KVM: x86: use kvm_get_gdt() and kvm_read_ldt()
[linux-2.6/btrfs-unstable.git] / arch / x86 / kvm / x86.c
blobc7ec0c921c01d819e64fe71031b6061c3d44e079
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <trace/events/kvm.h>
41 #undef TRACE_INCLUDE_FILE
42 #define CREATE_TRACE_POINTS
43 #include "trace.h"
45 #include <asm/uaccess.h>
46 #include <asm/msr.h>
47 #include <asm/desc.h>
48 #include <asm/mtrr.h>
49 #include <asm/mce.h>
51 #define MAX_IO_MSRS 256
52 #define CR0_RESERVED_BITS \
53 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
54 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
55 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
56 #define CR4_RESERVED_BITS \
57 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
58 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
59 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
60 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
62 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
64 #define KVM_MAX_MCE_BANKS 32
65 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
67 /* EFER defaults:
68 * - enable syscall per default because its emulated by KVM
69 * - enable LME and LMA per default on 64 bit KVM
71 #ifdef CONFIG_X86_64
72 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
73 #else
74 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
75 #endif
77 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
78 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
80 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
81 struct kvm_cpuid_entry2 __user *entries);
83 struct kvm_x86_ops *kvm_x86_ops;
84 EXPORT_SYMBOL_GPL(kvm_x86_ops);
86 int ignore_msrs = 0;
87 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
89 struct kvm_stats_debugfs_item debugfs_entries[] = {
90 { "pf_fixed", VCPU_STAT(pf_fixed) },
91 { "pf_guest", VCPU_STAT(pf_guest) },
92 { "tlb_flush", VCPU_STAT(tlb_flush) },
93 { "invlpg", VCPU_STAT(invlpg) },
94 { "exits", VCPU_STAT(exits) },
95 { "io_exits", VCPU_STAT(io_exits) },
96 { "mmio_exits", VCPU_STAT(mmio_exits) },
97 { "signal_exits", VCPU_STAT(signal_exits) },
98 { "irq_window", VCPU_STAT(irq_window_exits) },
99 { "nmi_window", VCPU_STAT(nmi_window_exits) },
100 { "halt_exits", VCPU_STAT(halt_exits) },
101 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
102 { "hypercalls", VCPU_STAT(hypercalls) },
103 { "request_irq", VCPU_STAT(request_irq_exits) },
104 { "irq_exits", VCPU_STAT(irq_exits) },
105 { "host_state_reload", VCPU_STAT(host_state_reload) },
106 { "efer_reload", VCPU_STAT(efer_reload) },
107 { "fpu_reload", VCPU_STAT(fpu_reload) },
108 { "insn_emulation", VCPU_STAT(insn_emulation) },
109 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
110 { "irq_injections", VCPU_STAT(irq_injections) },
111 { "nmi_injections", VCPU_STAT(nmi_injections) },
112 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
113 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
114 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
115 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
116 { "mmu_flooded", VM_STAT(mmu_flooded) },
117 { "mmu_recycled", VM_STAT(mmu_recycled) },
118 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
119 { "mmu_unsync", VM_STAT(mmu_unsync) },
120 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
121 { "largepages", VM_STAT(lpages) },
122 { NULL }
125 unsigned long segment_base(u16 selector)
127 struct descriptor_table gdt;
128 struct desc_struct *d;
129 unsigned long table_base;
130 unsigned long v;
132 if (selector == 0)
133 return 0;
135 kvm_get_gdt(&gdt);
136 table_base = gdt.base;
138 if (selector & 4) { /* from ldt */
139 u16 ldt_selector = kvm_read_ldt();
141 table_base = segment_base(ldt_selector);
143 d = (struct desc_struct *)(table_base + (selector & ~7));
144 v = get_desc_base(d);
145 #ifdef CONFIG_X86_64
146 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
147 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
148 #endif
149 return v;
151 EXPORT_SYMBOL_GPL(segment_base);
153 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
155 if (irqchip_in_kernel(vcpu->kvm))
156 return vcpu->arch.apic_base;
157 else
158 return vcpu->arch.apic_base;
160 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
162 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
164 /* TODO: reserve bits check */
165 if (irqchip_in_kernel(vcpu->kvm))
166 kvm_lapic_set_base(vcpu, data);
167 else
168 vcpu->arch.apic_base = data;
170 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
172 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
174 WARN_ON(vcpu->arch.exception.pending);
175 vcpu->arch.exception.pending = true;
176 vcpu->arch.exception.has_error_code = false;
177 vcpu->arch.exception.nr = nr;
179 EXPORT_SYMBOL_GPL(kvm_queue_exception);
181 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
182 u32 error_code)
184 ++vcpu->stat.pf_guest;
186 if (vcpu->arch.exception.pending) {
187 switch(vcpu->arch.exception.nr) {
188 case DF_VECTOR:
189 /* triple fault -> shutdown */
190 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
191 return;
192 case PF_VECTOR:
193 vcpu->arch.exception.nr = DF_VECTOR;
194 vcpu->arch.exception.error_code = 0;
195 return;
196 default:
197 /* replace previous exception with a new one in a hope
198 that instruction re-execution will regenerate lost
199 exception */
200 vcpu->arch.exception.pending = false;
201 break;
204 vcpu->arch.cr2 = addr;
205 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
208 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
210 vcpu->arch.nmi_pending = 1;
212 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
214 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
216 WARN_ON(vcpu->arch.exception.pending);
217 vcpu->arch.exception.pending = true;
218 vcpu->arch.exception.has_error_code = true;
219 vcpu->arch.exception.nr = nr;
220 vcpu->arch.exception.error_code = error_code;
222 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
225 * Load the pae pdptrs. Return true is they are all valid.
227 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
229 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
230 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
231 int i;
232 int ret;
233 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
235 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
236 offset * sizeof(u64), sizeof(pdpte));
237 if (ret < 0) {
238 ret = 0;
239 goto out;
241 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
242 if (is_present_gpte(pdpte[i]) &&
243 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
244 ret = 0;
245 goto out;
248 ret = 1;
250 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
251 __set_bit(VCPU_EXREG_PDPTR,
252 (unsigned long *)&vcpu->arch.regs_avail);
253 __set_bit(VCPU_EXREG_PDPTR,
254 (unsigned long *)&vcpu->arch.regs_dirty);
255 out:
257 return ret;
259 EXPORT_SYMBOL_GPL(load_pdptrs);
261 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
263 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
264 bool changed = true;
265 int r;
267 if (is_long_mode(vcpu) || !is_pae(vcpu))
268 return false;
270 if (!test_bit(VCPU_EXREG_PDPTR,
271 (unsigned long *)&vcpu->arch.regs_avail))
272 return true;
274 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
275 if (r < 0)
276 goto out;
277 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
278 out:
280 return changed;
283 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
285 if (cr0 & CR0_RESERVED_BITS) {
286 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
287 cr0, vcpu->arch.cr0);
288 kvm_inject_gp(vcpu, 0);
289 return;
292 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
293 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
294 kvm_inject_gp(vcpu, 0);
295 return;
298 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
299 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
300 "and a clear PE flag\n");
301 kvm_inject_gp(vcpu, 0);
302 return;
305 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
306 #ifdef CONFIG_X86_64
307 if ((vcpu->arch.shadow_efer & EFER_LME)) {
308 int cs_db, cs_l;
310 if (!is_pae(vcpu)) {
311 printk(KERN_DEBUG "set_cr0: #GP, start paging "
312 "in long mode while PAE is disabled\n");
313 kvm_inject_gp(vcpu, 0);
314 return;
316 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
317 if (cs_l) {
318 printk(KERN_DEBUG "set_cr0: #GP, start paging "
319 "in long mode while CS.L == 1\n");
320 kvm_inject_gp(vcpu, 0);
321 return;
324 } else
325 #endif
326 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
327 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
328 "reserved bits\n");
329 kvm_inject_gp(vcpu, 0);
330 return;
335 kvm_x86_ops->set_cr0(vcpu, cr0);
336 vcpu->arch.cr0 = cr0;
338 kvm_mmu_reset_context(vcpu);
339 return;
341 EXPORT_SYMBOL_GPL(kvm_set_cr0);
343 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
345 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
347 EXPORT_SYMBOL_GPL(kvm_lmsw);
349 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
351 unsigned long old_cr4 = vcpu->arch.cr4;
352 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
354 if (cr4 & CR4_RESERVED_BITS) {
355 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
356 kvm_inject_gp(vcpu, 0);
357 return;
360 if (is_long_mode(vcpu)) {
361 if (!(cr4 & X86_CR4_PAE)) {
362 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
363 "in long mode\n");
364 kvm_inject_gp(vcpu, 0);
365 return;
367 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
368 && ((cr4 ^ old_cr4) & pdptr_bits)
369 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
370 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
371 kvm_inject_gp(vcpu, 0);
372 return;
375 if (cr4 & X86_CR4_VMXE) {
376 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
377 kvm_inject_gp(vcpu, 0);
378 return;
380 kvm_x86_ops->set_cr4(vcpu, cr4);
381 vcpu->arch.cr4 = cr4;
382 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
383 kvm_mmu_reset_context(vcpu);
385 EXPORT_SYMBOL_GPL(kvm_set_cr4);
387 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
389 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
390 kvm_mmu_sync_roots(vcpu);
391 kvm_mmu_flush_tlb(vcpu);
392 return;
395 if (is_long_mode(vcpu)) {
396 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
397 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
398 kvm_inject_gp(vcpu, 0);
399 return;
401 } else {
402 if (is_pae(vcpu)) {
403 if (cr3 & CR3_PAE_RESERVED_BITS) {
404 printk(KERN_DEBUG
405 "set_cr3: #GP, reserved bits\n");
406 kvm_inject_gp(vcpu, 0);
407 return;
409 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
410 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
411 "reserved bits\n");
412 kvm_inject_gp(vcpu, 0);
413 return;
417 * We don't check reserved bits in nonpae mode, because
418 * this isn't enforced, and VMware depends on this.
423 * Does the new cr3 value map to physical memory? (Note, we
424 * catch an invalid cr3 even in real-mode, because it would
425 * cause trouble later on when we turn on paging anyway.)
427 * A real CPU would silently accept an invalid cr3 and would
428 * attempt to use it - with largely undefined (and often hard
429 * to debug) behavior on the guest side.
431 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
432 kvm_inject_gp(vcpu, 0);
433 else {
434 vcpu->arch.cr3 = cr3;
435 vcpu->arch.mmu.new_cr3(vcpu);
438 EXPORT_SYMBOL_GPL(kvm_set_cr3);
440 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
442 if (cr8 & CR8_RESERVED_BITS) {
443 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
444 kvm_inject_gp(vcpu, 0);
445 return;
447 if (irqchip_in_kernel(vcpu->kvm))
448 kvm_lapic_set_tpr(vcpu, cr8);
449 else
450 vcpu->arch.cr8 = cr8;
452 EXPORT_SYMBOL_GPL(kvm_set_cr8);
454 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
456 if (irqchip_in_kernel(vcpu->kvm))
457 return kvm_lapic_get_cr8(vcpu);
458 else
459 return vcpu->arch.cr8;
461 EXPORT_SYMBOL_GPL(kvm_get_cr8);
463 static inline u32 bit(int bitno)
465 return 1 << (bitno & 31);
469 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
470 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
472 * This list is modified at module load time to reflect the
473 * capabilities of the host cpu.
475 static u32 msrs_to_save[] = {
476 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
477 MSR_K6_STAR,
478 #ifdef CONFIG_X86_64
479 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
480 #endif
481 MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
482 MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
485 static unsigned num_msrs_to_save;
487 static u32 emulated_msrs[] = {
488 MSR_IA32_MISC_ENABLE,
491 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
493 if (efer & efer_reserved_bits) {
494 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
495 efer);
496 kvm_inject_gp(vcpu, 0);
497 return;
500 if (is_paging(vcpu)
501 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
502 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
503 kvm_inject_gp(vcpu, 0);
504 return;
507 if (efer & EFER_FFXSR) {
508 struct kvm_cpuid_entry2 *feat;
510 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
511 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
512 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
513 kvm_inject_gp(vcpu, 0);
514 return;
518 if (efer & EFER_SVME) {
519 struct kvm_cpuid_entry2 *feat;
521 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
522 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
523 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
524 kvm_inject_gp(vcpu, 0);
525 return;
529 kvm_x86_ops->set_efer(vcpu, efer);
531 efer &= ~EFER_LMA;
532 efer |= vcpu->arch.shadow_efer & EFER_LMA;
534 vcpu->arch.shadow_efer = efer;
536 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
537 kvm_mmu_reset_context(vcpu);
540 void kvm_enable_efer_bits(u64 mask)
542 efer_reserved_bits &= ~mask;
544 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
548 * Writes msr value into into the appropriate "register".
549 * Returns 0 on success, non-0 otherwise.
550 * Assumes vcpu_load() was already called.
552 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
554 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
558 * Adapt set_msr() to msr_io()'s calling convention
560 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
562 return kvm_set_msr(vcpu, index, *data);
565 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
567 static int version;
568 struct pvclock_wall_clock wc;
569 struct timespec now, sys, boot;
571 if (!wall_clock)
572 return;
574 version++;
576 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
579 * The guest calculates current wall clock time by adding
580 * system time (updated by kvm_write_guest_time below) to the
581 * wall clock specified here. guest system time equals host
582 * system time for us, thus we must fill in host boot time here.
584 now = current_kernel_time();
585 ktime_get_ts(&sys);
586 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
588 wc.sec = boot.tv_sec;
589 wc.nsec = boot.tv_nsec;
590 wc.version = version;
592 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
594 version++;
595 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
598 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
600 uint32_t quotient, remainder;
602 /* Don't try to replace with do_div(), this one calculates
603 * "(dividend << 32) / divisor" */
604 __asm__ ( "divl %4"
605 : "=a" (quotient), "=d" (remainder)
606 : "0" (0), "1" (dividend), "r" (divisor) );
607 return quotient;
610 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
612 uint64_t nsecs = 1000000000LL;
613 int32_t shift = 0;
614 uint64_t tps64;
615 uint32_t tps32;
617 tps64 = tsc_khz * 1000LL;
618 while (tps64 > nsecs*2) {
619 tps64 >>= 1;
620 shift--;
623 tps32 = (uint32_t)tps64;
624 while (tps32 <= (uint32_t)nsecs) {
625 tps32 <<= 1;
626 shift++;
629 hv_clock->tsc_shift = shift;
630 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
632 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
633 __func__, tsc_khz, hv_clock->tsc_shift,
634 hv_clock->tsc_to_system_mul);
637 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
639 static void kvm_write_guest_time(struct kvm_vcpu *v)
641 struct timespec ts;
642 unsigned long flags;
643 struct kvm_vcpu_arch *vcpu = &v->arch;
644 void *shared_kaddr;
645 unsigned long this_tsc_khz;
647 if ((!vcpu->time_page))
648 return;
650 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
651 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
652 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
653 vcpu->hv_clock_tsc_khz = this_tsc_khz;
655 put_cpu_var(cpu_tsc_khz);
657 /* Keep irq disabled to prevent changes to the clock */
658 local_irq_save(flags);
659 kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
660 ktime_get_ts(&ts);
661 local_irq_restore(flags);
663 /* With all the info we got, fill in the values */
665 vcpu->hv_clock.system_time = ts.tv_nsec +
666 (NSEC_PER_SEC * (u64)ts.tv_sec);
668 * The interface expects us to write an even number signaling that the
669 * update is finished. Since the guest won't see the intermediate
670 * state, we just increase by 2 at the end.
