Merge branch 'cpus4096-for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6/btrfs-unstable.git] / arch / powerpc / kernel / time.c
blob99f1ddd68582e9628456f8d8e7f8fe3fb0c5b25f
1 /*
2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
56 #include <asm/io.h>
57 #include <asm/processor.h>
58 #include <asm/nvram.h>
59 #include <asm/cache.h>
60 #include <asm/machdep.h>
61 #include <asm/uaccess.h>
62 #include <asm/time.h>
63 #include <asm/prom.h>
64 #include <asm/irq.h>
65 #include <asm/div64.h>
66 #include <asm/smp.h>
67 #include <asm/vdso_datapage.h>
68 #include <asm/firmware.h>
69 #include <asm/cputime.h>
70 #ifdef CONFIG_PPC_ISERIES
71 #include <asm/iseries/it_lp_queue.h>
72 #include <asm/iseries/hv_call_xm.h>
73 #endif
75 /* powerpc clocksource/clockevent code */
77 #include <linux/clockchips.h>
78 #include <linux/clocksource.h>
80 static cycle_t rtc_read(void);
81 static struct clocksource clocksource_rtc = {
82 .name = "rtc",
83 .rating = 400,
84 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
85 .mask = CLOCKSOURCE_MASK(64),
86 .shift = 22,
87 .mult = 0, /* To be filled in */
88 .read = rtc_read,
91 static cycle_t timebase_read(void);
92 static struct clocksource clocksource_timebase = {
93 .name = "timebase",
94 .rating = 400,
95 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
96 .mask = CLOCKSOURCE_MASK(64),
97 .shift = 22,
98 .mult = 0, /* To be filled in */
99 .read = timebase_read,
102 #define DECREMENTER_MAX 0x7fffffff
104 static int decrementer_set_next_event(unsigned long evt,
105 struct clock_event_device *dev);
106 static void decrementer_set_mode(enum clock_event_mode mode,
107 struct clock_event_device *dev);
109 static struct clock_event_device decrementer_clockevent = {
110 .name = "decrementer",
111 .rating = 200,
112 .shift = 16,
113 .mult = 0, /* To be filled in */
114 .irq = 0,
115 .set_next_event = decrementer_set_next_event,
116 .set_mode = decrementer_set_mode,
117 .features = CLOCK_EVT_FEAT_ONESHOT,
120 struct decrementer_clock {
121 struct clock_event_device event;
122 u64 next_tb;
125 static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
127 #ifdef CONFIG_PPC_ISERIES
128 static unsigned long __initdata iSeries_recal_titan;
129 static signed long __initdata iSeries_recal_tb;
131 /* Forward declaration is only needed for iSereis compiles */
132 static void __init clocksource_init(void);
133 #endif
135 #define XSEC_PER_SEC (1024*1024)
137 #ifdef CONFIG_PPC64
138 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
139 #else
140 /* compute ((xsec << 12) * max) >> 32 */
141 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
142 #endif
144 unsigned long tb_ticks_per_jiffy;
145 unsigned long tb_ticks_per_usec = 100; /* sane default */
146 EXPORT_SYMBOL(tb_ticks_per_usec);
147 unsigned long tb_ticks_per_sec;
148 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
149 u64 tb_to_xs;
150 unsigned tb_to_us;
152 #define TICKLEN_SCALE NTP_SCALE_SHIFT
153 static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
154 static u64 ticklen_to_xs; /* 0.64 fraction */
156 /* If last_tick_len corresponds to about 1/HZ seconds, then
157 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
158 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
160 DEFINE_SPINLOCK(rtc_lock);
161 EXPORT_SYMBOL_GPL(rtc_lock);
163 static u64 tb_to_ns_scale __read_mostly;
164 static unsigned tb_to_ns_shift __read_mostly;
165 static unsigned long boot_tb __read_mostly;
167 extern struct timezone sys_tz;
168 static long timezone_offset;
170 unsigned long ppc_proc_freq;
171 EXPORT_SYMBOL(ppc_proc_freq);
172 unsigned long ppc_tb_freq;
174 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
175 static DEFINE_PER_CPU(u64, last_jiffy);
177 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
179 * Factors for converting from cputime_t (timebase ticks) to
180 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
181 * These are all stored as 0.64 fixed-point binary fractions.
