_node. A collapse of the chain is indistinguishable
1685 * from the case there was no chain in the stable
1686 * rbtree. Otherwise stable_node is the chain and
1687 * stable_node_dup is the dup to replace.
1689 if (stable_node_dup
== stable_node
) {
1690 VM_BUG_ON(is_stable_node_chain(stable_node_dup
));
1691 VM_BUG_ON(is_stable_node_dup(stable_node_dup
));
1692 /* there is no chain */
1694 VM_BUG_ON(page_node
->head
!= &migrate_nodes
);
1695 list_del(&page_node
->list
);
1696 DO_NUMA(page_node
->nid
= nid
);
1697 rb_replace_node(&stable_node_dup
->node
,
1700 if (is_page_sharing_candidate(page_node
))
1705 rb_erase(&stable_node_dup
->node
, root
);
1709 VM_BUG_ON(!is_stable_node_chain(stable_node
));
1710 __stable_node_dup_del(stable_node_dup
);
1712 VM_BUG_ON(page_node
->head
!= &migrate_nodes
);
1713 list_del(&page_node
->list
);
1714 DO_NUMA(page_node
->nid
= nid
);
1715 stable_node_chain_add_dup(page_node
, stable_node
);
1716 if (is_page_sharing_candidate(page_node
))
1724 stable_node_dup
->head
= &migrate_nodes
;
1725 list_add(&stable_node_dup
->list
, stable_node_dup
->head
);
1729 /* stable_node_dup could be null if it reached the limit */
1730 if (!stable_node_dup
)
1731 stable_node_dup
= stable_node_any
;
1733 * If stable_node was a chain and chain_prune collapsed it,
1734 * stable_node has been updated to be the new regular
1735 * stable_node. A collapse of the chain is indistinguishable
1736 * from the case there was no chain in the stable
1737 * rbtree. Otherwise stable_node is the chain and
1738 * stable_node_dup is the dup to replace.
1740 if (stable_node_dup
== stable_node
) {
1741 VM_BUG_ON(is_stable_node_chain(stable_node_dup
));
1742 VM_BUG_ON(is_stable_node_dup(stable_node_dup
));
1743 /* chain is missing so create it */
1744 stable_node
= alloc_stable_node_chain(stable_node_dup
,
1750 * Add this stable_node dup that was
1751 * migrated to the stable_node chain
1752 * of the current nid for this page
1755 VM_BUG_ON(!is_stable_node_chain(stable_node
));
1756 VM_BUG_ON(!is_stable_node_dup(stable_node_dup
));
1757 VM_BUG_ON(page_node
->head
!= &migrate_nodes
);
1758 list_del(&page_node
->list
);
1759 DO_NUMA(page_node
->nid
= nid
);
1760 stable_node_chain_add_dup(page_node
, stable_node
);
1765 * stable_tree_insert - insert stable tree node pointing to new ksm page
1766 * into the stable tree.
1768 * This function returns the stable tree node just allocated on success,
1771 static struct stable_node
*stable_tree_insert(struct page
*kpage
)
1775 struct rb_root
*root
;
1776 struct rb_node
**new;
1777 struct rb_node
*parent
;
1778 struct stable_node
*stable_node
, *stable_node_dup
, *stable_node_any
;
1779 bool need_chain
= false;
1781 kpfn
= page_to_pfn(kpage
);
1782 nid
= get_kpfn_nid(kpfn
);
1783 root
= root_stable_tree
+ nid
;
1786 new = &root
->rb_node
;
1789 struct page
*tree_page
;
1793 stable_node
= rb_entry(*new, struct stable_node
, node
);
1794 stable_node_any
= NULL
;
1795 tree_page
= chain(&stable_node_dup
, stable_node
, root
);
1796 if (!stable_node_dup
) {
1798 * Either all stable_node dups were full in
1799 * this stable_node chain, or this chain was
1800 * empty and should be rb_erased.
1802 stable_node_any
= stable_node_dup_any(stable_node
,
1804 if (!stable_node_any
) {
1805 /* rb_erase just run */
1809 * Take any of the stable_node dups page of
1810 * this stable_node chain to let the tree walk
1811 * continue. All KSM pages belonging to the
1812 * stable_node dups in a stable_node chain
1813 * have the same content and they're
1814 * wrprotected at all times. Any will work
1815 * fine to continue the walk.
1817 tree_page
= get_ksm_page(stable_node_any
, false);
1819 VM_BUG_ON(!stable_node_dup
^ !!stable_node_any
);
1822 * If we walked over a stale stable_node,
1823 * get_ksm_page() will call rb_erase() and it
1824 * may rebalance the tree from under us. So
1825 * restart the search from scratch. Returning
1826 * NULL would be safe too, but we'd generate
1827 * false negative insertions just because some
1828 * stable_node was stale.
1833 ret
= memcmp_pages(kpage
, tree_page
);
1834 put_page(tree_page
);
1838 new = &parent
->rb_left
;
1840 new = &parent
->rb_right
;
1847 stable_node_dup
= alloc_stable_node();
1848 if (!stable_node_dup
)
1851 INIT_HLIST_HEAD(&stable_node_dup
->hlist
);
1852 stable_node_dup
->kpfn
= kpfn
;
1853 set_page_stable_node(kpage
, stable_node_dup
);
1854 stable_node_dup
->rmap_hlist_len
= 0;
1855 DO_NUMA(stable_node_dup
->nid
= nid
);
1857 rb_link_node(&stable_node_dup
->node
, parent
, new);
1858 rb_insert_color(&stable_node_dup
->node
, root
);
1860 if (!is_stable_node_chain(stable_node
)) {
1861 struct stable_node
*orig
= stable_node
;
1862 /* chain is missing so create it */
1863 stable_node
= alloc_stable_node_chain(orig
, root
);
1865 free_stable_node(stable_node_dup
);
1869 stable_node_chain_add_dup(stable_node_dup
, stable_node
);
1872 return stable_node_dup
;
1876 * unstable_tree_search_insert - search for identical page,
1877 * else insert rmap_item into the unstable tree.