672 vcpu->hv_clock.version += 2;
674 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
676 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
677 sizeof(vcpu->hv_clock));
679 kunmap_atomic(shared_kaddr, KM_USER0);
681 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
684 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
686 struct kvm_vcpu_arch *vcpu = &v->arch;
688 if (!vcpu->time_page)
689 return 0;
690 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
691 return 1;
694 static bool msr_mtrr_valid(unsigned msr)
696 switch (msr) {
697 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
698 case MSR_MTRRfix64K_00000:
699 case MSR_MTRRfix16K_80000:
700 case MSR_MTRRfix16K_A0000:
701 case MSR_MTRRfix4K_C0000:
702 case MSR_MTRRfix4K_C8000:
703 case MSR_MTRRfix4K_D0000:
704 case MSR_MTRRfix4K_D8000:
705 case MSR_MTRRfix4K_E0000:
706 case MSR_MTRRfix4K_E8000:
707 case MSR_MTRRfix4K_F0000:
708 case MSR_MTRRfix4K_F8000:
709 case MSR_MTRRdefType:
710 case MSR_IA32_CR_PAT:
711 return true;
712 case 0x2f8:
713 return true;
715 return false;
718 static bool valid_pat_type(unsigned t)
720 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
723 static bool valid_mtrr_type(unsigned t)
725 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
728 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
730 int i;
732 if (!msr_mtrr_valid(msr))
733 return false;
735 if (msr == MSR_IA32_CR_PAT) {
736 for (i = 0; i < 8; i++)
737 if (!valid_pat_type((data >> (i * 8)) & 0xff))
738 return false;
739 return true;
740 } else if (msr == MSR_MTRRdefType) {
741 if (data & ~0xcff)
742 return false;
743 return valid_mtrr_type(data & 0xff);
744 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
745 for (i = 0; i < 8 ; i++)
746 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
747 return false;
748 return true;
751 /* variable MTRRs */
752 return valid_mtrr_type(data & 0xff);
755 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
757 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
759 if (!mtrr_valid(vcpu, msr, data))
760 return 1;
762 if (msr == MSR_MTRRdefType) {
763 vcpu->arch.mtrr_state.def_type = data;
764 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
765 } else if (msr == MSR_MTRRfix64K_00000)
766 p[0] = data;
767 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
768 p[1 + msr - MSR_MTRRfix16K_80000] = data;
769 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
770 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
771 else if (msr == MSR_IA32_CR_PAT)
772 vcpu->arch.pat = data;
773 else { /* Variable MTRRs */
774 int idx, is_mtrr_mask;
775 u64 *pt;
777 idx = (msr - 0x200) / 2;
778 is_mtrr_mask = msr - 0x200 - 2 * idx;
779 if (!is_mtrr_mask)
780 pt =
781 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
782 else
783 pt =
784 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
785 *pt = data;
788 kvm_mmu_reset_context(vcpu);
789 return 0;
792 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
794 u64 mcg_cap = vcpu->arch.mcg_cap;
795 unsigned bank_num = mcg_cap & 0xff;
797 switch (msr) {
798 case MSR_IA32_MCG_STATUS:
799 vcpu->arch.mcg_status = data;
800 break;
801 case MSR_IA32_MCG_CTL:
802 if (!(mcg_cap & MCG_CTL_P))
803 return 1;
804 if (data != 0 && data != ~(u64)0)
805 return -1;
806 vcpu->arch.mcg_ctl = data;
807 break;
808 default:
809 if (msr >= MSR_IA32_MC0_CTL &&
810 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
811 u32 offset = msr - MSR_IA32_MC0_CTL;
812 /* only 0 or all 1s can be written to IA32_MCi_CTL */
813 if ((offset & 0x3) == 0 &&
814 data != 0 && data != ~(u64)0)
815 return -1;
816 vcpu->arch.mce_banks[offset] = data;
817 break;
819 return 1;
821 return 0;
824 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
826 switch (msr) {
827 case MSR_EFER:
828 set_efer(vcpu, data);
829 break;
830 case MSR_K7_HWCR:
831 data &= ~(u64)0x40; /* ignore flush filter disable */
832 if (data != 0) {
833 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
834 data);
835 return 1;
837 break;
838 case MSR_FAM10H_MMIO_CONF_BASE:
839 if (data != 0) {
840 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
841 "0x%llx\n", data);
842 return 1;
844 break;
845 case MSR_AMD64_NB_CFG:
846 break;
847 case MSR_IA32_DEBUGCTLMSR:
848 if (!data) {
849 /* We support the non-activated case already */
850 break;
851 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
852 /* Values other than LBR and BTF are vendor-specific,
853 thus reserved and should throw a #GP */
854 return 1;
856 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
857 __func__, data);
858 break;
859 case MSR_IA32_UCODE_REV:
860 case MSR_IA32_UCODE_WRITE:
861 case MSR_VM_HSAVE_PA:
862 case MSR_AMD64_PATCH_LOADER:
863 break;
864 case 0x200 ... 0x2ff:
865 return set_msr_mtrr(vcpu, msr, data);
866 case MSR_IA32_APICBASE:
867 kvm_set_apic_base(vcpu, data);
868 break;
869 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
870 return kvm_x2apic_msr_write(vcpu, msr, data);
871 case MSR_IA32_MISC_ENABLE:
872 vcpu->arch.ia32_misc_enable_msr = data;
873 break;
874 case MSR_KVM_WALL_CLOCK:
875 vcpu->kvm->arch.wall_clock = data;
876 kvm_write_wall_clock(vcpu->kvm, data);
877 break;
878 case MSR_KVM_SYSTEM_TIME: {
879 if (vcpu->arch.time_page) {
880 kvm_release_page_dirty(vcpu->arch.time_page);
881 vcpu->arch.time_page = NULL;
884 vcpu->arch.time = data;
886 /* we verify if the enable bit is set... */
887 if (!(data & 1))
888 break;
890 /* ...but clean it before doing the actual write */
891 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
893 vcpu->arch.time_page =
894 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
896 if (is_error_page(vcpu->arch.time_page)) {
897 kvm_release_page_clean(vcpu->arch.time_page);
898 vcpu->arch.time_page = NULL;
901 kvm_request_guest_time_update(vcpu);
902 break;
904 case MSR_IA32_MCG_CTL:
905 case MSR_IA32_MCG_STATUS:
906 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
907 return set_msr_mce(vcpu, msr, data);
909 /* Performance counters are not protected by a CPUID bit,
910 * so we should check all of them in the generic path for the sake of
911 * cross vendor migration.
912 * Writing a zero into the event select MSRs disables them,
913 * which we perfectly emulate ;-). Any other value should be at least
914 * reported, some guests depend on them.
916 case MSR_P6_EVNTSEL0:
917 case MSR_P6_EVNTSEL1:
918 case MSR_K7_EVNTSEL0:
919 case MSR_K7_EVNTSEL1:
920 case MSR_K7_EVNTSEL2:
921 case MSR_K7_EVNTSEL3:
922 if (data != 0)
923 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
924 "0x%x data 0x%llx\n", msr, data);
925 break;
926 /* at least RHEL 4 unconditionally writes to the perfctr registers,
927 * so we ignore writes to make it happy.
929 case MSR_P6_PERFCTR0:
930 case MSR_P6_PERFCTR1:
931 case MSR_K7_PERFCTR0:
932 case MSR_K7_PERFCTR1:
933 case MSR_K7_PERFCTR2:
934 case MSR_K7_PERFCTR3:
935 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
936 "0x%x data 0x%llx\n", msr, data);
937 break;
938 default:
939 if (!ignore_msrs) {
940 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
941 msr, data);
942 return 1;
943 } else {
944 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
945 msr, data);
946 break;
949 return 0;
951 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
955 * Reads an msr value (of 'msr_index') into 'pdata'.
956 * Returns 0 on success, non-0 otherwise.
957 * Assumes vcpu_load() was already called.
959 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
961 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
964 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
966 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
968 if (!msr_mtrr_valid(msr))
969 return 1;
971 if (msr == MSR_MTRRdefType)
972 *pdata = vcpu->arch.mtrr_state.def_type +
973 (vcpu->arch.mtrr_state.enabled << 10);
974 else if (msr == MSR_MTRRfix64K_00000)
975 *pdata = p[0];
976 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
977 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
978 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
979 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
980 else if (msr == MSR_IA32_CR_PAT)
981 *pdata = vcpu->arch.pat;
982 else { /* Variable MTRRs */
983 int idx, is_mtrr_mask;
984 u64 *pt;
986 idx = (msr - 0x200) / 2;
987 is_mtrr_mask = msr - 0x200 - 2 * idx;
988 if (!is_mtrr_mask)
989 pt =
990 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
991 else
992 pt =
993 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
994 *pdata = *pt;
997 return 0;
1000 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1002 u64 data;
1003 u64 mcg_cap = vcpu->arch.mcg_cap;
1004 unsigned bank_num = mcg_cap & 0xff;
1006 switch (msr) {
1007 case MSR_IA32_P5_MC_ADDR:
1008 case MSR_IA32_P5_MC_TYPE:
1009 data = 0;
1010 break;
1011 case MSR_IA32_MCG_CAP:
1012 data = vcpu->arch.mcg_cap;
1013 break;
1014 case MSR_IA32_MCG_CTL:
1015 if (!(mcg_cap & MCG_CTL_P))
1016 return 1;
1017 data = vcpu->arch.mcg_ctl;
1018 break;
1019 case MSR_IA32_MCG_STATUS:
1020 data = vcpu->arch.mcg_status;
1021 break;
1022 default:
1023 if (msr >= MSR_IA32_MC0_CTL &&
1024 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1025 u32 offset = msr - MSR_IA32_MC0_CTL;
1026 data = vcpu->arch.mce_banks[offset];
1027 break;
1029 return 1;
1031 *pdata = data;
1032 return 0;
1035 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1037 u64 data;
1039 switch (msr) {
1040 case MSR_IA32_PLATFORM_ID:
1041 case MSR_IA32_UCODE_REV:
1042 case MSR_IA32_EBL_CR_POWERON:
1043 case MSR_IA32_DEBUGCTLMSR:
1044 case MSR_IA32_LASTBRANCHFROMIP:
1045 case MSR_IA32_LASTBRANCHTOIP:
1046 case MSR_IA32_LASTINTFROMIP:
1047 case MSR_IA32_LASTINTTOIP:
1048 case MSR_K8_SYSCFG:
1049 case MSR_K7_HWCR:
1050 case MSR_VM_HSAVE_PA:
1051 case MSR_P6_EVNTSEL0:
1052 case MSR_P6_EVNTSEL1:
1053 case MSR_K7_EVNTSEL0:
1054 case MSR_K8_INT_PENDING_MSG:
1055 case MSR_AMD64_NB_CFG:
1056 case MSR_FAM10H_MMIO_CONF_BASE:
1057 data = 0;
1058 break;
1059 case MSR_MTRRcap:
1060 data = 0x500 | KVM_NR_VAR_MTRR;
1061 break;
1062 case 0x200 ... 0x2ff:
1063 return get_msr_mtrr(vcpu, msr, pdata);
1064 case 0xcd: /* fsb frequency */
1065 data = 3;
1066 break;
1067 case MSR_IA32_APICBASE:
1068 data = kvm_get_apic_base(vcpu);
1069 break;
1070 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1071 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1072 break;
1073 case MSR_IA32_MISC_ENABLE:
1074 data = vcpu->arch.ia32_misc_enable_msr;
1075 break;
1076 case MSR_IA32_PERF_STATUS:
1077 /* TSC increment by tick */
1078 data = 1000ULL;
1079 /* CPU multiplier */
1080 data |= (((uint64_t)4ULL) << 40);
1081 break;
1082 case MSR_EFER:
1083 data = vcpu->arch.shadow_efer;
1084 break;
1085 case MSR_KVM_WALL_CLOCK:
1086 data = vcpu->kvm->arch.wall_clock;
1087 break;
1088 case MSR_KVM_SYSTEM_TIME:
1089 data = vcpu->arch.time;
1090 break;
1091 case MSR_IA32_P5_MC_ADDR:
1092 case MSR_IA32_P5_MC_TYPE:
1093 case MSR_IA32_MCG_CAP:
1094 case MSR_IA32_MCG_CTL:
1095 case MSR_IA32_MCG_STATUS:
1096 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1097 return get_msr_mce(vcpu, msr, pdata);
1098 default:
1099 if (!ignore_msrs) {
1100 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1101 return 1;
1102 } else {
1103 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1104 data = 0;
1106 break;
1108 *pdata = data;
1109 return 0;
1111 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1114 * Read or write a bunch of msrs. All parameters are kernel addresses.
1116 * @return number of msrs set successfully.
1118 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1119 struct kvm_msr_entry *entries,
1120 int (*do_msr)(struct kvm_vcpu *vcpu,
1121 unsigned index, u64 *data))
1123 int i;
1125 vcpu_load(vcpu);
1127 down_read(&vcpu->kvm->slots_lock);
1128 for (i = 0; i < msrs->nmsrs; ++i)
1129 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1130 break;
1131 up_read(&vcpu->kvm->slots_lock);
1133 vcpu_put(vcpu);
1135 return i;
1139 * Read or write a bunch of msrs. Parameters are user addresses.
1141 * @return number of msrs set successfully.