183 u64 __cputime_jiffies_factor;
184 EXPORT_SYMBOL(__cputime_jiffies_factor);
185 u64 __cputime_msec_factor;
186 EXPORT_SYMBOL(__cputime_msec_factor);
187 u64 __cputime_sec_factor;
188 EXPORT_SYMBOL(__cputime_sec_factor);
189 u64 __cputime_clockt_factor;
190 EXPORT_SYMBOL(__cputime_clockt_factor);
191 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
192 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
194 static void calc_cputime_factors(void)
196 struct div_result res;
198 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
199 __cputime_jiffies_factor = res.result_low;
200 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
201 __cputime_msec_factor = res.result_low;
202 div128_by_32(1, 0, tb_ticks_per_sec, &res);
203 __cputime_sec_factor = res.result_low;
204 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
205 __cputime_clockt_factor = res.result_low;
209 * Read the PURR on systems that have it, otherwise the timebase.
211 static u64 read_purr(void)
213 if (cpu_has_feature(CPU_FTR_PURR))
214 return mfspr(SPRN_PURR);
215 return mftb();
219 * Read the SPURR on systems that have it, otherwise the purr
221 static u64 read_spurr(u64 purr)
224 * cpus without PURR won't have a SPURR
225 * We already know the former when we use this, so tell gcc
227 if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
228 return mfspr(SPRN_SPURR);
229 return purr;
233 * Account time for a transition between system, hard irq
234 * or soft irq state.
236 void account_system_vtime(struct task_struct *tsk)
238 u64 now, nowscaled, delta, deltascaled, sys_time;
239 unsigned long flags;
241 local_irq_save(flags);
242 now = read_purr();
243 nowscaled = read_spurr(now);
244 delta = now - get_paca()->startpurr;
245 deltascaled = nowscaled - get_paca()->startspurr;
246 get_paca()->startpurr = now;
247 get_paca()->startspurr = nowscaled;
248 if (!in_interrupt()) {
249 /* deltascaled includes both user and system time.
250 * Hence scale it based on the purr ratio to estimate
251 * the system time */
252 sys_time = get_paca()->system_time;
253 if (get_paca()->user_time)
254 deltascaled = deltascaled * sys_time /
255 (sys_time + get_paca()->user_time);
256 delta += sys_time;
257 get_paca()->system_time = 0;
259 account_system_time(tsk, 0, delta);
260 account_system_time_scaled(tsk, deltascaled);
261 per_cpu(cputime_last_delta, smp_processor_id()) = delta;
262 per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
263 local_irq_restore(flags);
267 * Transfer the user and system times accumulated in the paca
268 * by the exception entry and exit code to the generic process
269 * user and system time records.
270 * Must be called with interrupts disabled.
272 void account_process_tick(struct task_struct *tsk, int user_tick)
274 cputime_t utime, utimescaled;
276 utime = get_paca()->user_time;
277 get_paca()->user_time = 0;
278 account_user_time(tsk, utime);
280 utimescaled = cputime_to_scaled(utime);
281 account_user_time_scaled(tsk, utimescaled);
285 * Stuff for accounting stolen time.
287 struct cpu_purr_data {
288 int initialized; /* thread is running */
289 u64 tb; /* last TB value read */
290 u64 purr; /* last PURR value read */
291 u64 spurr; /* last SPURR value read */
295 * Each entry in the cpu_purr_data array is manipulated only by its
296 * "owner" cpu -- usually in the timer interrupt but also occasionally
297 * in process context for cpu online. As long as cpus do not touch
298 * each others' cpu_purr_data, disabling local interrupts is
299 * sufficient to serialize accesses.
301 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
303 static void snapshot_tb_and_purr(void *data)
305 unsigned long flags;
306 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
308 local_irq_save(flags);
309 p->tb = get_tb_or_rtc();
310 p->purr = mfspr(SPRN_PURR);
311 wmb();
312 p->initialized = 1;
313 local_irq_restore(flags);
317 * Called during boot when all cpus have come up.
319 void snapshot_timebases(void)
321 if (!cpu_has_feature(CPU_FTR_PURR))
322 return;
323 on_each_cpu(snapshot_tb_and_purr, NULL, 1);
327 * Must be called with interrupts disabled.