1879 * This function searches for a page in the unstable tree identical to the
1880 * page currently being scanned; and if no identical page is found in the
1881 * tree, we insert rmap_item as a new object into the unstable tree.
1883 * This function returns pointer to rmap_item found to be identical
1884 * to the currently scanned page, NULL otherwise.
1886 * This function does both searching and inserting, because they share
1887 * the same walking algorithm in an rbtree.
1890 struct rmap_item
*unstable_tree_search_insert(struct rmap_item
*rmap_item
,
1892 struct page
**tree_pagep
)
1894 struct rb_node
**new;
1895 struct rb_root
*root
;
1896 struct rb_node
*parent
= NULL
;
1899 nid
= get_kpfn_nid(page_to_pfn(page
));
1900 root
= root_unstable_tree
+ nid
;
1901 new = &root
->rb_node
;
1904 struct rmap_item
*tree_rmap_item
;
1905 struct page
*tree_page
;
1909 tree_rmap_item
= rb_entry(*new, struct rmap_item
, node
);
1910 tree_page
= get_mergeable_page(tree_rmap_item
);
1915 * Don't substitute a ksm page for a forked page.
1917 if (page
== tree_page
) {
1918 put_page(tree_page
);
1922 ret
= memcmp_pages(page
, tree_page
);
1926 put_page(tree_page
);
1927 new = &parent
->rb_left
;
1928 } else if (ret
> 0) {
1929 put_page(tree_page
);
1930 new = &parent
->rb_right
;
1931 } else if (!ksm_merge_across_nodes
&&
1932 page_to_nid(tree_page
) != nid
) {
1934 * If tree_page has been migrated to another NUMA node,
1935 * it will be flushed out and put in the right unstable
1936 * tree next time: only merge with it when across_nodes.
1938 put_page(tree_page
);
1941 *tree_pagep
= tree_page
;
1942 return tree_rmap_item
;
1946 rmap_item
->address
|= UNSTABLE_FLAG
;
1947 rmap_item
->address
|= (ksm_scan
.seqnr
& SEQNR_MASK
);
1948 DO_NUMA(rmap_item
->nid
= nid
);
1949 rb_link_node(&rmap_item
->node
, parent
, new);
1950 rb_insert_color(&rmap_item
->node
, root
);
1952 ksm_pages_unshared
++;
1957 * stable_tree_append - add another rmap_item to the linked list of
1958 * rmap_items hanging off a given node of the stable tree, all sharing
1959 * the same ksm page.
1961 static void stable_tree_append(struct rmap_item
*rmap_item
,
1962 struct stable_node
*stable_node
,
1963 bool max_page_sharing_bypass
)
1966 * rmap won't find this mapping if we don't insert the
1967 * rmap_item in the right stable_node
1968 * duplicate. page_migration could break later if rmap breaks,
1969 * so we can as well crash here. We really need to check for
1970 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1971 * for other negative values as an undeflow if detected here
1972 * for the first time (and not when decreasing rmap_hlist_len)
1973 * would be sign of memory corruption in the stable_node.
1975 BUG_ON(stable_node
->rmap_hlist_len
< 0);
1977 stable_node
->rmap_hlist_len
++;
1978 if (!max_page_sharing_bypass
)
1979 /* possibly non fatal but unexpected overflow, only warn */
1980 WARN_ON_ONCE(stable_node
->rmap_hlist_len
>
1981 ksm_max_page_sharing
);
1983 rmap_item
->head
= stable_node
;
1984 rmap_item
->address
|= STABLE_FLAG
;
1985 hlist_add_head(&rmap_item
->hlist
, &stable_node
->hlist
);
1987 if (rmap_item
->hlist
.next
)
1988 ksm_pages_sharing
++;
1994 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1995 * if not, compare checksum to previous and if it's the same, see if page can
1996 * be inserted into the unstable tree, or merged with a page already there and
1997 * both transferred to the stable tree.
1999 * @page: the page that we are searching identical page to.
2000 * @rmap_item: the reverse mapping into the virtual address of this page
2002 static void cmp_and_merge_page(struct page
*page
, struct rmap_item
*rmap_item
)
2004 struct mm_struct
*mm
= rmap_item
->mm
;
2005 struct rmap_item
*tree_rmap_item
;
2006 struct page
*tree_page
= NULL
;
2007 struct stable_node
*stable_node
;
2009 unsigned int checksum
;
2011 bool max_page_sharing_bypass
= false;
2013 stable_node
= page_stable_node(page
);
2015 if (stable_node
->head
!= &migrate_nodes
&&
2016 get_kpfn_nid(READ_ONCE(stable_node
->kpfn
)) !=
2017 NUMA(stable_node
->nid
)) {
2018 stable_node_dup_del(stable_node
);
2019 stable_node
->head
= &migrate_nodes
;
2020 list_add(&stable_node
->list
, stable_node
->head
);
2022 if (stable_node
->head
!= &migrate_nodes
&&
2023 rmap_item
->head
== stable_node
)
2026 * If it's a KSM fork, allow it to go over the sharing limit
2029 if (!is_page_sharing_candidate(stable_node
))
2030 max_page_sharing_bypass
= true;
2033 /* We first start with searching the page inside the stable tree */
2034 kpage
= stable_tree_search(page
);
2035 if (kpage
== page
&& rmap_item
->head
== stable_node
) {
2040 remove_rmap_item_from_tree(rmap_item
);
2043 err
= try_to_merge_with_ksm_page(rmap_item
, page
, kpage
);
2046 * The page was successfully merged:
2047 * add its rmap_item to the stable tree.