1143 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1144 int (*do_msr)(struct kvm_vcpu *vcpu,
1145 unsigned index, u64 *data),
1146 int writeback)
1148 struct kvm_msrs msrs;
1149 struct kvm_msr_entry *entries;
1150 int r, n;
1151 unsigned size;
1153 r = -EFAULT;
1154 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1155 goto out;
1157 r = -E2BIG;
1158 if (msrs.nmsrs >= MAX_IO_MSRS)
1159 goto out;
1161 r = -ENOMEM;
1162 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1163 entries = vmalloc(size);
1164 if (!entries)
1165 goto out;
1167 r = -EFAULT;
1168 if (copy_from_user(entries, user_msrs->entries, size))
1169 goto out_free;
1171 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1172 if (r < 0)
1173 goto out_free;
1175 r = -EFAULT;
1176 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1177 goto out_free;
1179 r = n;
1181 out_free:
1182 vfree(entries);
1183 out:
1184 return r;
1187 int kvm_dev_ioctl_check_extension(long ext)
1189 int r;
1191 switch (ext) {
1192 case KVM_CAP_IRQCHIP:
1193 case KVM_CAP_HLT:
1194 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1195 case KVM_CAP_SET_TSS_ADDR:
1196 case KVM_CAP_EXT_CPUID:
1197 case KVM_CAP_CLOCKSOURCE:
1198 case KVM_CAP_PIT:
1199 case KVM_CAP_NOP_IO_DELAY:
1200 case KVM_CAP_MP_STATE:
1201 case KVM_CAP_SYNC_MMU:
1202 case KVM_CAP_REINJECT_CONTROL:
1203 case KVM_CAP_IRQ_INJECT_STATUS:
1204 case KVM_CAP_ASSIGN_DEV_IRQ:
1205 case KVM_CAP_IRQFD:
1206 case KVM_CAP_IOEVENTFD:
1207 case KVM_CAP_PIT2:
1208 case KVM_CAP_PIT_STATE2:
1209 r = 1;
1210 break;
1211 case KVM_CAP_COALESCED_MMIO:
1212 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1213 break;
1214 case KVM_CAP_VAPIC:
1215 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1216 break;
1217 case KVM_CAP_NR_VCPUS:
1218 r = KVM_MAX_VCPUS;
1219 break;
1220 case KVM_CAP_NR_MEMSLOTS:
1221 r = KVM_MEMORY_SLOTS;
1222 break;
1223 case KVM_CAP_PV_MMU:
1224 r = !tdp_enabled;
1225 break;
1226 case KVM_CAP_IOMMU:
1227 r = iommu_found();
1228 break;
1229 case KVM_CAP_MCE:
1230 r = KVM_MAX_MCE_BANKS;
1231 break;
1232 default:
1233 r = 0;
1234 break;
1236 return r;
1240 long kvm_arch_dev_ioctl(struct file *filp,
1241 unsigned int ioctl, unsigned long arg)
1243 void __user *argp = (void __user *)arg;
1244 long r;
1246 switch (ioctl) {
1247 case KVM_GET_MSR_INDEX_LIST: {
1248 struct kvm_msr_list __user *user_msr_list = argp;
1249 struct kvm_msr_list msr_list;
1250 unsigned n;
1252 r = -EFAULT;
1253 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1254 goto out;
1255 n = msr_list.nmsrs;
1256 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1257 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1258 goto out;
1259 r = -E2BIG;
1260 if (n < msr_list.nmsrs)
1261 goto out;
1262 r = -EFAULT;
1263 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1264 num_msrs_to_save * sizeof(u32)))
1265 goto out;
1266 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1267 &emulated_msrs,
1268 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1269 goto out;
1270 r = 0;
1271 break;
1273 case KVM_GET_SUPPORTED_CPUID: {
1274 struct kvm_cpuid2 __user *cpuid_arg = argp;
1275 struct kvm_cpuid2 cpuid;
1277 r = -EFAULT;
1278 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1279 goto out;
1280 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1281 cpuid_arg->entries);
1282 if (r)
1283 goto out;
1285 r = -EFAULT;
1286 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1287 goto out;
1288 r = 0;
1289 break;
1291 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1292 u64 mce_cap;
1294 mce_cap = KVM_MCE_CAP_SUPPORTED;
1295 r = -EFAULT;
1296 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1297 goto out;
1298 r = 0;
1299 break;
1301 default:
1302 r = -EINVAL;
1304 out:
1305 return r;
1308 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1310 kvm_x86_ops->vcpu_load(vcpu, cpu);
1311 kvm_request_guest_time_update(vcpu);
1314 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1316 kvm_x86_ops->vcpu_put(vcpu);
1317 kvm_put_guest_fpu(vcpu);
1320 static int is_efer_nx(void)
1322 unsigned long long efer = 0;
1324 rdmsrl_safe(MSR_EFER, &efer);
1325 return efer & EFER_NX;
1328 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1330 int i;
1331 struct kvm_cpuid_entry2 *e, *entry;
1333 entry = NULL;
1334 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1335 e = &vcpu->arch.cpuid_entries[i];
1336 if (e->function == 0x80000001) {
1337 entry = e;
1338 break;
1341 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1342 entry->edx &= ~(1 << 20);
1343 printk(KERN_INFO "kvm: guest NX capability removed\n");
1347 /* when an old userspace process fills a new kernel module */
1348 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1349 struct kvm_cpuid *cpuid,
1350 struct kvm_cpuid_entry __user *entries)
1352 int r, i;
1353 struct kvm_cpuid_entry *cpuid_entries;
1355 r = -E2BIG;
1356 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1357 goto out;
1358 r = -ENOMEM;
1359 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1360 if (!cpuid_entries)
1361 goto out;
1362 r = -EFAULT;
1363 if (copy_from_user(cpuid_entries, entries,
1364 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1365 goto out_free;
1366 for (i = 0; i < cpuid->nent; i++) {
1367 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1368 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1369 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1370 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1371 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1372 vcpu->arch.cpuid_entries[i].index = 0;
1373 vcpu->arch.cpuid_entries[i].flags = 0;
1374 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1375 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1376 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1378 vcpu->arch.cpuid_nent = cpuid->nent;
1379 cpuid_fix_nx_cap(vcpu);
1380 r = 0;
1381 kvm_apic_set_version(vcpu);
1383 out_free:
1384 vfree(cpuid_entries);
1385 out:
1386 return r;
1389 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1390 struct kvm_cpuid2 *cpuid,
1391 struct kvm_cpuid_entry2 __user *entries)
1393 int r;
1395 r = -E2BIG;
1396 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1397 goto out;
1398 r = -EFAULT;
1399 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1400 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1401 goto out;
1402 vcpu->arch.cpuid_nent = cpuid->nent;
1403 kvm_apic_set_version(vcpu);
1404 return 0;
1406 out:
1407 return r;
1410 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1411 struct kvm_cpuid2 *cpuid,
1412 struct kvm_cpuid_entry2 __user *entries)
1414 int r;
1416 r = -E2BIG;
1417 if (cpuid->nent < vcpu->arch.cpuid_nent)
1418 goto out;
1419 r = -EFAULT;
1420 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1421 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1422 goto out;
1423 return 0;
1425 out:
1426 cpuid->nent = vcpu->arch.cpuid_nent;
1427 return r;
1430 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1431 u32 index)
1433 entry->function = function;
1434 entry->index = index;
1435 cpuid_count(entry->function, entry->index,
1436 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1437 entry->flags = 0;
1440 #define F(x) bit(X86_FEATURE_##x)
1442 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1443 u32 index, int *nent, int maxnent)
1445 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1446 #ifdef CONFIG_X86_64
1447 unsigned f_lm = F(LM);
1448 #else
1449 unsigned f_lm = 0;
1450 #endif
1452 /* cpuid 1.edx */
1453 const u32 kvm_supported_word0_x86_features =
1454 F(FPU) | F(VME) | F(DE) | F(PSE) |
1455 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1456 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1457 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1458 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1459 0 /* Reserved, DS, ACPI */ | F(MMX) |
1460 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1461 0 /* HTT, TM, Reserved, PBE */;
1462 /* cpuid 0x80000001.edx */
1463 const u32 kvm_supported_word1_x86_features =
1464 F(FPU) | F(VME) | F(DE) | F(PSE) |
1465 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1466 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1467 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1468 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1469 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1470 F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
1471 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1472 /* cpuid 1.ecx */
1473 const u32 kvm_supported_word4_x86_features =
1474 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1475 0 /* DS-CPL, VMX, SMX, EST */ |
1476 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1477 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1478 0 /* Reserved, DCA */ | F(XMM4_1) |
1479 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1480 0 /* Reserved, XSAVE, OSXSAVE */;
1481 /* cpuid 0x80000001.ecx */
1482 const u32 kvm_supported_word6_x86_features =
1483 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1484 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1485 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1486 0 /* SKINIT */ | 0 /* WDT */;
1488 /* all calls to cpuid_count() should be made on the same cpu */
1489 get_cpu();
1490 do_cpuid_1_ent(entry, function, index);
1491 ++*nent;
1493 switch (function) {
1494 case 0:
1495 entry->eax = min(entry->eax, (u32)0xb);
1496 break;
1497 case 1:
1498 entry->edx &= kvm_supported_word0_x86_features;
1499 entry->ecx &= kvm_supported_word4_x86_features;
1500 /* we support x2apic emulation even if host does not support
1501 * it since we emulate x2apic in software */
1502 entry->ecx |= F(X2APIC);
1503 break;
1504 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1505 * may return different values. This forces us to get_cpu() before
1506 * issuing the first command, and also to emulate this annoying behavior
1507 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1508 case 2: {
1509 int t, times = entry->eax & 0xff;
1511 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1512 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1513 for (t = 1; t < times && *nent < maxnent; ++t) {
1514 do_cpuid_1_ent(&entry[t], function, 0);
1515 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1516 ++*nent;
1518 break;
1520 /* function 4 and 0xb have additional index. */
1521 case 4: {
1522 int i, cache_type;
1524 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1525 /* read more entries until cache_type is zero */
1526 for (i = 1; *nent < maxnent; ++i) {
1527 cache_type = entry[i - 1].eax & 0x1f;
1528 if (!cache_type)
1529 break;
1530 do_cpuid_1_ent(&entry[i], function, i);
1531 entry[i].flags |=
1532 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1533 ++*nent;
1535 break;
1537 case 0xb: {
1538 int i, level_type;
1540 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1541 /* read more entries until level_type is zero */
1542 for (i = 1; *nent < maxnent; ++i) {
1543 level_type = entry[i - 1].ecx & 0xff00;
1544 if (!level_type)
1545 break;
1546 do_cpuid_1_ent(&entry[i], function, i);
1547 entry[i].flags |=
1548 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1549 ++*nent;
1551 break;
1553 case 0x80000000:
1554 entry->eax = min(entry->eax, 0x8000001a);
1555 break;
1556 case 0x80000001:
1557 entry->edx &= kvm_supported_word1_x86_features;
1558 entry->ecx &= kvm_supported_word6_x86_features;
1559 break;
1561 put_cpu();
1564 #undef F
1566 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1567 struct kvm_cpuid_entry2 __user *entries)
1569 struct kvm_cpuid_entry2 *cpuid_entries;
1570 int limit, nent = 0, r = -E2BIG;
1571 u32 func;
1573 if (cpuid->nent < 1)
1574 goto out;
1575 r = -ENOMEM;
1576 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1577 if (!cpuid_entries)
1578 goto out;
1580 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1581 limit = cpuid_entries[0].eax;
1582 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1583 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1584 &nent, cpuid->nent);
1585 r = -E2BIG;
1586 if (nent >= cpuid->nent)
1587 goto out_free;
1589 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1590 limit = cpuid_entries[nent - 1].eax;
1591 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1592 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1593 &nent, cpuid->nent);
1594 r = -E2BIG;
1595 if (nent >= cpuid->nent)
1596 goto out_free;
1598 r = -EFAULT;
1599 if (copy_to_user(entries, cpuid_entries,
1600 nent * sizeof(struct kvm_cpuid_entry2)))
1601 goto out_free;
1602 cpuid->nent = nent;
1603 r = 0;
1605 out_free:
1606 vfree(cpuid_entries);
1607 out:
1608 return r;
1611 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1612 struct kvm_lapic_state *s)
1614 vcpu_load(vcpu);
1615 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1616 vcpu_put(vcpu);
1618 return 0;
1621 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1622 struct kvm_lapic_state *s)
1624 vcpu_load(vcpu);
1625 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1626 kvm_apic_post_state_restore(vcpu);
1627 vcpu_put(vcpu);
1629 return 0;
1632 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1633 struct kvm_interrupt *irq)
1635 if (irq->irq < 0 || irq->irq >= 256)
1636 return -EINVAL;
1637 if (irqchip_in_kernel(vcpu->kvm))
1638 return -ENXIO;
1639 vcpu_load(vcpu);
1641 kvm_queue_interrupt(vcpu, irq->irq, false);
1643 vcpu_put(vcpu);
1645 return 0;
1648 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1650 vcpu_load(vcpu);
1651 kvm_inject_nmi(vcpu);
1652 vcpu_put(vcpu);
1654 return 0;
1657 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1658 struct kvm_tpr_access_ctl *tac)
1660 if (tac->flags)
1661 return -EINVAL;
1662 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1663 return 0;
1666 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1667 u64 mcg_cap)
1669 int r;
1670 unsigned bank_num = mcg_cap & 0xff, bank;
1672 r = -EINVAL;
1673 if (!bank_num)
1674 goto out;
1675 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1676 goto out;
1677 r = 0;
1678 vcpu->arch.mcg_cap = mcg_cap;
1679 /* Init IA32_MCG_CTL to all 1s */
1680 if (mcg_cap & MCG_CTL_P)
1681 vcpu->arch.mcg_ctl = ~(u64)0;
1682 /* Init IA32_MCi_CTL to all 1s */
1683 for (bank = 0; bank < bank_num; bank++)
1684 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1685 out:
1686 return r;
1689 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1690 struct kvm_x86_mce *mce)
1692 u64 mcg_cap = vcpu->arch.mcg_cap;
1693 unsigned bank_num = mcg_cap & 0xff;
1694 u64 *banks = vcpu->arch.mce_banks;
1696 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1697 return -EINVAL;
1699 * if IA32_MCG_CTL is not all 1s, the uncorrected error
1700 * reporting is disabled
1702 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1703 vcpu->arch.mcg_ctl != ~(u64)0)
1704 return 0;
1705 banks += 4 * mce->bank;
1707 * if IA32_MCi_CTL is not all 1s, the uncorrected error
1708 * reporting is disabled for the bank
1710 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1711 return 0;
1712 if (mce->status & MCI_STATUS_UC) {
1713 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1714 !(vcpu->arch.cr4 & X86_CR4_MCE)) {
1715 printk(KERN_DEBUG "kvm: set_mce: "
1716 "injects mce exception while "
1717 "previous one is in progress!\n");
1718 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1719 return 0;
1721 if (banks[1] & MCI_STATUS_VAL)
1722 mce->status |= MCI_STATUS_OVER;
1723 banks[2] = mce->addr;
1724 banks[3] = mce->misc;
1725 vcpu->arch.mcg_status = mce->mcg_status;
1726 banks[1] = mce->status;
1727 kvm_queue_exception(vcpu, MC_VECTOR);
1728 } else if (!(banks[1] & MCI_STATUS_VAL)
1729 || !(banks[1] & MCI_STATUS_UC)) {
1730 if (banks[1] & MCI_STATUS_VAL)
1731 mce->status |= MCI_STATUS_OVER;
1732 banks[2] = mce->addr;
1733 banks[3] = mce->misc;
1734 banks[1] = mce->status;
1735 } else
1736 banks[1] |= MCI_STATUS_OVER;
1737 return 0;
1740 long kvm_arch_vcpu_ioctl(struct file *filp,
1741 unsigned int ioctl, unsigned long arg)
1743 struct kvm_vcpu *vcpu = filp->private_data;
1744 void __user *argp = (void __user *)arg;
1745 int r;
1746 struct kvm_lapic_state *lapic = NULL;
1748 switch (ioctl) {
1749 case KVM_GET_LAPIC: {
1750 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1752 r = -ENOMEM;
1753 if (!lapic)
1754 goto out;
1755 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1756 if (r)
1757 goto out;
1758 r = -EFAULT;
1759 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1760 goto out;
1761 r = 0;
1762 break;
1764 case KVM_SET_LAPIC: {
1765 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1766 r = -ENOMEM;
1767 if (!lapic)
1768 goto out;
1769 r = -EFAULT;
1770 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1771 goto out;
1772 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1773 if (r)
1774 goto out;
1775 r = 0;
1776 break;
1778 case KVM_INTERRUPT: {
1779 struct kvm_interrupt irq;
1781 r = -EFAULT;
1782 if (copy_from_user(&irq, argp, sizeof irq))
1783 goto out;
1784 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1785 if (r)
1786 goto out;
1787 r = 0;
1788 break;
1790 case KVM_NMI: {
1791 r = kvm_vcpu_ioctl_nmi(vcpu);
1792 if (r)
1793 goto out;
1794 r = 0;
1795 break;
1797 case KVM_SET_CPUID: {
1798 struct kvm_cpuid __user *cpuid_arg = argp;
1799 struct kvm_cpuid cpuid;
1801 r = -EFAULT;
1802 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1803 goto out;
1804 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1805 if (r)
1806 goto out;
1807 break;
1809 case KVM_SET_CPUID2: {
1810 struct kvm_cpuid2 __user *cpuid_arg = argp;
1811 struct kvm_cpuid2 cpuid;
1813 r = -EFAULT;
1814 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1815 goto out;
1816 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1817 cpuid_arg->entries);
1818 if (r)
1819 goto out;
1820 break;
1822 case KVM_GET_CPUID2: {
1823 struct kvm_cpuid2 __user *cpuid_arg = argp;
1824 struct kvm_cpuid2 cpuid;
1826 r = -EFAULT;
1827 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1828 goto out;
1829 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1830 cpuid_arg->entries);
1831 if (r)
1832 goto out;
1833 r = -EFAULT;
1834 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1835 goto out;
1836 r = 0;
1837 break;
1839 case KVM_GET_MSRS:
1840 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1841 break;
1842 case KVM_SET_MSRS:
1843 r = msr_io(vcpu, argp, do_set_msr, 0);
1844 break;
1845 case KVM_TPR_ACCESS_REPORTING: {
1846 struct kvm_tpr_access_ctl tac;
1848 r = -EFAULT;
1849 if (copy_from_user(&tac, argp, sizeof tac))
1850 goto out;
1851 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1852 if (r)
1853 goto out;
1854 r = -EFAULT;
1855 if (copy_to_user(argp, &tac, sizeof tac))
1856 goto out;
1857 r = 0;
1858 break;
1860 case KVM_SET_VAPIC_ADDR: {
1861 struct kvm_vapic_addr va;
1863 r = -EINVAL;
1864 if (!irqchip_in_kernel(vcpu->kvm))
1865 goto out;
1866 r = -EFAULT;
1867 if (copy_from_user(&va, argp, sizeof va))
1868 goto out;
1869 r = 0;
1870 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1871 break;
1873 case KVM_X86_SETUP_MCE: {
1874 u64 mcg_cap;
1876 r = -EFAULT;
1877 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
1878 goto out;
1879 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
1880 break;
1882 case KVM_X86_SET_MCE: {
1883 struct kvm_x86_mce mce;
1885 r = -EFAULT;
1886 if (copy_from_user(&mce, argp, sizeof mce))
1887 goto out;
1888 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
1889 break;
1891 default:
1892 r = -EINVAL;
1894 out:
1895 kfree(lapic);
1896 return r;
1899 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1901 int ret;
1903 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1904 return -1;
1905 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1906 return ret;
1909 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1910 u32 kvm_nr_mmu_pages)
1912 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1913 return -EINVAL;
1915 down_write(&kvm->slots_lock);
1916 spin_lock(&kvm->mmu_lock);
1918 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1919 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1921 spin_unlock(&kvm->mmu_lock);
1922 up_write(&kvm->slots_lock);
1923 return 0;
1926 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1928 return kvm->arch.n_alloc_mmu_pages;
1931 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1933 int i;
1934 struct kvm_mem_alias *alias;
1936 for (i = 0; i < kvm->arch.naliases; ++i) {
1937 alias = &kvm->arch.aliases[i];
1938 if (gfn >= alias->base_gfn
1939 && gfn < alias->base_gfn + alias->npages)
1940 return alias->target_gfn + gfn - alias->base_gfn;
1942 return gfn;
1946 * Set a new alias region. Aliases map a portion of physical memory into
1947 * another portion. This is useful for memory windows, for example the PC
1948 * VGA region.