329 void calculate_steal_time(void)
331 u64 tb, purr;
332 s64 stolen;
333 struct cpu_purr_data *pme;
335 pme = &__get_cpu_var(cpu_purr_data);
336 if (!pme->initialized)
337 return; /* !CPU_FTR_PURR or early in early boot */
338 tb = mftb();
339 purr = mfspr(SPRN_PURR);
340 stolen = (tb - pme->tb) - (purr - pme->purr);
341 if (stolen > 0)
342 account_steal_time(current, stolen);
343 pme->tb = tb;
344 pme->purr = purr;
347 #ifdef CONFIG_PPC_SPLPAR
349 * Must be called before the cpu is added to the online map when
350 * a cpu is being brought up at runtime.
352 static void snapshot_purr(void)
354 struct cpu_purr_data *pme;
355 unsigned long flags;
357 if (!cpu_has_feature(CPU_FTR_PURR))
358 return;
359 local_irq_save(flags);
360 pme = &__get_cpu_var(cpu_purr_data);
361 pme->tb = mftb();
362 pme->purr = mfspr(SPRN_PURR);
363 pme->initialized = 1;
364 local_irq_restore(flags);
367 #endif /* CONFIG_PPC_SPLPAR */
369 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
370 #define calc_cputime_factors()
371 #define calculate_steal_time() do { } while (0)
372 #endif
374 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
375 #define snapshot_purr() do { } while (0)
376 #endif
379 * Called when a cpu comes up after the system has finished booting,
380 * i.e. as a result of a hotplug cpu action.
382 void snapshot_timebase(void)
384 __get_cpu_var(last_jiffy) = get_tb_or_rtc();
385 snapshot_purr();
388 void __delay(unsigned long loops)
390 unsigned long start;
391 int diff;
393 if (__USE_RTC()) {
394 start = get_rtcl();
395 do {
396 /* the RTCL register wraps at 1000000000 */
397 diff = get_rtcl() - start;
398 if (diff < 0)
399 diff += 1000000000;
400 } while (diff < loops);
401 } else {
402 start = get_tbl();
403 while (get_tbl() - start < loops)
404 HMT_low();
405 HMT_medium();
408 EXPORT_SYMBOL(__delay);
410 void udelay(unsigned long usecs)
412 __delay(tb_ticks_per_usec * usecs);
414 EXPORT_SYMBOL(udelay);
416 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
417 u64 new_tb_to_xs)
420 * tb_update_count is used to allow the userspace gettimeofday code
421 * to assure itself that it sees a consistent view of the tb_to_xs and
422 * stamp_xsec variables. It reads the tb_update_count, then reads
423 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
424 * the two values of tb_update_count match and are even then the
425 * tb_to_xs and stamp_xsec values are consistent. If not, then it
426 * loops back and reads them again until this criteria is met.
427 * We expect the caller to have done the first increment of
428 * vdso_data->tb_update_count already.
430 vdso_data->tb_orig_stamp = new_tb_stamp;
431 vdso_data->stamp_xsec = new_stamp_xsec;
432 vdso_data->tb_to_xs = new_tb_to_xs;
433 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
434 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
435 vdso_data->stamp_xtime = xtime;
436 smp_wmb();
437 ++(vdso_data->tb_update_count);
440 #ifdef CONFIG_SMP
441 unsigned long profile_pc(struct pt_regs *regs)
443 unsigned long pc = instruction_pointer(regs);
445 if (in_lock_functions(pc))
446 return regs->link;
448 return pc;
450 EXPORT_SYMBOL(profile_pc);
451 #endif
453 #ifdef CONFIG_PPC_ISERIES
456 * This function recalibrates the timebase based on the 49-bit time-of-day
457 * value in the Titan chip. The Titan is much more accurate than the value
458 * returned by the service processor for the timebase frequency.
