Merge branch 'sctp-prsctp-chunk-fixes'
[linux-2.6/btrfs-unstable.git] / lib / swiotlb.c
blobcea19aaf303c9f3c558dd8246205ed39f38dcc46
1 /*
2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mm.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
32 #include <linux/scatterlist.h>
33 #include <linux/mem_encrypt.h>
35 #include <asm/io.h>
36 #include <asm/dma.h>
38 #include <linux/init.h>
39 #include <linux/bootmem.h>
40 #include <linux/iommu-helper.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/swiotlb.h>
45 #define OFFSET(val,align) ((unsigned long) \
46 ( (val) & ( (align) - 1)))
48 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
51 * Minimum IO TLB size to bother booting with. Systems with mainly
52 * 64bit capable cards will only lightly use the swiotlb. If we can't
53 * allocate a contiguous 1MB, we're probably in trouble anyway.
55 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
57 enum swiotlb_force swiotlb_force;
60 * Used to do a quick range check in swiotlb_tbl_unmap_single and
61 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
62 * API.
64 static phys_addr_t io_tlb_start, io_tlb_end;
67 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
68 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
70 static unsigned long io_tlb_nslabs;
73 * When the IOMMU overflows we return a fallback buffer. This sets the size.
75 static unsigned long io_tlb_overflow = 32*1024;
77 static phys_addr_t io_tlb_overflow_buffer;
80 * This is a free list describing the number of free entries available from
81 * each index
83 static unsigned int *io_tlb_list;
84 static unsigned int io_tlb_index;
87 * Max segment that we can provide which (if pages are contingous) will
88 * not be bounced (unless SWIOTLB_FORCE is set).
90 unsigned int max_segment;
93 * We need to save away the original address corresponding to a mapped entry
94 * for the sync operations.
96 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
97 static phys_addr_t *io_tlb_orig_addr;
100 * Protect the above data structures in the map and unmap calls
102 static DEFINE_SPINLOCK(io_tlb_lock);
104 static int late_alloc;
106 static int __init
107 setup_io_tlb_npages(char *str)
109 if (isdigit(*str)) {
110 io_tlb_nslabs = simple_strtoul(str, &str, 0);
111 /* avoid tail segment of size < IO_TLB_SEGSIZE */
112 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
114 if (*str == ',')
115 ++str;
116 if (!strcmp(str, "force")) {
117 swiotlb_force = SWIOTLB_FORCE;
118 } else if (!strcmp(str, "noforce")) {
119 swiotlb_force = SWIOTLB_NO_FORCE;
120 io_tlb_nslabs = 1;
123 return 0;
125 early_param("swiotlb", setup_io_tlb_npages);
126 /* make io_tlb_overflow tunable too? */
128 unsigned long swiotlb_nr_tbl(void)
130 return io_tlb_nslabs;
132 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
134 unsigned int swiotlb_max_segment(void)
136 return max_segment;
138 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
140 void swiotlb_set_max_segment(unsigned int val)
142 if (swiotlb_force == SWIOTLB_FORCE)
143 max_segment = 1;
144 else
145 max_segment = rounddown(val, PAGE_SIZE);
148 /* default to 64MB */
149 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
150 unsigned long swiotlb_size_or_default(void)
152 unsigned long size;
154 size = io_tlb_nslabs << IO_TLB_SHIFT;
156 return size ? size : (IO_TLB_DEFAULT_SIZE);
159 void __weak swiotlb_set_mem_attributes(void *vaddr, unsigned long size) { }
161 /* For swiotlb, clear memory encryption mask from dma addresses */
162 static dma_addr_t swiotlb_phys_to_dma(struct device *hwdev,
163 phys_addr_t address)
165 return __sme_clr(phys_to_dma(hwdev, address));
168 /* Note that this doesn't work with highmem page */
169 static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
170 volatile void *address)
172 return phys_to_dma(hwdev, virt_to_phys(address));
175 static bool no_iotlb_memory;
177 void swiotlb_print_info(void)
179 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
180 unsigned char *vstart, *vend;
182 if (no_iotlb_memory) {
183 pr_warn("software IO TLB: No low mem\n");
184 return;
187 vstart = phys_to_virt(io_tlb_start);
188 vend = phys_to_virt(io_tlb_end);
190 printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
191 (unsigned long long)io_tlb_start,
192 (unsigned long long)io_tlb_end,
193 bytes >> 20, vstart, vend - 1);
197 * Early SWIOTLB allocation may be too early to allow an architecture to
198 * perform the desired operations. This function allows the architecture to
199 * call SWIOTLB when the operations are possible. It needs to be called
200 * before the SWIOTLB memory is used.