1950 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1951 struct kvm_memory_alias *alias)
1953 int r, n;
1954 struct kvm_mem_alias *p;
1956 r = -EINVAL;
1957 /* General sanity checks */
1958 if (alias->memory_size & (PAGE_SIZE - 1))
1959 goto out;
1960 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1961 goto out;
1962 if (alias->slot >= KVM_ALIAS_SLOTS)
1963 goto out;
1964 if (alias->guest_phys_addr + alias->memory_size
1965 < alias->guest_phys_addr)
1966 goto out;
1967 if (alias->target_phys_addr + alias->memory_size
1968 < alias->target_phys_addr)
1969 goto out;
1971 down_write(&kvm->slots_lock);
1972 spin_lock(&kvm->mmu_lock);
1974 p = &kvm->arch.aliases[alias->slot];
1975 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1976 p->npages = alias->memory_size >> PAGE_SHIFT;
1977 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1979 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1980 if (kvm->arch.aliases[n - 1].npages)
1981 break;
1982 kvm->arch.naliases = n;
1984 spin_unlock(&kvm->mmu_lock);
1985 kvm_mmu_zap_all(kvm);
1987 up_write(&kvm->slots_lock);
1989 return 0;
1991 out:
1992 return r;
1995 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1997 int r;
1999 r = 0;
2000 switch (chip->chip_id) {
2001 case KVM_IRQCHIP_PIC_MASTER:
2002 memcpy(&chip->chip.pic,
2003 &pic_irqchip(kvm)->pics[0],
2004 sizeof(struct kvm_pic_state));
2005 break;
2006 case KVM_IRQCHIP_PIC_SLAVE:
2007 memcpy(&chip->chip.pic,
2008 &pic_irqchip(kvm)->pics[1],
2009 sizeof(struct kvm_pic_state));
2010 break;
2011 case KVM_IRQCHIP_IOAPIC:
2012 memcpy(&chip->chip.ioapic,
2013 ioapic_irqchip(kvm),
2014 sizeof(struct kvm_ioapic_state));
2015 break;
2016 default:
2017 r = -EINVAL;
2018 break;
2020 return r;
2023 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2025 int r;
2027 r = 0;
2028 switch (chip->chip_id) {
2029 case KVM_IRQCHIP_PIC_MASTER:
2030 spin_lock(&pic_irqchip(kvm)->lock);
2031 memcpy(&pic_irqchip(kvm)->pics[0],
2032 &chip->chip.pic,
2033 sizeof(struct kvm_pic_state));
2034 spin_unlock(&pic_irqchip(kvm)->lock);
2035 break;
2036 case KVM_IRQCHIP_PIC_SLAVE:
2037 spin_lock(&pic_irqchip(kvm)->lock);
2038 memcpy(&pic_irqchip(kvm)->pics[1],
2039 &chip->chip.pic,
2040 sizeof(struct kvm_pic_state));
2041 spin_unlock(&pic_irqchip(kvm)->lock);
2042 break;
2043 case KVM_IRQCHIP_IOAPIC:
2044 mutex_lock(&kvm->irq_lock);
2045 memcpy(ioapic_irqchip(kvm),
2046 &chip->chip.ioapic,
2047 sizeof(struct kvm_ioapic_state));
2048 mutex_unlock(&kvm->irq_lock);
2049 break;
2050 default:
2051 r = -EINVAL;
2052 break;
2054 kvm_pic_update_irq(pic_irqchip(kvm));
2055 return r;
2058 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2060 int r = 0;
2062 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2063 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2064 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2065 return r;
2068 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2070 int r = 0;
2072 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2073 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2074 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2075 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2076 return r;
2079 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2081 int r = 0;
2083 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2084 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2085 sizeof(ps->channels));
2086 ps->flags = kvm->arch.vpit->pit_state.flags;
2087 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2088 return r;
2091 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2093 int r = 0, start = 0;
2094 u32 prev_legacy, cur_legacy;
2095 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2096 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2097 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2098 if (!prev_legacy && cur_legacy)
2099 start = 1;
2100 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2101 sizeof(kvm->arch.vpit->pit_state.channels));
2102 kvm->arch.vpit->pit_state.flags = ps->flags;
2103 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2104 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2105 return r;
2108 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2109 struct kvm_reinject_control *control)
2111 if (!kvm->arch.vpit)
2112 return -ENXIO;
2113 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2114 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2115 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2116 return 0;
2120 * Get (and clear) the dirty memory log for a memory slot.
2122 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2123 struct kvm_dirty_log *log)
2125 int r;
2126 int n;
2127 struct kvm_memory_slot *memslot;
2128 int is_dirty = 0;
2130 down_write(&kvm->slots_lock);
2132 r = kvm_get_dirty_log(kvm, log, &is_dirty);
2133 if (r)
2134 goto out;
2136 /* If nothing is dirty, don't bother messing with page tables. */
2137 if (is_dirty) {
2138 spin_lock(&kvm->mmu_lock);
2139 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2140 spin_unlock(&kvm->mmu_lock);
2141 kvm_flush_remote_tlbs(kvm);
2142 memslot = &kvm->memslots[log->slot];
2143 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2144 memset(memslot->dirty_bitmap, 0, n);
2146 r = 0;
2147 out:
2148 up_write(&kvm->slots_lock);
2149 return r;
2152 long kvm_arch_vm_ioctl(struct file *filp,
2153 unsigned int ioctl, unsigned long arg)
2155 struct kvm *kvm = filp->private_data;
2156 void __user *argp = (void __user *)arg;
2157 int r = -EINVAL;
2159 * This union makes it completely explicit to gcc-3.x
2160 * that these two variables' stack usage should be
2161 * combined, not added together.
2163 union {
2164 struct kvm_pit_state ps;
2165 struct kvm_pit_state2 ps2;
2166 struct kvm_memory_alias alias;
2167 struct kvm_pit_config pit_config;
2168 } u;
2170 switch (ioctl) {
2171 case KVM_SET_TSS_ADDR:
2172 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2173 if (r < 0)
2174 goto out;
2175 break;
2176 case KVM_SET_MEMORY_REGION: {
2177 struct kvm_memory_region kvm_mem;
2178 struct kvm_userspace_memory_region kvm_userspace_mem;
2180 r = -EFAULT;
2181 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2182 goto out;
2183 kvm_userspace_mem.slot = kvm_mem.slot;
2184 kvm_userspace_mem.flags = kvm_mem.flags;
2185 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2186 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2187 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2188 if (r)
2189 goto out;
2190 break;
2192 case KVM_SET_NR_MMU_PAGES:
2193 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2194 if (r)
2195 goto out;
2196 break;
2197 case KVM_GET_NR_MMU_PAGES:
2198 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2199 break;
2200 case KVM_SET_MEMORY_ALIAS:
2201 r = -EFAULT;
2202 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2203 goto out;
2204 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2205 if (r)
2206 goto out;
2207 break;
2208 case KVM_CREATE_IRQCHIP:
2209 r = -ENOMEM;
2210 kvm->arch.vpic = kvm_create_pic(kvm);
2211 if (kvm->arch.vpic) {
2212 r = kvm_ioapic_init(kvm);
2213 if (r) {
2214 kfree(kvm->arch.vpic);
2215 kvm->arch.vpic = NULL;
2216 goto out;
2218 } else
2219 goto out;
2220 r = kvm_setup_default_irq_routing(kvm);
2221 if (r) {
2222 kfree(kvm->arch.vpic);
2223 kfree(kvm->arch.vioapic);
2224 goto out;
2226 break;
2227 case KVM_CREATE_PIT:
2228 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2229 goto create_pit;
2230 case KVM_CREATE_PIT2:
2231 r = -EFAULT;
2232 if (copy_from_user(&u.pit_config, argp,
2233 sizeof(struct kvm_pit_config)))
2234 goto out;
2235 create_pit:
2236 down_write(&kvm->slots_lock);
2237 r = -EEXIST;
2238 if (kvm->arch.vpit)
2239 goto create_pit_unlock;
2240 r = -ENOMEM;
2241 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2242 if (kvm->arch.vpit)
2243 r = 0;
2244 create_pit_unlock:
2245 up_write(&kvm->slots_lock);
2246 break;
2247 case KVM_IRQ_LINE_STATUS:
2248 case KVM_IRQ_LINE: {
2249 struct kvm_irq_level irq_event;
2251 r = -EFAULT;
2252 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2253 goto out;
2254 if (irqchip_in_kernel(kvm)) {
2255 __s32 status;
2256 mutex_lock(&kvm->irq_lock);
2257 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2258 irq_event.irq, irq_event.level);
2259 mutex_unlock(&kvm->irq_lock);
2260 if (ioctl == KVM_IRQ_LINE_STATUS) {
2261 irq_event.status = status;
2262 if (copy_to_user(argp, &irq_event,
2263 sizeof irq_event))
2264 goto out;
2266 r = 0;
2268 break;
2270 case KVM_GET_IRQCHIP: {
2271 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2272 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2274 r = -ENOMEM;
2275 if (!chip)
2276 goto out;
2277 r = -EFAULT;
2278 if (copy_from_user(chip, argp, sizeof *chip))
2279 goto get_irqchip_out;
2280 r = -ENXIO;
2281 if (!irqchip_in_kernel(kvm))
2282 goto get_irqchip_out;
2283 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2284 if (r)
2285 goto get_irqchip_out;
2286 r = -EFAULT;
2287 if (copy_to_user(argp, chip, sizeof *chip))
2288 goto get_irqchip_out;
2289 r = 0;
2290 get_irqchip_out:
2291 kfree(chip);
2292 if (r)
2293 goto out;
2294 break;
2296 case KVM_SET_IRQCHIP: {
2297 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2298 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2300 r = -ENOMEM;
2301 if (!chip)
2302 goto out;
2303 r = -EFAULT;
2304 if (copy_from_user(chip, argp, sizeof *chip))
2305 goto set_irqchip_out;
2306 r = -ENXIO;
2307 if (!irqchip_in_kernel(kvm))
2308 goto set_irqchip_out;
2309 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2310 if (r)
2311 goto set_irqchip_out;
2312 r = 0;
2313 set_irqchip_out:
2314 kfree(chip);
2315 if (r)
2316 goto out;
2317 break;
2319 case KVM_GET_PIT: {
2320 r = -EFAULT;
2321 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2322 goto out;
2323 r = -ENXIO;
2324 if (!kvm->arch.vpit)
2325 goto out;
2326 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2327 if (r)
2328 goto out;
2329 r = -EFAULT;
2330 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2331 goto out;
2332 r = 0;
2333 break;
2335 case KVM_SET_PIT: {
2336 r = -EFAULT;
2337 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2338 goto out;
2339 r = -ENXIO;
2340 if (!kvm->arch.vpit)
2341 goto out;
2342 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2343 if (r)
2344 goto out;
2345 r = 0;
2346 break;
2348 case KVM_GET_PIT2: {
2349 r = -ENXIO;
2350 if (!kvm->arch.vpit)
2351 goto out;
2352 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2353 if (r)
2354 goto out;
2355 r = -EFAULT;
2356 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2357 goto out;
2358 r = 0;
2359 break;
2361 case KVM_SET_PIT2: {
2362 r = -EFAULT;
2363 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2364 goto out;
2365 r = -ENXIO;
2366 if (!kvm->arch.vpit)
2367 goto out;
2368 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2369 if (r)
2370 goto out;
2371 r = 0;
2372 break;
2374 case KVM_REINJECT_CONTROL: {
2375 struct kvm_reinject_control control;
2376 r = -EFAULT;
2377 if (copy_from_user(&control, argp, sizeof(control)))
2378 goto out;
2379 r = kvm_vm_ioctl_reinject(kvm, &control);
2380 if (r)
2381 goto out;
2382 r = 0;
2383 break;
2385 default:
2388 out:
2389 return r;
2392 static void kvm_init_msr_list(void)
2394 u32 dummy[2];
2395 unsigned i, j;
2397 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2398 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2399 continue;
2400 if (j < i)
2401 msrs_to_save[j] = msrs_to_save[i];
2402 j++;
2404 num_msrs_to_save = j;
2407 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
2408 const void *v)
2410 if (vcpu->arch.apic &&
2411 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
2412 return 0;
2414 return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
2417 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
2419 if (vcpu->arch.apic &&
2420 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
2421 return 0;
2423 return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
2426 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2427 struct kvm_vcpu *vcpu)
2429 void *data = val;
2430 int r = X86EMUL_CONTINUE;
2432 while (bytes) {
2433 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2434 unsigned offset = addr & (PAGE_SIZE-1);
2435 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2436 int ret;
2438 if (gpa == UNMAPPED_GVA) {
2439 r = X86EMUL_PROPAGATE_FAULT;
2440 goto out;
2442 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2443 if (ret < 0) {
2444 r = X86EMUL_UNHANDLEABLE;
2445 goto out;
2448 bytes -= toread;
2449 data += toread;
2450 addr += toread;
2452 out:
2453 return r;
2456 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2457 struct kvm_vcpu *vcpu)
2459 void *data = val;
2460 int r = X86EMUL_CONTINUE;
2462 while (bytes) {
2463 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2464 unsigned offset = addr & (PAGE_SIZE-1);
2465 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2466 int ret;
2468 if (gpa == UNMAPPED_GVA) {
2469 r = X86EMUL_PROPAGATE_FAULT;
2470 goto out;
2472 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2473 if (ret < 0) {
2474 r = X86EMUL_UNHANDLEABLE;
2475 goto out;
2478 bytes -= towrite;
2479 data += towrite;
2480 addr += towrite;
2482 out:
2483 return r;
2487 static int emulator_read_emulated(unsigned long addr,
2488 void *val,
2489 unsigned int bytes,
2490 struct kvm_vcpu *vcpu)
2492 gpa_t gpa;
2494 if (vcpu->mmio_read_completed) {
2495 memcpy(val, vcpu->mmio_data, bytes);
2496 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
2497 vcpu->mmio_phys_addr, *(u64 *)val);
2498 vcpu->mmio_read_completed = 0;
2499 return X86EMUL_CONTINUE;
2502 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2504 /* For APIC access vmexit */
2505 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2506 goto mmio;
2508 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2509 == X86EMUL_CONTINUE)
2510 return X86EMUL_CONTINUE;
2511 if (gpa == UNMAPPED_GVA)
2512 return X86EMUL_PROPAGATE_FAULT;
2514 mmio:
2516 * Is this MMIO handled locally?