461 static int __init iSeries_tb_recal(void)
463 struct div_result divres;
464 unsigned long titan, tb;
466 /* Make sure we only run on iSeries */
467 if (!firmware_has_feature(FW_FEATURE_ISERIES))
468 return -ENODEV;
470 tb = get_tb();
471 titan = HvCallXm_loadTod();
472 if ( iSeries_recal_titan ) {
473 unsigned long tb_ticks = tb - iSeries_recal_tb;
474 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
475 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
476 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
477 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
478 char sign = '+';
479 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
480 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
482 if ( tick_diff < 0 ) {
483 tick_diff = -tick_diff;
484 sign = '-';
486 if ( tick_diff ) {
487 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
488 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
489 new_tb_ticks_per_jiffy, sign, tick_diff );
490 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
491 tb_ticks_per_sec = new_tb_ticks_per_sec;
492 calc_cputime_factors();
493 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
494 tb_to_xs = divres.result_low;
495 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
496 vdso_data->tb_to_xs = tb_to_xs;
498 else {
499 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
500 " new tb_ticks_per_jiffy = %lu\n"
501 " old tb_ticks_per_jiffy = %lu\n",
502 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
506 iSeries_recal_titan = titan;
507 iSeries_recal_tb = tb;
509 /* Called here as now we know accurate values for the timebase */
510 clocksource_init();
511 return 0;
513 late_initcall(iSeries_tb_recal);
515 /* Called from platform early init */
516 void __init iSeries_time_init_early(void)
518 iSeries_recal_tb = get_tb();
519 iSeries_recal_titan = HvCallXm_loadTod();
521 #endif /* CONFIG_PPC_ISERIES */
524 * For iSeries shared processors, we have to let the hypervisor
525 * set the hardware decrementer. We set a virtual decrementer
526 * in the lppaca and call the hypervisor if the virtual
527 * decrementer is less than the current value in the hardware
528 * decrementer. (almost always the new decrementer value will
529 * be greater than the current hardware decementer so the hypervisor
530 * call will not be needed)
534 * timer_interrupt - gets called when the decrementer overflows,
535 * with interrupts disabled.
537 void timer_interrupt(struct pt_regs * regs)
539 struct pt_regs *old_regs;
540 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
541 struct clock_event_device *evt = &decrementer->event;
542 u64 now;
544 /* Ensure a positive value is written to the decrementer, or else
545 * some CPUs will continuue to take decrementer exceptions */
546 set_dec(DECREMENTER_MAX);
548 #ifdef CONFIG_PPC32
549 if (atomic_read(&ppc_n_lost_interrupts) != 0)
550 do_IRQ(regs);
551 #endif
553 now = get_tb_or_rtc();
554 if (now < decrementer->next_tb) {
555 /* not time for this event yet */
556 now = decrementer->next_tb - now;
557 if (now <= DECREMENTER_MAX)
558 set_dec((int)now);
559 return;
561 old_regs = set_irq_regs(regs);
562 irq_enter();
564 calculate_steal_time();
566 #ifdef CONFIG_PPC_ISERIES
567 if (firmware_has_feature(FW_FEATURE_ISERIES))
568 get_lppaca()->int_dword.fields.decr_int = 0;
569 #endif
571 if (evt->event_handler)
572 evt->event_handler(evt);
574 #ifdef CONFIG_PPC_ISERIES
575 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
576 process_hvlpevents();
577 #endif
579 #ifdef CONFIG_PPC64
580 /* collect purr register values often, for accurate calculations */
581 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
582 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
583 cu->current_tb = mfspr(SPRN_PURR);
585 #endif
587 irq_exit();
588 set_irq_regs(old_regs);
591 void wakeup_decrementer(void)
593 unsigned long ticks;
596 * The timebase gets saved on sleep and restored on wakeup,
597 * so all we need to do is to reset the decrementer.
599 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
600 if (ticks < tb_ticks_per_jiffy)
601 ticks = tb_ticks_per_jiffy - ticks;
602 else
603 ticks = 1;
604 set_dec(ticks);
607 #ifdef CONFIG_SUSPEND
608 void generic_suspend_disable_irqs(void)
610 preempt_disable();
612 /* Disable the decrementer, so that it doesn't interfere
613 * with suspending.