202 void __init swiotlb_update_mem_attributes(void)
204 void *vaddr;
205 unsigned long bytes;
207 if (no_iotlb_memory || late_alloc)
208 return;
210 vaddr = phys_to_virt(io_tlb_start);
211 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
212 swiotlb_set_mem_attributes(vaddr, bytes);
213 memset(vaddr, 0, bytes);
215 vaddr = phys_to_virt(io_tlb_overflow_buffer);
216 bytes = PAGE_ALIGN(io_tlb_overflow);
217 swiotlb_set_mem_attributes(vaddr, bytes);
218 memset(vaddr, 0, bytes);
221 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
223 void *v_overflow_buffer;
224 unsigned long i, bytes;
226 bytes = nslabs << IO_TLB_SHIFT;
228 io_tlb_nslabs = nslabs;
229 io_tlb_start = __pa(tlb);
230 io_tlb_end = io_tlb_start + bytes;
233 * Get the overflow emergency buffer
235 v_overflow_buffer = memblock_virt_alloc_low_nopanic(
236 PAGE_ALIGN(io_tlb_overflow),
237 PAGE_SIZE);
238 if (!v_overflow_buffer)
239 return -ENOMEM;
241 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
244 * Allocate and initialize the free list array. This array is used
245 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
246 * between io_tlb_start and io_tlb_end.
248 io_tlb_list = memblock_virt_alloc(
249 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
250 PAGE_SIZE);
251 io_tlb_orig_addr = memblock_virt_alloc(
252 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
253 PAGE_SIZE);
254 for (i = 0; i < io_tlb_nslabs; i++) {
255 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
256 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
258 io_tlb_index = 0;
260 if (verbose)
261 swiotlb_print_info();
263 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
264 return 0;
268 * Statically reserve bounce buffer space and initialize bounce buffer data
269 * structures for the software IO TLB used to implement the DMA API.
271 void __init
272 swiotlb_init(int verbose)
274 size_t default_size = IO_TLB_DEFAULT_SIZE;
275 unsigned char *vstart;
276 unsigned long bytes;
278 if (!io_tlb_nslabs) {
279 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
280 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
283 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
285 /* Get IO TLB memory from the low pages */
286 vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
287 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
288 return;
290 if (io_tlb_start)
291 memblock_free_early(io_tlb_start,
292 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
293 pr_warn("Cannot allocate SWIOTLB buffer");
294 no_iotlb_memory = true;
298 * Systems with larger DMA zones (those that don't support ISA) can
299 * initialize the swiotlb later using the slab allocator if needed.
300 * This should be just like above, but with some error catching.