2518 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
2519 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
2520 return X86EMUL_CONTINUE;
2523 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
2525 vcpu->mmio_needed = 1;
2526 vcpu->mmio_phys_addr = gpa;
2527 vcpu->mmio_size = bytes;
2528 vcpu->mmio_is_write = 0;
2530 return X86EMUL_UNHANDLEABLE;
2533 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2534 const void *val, int bytes)
2536 int ret;
2538 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2539 if (ret < 0)
2540 return 0;
2541 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2542 return 1;
2545 static int emulator_write_emulated_onepage(unsigned long addr,
2546 const void *val,
2547 unsigned int bytes,
2548 struct kvm_vcpu *vcpu)
2550 gpa_t gpa;
2552 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2554 if (gpa == UNMAPPED_GVA) {
2555 kvm_inject_page_fault(vcpu, addr, 2);
2556 return X86EMUL_PROPAGATE_FAULT;
2559 /* For APIC access vmexit */
2560 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2561 goto mmio;
2563 if (emulator_write_phys(vcpu, gpa, val, bytes))
2564 return X86EMUL_CONTINUE;
2566 mmio:
2567 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
2569 * Is this MMIO handled locally?
2571 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
2572 return X86EMUL_CONTINUE;
2574 vcpu->mmio_needed = 1;
2575 vcpu->mmio_phys_addr = gpa;
2576 vcpu->mmio_size = bytes;
2577 vcpu->mmio_is_write = 1;
2578 memcpy(vcpu->mmio_data, val, bytes);
2580 return X86EMUL_CONTINUE;
2583 int emulator_write_emulated(unsigned long addr,
2584 const void *val,
2585 unsigned int bytes,
2586 struct kvm_vcpu *vcpu)
2588 /* Crossing a page boundary? */
2589 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2590 int rc, now;
2592 now = -addr & ~PAGE_MASK;
2593 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2594 if (rc != X86EMUL_CONTINUE)
2595 return rc;
2596 addr += now;
2597 val += now;
2598 bytes -= now;
2600 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2602 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2604 static int emulator_cmpxchg_emulated(unsigned long addr,
2605 const void *old,
2606 const void *new,
2607 unsigned int bytes,
2608 struct kvm_vcpu *vcpu)
2610 static int reported;
2612 if (!reported) {
2613 reported = 1;
2614 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2616 #ifndef CONFIG_X86_64
2617 /* guests cmpxchg8b have to be emulated atomically */
2618 if (bytes == 8) {
2619 gpa_t gpa;
2620 struct page *page;
2621 char *kaddr;
2622 u64 val;
2624 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2626 if (gpa == UNMAPPED_GVA ||
2627 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2628 goto emul_write;
2630 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2631 goto emul_write;
2633 val = *(u64 *)new;
2635 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2637 kaddr = kmap_atomic(page, KM_USER0);
2638 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2639 kunmap_atomic(kaddr, KM_USER0);
2640 kvm_release_page_dirty(page);
2642 emul_write:
2643 #endif
2645 return emulator_write_emulated(addr, new, bytes, vcpu);
2648 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2650 return kvm_x86_ops->get_segment_base(vcpu, seg);
2653 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2655 kvm_mmu_invlpg(vcpu, address);
2656 return X86EMUL_CONTINUE;
2659 int emulate_clts(struct kvm_vcpu *vcpu)
2661 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2662 return X86EMUL_CONTINUE;
2665 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2667 struct kvm_vcpu *vcpu = ctxt->vcpu;
2669 switch (dr) {
2670 case 0 ... 3:
2671 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2672 return X86EMUL_CONTINUE;
2673 default:
2674 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2675 return X86EMUL_UNHANDLEABLE;
2679 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2681 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2682 int exception;
2684 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2685 if (exception) {
2686 /* FIXME: better handling */
2687 return X86EMUL_UNHANDLEABLE;
2689 return X86EMUL_CONTINUE;
2692 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2694 u8 opcodes[4];
2695 unsigned long rip = kvm_rip_read(vcpu);
2696 unsigned long rip_linear;
2698 if (!printk_ratelimit())
2699 return;
2701 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2703 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2705 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2706 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2708 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2710 static struct x86_emulate_ops emulate_ops = {
2711 .read_std = kvm_read_guest_virt,
2712 .read_emulated = emulator_read_emulated,
2713 .write_emulated = emulator_write_emulated,
2714 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2717 static void cache_all_regs(struct kvm_vcpu *vcpu)
2719 kvm_register_read(vcpu, VCPU_REGS_RAX);
2720 kvm_register_read(vcpu, VCPU_REGS_RSP);
2721 kvm_register_read(vcpu, VCPU_REGS_RIP);
2722 vcpu->arch.regs_dirty = ~0;
2725 int emulate_instruction(struct kvm_vcpu *vcpu,
2726 struct kvm_run *run,
2727 unsigned long cr2,
2728 u16 error_code,
2729 int emulation_type)
2731 int r, shadow_mask;
2732 struct decode_cache *c;
2734 kvm_clear_exception_queue(vcpu);
2735 vcpu->arch.mmio_fault_cr2 = cr2;
2737 * TODO: fix x86_emulate.c to use guest_read/write_register
2738 * instead of direct ->regs accesses, can save hundred cycles
2739 * on Intel for instructions that don't read/change RSP, for
2740 * for example.
2742 cache_all_regs(vcpu);
2744 vcpu->mmio_is_write = 0;
2745 vcpu->arch.pio.string = 0;
2747 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2748 int cs_db, cs_l;
2749 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2751 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2752 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2753 vcpu->arch.emulate_ctxt.mode =
2754 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2755 ? X86EMUL_MODE_REAL : cs_l
2756 ? X86EMUL_MODE_PROT64 : cs_db
2757 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2759 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2761 /* Only allow emulation of specific instructions on #UD
2762 * (namely VMMCALL, sysenter, sysexit, syscall)*/
2763 c = &vcpu->arch.emulate_ctxt.decode;
2764 if (emulation_type & EMULTYPE_TRAP_UD) {
2765 if (!c->twobyte)
2766 return EMULATE_FAIL;
2767 switch (c->b) {
2768 case 0x01: /* VMMCALL */
2769 if (c->modrm_mod != 3 || c->modrm_rm != 1)
2770 return EMULATE_FAIL;
2771 break;
2772 case 0x34: /* sysenter */
2773 case 0x35: /* sysexit */
2774 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2775 return EMULATE_FAIL;
2776 break;
2777 case 0x05: /* syscall */
2778 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2779 return EMULATE_FAIL;
2780 break;
2781 default:
2782 return EMULATE_FAIL;
2785 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
2786 return EMULATE_FAIL;
2789 ++vcpu->stat.insn_emulation;
2790 if (r) {
2791 ++vcpu->stat.insn_emulation_fail;
2792 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2793 return EMULATE_DONE;
2794 return EMULATE_FAIL;
2798 if (emulation_type & EMULTYPE_SKIP) {
2799 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2800 return EMULATE_DONE;
2803 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2804 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
2806 if (r == 0)
2807 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
2809 if (vcpu->arch.pio.string)
2810 return EMULATE_DO_MMIO;
2812 if ((r || vcpu->mmio_is_write) && run) {
2813 run->exit_reason = KVM_EXIT_MMIO;
2814 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2815 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2816 run->mmio.len = vcpu->mmio_size;
2817 run->mmio.is_write = vcpu->mmio_is_write;
2820 if (r) {
2821 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2822 return EMULATE_DONE;
2823 if (!vcpu->mmio_needed) {
2824 kvm_report_emulation_failure(vcpu, "mmio");
2825 return EMULATE_FAIL;
2827 return EMULATE_DO_MMIO;
2830 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2832 if (vcpu->mmio_is_write) {
2833 vcpu->mmio_needed = 0;
2834 return EMULATE_DO_MMIO;
2837 return EMULATE_DONE;
2839 EXPORT_SYMBOL_GPL(emulate_instruction);
2841 static int pio_copy_data(struct kvm_vcpu *vcpu)
2843 void *p = vcpu->arch.pio_data;
2844 gva_t q = vcpu->arch.pio.guest_gva;
2845 unsigned bytes;
2846 int ret;
2848 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2849 if (vcpu->arch.pio.in)
2850 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2851 else
2852 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2853 return ret;
2856 int complete_pio(struct kvm_vcpu *vcpu)
2858 struct kvm_pio_request *io = &vcpu->arch.pio;
2859 long delta;
2860 int r;
2861 unsigned long val;
2863 if (!io->string) {
2864 if (io->in) {
2865 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2866 memcpy(&val, vcpu->arch.pio_data, io->size);
2867 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2869 } else {
2870 if (io->in) {
2871 r = pio_copy_data(vcpu);
2872 if (r)
2873 return r;
2876 delta = 1;
2877 if (io->rep) {
2878 delta *= io->cur_count;
2880 * The size of the register should really depend on
2881 * current address size.
2883 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2884 val -= delta;
2885 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2887 if (io->down)
2888 delta = -delta;
2889 delta *= io->size;
2890 if (io->in) {
2891 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2892 val += delta;
2893 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2894 } else {
2895 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2896 val += delta;
2897 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2901 io->count -= io->cur_count;
2902 io->cur_count = 0;
2904 return 0;
2907 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
2909 /* TODO: String I/O for in kernel device */
2910 int r;
2912 if (vcpu->arch.pio.in)
2913 r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2914 vcpu->arch.pio.size, pd);
2915 else
2916 r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2917 vcpu->arch.pio.size, pd);
2918 return r;
2921 static int pio_string_write(struct kvm_vcpu *vcpu)
2923 struct kvm_pio_request *io = &vcpu->arch.pio;
2924 void *pd = vcpu->arch.pio_data;
2925 int i, r = 0;
2927 for (i = 0; i < io->cur_count; i++) {
2928 if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
2929 io->port, io->size, pd)) {
2930 r = -EOPNOTSUPP;
2931 break;
2933 pd += io->size;
2935 return r;
2938 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2939 int size, unsigned port)
2941 unsigned long val;
2943 vcpu->run->exit_reason = KVM_EXIT_IO;
2944 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2945 vcpu->run->io.size = vcpu->arch.pio.size = size;
2946 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2947 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2948 vcpu->run->io.port = vcpu->arch.pio.port = port;
2949 vcpu->arch.pio.in = in;
2950 vcpu->arch.pio.string = 0;
2951 vcpu->arch.pio.down = 0;
2952 vcpu->arch.pio.rep = 0;
2954 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
2955 size, 1);
2957 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2958 memcpy(vcpu->arch.pio_data, &val, 4);
2960 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
2961 complete_pio(vcpu);
2962 return 1;
2964 return 0;
2966 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2968 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2969 int size, unsigned long count, int down,
2970 gva_t address, int rep, unsigned port)
2972 unsigned now, in_page;
2973 int ret = 0;
2975 vcpu->run->exit_reason = KVM_EXIT_IO;
2976 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2977 vcpu->run->io.size = vcpu->arch.pio.size = size;
2978 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2979 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2980 vcpu->run->io.port = vcpu->arch.pio.port = port;
2981 vcpu->arch.pio.in = in;
2982 vcpu->arch.pio.string = 1;
2983 vcpu->arch.pio.down = down;
2984 vcpu->arch.pio.rep = rep;
2986 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
2987 size, count);
2989 if (!count) {
2990 kvm_x86_ops->skip_emulated_instruction(vcpu);
2991 return 1;
2994 if (!down)
2995 in_page = PAGE_SIZE - offset_in_page(address);
2996 else
2997 in_page = offset_in_page(address) + size;
2998 now = min(count, (unsigned long)in_page / size);
2999 if (!now)
3000 now = 1;
3001 if (down) {
3003 * String I/O in reverse. Yuck. Kill the guest, fix later.