2050 stable_tree_append(rmap_item
, page_stable_node(kpage
),
2051 max_page_sharing_bypass
);
2059 * If the hash value of the page has changed from the last time
2060 * we calculated it, this page is changing frequently: therefore we
2061 * don't want to insert it in the unstable tree, and we don't want
2062 * to waste our time searching for something identical to it there.
2064 checksum
= calc_checksum(page
);
2065 if (rmap_item
->oldchecksum
!= checksum
) {
2066 rmap_item
->oldchecksum
= checksum
;
2071 * Same checksum as an empty page. We attempt to merge it with the
2072 * appropriate zero page if the user enabled this via sysfs.
2074 if (ksm_use_zero_pages
&& (checksum
== zero_checksum
)) {
2075 struct vm_area_struct
*vma
;
2077 down_read(&mm
->mmap_sem
);
2078 vma
= find_mergeable_vma(mm
, rmap_item
->address
);
2079 err
= try_to_merge_one_page(vma
, page
,
2080 ZERO_PAGE(rmap_item
->address
));
2081 up_read(&mm
->mmap_sem
);
2083 * In case of failure, the page was not really empty, so we
2084 * need to continue. Otherwise we're done.
2090 unstable_tree_search_insert(rmap_item
, page
, &tree_page
);
2091 if (tree_rmap_item
) {
2092 kpage
= try_to_merge_two_pages(rmap_item
, page
,
2093 tree_rmap_item
, tree_page
);
2094 put_page(tree_page
);
2097 * The pages were successfully merged: insert new
2098 * node in the stable tree and add both rmap_items.
2101 stable_node
= stable_tree_insert(kpage
);
2103 stable_tree_append(tree_rmap_item
, stable_node
,
2105 stable_tree_append(rmap_item
, stable_node
,
2111 * If we fail to insert the page into the stable tree,
2112 * we will have 2 virtual addresses that are pointing
2113 * to a ksm page left outside the stable tree,
2114 * in which case we need to break_cow on both.
2117 break_cow(tree_rmap_item
);
2118 break_cow(rmap_item
);
2124 static struct rmap_item
*get_next_rmap_item(struct mm_slot
*mm_slot
,
2125 struct rmap_item
**rmap_list
,
2128 struct rmap_item
*rmap_item
;
2130 while (*rmap_list
) {
2131 rmap_item
= *rmap_list
;
2132 if ((rmap_item
->address
& PAGE_MASK
) == addr
)
2134 if (rmap_item
->address
> addr
)
2136 *rmap_list
= rmap_item
->rmap_list
;
2137 remove_rmap_item_from_tree(rmap_item
);
2138 free_rmap_item(rmap_item
);
2141 rmap_item
= alloc_rmap_item();
2143 /* It has already been zeroed */
2144 rmap_item
->mm
= mm_slot
->mm
;
2145 rmap_item
->address
= addr
;
2146 rmap_item
->rmap_list
= *rmap_list
;
2147 *rmap_list
= rmap_item
;
2152 static struct rmap_item
*scan_get_next_rmap_item(struct page
**page
)
2154 struct mm_struct
*mm
;
2155 struct mm_slot
*slot
;
2156 struct vm_area_struct
*vma
;
2157 struct rmap_item
*rmap_item
;
2160 if (list_empty(&ksm_mm_head
.mm_list
))
2163 slot
= ksm_scan
.mm_slot
;
2164 if (slot
== &ksm_mm_head
) {
2166 * A number of pages can hang around indefinitely on per-cpu
2167 * pagevecs, raised page count preventing write_protect_page
2168 * from merging them. Though it doesn't really matter much,
2169 * it is puzzling to see some stuck in pages_volatile until
2170 * other activity jostles them out, and they also prevented
2171 * LTP's KSM test from succeeding deterministically; so drain
2172 * them here (here rather than on entry to ksm_do_scan(),
2173 * so we don't IPI too often when pages_to_scan is set low).
2175 lru_add_drain_all();
2178 * Whereas stale stable_nodes on the stable_tree itself
2179 * get pruned in the regular course of stable_tree_search(),
2180 * those moved out to the migrate_nodes list can accumulate:
2181 * so prune them once before each full scan.
2183 if (!ksm_merge_across_nodes
) {
2184 struct stable_node
*stable_node
, *next
;
2187 list_for_each_entry_safe(stable_node
, next
,
2188 &migrate_nodes
, list
) {
2189 page
= get_ksm_page(stable_node
, false);
2196 for (nid
= 0; nid
< ksm_nr_node_ids
; nid
++)
2197 root_unstable_tree
[nid
] = RB_ROOT
;
2199 spin_lock(&ksm_mmlist_lock
);
2200 slot
= list_entry(slot
->mm_list
.next
, struct mm_slot
, mm_list
);
2201 ksm_scan
.mm_slot
= slot
;
2202 spin_unlock(&ksm_mmlist_lock
);
2204 * Although we tested list_empty() above, a racing __ksm_exit
2205 * of the last mm on the list may have removed it since then.