616 set_dec(0x7fffffff);
617 local_irq_disable();
618 set_dec(0x7fffffff);
621 void generic_suspend_enable_irqs(void)
623 wakeup_decrementer();
625 local_irq_enable();
626 preempt_enable();
629 /* Overrides the weak version in kernel/power/main.c */
630 void arch_suspend_disable_irqs(void)
632 if (ppc_md.suspend_disable_irqs)
633 ppc_md.suspend_disable_irqs();
634 generic_suspend_disable_irqs();
637 /* Overrides the weak version in kernel/power/main.c */
638 void arch_suspend_enable_irqs(void)
640 generic_suspend_enable_irqs();
641 if (ppc_md.suspend_enable_irqs)
642 ppc_md.suspend_enable_irqs();
644 #endif
646 #ifdef CONFIG_SMP
647 void __init smp_space_timers(unsigned int max_cpus)
649 int i;
650 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
652 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
653 previous_tb -= tb_ticks_per_jiffy;
655 for_each_possible_cpu(i) {
656 if (i == boot_cpuid)
657 continue;
658 per_cpu(last_jiffy, i) = previous_tb;
661 #endif
664 * Scheduler clock - returns current time in nanosec units.
666 * Note: mulhdu(a, b) (multiply high double unsigned) returns
667 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
668 * are 64-bit unsigned numbers.
670 unsigned long long sched_clock(void)
672 if (__USE_RTC())
673 return get_rtc();
674 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
677 static int __init get_freq(char *name, int cells, unsigned long *val)
679 struct device_node *cpu;
680 const unsigned int *fp;
681 int found = 0;
683 /* The cpu node should have timebase and clock frequency properties */
684 cpu = of_find_node_by_type(NULL, "cpu");
686 if (cpu) {
687 fp = of_get_property(cpu, name, NULL);
688 if (fp) {
689 found = 1;
690 *val = of_read_ulong(fp, cells);
693 of_node_put(cpu);
696 return found;
699 void __init generic_calibrate_decr(void)
701 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
703 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
704 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
706 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
707 "(not found)\n");
710 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
712 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
713 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
715 printk(KERN_ERR "WARNING: Estimating processor frequency "
716 "(not found)\n");
719 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
720 /* Clear any pending timer interrupts */
721 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
723 /* Enable decrementer interrupt */
724 mtspr(SPRN_TCR, TCR_DIE);
725 #endif
728 int update_persistent_clock(struct timespec now)
730 struct rtc_time tm;
732 if (!ppc_md.set_rtc_time)
733 return 0;
735 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
736 tm.tm_year -= 1900;
737 tm.tm_mon -= 1;
739 return ppc_md.set_rtc_time(&tm);
742 unsigned long read_persistent_clock(void)
744 struct rtc_time tm;
745 static int first = 1;
747 /* XXX this is a litle fragile but will work okay in the short term */
748 if (first) {
749 first = 0;
750 if (ppc_md.time_init)
751 timezone_offset = ppc_md.time_init();
753 /* get_boot_time() isn't guaranteed to be safe to call late */
754 if (ppc_md.get_boot_time)
755 return ppc_md.get_boot_time() -timezone_offset;
757 if (!ppc_md.get_rtc_time)
758 return 0;
759 ppc_md.get_rtc_time(&tm);
760 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
761 tm.tm_hour, tm.tm_min, tm.tm_sec);
764 /* clocksource code */
765 static cycle_t rtc_read(void)
767 return (cycle_t)get_rtc();
770 static cycle_t timebase_read(void)
772 return (cycle_t)get_tb();
775 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
777 u64 t2x, stamp_xsec;
779 if (clock != &clocksource_timebase)
780 return;
782 /* Make userspace gettimeofday spin until we're done. */
783 ++vdso_data->tb_update_count;
784 smp_mb();
786 /* XXX this assumes clock->shift == 22 */
787 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
788 t2x = (u64) clock->mult * 4611686018ULL;
789 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
790 do_div(stamp_xsec, 1000000000);
791 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
792 update_gtod(clock->cycle_last, stamp_xsec, t2x);
795 void update_vsyscall_tz(void)
797 /* Make userspace gettimeofday spin until we're done. */
798 ++vdso_data->tb_update_count;
799 smp_mb();
800 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
801 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