3005 pr_unimpl(vcpu, "guest string pio down\n");
3006 kvm_inject_gp(vcpu, 0);
3007 return 1;
3009 vcpu->run->io.count = now;
3010 vcpu->arch.pio.cur_count = now;
3012 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3013 kvm_x86_ops->skip_emulated_instruction(vcpu);
3015 vcpu->arch.pio.guest_gva = address;
3017 if (!vcpu->arch.pio.in) {
3018 /* string PIO write */
3019 ret = pio_copy_data(vcpu);
3020 if (ret == X86EMUL_PROPAGATE_FAULT) {
3021 kvm_inject_gp(vcpu, 0);
3022 return 1;
3024 if (ret == 0 && !pio_string_write(vcpu)) {
3025 complete_pio(vcpu);
3026 if (vcpu->arch.pio.count == 0)
3027 ret = 1;
3030 /* no string PIO read support yet */
3032 return ret;
3034 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3036 static void bounce_off(void *info)
3038 /* nothing */
3041 static unsigned int ref_freq;
3042 static unsigned long tsc_khz_ref;
3044 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3045 void *data)
3047 struct cpufreq_freqs *freq = data;
3048 struct kvm *kvm;
3049 struct kvm_vcpu *vcpu;
3050 int i, send_ipi = 0;
3052 if (!ref_freq)
3053 ref_freq = freq->old;
3055 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3056 return 0;
3057 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3058 return 0;
3059 per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
3061 spin_lock(&kvm_lock);
3062 list_for_each_entry(kvm, &vm_list, vm_list) {
3063 kvm_for_each_vcpu(i, vcpu, kvm) {
3064 if (vcpu->cpu != freq->cpu)
3065 continue;
3066 if (!kvm_request_guest_time_update(vcpu))
3067 continue;
3068 if (vcpu->cpu != smp_processor_id())
3069 send_ipi++;
3072 spin_unlock(&kvm_lock);
3074 if (freq->old < freq->new && send_ipi) {
3076 * We upscale the frequency. Must make the guest
3077 * doesn't see old kvmclock values while running with
3078 * the new frequency, otherwise we risk the guest sees
3079 * time go backwards.
3081 * In case we update the frequency for another cpu
3082 * (which might be in guest context) send an interrupt
3083 * to kick the cpu out of guest context. Next time
3084 * guest context is entered kvmclock will be updated,
3085 * so the guest will not see stale values.
3087 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3089 return 0;
3092 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3093 .notifier_call = kvmclock_cpufreq_notifier
3096 int kvm_arch_init(void *opaque)
3098 int r, cpu;
3099 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3101 if (kvm_x86_ops) {
3102 printk(KERN_ERR "kvm: already loaded the other module\n");
3103 r = -EEXIST;
3104 goto out;
3107 if (!ops->cpu_has_kvm_support()) {
3108 printk(KERN_ERR "kvm: no hardware support\n");
3109 r = -EOPNOTSUPP;
3110 goto out;
3112 if (ops->disabled_by_bios()) {
3113 printk(KERN_ERR "kvm: disabled by bios\n");
3114 r = -EOPNOTSUPP;
3115 goto out;
3118 r = kvm_mmu_module_init();
3119 if (r)
3120 goto out;
3122 kvm_init_msr_list();
3124 kvm_x86_ops = ops;
3125 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3126 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3127 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3128 PT_DIRTY_MASK, PT64_NX_MASK, 0);
3130 for_each_possible_cpu(cpu)
3131 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3132 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3133 tsc_khz_ref = tsc_khz;
3134 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3135 CPUFREQ_TRANSITION_NOTIFIER);
3138 return 0;
3140 out:
3141 return r;
3144 void kvm_arch_exit(void)
3146 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3147 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3148 CPUFREQ_TRANSITION_NOTIFIER);
3149 kvm_x86_ops = NULL;
3150 kvm_mmu_module_exit();
3153 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3155 ++vcpu->stat.halt_exits;
3156 if (irqchip_in_kernel(vcpu->kvm)) {
3157 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3158 return 1;
3159 } else {
3160 vcpu->run->exit_reason = KVM_EXIT_HLT;
3161 return 0;
3164 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3166 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3167 unsigned long a1)
3169 if (is_long_mode(vcpu))
3170 return a0;
3171 else
3172 return a0 | ((gpa_t)a1 << 32);
3175 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3177 unsigned long nr, a0, a1, a2, a3, ret;
3178 int r = 1;
3180 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3181 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3182 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3183 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3184 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3186 trace_kvm_hypercall(nr, a0, a1, a2, a3);
3188 if (!is_long_mode(vcpu)) {
3189 nr &= 0xFFFFFFFF;
3190 a0 &= 0xFFFFFFFF;
3191 a1 &= 0xFFFFFFFF;
3192 a2 &= 0xFFFFFFFF;
3193 a3 &= 0xFFFFFFFF;
3196 switch (nr) {
3197 case KVM_HC_VAPIC_POLL_IRQ:
3198 ret = 0;
3199 break;
3200 case KVM_HC_MMU_OP:
3201 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3202 break;
3203 default:
3204 ret = -KVM_ENOSYS;
3205 break;
3207 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3208 ++vcpu->stat.hypercalls;
3209 return r;
3211 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3213 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3215 char instruction[3];
3216 int ret = 0;
3217 unsigned long rip = kvm_rip_read(vcpu);
3221 * Blow out the MMU to ensure that no other VCPU has an active mapping
3222 * to ensure that the updated hypercall appears atomically across all
3223 * VCPUs.
3225 kvm_mmu_zap_all(vcpu->kvm);
3227 kvm_x86_ops->patch_hypercall(vcpu, instruction);
3228 if (emulator_write_emulated(rip, instruction, 3, vcpu)
3229 != X86EMUL_CONTINUE)
3230 ret = -EFAULT;
3232 return ret;
3235 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3237 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3240 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3242 struct descriptor_table dt = { limit, base };
3244 kvm_x86_ops->set_gdt(vcpu, &dt);
3247 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3249 struct descriptor_table dt = { limit, base };
3251 kvm_x86_ops->set_idt(vcpu, &dt);
3254 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3255 unsigned long *rflags)
3257 kvm_lmsw(vcpu, msw);
3258 *rflags = kvm_x86_ops->get_rflags(vcpu);
3261 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3263 unsigned long value;
3265 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3266 switch (cr) {
3267 case 0:
3268 value = vcpu->arch.cr0;
3269 break;
3270 case 2:
3271 value = vcpu->arch.cr2;
3272 break;
3273 case 3:
3274 value = vcpu->arch.cr3;
3275 break;
3276 case 4:
3277 value = vcpu->arch.cr4;
3278 break;
3279 case 8:
3280 value = kvm_get_cr8(vcpu);
3281 break;
3282 default:
3283 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3284 return 0;
3287 return value;
3290 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3291 unsigned long *rflags)
3293 switch (cr) {
3294 case 0:
3295 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3296 *rflags = kvm_x86_ops->get_rflags(vcpu);
3297 break;
3298 case 2:
3299 vcpu->arch.cr2 = val;
3300 break;
3301 case 3:
3302 kvm_set_cr3(vcpu, val);
3303 break;
3304 case 4:
3305 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3306 break;
3307 case 8:
3308 kvm_set_cr8(vcpu, val & 0xfUL);
3309 break;
3310 default:
3311 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3315 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3317 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3318 int j, nent = vcpu->arch.cpuid_nent;
3320 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3321 /* when no next entry is found, the current entry[i] is reselected */
3322 for (j = i + 1; ; j = (j + 1) % nent) {
3323 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3324 if (ej->function == e->function) {
3325 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3326 return j;
3329 return 0; /* silence gcc, even though control never reaches here */
3332 /* find an entry with matching function, matching index (if needed), and that
3333 * should be read next (if it's stateful) */
3334 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3335 u32 function, u32 index)
3337 if (e->function != function)
3338 return 0;
3339 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3340 return 0;
3341 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3342 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3343 return 0;
3344 return 1;
3347 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3348 u32 function, u32 index)
3350 int i;
3351 struct kvm_cpuid_entry2 *best = NULL;
3353 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3354 struct kvm_cpuid_entry2 *e;
3356 e = &vcpu->arch.cpuid_entries[i];
3357 if (is_matching_cpuid_entry(e, function, index)) {
3358 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3359 move_to_next_stateful_cpuid_entry(vcpu, i);
3360 best = e;
3361 break;
3364 * Both basic or both extended?
3366 if (((e->function ^ function) & 0x80000000) == 0)
3367 if (!best || e->function > best->function)
3368 best = e;
3370 return best;
3373 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3375 struct kvm_cpuid_entry2 *best;
3377 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3378 if (best)
3379 return best->eax & 0xff;
3380 return 36;
3383 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3385 u32 function, index;
3386 struct kvm_cpuid_entry2 *best;
3388 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3389 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3390 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3391 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3392 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3393 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3394 best = kvm_find_cpuid_entry(vcpu, function, index);
3395 if (best) {
3396 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3397 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3398 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3399 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3401 kvm_x86_ops->skip_emulated_instruction(vcpu);
3402 trace_kvm_cpuid(function,
3403 kvm_register_read(vcpu, VCPU_REGS_RAX),
3404 kvm_register_read(vcpu, VCPU_REGS_RBX),
3405 kvm_register_read(vcpu, VCPU_REGS_RCX),
3406 kvm_register_read(vcpu, VCPU_REGS_RDX));
3408 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3411 * Check if userspace requested an interrupt window, and that the
3412 * interrupt window is open.
3414 * No need to exit to userspace if we already have an interrupt queued.
3416 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3417 struct kvm_run *kvm_run)
3419 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3420 kvm_run->request_interrupt_window &&
3421 kvm_arch_interrupt_allowed(vcpu));
3424 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3425 struct kvm_run *kvm_run)
3427 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3428 kvm_run->cr8 = kvm_get_cr8(vcpu);
3429 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3430 if (irqchip_in_kernel(vcpu->kvm))
3431 kvm_run->ready_for_interrupt_injection = 1;
3432 else
3433 kvm_run->ready_for_interrupt_injection =
3434 kvm_arch_interrupt_allowed(vcpu) &&
3435 !kvm_cpu_has_interrupt(vcpu) &&
3436 !kvm_event_needs_reinjection(vcpu);
3439 static void vapic_enter(struct kvm_vcpu *vcpu)
3441 struct kvm_lapic *apic = vcpu->arch.apic;
3442 struct page *page;
3444 if (!apic || !apic->vapic_addr)
3445 return;
3447 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3449 vcpu->arch.apic->vapic_page = page;
3452 static void vapic_exit(struct kvm_vcpu *vcpu)
3454 struct kvm_lapic *apic = vcpu->arch.apic;
3456 if (!apic || !apic->vapic_addr)
3457 return;
3459 down_read(&vcpu->kvm->slots_lock);
3460 kvm_release_page_dirty(apic->vapic_page);
3461 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3462 up_read(&vcpu->kvm->slots_lock);
3465 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3467 int max_irr, tpr;
3469 if (!kvm_x86_ops->update_cr8_intercept)
3470 return;
3472 if (!vcpu->arch.apic->vapic_addr)
3473 max_irr = kvm_lapic_find_highest_irr(vcpu);
3474 else
3475 max_irr = -1;
3477 if (max_irr != -1)
3478 max_irr >>= 4;
3480 tpr = kvm_lapic_get_cr8(vcpu);
3482 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3485 static void inject_pending_event(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3487 /* try to reinject previous events if any */
3488 if (vcpu->arch.exception.pending) {
3489 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
3490 vcpu->arch.exception.has_error_code,
3491 vcpu->arch.exception.error_code);
3492 return;
3495 if (vcpu->arch.nmi_injected) {
3496 kvm_x86_ops->set_nmi(vcpu);
3497 return;
3500 if (vcpu->arch.interrupt.pending) {
3501 kvm_x86_ops->set_irq(vcpu);
3502 return;
3505 /* try to inject new event if pending */
3506 if (vcpu->arch.nmi_pending) {
3507 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3508 vcpu->arch.nmi_pending = false;
3509 vcpu->arch.nmi_injected = true;
3510 kvm_x86_ops->set_nmi(vcpu);
3512 } else if (kvm_cpu_has_interrupt(vcpu)) {
3513 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3514 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3515 false);
3516 kvm_x86_ops->set_irq(vcpu);
3521 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3523 int r;
3524 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3525 kvm_run->request_interrupt_window;
3527 if (vcpu->requests)
3528 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3529 kvm_mmu_unload(vcpu);
3531 r = kvm_mmu_reload(vcpu);
3532 if (unlikely(r))
3533 goto out;
3535 if (vcpu->requests) {
3536 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3537 __kvm_migrate_timers(vcpu);
3538 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3539 kvm_write_guest_time(vcpu);
3540 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3541 kvm_mmu_sync_roots(vcpu);
3542 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3543 kvm_x86_ops->tlb_flush(vcpu);
3544 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3545 &vcpu->requests)) {
3546 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3547 r = 0;
3548 goto out;
3550 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3551 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3552 r = 0;
3553 goto out;
3557 preempt_disable();
3559 kvm_x86_ops->prepare_guest_switch(vcpu);
3560 kvm_load_guest_fpu(vcpu);
3562 local_irq_disable();
3564 clear_bit(KVM_REQ_KICK, &vcpu->requests);
3565 smp_mb__after_clear_bit();
3567 if (vcpu->requests || need_resched() || signal_pending(current)) {
3568 set_bit(KVM_REQ_KICK, &vcpu->requests);
3569 local_irq_enable();
3570 preempt_enable();
3571 r = 1;
3572 goto out;
3575 inject_pending_event(vcpu, kvm_run);
3577 /* enable NMI/IRQ window open exits if needed */
3578 if (vcpu->arch.nmi_pending)
3579 kvm_x86_ops->enable_nmi_window(vcpu);
3580 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3581 kvm_x86_ops->enable_irq_window(vcpu);
3583 if (kvm_lapic_enabled(vcpu)) {
3584 update_cr8_intercept(vcpu);
3585 kvm_lapic_sync_to_vapic(vcpu);
3588 up_read(&vcpu->kvm->slots_lock);
3590 kvm_guest_enter();
3592 get_debugreg(vcpu->arch.host_dr6, 6);
3593 get_debugreg(vcpu->arch.host_dr7, 7);
3594 if (unlikely(vcpu->arch.switch_db_regs)) {
3595 get_debugreg(vcpu->arch.host_db[0], 0);
3596 get_debugreg(vcpu->arch.host_db[1], 1);
3597 get_debugreg(vcpu->arch.host_db[2], 2);
3598 get_debugreg(vcpu->arch.host_db[3], 3);
3600 set_debugreg(0, 7);
3601 set_debugreg(vcpu->arch.eff_db[0], 0);
3602 set_debugreg(vcpu->arch.eff_db[1], 1);
3603 set_debugreg(vcpu->arch.eff_db[2], 2);
3604 set_debugreg(vcpu->arch.eff_db[3], 3);
3607 trace_kvm_entry(vcpu->vcpu_id);
3608 kvm_x86_ops->run(vcpu, kvm_run);
3610 if (unlikely(vcpu->arch.switch_db_regs)) {
3611 set_debugreg(0, 7);
3612 set_debugreg(vcpu->arch.host_db[0], 0);
3613 set_debugreg(vcpu->arch.host_db[1], 1);
3614 set_debugreg(vcpu->arch.host_db[2], 2);
3615 set_debugreg(vcpu->arch.host_db[3], 3);
3617 set_debugreg(vcpu->arch.host_dr6, 6);
3618 set_debugreg(vcpu->arch.host_dr7, 7);
3620 set_bit(KVM_REQ_KICK, &vcpu->requests);
3621 local_irq_enable();
3623 ++vcpu->stat.exits;
3626 * We must have an instruction between local_irq_enable() and
3627 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3628 * the interrupt shadow. The stat.exits increment will do nicely.