2207 if (slot
== &ksm_mm_head
)
2210 ksm_scan
.address
= 0;
2211 ksm_scan
.rmap_list
= &slot
->rmap_list
;
2215 down_read(&mm
->mmap_sem
);
2216 if (ksm_test_exit(mm
))
2219 vma
= find_vma(mm
, ksm_scan
.address
);
2221 for (; vma
; vma
= vma
->vm_next
) {
2222 if (!(vma
->vm_flags
& VM_MERGEABLE
))
2224 if (ksm_scan
.address
< vma
->vm_start
)
2225 ksm_scan
.address
= vma
->vm_start
;
2227 ksm_scan
.address
= vma
->vm_end
;
2229 while (ksm_scan
.address
< vma
->vm_end
) {
2230 if (ksm_test_exit(mm
))
2232 *page
= follow_page(vma
, ksm_scan
.address
, FOLL_GET
);
2233 if (IS_ERR_OR_NULL(*page
)) {
2234 ksm_scan
.address
+= PAGE_SIZE
;
2238 if (PageAnon(*page
)) {
2239 flush_anon_page(vma
, *page
, ksm_scan
.address
);
2240 flush_dcache_page(*page
);
2241 rmap_item
= get_next_rmap_item(slot
,
2242 ksm_scan
.rmap_list
, ksm_scan
.address
);
2244 ksm_scan
.rmap_list
=
2245 &rmap_item
->rmap_list
;
2246 ksm_scan
.address
+= PAGE_SIZE
;
2249 up_read(&mm
->mmap_sem
);
2253 ksm_scan
.address
+= PAGE_SIZE
;
2258 if (ksm_test_exit(mm
)) {
2259 ksm_scan
.address
= 0;
2260 ksm_scan
.rmap_list
= &slot
->rmap_list
;
2263 * Nuke all the rmap_items that are above this current rmap:
2264 * because there were no VM_MERGEABLE vmas with such addresses.
2266 remove_trailing_rmap_items(slot
, ksm_scan
.rmap_list
);
2268 spin_lock(&ksm_mmlist_lock
);
2269 ksm_scan
.mm_slot
= list_entry(slot
->mm_list
.next
,
2270 struct mm_slot
, mm_list
);
2271 if (ksm_scan
.address
== 0) {
2273 * We've completed a full scan of all vmas, holding mmap_sem
2274 * throughout, and found no VM_MERGEABLE: so do the same as
2275 * __ksm_exit does to remove this mm from all our lists now.
2276 * This applies either when cleaning up after __ksm_exit
2277 * (but beware: we can reach here even before __ksm_exit),
2278 * or when all VM_MERGEABLE areas have been unmapped (and
2279 * mmap_sem then protects against race with MADV_MERGEABLE).
2281 hash_del(&slot
->link
);
2282 list_del(&slot
->mm_list
);
2283 spin_unlock(&ksm_mmlist_lock
);
2286 clear_bit(MMF_VM_MERGEABLE
, &mm
->flags
);
2287 up_read(&mm
->mmap_sem
);
2290 up_read(&mm
->mmap_sem
);
2292 * up_read(&mm->mmap_sem) first because after
2293 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2294 * already have been freed under us by __ksm_exit()
2295 * because the "mm_slot" is still hashed and
2296 * ksm_scan.mm_slot doesn't point to it anymore.
2298 spin_unlock(&ksm_mmlist_lock
);
2301 /* Repeat until we've completed scanning the whole list */
2302 slot
= ksm_scan
.mm_slot
;
2303 if (slot
!= &ksm_mm_head
)
2311 * ksm_do_scan - the ksm scanner main worker function.
2312 * @scan_npages - number of pages we want to scan before we return.
2314 static void ksm_do_scan(unsigned int scan_npages
)
2316 struct rmap_item
*rmap_item
;
2317 struct page
*uninitialized_var(page
);
2319 while (scan_npages
-- && likely(!freezing(current
))) {
2321 rmap_item
= scan_get_next_rmap_item(&page
);
2324 cmp_and_merge_page(page
, rmap_item
);
2329 static int ksmd_should_run(void)
2331 return (ksm_run
& KSM_RUN_MERGE
) && !list_empty(&ksm_mm_head
.mm_list
);
2334 static int ksm_scan_thread(void *nothing
)
2337 set_user_nice(current
, 5);
2339 while (!kthread_should_stop()) {
2340 mutex_lock(&ksm_thread_mutex
);
2341 wait_while_offlining();
2342 if (ksmd_should_run())
2343 ksm_do_scan(ksm_thread_pages_to_scan
);
2344 mutex_unlock(&ksm_thread_mutex
);
2348 if (ksmd_should_run()) {
2349 schedule_timeout_interruptible(
2350 msecs_to_jiffies(ksm_thread_sleep_millisecs
));
2352 wait_event_freezable(ksm_thread_wait
,
2353 ksmd_should_run() || kthread_should_stop());
2359 int ksm_madvise(struct vm_area_struct
*vma
, unsigned long start
,
2360 unsigned long end
, int advice
, unsigned long *vm_flags
)
2362 struct mm_struct
*mm
= vma
->vm_mm
;
2366 case MADV_MERGEABLE
:
2368 * Be somewhat over-protective for now!