802 smp_mb();
803 ++vdso_data->tb_update_count;
806 static void __init clocksource_init(void)
808 struct clocksource *clock;
810 if (__USE_RTC())
811 clock = &clocksource_rtc;
812 else
813 clock = &clocksource_timebase;
815 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
817 if (clocksource_register(clock)) {
818 printk(KERN_ERR "clocksource: %s is already registered\n",
819 clock->name);
820 return;
823 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
824 clock->name, clock->mult, clock->shift);
827 static int decrementer_set_next_event(unsigned long evt,
828 struct clock_event_device *dev)
830 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
831 set_dec(evt);
832 return 0;
835 static void decrementer_set_mode(enum clock_event_mode mode,
836 struct clock_event_device *dev)
838 if (mode != CLOCK_EVT_MODE_ONESHOT)
839 decrementer_set_next_event(DECREMENTER_MAX, dev);
842 static void register_decrementer_clockevent(int cpu)
844 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
846 *dec = decrementer_clockevent;
847 dec->cpumask = cpumask_of(cpu);
849 printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
850 dec->name, dec->mult, dec->shift, cpu);
852 clockevents_register_device(dec);
855 static void __init init_decrementer_clockevent(void)
857 int cpu = smp_processor_id();
859 decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
860 decrementer_clockevent.shift);
861 decrementer_clockevent.max_delta_ns =
862 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
863 decrementer_clockevent.min_delta_ns =
864 clockevent_delta2ns(2, &decrementer_clockevent);
866 register_decrementer_clockevent(cpu);
869 void secondary_cpu_time_init(void)
871 /* FIME: Should make unrelatred change to move snapshot_timebase
872 * call here ! */
873 register_decrementer_clockevent(smp_processor_id());
876 /* This function is only called on the boot processor */
877 void __init time_init(void)
879 unsigned long flags;
880 struct div_result res;
881 u64 scale, x;
882 unsigned shift;
884 if (__USE_RTC()) {
885 /* 601 processor: dec counts down by 128 every 128ns */
886 ppc_tb_freq = 1000000000;
887 tb_last_jiffy = get_rtcl();
888 } else {
889 /* Normal PowerPC with timebase register */
890 ppc_md.calibrate_decr();
891 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
892 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
893 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
894 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
895 tb_last_jiffy = get_tb();
898 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
899 tb_ticks_per_sec = ppc_tb_freq;
900 tb_ticks_per_usec = ppc_tb_freq / 1000000;
901 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
902 calc_cputime_factors();
905 * Calculate the length of each tick in ns. It will not be
906 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
907 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
908 * rounded up.
910 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
911 do_div(x, ppc_tb_freq);
912 tick_nsec = x;
913 last_tick_len = x << TICKLEN_SCALE;
916 * Compute ticklen_to_xs, which is a factor which gets multiplied
917 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
918 * It is computed as:
919 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
920 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
921 * which turns out to be N = 51 - SHIFT_HZ.
922 * This gives the result as a 0.64 fixed-point fraction.
923 * That value is reduced by an offset amounting to 1 xsec per
924 * 2^31 timebase ticks to avoid problems with time going backwards
925 * by 1 xsec when we do timer_recalc_offset due to losing the
926 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
927 * since there are 2^20 xsec in a second.
929 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
930 tb_ticks_per_jiffy << SHIFT_HZ, &res);
931 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
932 ticklen_to_xs = res.result_low;
934 /* Compute tb_to_xs from tick_nsec */
935 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
938 * Compute scale factor for sched_clock.
939 * The calibrate_decr() function has set tb_ticks_per_sec,
940 * which is the timebase frequency.
941 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
942 * the 128-bit result as a 64.64 fixed-point number.
943 * We then shift that number right until it is less than 1.0,
944 * giving us the scale factor and shift count to use in
945 * sched_clock().