3629 * But we need to prevent reordering, hence this barrier():
3631 barrier();
3633 kvm_guest_exit();
3635 preempt_enable();
3637 down_read(&vcpu->kvm->slots_lock);
3640 * Profile KVM exit RIPs:
3642 if (unlikely(prof_on == KVM_PROFILING)) {
3643 unsigned long rip = kvm_rip_read(vcpu);
3644 profile_hit(KVM_PROFILING, (void *)rip);
3648 kvm_lapic_sync_from_vapic(vcpu);
3650 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3651 out:
3652 return r;
3656 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3658 int r;
3660 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3661 pr_debug("vcpu %d received sipi with vector # %x\n",
3662 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3663 kvm_lapic_reset(vcpu);
3664 r = kvm_arch_vcpu_reset(vcpu);
3665 if (r)
3666 return r;
3667 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3670 down_read(&vcpu->kvm->slots_lock);
3671 vapic_enter(vcpu);
3673 r = 1;
3674 while (r > 0) {
3675 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3676 r = vcpu_enter_guest(vcpu, kvm_run);
3677 else {
3678 up_read(&vcpu->kvm->slots_lock);
3679 kvm_vcpu_block(vcpu);
3680 down_read(&vcpu->kvm->slots_lock);
3681 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3683 switch(vcpu->arch.mp_state) {
3684 case KVM_MP_STATE_HALTED:
3685 vcpu->arch.mp_state =
3686 KVM_MP_STATE_RUNNABLE;
3687 case KVM_MP_STATE_RUNNABLE:
3688 break;
3689 case KVM_MP_STATE_SIPI_RECEIVED:
3690 default:
3691 r = -EINTR;
3692 break;
3697 if (r <= 0)
3698 break;
3700 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3701 if (kvm_cpu_has_pending_timer(vcpu))
3702 kvm_inject_pending_timer_irqs(vcpu);
3704 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3705 r = -EINTR;
3706 kvm_run->exit_reason = KVM_EXIT_INTR;
3707 ++vcpu->stat.request_irq_exits;
3709 if (signal_pending(current)) {
3710 r = -EINTR;
3711 kvm_run->exit_reason = KVM_EXIT_INTR;
3712 ++vcpu->stat.signal_exits;
3714 if (need_resched()) {
3715 up_read(&vcpu->kvm->slots_lock);
3716 kvm_resched(vcpu);
3717 down_read(&vcpu->kvm->slots_lock);
3721 up_read(&vcpu->kvm->slots_lock);
3722 post_kvm_run_save(vcpu, kvm_run);
3724 vapic_exit(vcpu);
3726 return r;
3729 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3731 int r;
3732 sigset_t sigsaved;
3734 vcpu_load(vcpu);
3736 if (vcpu->sigset_active)
3737 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3739 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3740 kvm_vcpu_block(vcpu);
3741 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3742 r = -EAGAIN;
3743 goto out;
3746 /* re-sync apic's tpr */
3747 if (!irqchip_in_kernel(vcpu->kvm))
3748 kvm_set_cr8(vcpu, kvm_run->cr8);
3750 if (vcpu->arch.pio.cur_count) {
3751 r = complete_pio(vcpu);
3752 if (r)
3753 goto out;
3755 #if CONFIG_HAS_IOMEM
3756 if (vcpu->mmio_needed) {
3757 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3758 vcpu->mmio_read_completed = 1;
3759 vcpu->mmio_needed = 0;
3761 down_read(&vcpu->kvm->slots_lock);
3762 r = emulate_instruction(vcpu, kvm_run,
3763 vcpu->arch.mmio_fault_cr2, 0,
3764 EMULTYPE_NO_DECODE);
3765 up_read(&vcpu->kvm->slots_lock);
3766 if (r == EMULATE_DO_MMIO) {
3768 * Read-modify-write. Back to userspace.
3770 r = 0;
3771 goto out;
3774 #endif
3775 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3776 kvm_register_write(vcpu, VCPU_REGS_RAX,
3777 kvm_run->hypercall.ret);
3779 r = __vcpu_run(vcpu, kvm_run);
3781 out:
3782 if (vcpu->sigset_active)
3783 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3785 vcpu_put(vcpu);
3786 return r;
3789 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3791 vcpu_load(vcpu);
3793 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3794 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3795 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3796 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3797 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3798 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3799 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3800 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3801 #ifdef CONFIG_X86_64
3802 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3803 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3804 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3805 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3806 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3807 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3808 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3809 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3810 #endif
3812 regs->rip = kvm_rip_read(vcpu);
3813 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3816 * Don't leak debug flags in case they were set for guest debugging
3818 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3819 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3821 vcpu_put(vcpu);
3823 return 0;
3826 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3828 vcpu_load(vcpu);
3830 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3831 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3832 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3833 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3834 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3835 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3836 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3837 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3838 #ifdef CONFIG_X86_64
3839 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3840 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3841 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3842 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3843 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3844 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3845 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3846 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3848 #endif
3850 kvm_rip_write(vcpu, regs->rip);
3851 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3854 vcpu->arch.exception.pending = false;
3856 vcpu_put(vcpu);
3858 return 0;
3861 void kvm_get_segment(struct kvm_vcpu *vcpu,
3862 struct kvm_segment *var, int seg)
3864 kvm_x86_ops->get_segment(vcpu, var, seg);
3867 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3869 struct kvm_segment cs;
3871 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3872 *db = cs.db;
3873 *l = cs.l;
3875 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3877 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3878 struct kvm_sregs *sregs)
3880 struct descriptor_table dt;
3882 vcpu_load(vcpu);
3884 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3885 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3886 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3887 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3888 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3889 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3891 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3892 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3894 kvm_x86_ops->get_idt(vcpu, &dt);
3895 sregs->idt.limit = dt.limit;
3896 sregs->idt.base = dt.base;
3897 kvm_x86_ops->get_gdt(vcpu, &dt);
3898 sregs->gdt.limit = dt.limit;
3899 sregs->gdt.base = dt.base;
3901 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3902 sregs->cr0 = vcpu->arch.cr0;
3903 sregs->cr2 = vcpu->arch.cr2;
3904 sregs->cr3 = vcpu->arch.cr3;
3905 sregs->cr4 = vcpu->arch.cr4;
3906 sregs->cr8 = kvm_get_cr8(vcpu);
3907 sregs->efer = vcpu->arch.shadow_efer;
3908 sregs->apic_base = kvm_get_apic_base(vcpu);
3910 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
3912 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
3913 set_bit(vcpu->arch.interrupt.nr,
3914 (unsigned long *)sregs->interrupt_bitmap);
3916 vcpu_put(vcpu);
3918 return 0;
3921 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3922 struct kvm_mp_state *mp_state)
3924 vcpu_load(vcpu);
3925 mp_state->mp_state = vcpu->arch.mp_state;
3926 vcpu_put(vcpu);
3927 return 0;
3930 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3931 struct kvm_mp_state *mp_state)
3933 vcpu_load(vcpu);
3934 vcpu->arch.mp_state = mp_state->mp_state;
3935 vcpu_put(vcpu);
3936 return 0;
3939 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3940 struct kvm_segment *var, int seg)
3942 kvm_x86_ops->set_segment(vcpu, var, seg);
3945 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3946 struct kvm_segment *kvm_desct)
3948 kvm_desct->base = get_desc_base(seg_desc);
3949 kvm_desct->limit = get_desc_limit(seg_desc);
3950 if (seg_desc->g) {
3951 kvm_desct->limit <<= 12;
3952 kvm_desct->limit |= 0xfff;
3954 kvm_desct->selector = selector;
3955 kvm_desct->type = seg_desc->type;
3956 kvm_desct->present = seg_desc->p;
3957 kvm_desct->dpl = seg_desc->dpl;
3958 kvm_desct->db = seg_desc->d;
3959 kvm_desct->s = seg_desc->s;
3960 kvm_desct->l = seg_desc->l;
3961 kvm_desct->g = seg_desc->g;
3962 kvm_desct->avl = seg_desc->avl;
3963 if (!selector)
3964 kvm_desct->unusable = 1;
3965 else
3966 kvm_desct->unusable = 0;
3967 kvm_desct->padding = 0;
3970 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3971 u16 selector,
3972 struct descriptor_table *dtable)
3974 if (selector & 1 << 2) {
3975 struct kvm_segment kvm_seg;
3977 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3979 if (kvm_seg.unusable)
3980 dtable->limit = 0;
3981 else
3982 dtable->limit = kvm_seg.limit;
3983 dtable->base = kvm_seg.base;
3985 else
3986 kvm_x86_ops->get_gdt(vcpu, dtable);
3989 /* allowed just for 8 bytes segments */
3990 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3991 struct desc_struct *seg_desc)
3993 gpa_t gpa;
3994 struct descriptor_table dtable;
3995 u16 index = selector >> 3;
3997 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3999 if (dtable.limit < index * 8 + 7) {
4000 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4001 return 1;
4003 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
4004 gpa += index * 8;
4005 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
4008 /* allowed just for 8 bytes segments */
4009 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4010 struct desc_struct *seg_desc)
4012 gpa_t gpa;
4013 struct descriptor_table dtable;
4014 u16 index = selector >> 3;
4016 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4018 if (dtable.limit < index * 8 + 7)
4019 return 1;
4020 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
4021 gpa += index * 8;
4022 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
4025 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
4026 struct desc_struct *seg_desc)
4028 u32 base_addr = get_desc_base(seg_desc);
4030 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
4033 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4035 struct kvm_segment kvm_seg;
4037 kvm_get_segment(vcpu, &kvm_seg, seg);
4038 return kvm_seg.selector;
4041 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
4042 u16 selector,
4043 struct kvm_segment *kvm_seg)
4045 struct desc_struct seg_desc;
4047 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4048 return 1;
4049 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
4050 return 0;
4053 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4055 struct kvm_segment segvar = {
4056 .base = selector << 4,
4057 .limit = 0xffff,
4058 .selector = selector,
4059 .type = 3,
4060 .present = 1,
4061 .dpl = 3,
4062 .db = 0,
4063 .s = 1,
4064 .l = 0,
4065 .g = 0,
4066 .avl = 0,
4067 .unusable = 0,
4069 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4070 return 0;
4073 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4074 int type_bits, int seg)
4076 struct kvm_segment kvm_seg;
4078 if (!(vcpu->arch.cr0 & X86_CR0_PE))
4079 return kvm_load_realmode_segment(vcpu, selector, seg);
4080 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
4081 return 1;
4082 kvm_seg.type |= type_bits;
4084 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4085 seg != VCPU_SREG_LDTR)
4086 if (!kvm_seg.s)
4087 kvm_seg.unusable = 1;
4089 kvm_set_segment(vcpu, &kvm_seg, seg);
4090 return 0;
4093 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4094 struct tss_segment_32 *tss)
4096 tss->cr3 = vcpu->arch.cr3;
4097 tss->eip = kvm_rip_read(vcpu);
4098 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
4099 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4100 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4101 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4102 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4103 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4104 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4105 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4106 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4107 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4108 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4109 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4110 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4111 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4112 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4113 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4116 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4117 struct tss_segment_32 *tss)
4119 kvm_set_cr3(vcpu, tss->cr3);
4121 kvm_rip_write(vcpu, tss->eip);
4122 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
4124 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4125 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4126 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4127 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4128 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4129 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4130 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4131 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4133 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4134 return 1;
4136 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4137 return 1;
4139 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4140 return 1;
4142 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4143 return 1;
4145 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4146 return 1;
4148 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4149 return 1;
4151 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4152 return 1;
4153 return 0;
4156 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4157 struct tss_segment_16 *tss)
4159 tss->ip = kvm_rip_read(vcpu);
4160 tss->flag = kvm_x86_ops->get_rflags(vcpu);
4161 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4162 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4163 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4164 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4165 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4166 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4167 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4168 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4170 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4171 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4172 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4173 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4174 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4175 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
4178 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4179 struct tss_segment_16 *tss)
4181 kvm_rip_write(vcpu, tss->ip);
4182 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
4183 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4184 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4185 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4186 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4187 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4188 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4189 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4190 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4192 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4193 return 1;
4195 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4196 return 1;
4198 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4199 return 1;
4201 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4202 return 1;
4204 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4205 return 1;
4206 return 0;
4209 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4210 u16 old_tss_sel, u32 old_tss_base,
4211 struct desc_struct *nseg_desc)
4213 struct tss_segment_16 tss_segment_16;
4214 int ret = 0;
4216 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4217 sizeof tss_segment_16))
4218 goto out;
4220 save_state_to_tss16(vcpu, &tss_segment_16);
4222 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4223 sizeof tss_segment_16))
4224 goto out;
4226 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4227 &tss_segment_16, sizeof tss_segment_16))
4228 goto out;
4230 if (old_tss_sel != 0xffff) {
4231 tss_segment_16.prev_task_link = old_tss_sel;
4233 if (kvm_write_guest(vcpu->kvm,
4234 get_tss_base_addr(vcpu, nseg_desc),
4235 &tss_segment_16.prev_task_link,
4236 sizeof tss_segment_16.prev_task_link))
4237 goto out;
4240 if (load_state_from_tss16(vcpu, &tss_segment_16))
4241 goto out;
4243 ret = 1;
4244 out:
4245 return ret;
4248 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4249 u16 old_tss_sel, u32 old_tss_base,
4250 struct desc_struct *nseg_desc)
4252 struct tss_segment_32 tss_segment_32;
4253 int ret = 0;
4255 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4256 sizeof tss_segment_32))
4257 goto out;
4259 save_state_to_tss32(vcpu, &tss_segment_32);
4261 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4262 sizeof tss_segment_32))
4263 goto out;
4265 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4266 &tss_segment_32, sizeof tss_segment_32))
4267 goto out;
4269 if (old_tss_sel != 0xffff) {
4270 tss_segment_32.prev_task_link = old_tss_sel;
4272 if (kvm_write_guest(vcpu->kvm,
4273 get_tss_base_addr(vcpu, nseg_desc),
4274 &tss_segment_32.prev_task_link,
4275 sizeof tss_segment_32.prev_task_link))
4276 goto out;
4279 if (load_state_from_tss32(vcpu, &tss_segment_32))
4280 goto out;
4282 ret = 1;
4283 out:
4284 return ret;
4287 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4289 struct kvm_segment tr_seg;
4290 struct desc_struct cseg_desc;
4291 struct desc_struct nseg_desc;
4292 int ret = 0;
4293 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4294 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4296 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4298 /* FIXME: Handle errors. Failure to read either TSS or their
4299 * descriptors should generate a pagefault.