2370 if (*vm_flags
& (VM_MERGEABLE
| VM_SHARED
| VM_MAYSHARE
|
2371 VM_PFNMAP
| VM_IO
| VM_DONTEXPAND
|
2372 VM_HUGETLB
| VM_MIXEDMAP
))
2373 return 0; /* just ignore the advice */
2376 if (*vm_flags
& VM_SAO
)
2380 if (!test_bit(MMF_VM_MERGEABLE
, &mm
->flags
)) {
2381 err
= __ksm_enter(mm
);
2386 *vm_flags
|= VM_MERGEABLE
;
2389 case MADV_UNMERGEABLE
:
2390 if (!(*vm_flags
& VM_MERGEABLE
))
2391 return 0; /* just ignore the advice */
2393 if (vma
->anon_vma
) {
2394 err
= unmerge_ksm_pages(vma
, start
, end
);
2399 *vm_flags
&= ~VM_MERGEABLE
;
2406 int __ksm_enter(struct mm_struct
*mm
)
2408 struct mm_slot
*mm_slot
;
2411 mm_slot
= alloc_mm_slot();
2415 /* Check ksm_run too? Would need tighter locking */
2416 needs_wakeup
= list_empty(&ksm_mm_head
.mm_list
);
2418 spin_lock(&ksm_mmlist_lock
);
2419 insert_to_mm_slots_hash(mm
, mm_slot
);
2421 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2422 * insert just behind the scanning cursor, to let the area settle
2423 * down a little; when fork is followed by immediate exec, we don't
2424 * want ksmd to waste time setting up and tearing down an rmap_list.
2426 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2427 * scanning cursor, otherwise KSM pages in newly forked mms will be
2428 * missed: then we might as well insert at the end of the list.
2430 if (ksm_run
& KSM_RUN_UNMERGE
)
2431 list_add_tail(&mm_slot
->mm_list
, &ksm_mm_head
.mm_list
);
2433 list_add_tail(&mm_slot
->mm_list
, &ksm_scan
.mm_slot
->mm_list
);
2434 spin_unlock(&ksm_mmlist_lock
);
2436 set_bit(MMF_VM_MERGEABLE
, &mm
->flags
);
2440 wake_up_interruptible(&ksm_thread_wait
);
2445 void __ksm_exit(struct mm_struct
*mm
)
2447 struct mm_slot
*mm_slot
;
2448 int easy_to_free
= 0;
2451 * This process is exiting: if it's straightforward (as is the
2452 * case when ksmd was never running), free mm_slot immediately.
2453 * But if it's at the cursor or has rmap_items linked to it, use
2454 * mmap_sem to synchronize with any break_cows before pagetables
2455 * are freed, and leave the mm_slot on the list for ksmd to free.
2456 * Beware: ksm may already have noticed it exiting and freed the slot.
2459 spin_lock(&ksm_mmlist_lock
);
2460 mm_slot
= get_mm_slot(mm
);
2461 if (mm_slot
&& ksm_scan
.mm_slot
!= mm_slot
) {
2462 if (!mm_slot
->rmap_list
) {
2463 hash_del(&mm_slot
->link
);
2464 list_del(&mm_slot
->mm_list
);
2467 list_move(&mm_slot
->mm_list
,
2468 &ksm_scan
.mm_slot
->mm_list
);
2471 spin_unlock(&ksm_mmlist_lock
);
2474 free_mm_slot(mm_slot
);
2475 clear_bit(MMF_VM_MERGEABLE
, &mm
->flags
);
2477 } else if (mm_slot
) {
2478 down_write(&mm
->mmap_sem
);
2479 up_write(&mm
->mmap_sem
);
2483 struct page
*ksm_might_need_to_copy(struct page
*page
,
2484 struct vm_area_struct
*vma
, unsigned long address
)
2486 struct anon_vma
*anon_vma
= page_anon_vma(page
);
2487 struct page
*new_page
;
2489 if (PageKsm(page
)) {
2490 if (page_stable_node(page
) &&
2491 !(ksm_run
& KSM_RUN_UNMERGE
))
2492 return page
; /* no need to copy it */
2493 } else if (!anon_vma
) {
2494 return page
; /* no need to copy it */
2495 } else if (anon_vma
->root
== vma
->anon_vma
->root
&&
2496 page
->index
== linear_page_index(vma
, address
)) {
2497 return page
; /* still no need to copy it */
2499 if (!PageUptodate(page
))
2500 return page
; /* let do_swap_page report the error */
2502 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2504 copy_user_highpage(new_page
, page
, address
, vma
);
2506 SetPageDirty(new_page
);
2507 __SetPageUptodate(new_page
);
2508 __SetPageLocked(new_page
);
2514 void rmap_walk_ksm(struct page
*page
, struct rmap_walk_control
*rwc
)
2516 struct stable_node
*stable_node
;
2517 struct rmap_item
*rmap_item
;
2518 int search_new_forks
= 0;
2520 VM_BUG_ON_PAGE(!PageKsm(page
), page
);
2523 * Rely on the page lock to protect against concurrent modifications
2524 * to that page's node of the stable tree.
2526 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2528 stable_node
= page_stable_node(page
);
2532 hlist_for_each_entry(rmap_item
, &stable_node
->hlist
, hlist
) {
2533 struct anon_vma
*anon_vma
= rmap_item
->anon_vma
;
2534 struct anon_vma_chain
*vmac
;
2535 struct vm_area_struct
*vma
;
2538 anon_vma_lock_read(anon_vma
);
2539 anon_vma_interval_tree_foreach(vmac
, &anon_vma
->rb_root
,
2543 if (rmap_item
->address
< vma
->vm_start
||
2544 rmap_item
->address
>= vma
->vm_end
)
2547 * Initially we examine only the vma which covers this
2548 * rmap_item; but later, if there is still work to do,
2549 * we examine covering vmas in other mms: in case they
2550 * were forked from the original since ksmd passed.