947 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
948 scale = res.result_low;
949 for (shift = 0; res.result_high != 0; ++shift) {
950 scale = (scale >> 1) | (res.result_high << 63);
951 res.result_high >>= 1;
953 tb_to_ns_scale = scale;
954 tb_to_ns_shift = shift;
955 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
956 boot_tb = get_tb_or_rtc();
958 write_seqlock_irqsave(&xtime_lock, flags);
960 /* If platform provided a timezone (pmac), we correct the time */
961 if (timezone_offset) {
962 sys_tz.tz_minuteswest = -timezone_offset / 60;
963 sys_tz.tz_dsttime = 0;
966 vdso_data->tb_orig_stamp = tb_last_jiffy;
967 vdso_data->tb_update_count = 0;
968 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
969 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
970 vdso_data->tb_to_xs = tb_to_xs;
972 write_sequnlock_irqrestore(&xtime_lock, flags);
974 /* Register the clocksource, if we're not running on iSeries */
975 if (!firmware_has_feature(FW_FEATURE_ISERIES))
976 clocksource_init();
978 init_decrementer_clockevent();
982 #define FEBRUARY 2
983 #define STARTOFTIME 1970
984 #define SECDAY 86400L
985 #define SECYR (SECDAY * 365)
986 #define leapyear(year) ((year) % 4 == 0 && \
987 ((year) % 100 != 0 || (year) % 400 == 0))
988 #define days_in_year(a) (leapyear(a) ? 366 : 365)
989 #define days_in_month(a) (month_days[(a) - 1])
991 static int month_days[12] = {
992 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
996 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
998 void GregorianDay(struct rtc_time * tm)
1000 int leapsToDate;
1001 int lastYear;
1002 int day;
1003 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1005 lastYear = tm->tm_year - 1;
1008 * Number of leap corrections to apply up to end of last year
1010 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1013 * This year is a leap year if it is divisible by 4 except when it is
1014 * divisible by 100 unless it is divisible by 400
1016 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1018 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1020 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1021 tm->tm_mday;
1023 tm->tm_wday = day % 7;
1026 void to_tm(int tim, struct rtc_time * tm)
1028 register int i;
1029 register long hms, day;
1031 day = tim / SECDAY;
1032 hms = tim % SECDAY;
1034 /* Hours, minutes, seconds are easy */
1035 tm->tm_hour = hms / 3600;
1036 tm->tm_min = (hms % 3600) / 60;
1037 tm->tm_sec = (hms % 3600) % 60;
1039 /* Number of years in days */
1040 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1041 day -= days_in_year(i);
1042 tm->tm_year = i;
1044 /* Number of months in days left */
1045 if (leapyear(tm->tm_year))
1046 days_in_month(FEBRUARY) = 29;
1047 for (i = 1; day >= days_in_month(i); i++)
1048 day -= days_in_month(i);
1049 days_in_month(FEBRUARY) = 28;
1050 tm->tm_mon = i;
1052 /* Days are what is left over (+1) from all that. */
1053 tm->tm_mday = day + 1;
1056 * Determine the day of week
1058 GregorianDay(tm);
1061 /* Auxiliary function to compute scaling factors */
1062 /* Actually the choice of a timebase running at 1/4 the of the bus
1063 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1064 * It makes this computation very precise (27-28 bits typically) which
1065 * is optimistic considering the stability of most processor clock
1066 * oscillators and the precision with which the timebase frequency
1067 * is measured but does not harm.
1069 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1071 unsigned mlt=0, tmp, err;
1072 /* No concern for performance, it's done once: use a stupid
1073 * but safe and compact method to find the multiplier.
1076 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1077 if (mulhwu(inscale, mlt|tmp) < outscale)
1078 mlt |= tmp;
1081 /* We might still be off by 1 for the best approximation.
1082 * A side effect of this is that if outscale is too large
1083 * the returned value will be zero.
1084 * Many corner cases have been checked and seem to work,
1085 * some might have been forgotten in the test however.
1088 err = inscale * (mlt+1);
1089 if (err <= inscale/2)
1090 mlt++;
1091 return mlt;
1095 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1096 * result.
1098 void div128_by_32(u64 dividend_high, u64 dividend_low,
1099 unsigned divisor, struct div_result *dr)
1101 unsigned long a, b, c, d;
1102 unsigned long w, x, y, z;
1103 u64 ra, rb, rc;
1105 a = dividend_high >> 32;
1106 b = dividend_high & 0xffffffff;
1107 c = dividend_low >> 32;
1108 d = dividend_low & 0xffffffff;
1110 w = a / divisor;
1111 ra = ((u64)(a - (w * divisor)) << 32) + b;
1113 rb = ((u64) do_div(ra, divisor) << 32) + c;
1114 x = ra;
1116 rc = ((u64) do_div(rb, divisor) << 32) + d;
1117 y = rb;
1119 do_div(rc, divisor);
1120 z = rc;
1122 dr->result_high = ((u64)w << 32) + x;
1123 dr->result_low = ((u64)y << 32) + z;