4301 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4302 goto out;
4304 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4305 goto out;
4307 if (reason != TASK_SWITCH_IRET) {
4308 int cpl;
4310 cpl = kvm_x86_ops->get_cpl(vcpu);
4311 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4312 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4313 return 1;
4317 if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
4318 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4319 return 1;
4322 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4323 cseg_desc.type &= ~(1 << 1); //clear the B flag
4324 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4327 if (reason == TASK_SWITCH_IRET) {
4328 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4329 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4332 /* set back link to prev task only if NT bit is set in eflags
4333 note that old_tss_sel is not used afetr this point */
4334 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4335 old_tss_sel = 0xffff;
4337 /* set back link to prev task only if NT bit is set in eflags
4338 note that old_tss_sel is not used afetr this point */
4339 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4340 old_tss_sel = 0xffff;
4342 if (nseg_desc.type & 8)
4343 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4344 old_tss_base, &nseg_desc);
4345 else
4346 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4347 old_tss_base, &nseg_desc);
4349 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4350 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4351 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4354 if (reason != TASK_SWITCH_IRET) {
4355 nseg_desc.type |= (1 << 1);
4356 save_guest_segment_descriptor(vcpu, tss_selector,
4357 &nseg_desc);
4360 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4361 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4362 tr_seg.type = 11;
4363 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4364 out:
4365 return ret;
4367 EXPORT_SYMBOL_GPL(kvm_task_switch);
4369 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4370 struct kvm_sregs *sregs)
4372 int mmu_reset_needed = 0;
4373 int pending_vec, max_bits;
4374 struct descriptor_table dt;
4376 vcpu_load(vcpu);
4378 dt.limit = sregs->idt.limit;
4379 dt.base = sregs->idt.base;
4380 kvm_x86_ops->set_idt(vcpu, &dt);
4381 dt.limit = sregs->gdt.limit;
4382 dt.base = sregs->gdt.base;
4383 kvm_x86_ops->set_gdt(vcpu, &dt);
4385 vcpu->arch.cr2 = sregs->cr2;
4386 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4387 vcpu->arch.cr3 = sregs->cr3;
4389 kvm_set_cr8(vcpu, sregs->cr8);
4391 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4392 kvm_x86_ops->set_efer(vcpu, sregs->efer);
4393 kvm_set_apic_base(vcpu, sregs->apic_base);
4395 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4397 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4398 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4399 vcpu->arch.cr0 = sregs->cr0;
4401 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4402 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4403 if (!is_long_mode(vcpu) && is_pae(vcpu))
4404 load_pdptrs(vcpu, vcpu->arch.cr3);
4406 if (mmu_reset_needed)
4407 kvm_mmu_reset_context(vcpu);
4409 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4410 pending_vec = find_first_bit(
4411 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4412 if (pending_vec < max_bits) {
4413 kvm_queue_interrupt(vcpu, pending_vec, false);
4414 pr_debug("Set back pending irq %d\n", pending_vec);
4415 if (irqchip_in_kernel(vcpu->kvm))
4416 kvm_pic_clear_isr_ack(vcpu->kvm);
4419 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4420 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4421 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4422 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4423 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4424 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4426 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4427 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4429 /* Older userspace won't unhalt the vcpu on reset. */
4430 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4431 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4432 !(vcpu->arch.cr0 & X86_CR0_PE))
4433 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4435 vcpu_put(vcpu);
4437 return 0;
4440 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4441 struct kvm_guest_debug *dbg)
4443 int i, r;
4445 vcpu_load(vcpu);
4447 if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4448 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4449 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4450 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4451 vcpu->arch.switch_db_regs =
4452 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4453 } else {
4454 for (i = 0; i < KVM_NR_DB_REGS; i++)
4455 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4456 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4459 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4461 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4462 kvm_queue_exception(vcpu, DB_VECTOR);
4463 else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4464 kvm_queue_exception(vcpu, BP_VECTOR);
4466 vcpu_put(vcpu);
4468 return r;
4472 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4473 * we have asm/x86/processor.h
4475 struct fxsave {
4476 u16 cwd;
4477 u16 swd;
4478 u16 twd;
4479 u16 fop;
4480 u64 rip;
4481 u64 rdp;
4482 u32 mxcsr;
4483 u32 mxcsr_mask;
4484 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4485 #ifdef CONFIG_X86_64
4486 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4487 #else
4488 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4489 #endif
4493 * Translate a guest virtual address to a guest physical address.
4495 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4496 struct kvm_translation *tr)
4498 unsigned long vaddr = tr->linear_address;
4499 gpa_t gpa;
4501 vcpu_load(vcpu);
4502 down_read(&vcpu->kvm->slots_lock);
4503 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4504 up_read(&vcpu->kvm->slots_lock);
4505 tr->physical_address = gpa;
4506 tr->valid = gpa != UNMAPPED_GVA;
4507 tr->writeable = 1;
4508 tr->usermode = 0;
4509 vcpu_put(vcpu);
4511 return 0;
4514 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4516 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4518 vcpu_load(vcpu);
4520 memcpy(fpu->fpr, fxsave->st_space, 128);
4521 fpu->fcw = fxsave->cwd;
4522 fpu->fsw = fxsave->swd;
4523 fpu->ftwx = fxsave->twd;
4524 fpu->last_opcode = fxsave->fop;
4525 fpu->last_ip = fxsave->rip;
4526 fpu->last_dp = fxsave->rdp;
4527 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4529 vcpu_put(vcpu);
4531 return 0;
4534 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4536 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4538 vcpu_load(vcpu);
4540 memcpy(fxsave->st_space, fpu->fpr, 128);
4541 fxsave->cwd = fpu->fcw;
4542 fxsave->swd = fpu->fsw;
4543 fxsave->twd = fpu->ftwx;
4544 fxsave->fop = fpu->last_opcode;
4545 fxsave->rip = fpu->last_ip;
4546 fxsave->rdp = fpu->last_dp;
4547 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4549 vcpu_put(vcpu);
4551 return 0;
4554 void fx_init(struct kvm_vcpu *vcpu)
4556 unsigned after_mxcsr_mask;
4559 * Touch the fpu the first time in non atomic context as if
4560 * this is the first fpu instruction the exception handler
4561 * will fire before the instruction returns and it'll have to
4562 * allocate ram with GFP_KERNEL.
4564 if (!used_math())
4565 kvm_fx_save(&vcpu->arch.host_fx_image);
4567 /* Initialize guest FPU by resetting ours and saving into guest's */
4568 preempt_disable();
4569 kvm_fx_save(&vcpu->arch.host_fx_image);
4570 kvm_fx_finit();
4571 kvm_fx_save(&vcpu->arch.guest_fx_image);
4572 kvm_fx_restore(&vcpu->arch.host_fx_image);
4573 preempt_enable();
4575 vcpu->arch.cr0 |= X86_CR0_ET;
4576 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4577 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4578 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4579 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4581 EXPORT_SYMBOL_GPL(fx_init);
4583 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4585 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4586 return;
4588 vcpu->guest_fpu_loaded = 1;
4589 kvm_fx_save(&vcpu->arch.host_fx_image);
4590 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4592 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4594 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4596 if (!vcpu->guest_fpu_loaded)
4597 return;
4599 vcpu->guest_fpu_loaded = 0;
4600 kvm_fx_save(&vcpu->arch.guest_fx_image);
4601 kvm_fx_restore(&vcpu->arch.host_fx_image);
4602 ++vcpu->stat.fpu_reload;
4604 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4606 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4608 if (vcpu->arch.time_page) {
4609 kvm_release_page_dirty(vcpu->arch.time_page);
4610 vcpu->arch.time_page = NULL;
4613 kvm_x86_ops->vcpu_free(vcpu);
4616 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4617 unsigned int id)
4619 return kvm_x86_ops->vcpu_create(kvm, id);
4622 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4624 int r;
4626 /* We do fxsave: this must be aligned. */
4627 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4629 vcpu->arch.mtrr_state.have_fixed = 1;
4630 vcpu_load(vcpu);
4631 r = kvm_arch_vcpu_reset(vcpu);
4632 if (r == 0)
4633 r = kvm_mmu_setup(vcpu);
4634 vcpu_put(vcpu);
4635 if (r < 0)
4636 goto free_vcpu;
4638 return 0;
4639 free_vcpu:
4640 kvm_x86_ops->vcpu_free(vcpu);
4641 return r;
4644 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4646 vcpu_load(vcpu);
4647 kvm_mmu_unload(vcpu);
4648 vcpu_put(vcpu);
4650 kvm_x86_ops->vcpu_free(vcpu);
4653 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4655 vcpu->arch.nmi_pending = false;
4656 vcpu->arch.nmi_injected = false;
4658 vcpu->arch.switch_db_regs = 0;
4659 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4660 vcpu->arch.dr6 = DR6_FIXED_1;
4661 vcpu->arch.dr7 = DR7_FIXED_1;
4663 return kvm_x86_ops->vcpu_reset(vcpu);
4666 void kvm_arch_hardware_enable(void *garbage)
4668 kvm_x86_ops->hardware_enable(garbage);
4671 void kvm_arch_hardware_disable(void *garbage)
4673 kvm_x86_ops->hardware_disable(garbage);
4676 int kvm_arch_hardware_setup(void)
4678 return kvm_x86_ops->hardware_setup();
4681 void kvm_arch_hardware_unsetup(void)
4683 kvm_x86_ops->hardware_unsetup();
4686 void kvm_arch_check_processor_compat(void *rtn)
4688 kvm_x86_ops->check_processor_compatibility(rtn);
4691 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4693 struct page *page;
4694 struct kvm *kvm;
4695 int r;
4697 BUG_ON(vcpu->kvm == NULL);
4698 kvm = vcpu->kvm;
4700 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4701 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
4702 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4703 else
4704 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4706 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4707 if (!page) {
4708 r = -ENOMEM;
4709 goto fail;
4711 vcpu->arch.pio_data = page_address(page);
4713 r = kvm_mmu_create(vcpu);
4714 if (r < 0)
4715 goto fail_free_pio_data;
4717 if (irqchip_in_kernel(kvm)) {
4718 r = kvm_create_lapic(vcpu);
4719 if (r < 0)
4720 goto fail_mmu_destroy;
4723 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
4724 GFP_KERNEL);
4725 if (!vcpu->arch.mce_banks) {
4726 r = -ENOMEM;
4727 goto fail_mmu_destroy;
4729 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
4731 return 0;
4733 fail_mmu_destroy:
4734 kvm_mmu_destroy(vcpu);
4735 fail_free_pio_data:
4736 free_page((unsigned long)vcpu->arch.pio_data);
4737 fail:
4738 return r;
4741 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4743 kvm_free_lapic(vcpu);
4744 down_read(&vcpu->kvm->slots_lock);
4745 kvm_mmu_destroy(vcpu);
4746 up_read(&vcpu->kvm->slots_lock);
4747 free_page((unsigned long)vcpu->arch.pio_data);
4750 struct kvm *kvm_arch_create_vm(void)
4752 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4754 if (!kvm)
4755 return ERR_PTR(-ENOMEM);
4757 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4758 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4760 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4761 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4763 rdtscll(kvm->arch.vm_init_tsc);
4765 return kvm;
4768 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4770 vcpu_load(vcpu);
4771 kvm_mmu_unload(vcpu);
4772 vcpu_put(vcpu);
4775 static void kvm_free_vcpus(struct kvm *kvm)
4777 unsigned int i;
4778 struct kvm_vcpu *vcpu;
4781 * Unpin any mmu pages first.
4783 kvm_for_each_vcpu(i, vcpu, kvm)
4784 kvm_unload_vcpu_mmu(vcpu);
4785 kvm_for_each_vcpu(i, vcpu, kvm)
4786 kvm_arch_vcpu_free(vcpu);
4788 mutex_lock(&kvm->lock);
4789 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
4790 kvm->vcpus[i] = NULL;
4792 atomic_set(&kvm->online_vcpus, 0);
4793 mutex_unlock(&kvm->lock);
4796 void kvm_arch_sync_events(struct kvm *kvm)
4798 kvm_free_all_assigned_devices(kvm);
4801 void kvm_arch_destroy_vm(struct kvm *kvm)
4803 kvm_iommu_unmap_guest(kvm);
4804 kvm_free_pit(kvm);
4805 kfree(kvm->arch.vpic);
4806 kfree(kvm->arch.vioapic);
4807 kvm_free_vcpus(kvm);
4808 kvm_free_physmem(kvm);
4809 if (kvm->arch.apic_access_page)
4810 put_page(kvm->arch.apic_access_page);
4811 if (kvm->arch.ept_identity_pagetable)
4812 put_page(kvm->arch.ept_identity_pagetable);
4813 kfree(kvm);
4816 int kvm_arch_set_memory_region(struct kvm *kvm,
4817 struct kvm_userspace_memory_region *mem,
4818 struct kvm_memory_slot old,
4819 int user_alloc)
4821 int npages = mem->memory_size >> PAGE_SHIFT;
4822 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4824 /*To keep backward compatibility with older userspace,
4825 *x86 needs to hanlde !user_alloc case.
4827 if (!user_alloc) {
4828 if (npages && !old.rmap) {
4829 unsigned long userspace_addr;
4831 down_write(&current->mm->mmap_sem);
4832 userspace_addr = do_mmap(NULL, 0,
4833 npages * PAGE_SIZE,
4834 PROT_READ | PROT_WRITE,
4835 MAP_PRIVATE | MAP_ANONYMOUS,
4837 up_write(&current->mm->mmap_sem);
4839 if (IS_ERR((void *)userspace_addr))
4840 return PTR_ERR((void *)userspace_addr);
4842 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4843 spin_lock(&kvm->mmu_lock);
4844 memslot->userspace_addr = userspace_addr;
4845 spin_unlock(&kvm->mmu_lock);
4846 } else {
4847 if (!old.user_alloc && old.rmap) {
4848 int ret;
4850 down_write(&current->mm->mmap_sem);
4851 ret = do_munmap(current->mm, old.userspace_addr,
4852 old.npages * PAGE_SIZE);
4853 up_write(&current->mm->mmap_sem);
4854 if (ret < 0)
4855 printk(KERN_WARNING
4856 "kvm_vm_ioctl_set_memory_region: "
4857 "failed to munmap memory\n");
4862 spin_lock(&kvm->mmu_lock);
4863 if (!kvm->arch.n_requested_mmu_pages) {
4864 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4865 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4868 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4869 spin_unlock(&kvm->mmu_lock);
4870 kvm_flush_remote_tlbs(kvm);
4872 return 0;
4875 void kvm_arch_flush_shadow(struct kvm *kvm)
4877 kvm_mmu_zap_all(kvm);
4878 kvm_reload_remote_mmus(kvm);
4881 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4883 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4884 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4885 || vcpu->arch.nmi_pending ||
4886 (kvm_arch_interrupt_allowed(vcpu) &&
4887 kvm_cpu_has_interrupt(vcpu));
4890 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4892 int me;
4893 int cpu = vcpu->cpu;
4895 if (waitqueue_active(&vcpu->wq)) {
4896 wake_up_interruptible(&vcpu->wq);
4897 ++vcpu->stat.halt_wakeup;
4900 me = get_cpu();
4901 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
4902 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
4903 smp_send_reschedule(cpu);
4904 put_cpu();
4907 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4909 return kvm_x86_ops->interrupt_allowed(vcpu);
4912 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
4913 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
4914 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
4915 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
4916 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);