2552 if ((rmap_item
->mm
== vma
->vm_mm
) == search_new_forks
)
2555 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
2558 if (!rwc
->rmap_one(page
, vma
,
2559 rmap_item
->address
, rwc
->arg
)) {
2560 anon_vma_unlock_read(anon_vma
);
2563 if (rwc
->done
&& rwc
->done(page
)) {
2564 anon_vma_unlock_read(anon_vma
);
2568 anon_vma_unlock_read(anon_vma
);
2570 if (!search_new_forks
++)
2574 #ifdef CONFIG_MIGRATION
2575 void ksm_migrate_page(struct page
*newpage
, struct page
*oldpage
)
2577 struct stable_node
*stable_node
;
2579 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
2580 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
2581 VM_BUG_ON_PAGE(newpage
->mapping
!= oldpage
->mapping
, newpage
);
2583 stable_node
= page_stable_node(newpage
);
2585 VM_BUG_ON_PAGE(stable_node
->kpfn
!= page_to_pfn(oldpage
), oldpage
);
2586 stable_node
->kpfn
= page_to_pfn(newpage
);
2588 * newpage->mapping was set in advance; now we need smp_wmb()
2589 * to make sure that the new stable_node->kpfn is visible
2590 * to get_ksm_page() before it can see that oldpage->mapping
2591 * has gone stale (or that PageSwapCache has been cleared).
2594 set_page_stable_node(oldpage
, NULL
);
2597 #endif /* CONFIG_MIGRATION */
2599 #ifdef CONFIG_MEMORY_HOTREMOVE
2600 static void wait_while_offlining(void)
2602 while (ksm_run
& KSM_RUN_OFFLINE
) {
2603 mutex_unlock(&ksm_thread_mutex
);
2604 wait_on_bit(&ksm_run
, ilog2(KSM_RUN_OFFLINE
),
2605 TASK_UNINTERRUPTIBLE
);
2606 mutex_lock(&ksm_thread_mutex
);
2610 static bool stable_node_dup_remove_range(struct stable_node
*stable_node
,
2611 unsigned long start_pfn
,
2612 unsigned long end_pfn
)
2614 if (stable_node
->kpfn
>= start_pfn
&&
2615 stable_node
->kpfn
< end_pfn
) {
2617 * Don't get_ksm_page, page has already gone:
2618 * which is why we keep kpfn instead of page*
2620 remove_node_from_stable_tree(stable_node
);
2626 static bool stable_node_chain_remove_range(struct stable_node
*stable_node
,
2627 unsigned long start_pfn
,
2628 unsigned long end_pfn
,
2629 struct rb_root
*root
)
2631 struct stable_node
*dup
;
2632 struct hlist_node
*hlist_safe
;
2634 if (!is_stable_node_chain(stable_node
)) {
2635 VM_BUG_ON(is_stable_node_dup(stable_node
));
2636 return stable_node_dup_remove_range(stable_node
, start_pfn
,
2640 hlist_for_each_entry_safe(dup
, hlist_safe
,
2641 &stable_node
->hlist
, hlist_dup
) {
2642 VM_BUG_ON(!is_stable_node_dup(dup
));
2643 stable_node_dup_remove_range(dup
, start_pfn
, end_pfn
);
2645 if (hlist_empty(&stable_node
->hlist
)) {
2646 free_stable_node_chain(stable_node
, root
);
2647 return true; /* notify caller that tree was rebalanced */
2652 static void ksm_check_stable_tree(unsigned long start_pfn
,
2653 unsigned long end_pfn
)
2655 struct stable_node
*stable_node
, *next
;
2656 struct rb_node
*node
;
2659 for (nid
= 0; nid
< ksm_nr_node_ids
; nid
++) {
2660 node
= rb_first(root_stable_tree
+ nid
);
2662 stable_node
= rb_entry(node
, struct stable_node
, node
);
2663 if (stable_node_chain_remove_range(stable_node
,
2667 node
= rb_first(root_stable_tree
+ nid
);
2669 node
= rb_next(node
);
2673 list_for_each_entry_safe(stable_node
, next
, &migrate_nodes
, list
) {
2674 if (stable_node
->kpfn
>= start_pfn
&&
2675 stable_node
->kpfn
< end_pfn
)
2676 remove_node_from_stable_tree(stable_node
);
2681 static int ksm_memory_callback(struct notifier_block
*self
,
2682 unsigned long action
, void *arg
)
2684 struct memory_notify
*mn
= arg
;
2687 case MEM_GOING_OFFLINE
:
2689 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2690 * and remove_all_stable_nodes() while memory is going offline:
2691 * it is unsafe for them to touch the stable tree at this time.
2692 * But unmerge_ksm_pages(), rmap lookups and other entry points
2693 * which do not need the ksm_thread_mutex are all safe.
2695 mutex_lock(&ksm_thread_mutex
);
2696 ksm_run
|= KSM_RUN_OFFLINE
;
2697 mutex_unlock(&ksm_thread_mutex
);
2702 * Most of the work is done by page migration; but there might
2703 * be a few stable_nodes left over, still pointing to struct
2704 * pages which have been offlined: prune those from the tree,
2705 * otherwise get_ksm_page() might later try to access a
2706 * non-existent struct page.
2708 ksm_check_stable_tree(mn
->start_pfn
,
2709 mn
->start_pfn
+ mn
->nr_pages
);
2712 case MEM_CANCEL_OFFLINE
:
2713 mutex_lock(&ksm_thread_mutex
);
2714 ksm_run
&= ~KSM_RUN_OFFLINE
;
2715 mutex_unlock(&ksm_thread_mutex
);
2717 smp_mb(); /* wake_up_bit advises this */
2718 wake_up_bit(&ksm_run
, ilog2(KSM_RUN_OFFLINE
));
2724 static void wait_while_offlining(void)
2727 #endif /* CONFIG_MEMORY_HOTREMOVE */
2731 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2734 #define KSM_ATTR_RO(_name) \
2735 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2736 #define KSM_ATTR(_name) \
2737 static struct kobj_attribute _name##_attr = \
2738 __ATTR(_name, 0644, _name##_show, _name##_store)
2740 static ssize_t
sleep_millisecs_show(struct kobject
*kobj
,
2741 struct kobj_attribute
*attr
, char *buf
)
2743 return sprintf(buf
, "%u\n", ksm_thread_sleep_millisecs
);
2746 static ssize_t
sleep_millisecs_store(struct kobject
*kobj
,
2747 struct kobj_attribute
*attr
,
2748 const char *buf
, size_t count
)
2750 unsigned long msecs
;
2753 err
= kstrtoul(buf
, 10, &msecs
);
2754 if (err
|| msecs
> UINT_MAX
)
2757 ksm_thread_sleep_millisecs
= msecs
;
2761 KSM_ATTR(sleep_millisecs
);
2763 static ssize_t
pages_to_scan_show(struct kobject
*kobj
,
2764 struct kobj_attribute
*attr
, char *buf
)
2766 return sprintf(buf
, "%u\n", ksm_thread_pages_to_scan
);
2769 static ssize_t
pages_to_scan_store(struct kobject
*kobj
,
2770 struct kobj_attribute
*attr
,
2771 const char *buf
, size_t count
)
2774 unsigned long nr_pages
;
2776 err
= kstrtoul(buf
, 10, &nr_pages
);
2777 if (err
|| nr_pages
> UINT_MAX
)
2780 ksm_thread_pages_to_scan
= nr_pages
;
2784 KSM_ATTR(pages_to_scan
);
2786 static ssize_t
run_show(struct kobject
*kobj
, struct kobj_attribute
*attr
,
2789 return sprintf(buf
, "%lu\n", ksm_run
);
2792 static ssize_t
run_store(struct kobject
*kobj
, struct kobj_attribute
*attr
,
2793 const char *buf
, size_t count
)
2796 unsigned long flags
;
2798 err
= kstrtoul(buf
, 10, &flags
);
2799 if (err
|| flags
> UINT_MAX
)
2801 if (flags
> KSM_RUN_UNMERGE
)
2805 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2806 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2807 * breaking COW to free the pages_shared (but leaves mm_slots
2808 * on the list for when ksmd may be set running again).
2811 mutex_lock(&ksm_thread_mutex
);
2812 wait_while_offlining();
2813 if (ksm_run
!= flags
) {
2815 if (flags
& KSM_RUN_UNMERGE
) {
2816 set_current_oom_origin();
2817 err
= unmerge_and_remove_all_rmap_items();
2818 clear_current_oom_origin();
2820 ksm_run
= KSM_RUN_STOP
;
2825 mutex_unlock(&ksm_thread_mutex
);
2827 if (flags
& KSM_RUN_MERGE
)
2828 wake_up_interruptible(&ksm_thread_wait
);
2835 static ssize_t
merge_across_nodes_show(struct kobject
*kobj
,
2836 struct kobj_attribute
*attr
, char *buf
)
2838 return sprintf(buf
, "%u\n", ksm_merge_across_nodes
);
2841 static ssize_t
merge_across_nodes_store(struct kobject
*kobj
,
2842 struct kobj_attribute
*attr
,
2843 const char *buf
, size_t count
)
2848 err
= kstrtoul(buf
, 10, &knob
);
2854 mutex_lock(&ksm_thread_mutex
);
2855 wait_while_offlining();
2856 if (ksm_merge_across_nodes
!= knob
) {
2857 if (ksm_pages_shared
|| remove_all_stable_nodes())
2859 else if (root_stable_tree
== one_stable_tree
) {
2860 struct rb_root
*buf
;
2862 * This is the first time that we switch away from the
2863 * default of merging across nodes: must now allocate
2864 * a buffer to hold as many roots as may be needed.
2865 * Allocate stable and unstable together:
2866 * MAXSMP NODES_SHIFT 10 will use 16kB.
2868 buf
= kcalloc(nr_node_ids
+ nr_node_ids
, sizeof(*buf
),
2870 /* Let us assume that RB_ROOT is NULL is zero */
2874 root_stable_tree
= buf
;
2875 root_unstable_tree
= buf
+ nr_node_ids
;
2876 /* Stable tree is empty but not the unstable */
2877 root_unstable_tree
[0] = one_unstable_tree
[0];
2881 ksm_merge_across_nodes
= knob
;
2882 ksm_nr_node_ids
= knob
? 1 : nr_node_ids
;
2885 mutex_unlock(&ksm_thread_mutex
);
2887 return err
? err
: count
;
2889 KSM_ATTR(merge_across_nodes
);
2892 static ssize_t
use_zero_pages_show(struct kobject
*kobj
,
2893 struct kobj_attribute
*attr
, char *buf
)
2895 return sprintf(buf
, "%u\n", ksm_use_zero_pages
);
2897 static ssize_t
use_zero_pages_store(struct kobject
*kobj
,
2898 struct kobj_attribute
*attr
,
2899 const char *buf
, size_t count
)
2904 err
= kstrtobool(buf
, &value
);
2908 ksm_use_zero_pages
= value
;
2912 KSM_ATTR(use_zero_pages
);
2914 static ssize_t
max_page_sharing_show(struct kobject
*kobj
,
2915 struct kobj_attribute
*attr
, char *buf
)
2917 return sprintf(buf
, "%u\n", ksm_max_page_sharing
);
2920 static ssize_t
max_page_sharing_store(struct kobject
*kobj
,
2921 struct kobj_attribute
*attr
,
2922 const char *buf
, size_t count
)
2927 err
= kstrtoint(buf
, 10, &knob
);
2931 * When a KSM page is created it is shared by 2 mappings. This
2932 * being a signed comparison, it implicitly verifies it's not
2938 if (READ_ONCE(ksm_max_page_sharing
) == knob
)
2941 mutex_lock(&ksm_thread_mutex
);
2942 wait_while_offlining();
2943 if (ksm_max_page_sharing
!= knob
) {
2944 if (ksm_pages_shared
|| remove_all_stable_nodes())
2947 ksm_max_page_sharing
= knob
;
2949 mutex_unlock(&ksm_thread_mutex
);
2951 return err
? err
: count
;
2953 KSM_ATTR(max_page_sharing
);
2955 static ssize_t
pages_shared_show(struct kobject
*kobj
,
2956 struct kobj_attribute
*attr
, char *buf
)
2958 return sprintf(buf
, "%lu\n", ksm_pages_shared
);
2960 KSM_ATTR_RO(pages_shared
);
2962 static ssize_t
pages_sharing_show(struct kobject
*kobj
,
2963 struct kobj_attribute
*attr
, char *buf
)
2965 return sprintf(buf
, "%lu\n", ksm_pages_sharing
);
2967 KSM_ATTR_RO(pages_sharing
);
2969 static ssize_t
pages_unshared_show(struct kobject
*kobj
,
2970 struct kobj_attribute
*attr
, char *buf
)
2972 return sprintf(buf
, "%lu\n", ksm_pages_unshared
);
2974 KSM_ATTR_RO(pages_unshared
);
2976 static ssize_t
pages_volatile_show(struct kobject
*kobj
,
2977 struct kobj_attribute
*attr
, char *buf
)
2979 long ksm_pages_volatile
;
2981 ksm_pages_volatile
= ksm_rmap_items
- ksm_pages_shared
2982 - ksm_pages_sharing
- ksm_pages_unshared
;
2984 * It was not worth any locking to calculate that statistic,
2985 * but it might therefore sometimes be negative: conceal that.
2987 if (ksm_pages_volatile
< 0)
2988 ksm_pages_volatile
= 0;
2989 return sprintf(buf
, "%ld\n", ksm_pages_volatile
);
2991 KSM_ATTR_RO(pages_volatile
);
2993 static ssize_t
stable_node_dups_show(struct kobject
*kobj
,
2994 struct kobj_attribute
*attr
, char *buf
)
2996 return sprintf(buf
, "%lu\n", ksm_stable_node_dups
);
2998 KSM_ATTR_RO(stable_node_dups
);
3000 static ssize_t
stable_node_chains_show(struct kobject
*kobj
,
3001 struct kobj_attribute
*attr
, char *buf
)
3003 return sprintf(buf
, "%lu\n", ksm_stable_node_chains
);
3005 KSM_ATTR_RO(stable_node_chains
);
3008 stable_node_chains_prune_millisecs_show(struct kobject
*kobj
,
3009 struct kobj_attribute
*attr
,
3012 return sprintf(buf
, "%u\n", ksm_stable_node_chains_prune_millisecs
);
3016 stable_node_chains_prune_millisecs_store(struct kobject
*kobj
,
3017 struct kobj_attribute
*attr
,
3018 const char *buf
, size_t count
)
3020 unsigned long msecs
;
3023 err
= kstrtoul(buf
, 10, &msecs
);
3024 if (err
|| msecs
> UINT_MAX
)
3027 ksm_stable_node_chains_prune_millisecs
= msecs
;
3031 KSM_ATTR(stable_node_chains_prune_millisecs
);
3033 static ssize_t
full_scans_show(struct kobject
*kobj
,
3034 struct kobj_attribute
*attr
, char *buf
)
3036 return sprintf(buf
, "%lu\n", ksm_scan
.seqnr
);
3038 KSM_ATTR_RO(full_scans
);
3040 static struct attribute
*ksm_attrs
[] = {
3041 &sleep_millisecs_attr
.attr
,
3042 &pages_to_scan_attr
.attr
,
3044 &pages_shared_attr
.attr
,
3045 &pages_sharing_attr
.attr
,
3046 &pages_unshared_attr
.attr
,
3047 &pages_volatile_attr
.attr
,
3048 &full_scans_attr
.attr
,
3050 &merge_across_nodes_attr
.attr
,
3052 &max_page_sharing_attr
.attr
,
3053 &stable_node_chains_attr
.attr
,
3054 &stable_node_dups_attr
.attr
,
3055 &stable_node_chains_prune_millisecs_attr
.attr
,
3056 &use_zero_pages_attr
.attr
,
3060 static const struct attribute_group ksm_attr_group
= {
3064 #endif /* CONFIG_SYSFS */
3066 static int __init
ksm_init(void)
3068 struct task_struct
*ksm_thread
;
3071 /* The correct value depends on page size and endianness */
3072 zero_checksum
= calc_checksum(ZERO_PAGE(0));
3073 /* Default to false for backwards compatibility */
3074 ksm_use_zero_pages
= false;
3076 err
= ksm_slab_init();
3080 ksm_thread
= kthread_run(ksm_scan_thread
, NULL
, "ksmd");
3081 if (IS_ERR(ksm_thread
)) {
3082 pr_err("ksm: creating kthread failed\n");
3083 err
= PTR_ERR(ksm_thread
);
3088 err
= sysfs_create_group(mm_kobj
, &ksm_attr_group
);
3090 pr_err("ksm: register sysfs failed\n");
3091 kthread_stop(ksm_thread
);
3095 ksm_run
= KSM_RUN_MERGE
; /* no way for user to start it */
3097 #endif /* CONFIG_SYSFS */
3099 #ifdef CONFIG_MEMORY_HOTREMOVE
3100 /* There is no significance to this priority 100 */
3101 hotplug_memory_notifier(ksm_memory_callback
, 100);
3110 subsys_initcall(ksm_init
);