303 swiotlb_late_init_with_default_size(size_t default_size)
305 unsigned long bytes, req_nslabs = io_tlb_nslabs;
306 unsigned char *vstart = NULL;
307 unsigned int order;
308 int rc = 0;
310 if (!io_tlb_nslabs) {
311 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
312 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
316 * Get IO TLB memory from the low pages
318 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
319 io_tlb_nslabs = SLABS_PER_PAGE << order;
320 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
322 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
323 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
324 order);
325 if (vstart)
326 break;
327 order--;
330 if (!vstart) {
331 io_tlb_nslabs = req_nslabs;
332 return -ENOMEM;
334 if (order != get_order(bytes)) {
335 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
336 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
337 io_tlb_nslabs = SLABS_PER_PAGE << order;
339 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
340 if (rc)
341 free_pages((unsigned long)vstart, order);
343 return rc;
347 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
349 unsigned long i, bytes;
350 unsigned char *v_overflow_buffer;
352 bytes = nslabs << IO_TLB_SHIFT;
354 io_tlb_nslabs = nslabs;
355 io_tlb_start = virt_to_phys(tlb);
356 io_tlb_end = io_tlb_start + bytes;
358 swiotlb_set_mem_attributes(tlb, bytes);
359 memset(tlb, 0, bytes);
362 * Get the overflow emergency buffer
364 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
365 get_order(io_tlb_overflow));
366 if (!v_overflow_buffer)
367 goto cleanup2;
369 swiotlb_set_mem_attributes(v_overflow_buffer, io_tlb_overflow);
370 memset(v_overflow_buffer, 0, io_tlb_overflow);
371 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
374 * Allocate and initialize the free list array. This array is used
375 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
376 * between io_tlb_start and io_tlb_end.
378 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
379 get_order(io_tlb_nslabs * sizeof(int)));
380 if (!io_tlb_list)
381 goto cleanup3;
383 io_tlb_orig_addr = (phys_addr_t *)
384 __get_free_pages(GFP_KERNEL,
385 get_order(io_tlb_nslabs *
386 sizeof(phys_addr_t)));
387 if (!io_tlb_orig_addr)
388 goto cleanup4;
390 for (i = 0; i < io_tlb_nslabs; i++) {
391 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
392 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
394 io_tlb_index = 0;
396 swiotlb_print_info();
398 late_alloc = 1;
400 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
402 return 0;
404 cleanup4:
405 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
406 sizeof(int)));
407 io_tlb_list = NULL;
408 cleanup3:
409 free_pages((unsigned long)v_overflow_buffer,
410 get_order(io_tlb_overflow));
411 io_tlb_overflow_buffer = 0;
412 cleanup2:
413 io_tlb_end = 0;
414 io_tlb_start = 0;
415 io_tlb_nslabs = 0;
416 max_segment = 0;
417 return -ENOMEM;
420 void __init swiotlb_free(void)
422 if (!io_tlb_orig_addr)
423 return;
425 if (late_alloc) {
426 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
427 get_order(io_tlb_overflow));
428 free_pages((unsigned long)io_tlb_orig_addr,
429 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
430 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
431 sizeof(int)));
432 free_pages((unsigned long)phys_to_virt(io_tlb_start),
433 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
434 } else {
435 memblock_free_late(io_tlb_overflow_buffer,
436 PAGE_ALIGN(io_tlb_overflow));
437 memblock_free_late(__pa(io_tlb_orig_addr),
438 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
439 memblock_free_late(__pa(io_tlb_list),
440 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
441 memblock_free_late(io_tlb_start,
442 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
444 io_tlb_nslabs = 0;
445 max_segment = 0;
448 int is_swiotlb_buffer(phys_addr_t paddr)
450 return paddr >= io_tlb_start && paddr < io_tlb_end;
454 * Bounce: copy the swiotlb buffer back to the original dma location
456 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
457 size_t size, enum dma_data_direction dir)
459 unsigned long pfn = PFN_DOWN(orig_addr);
460 unsigned char *vaddr = phys_to_virt(tlb_addr);
462 if (PageHighMem(pfn_to_page(pfn))) {
463 /* The buffer does not have a mapping. Map it in and copy */
464 unsigned int offset = orig_addr & ~PAGE_MASK;
465 char *buffer;
466 unsigned int sz = 0;
467 unsigned long flags;
469 while (size) {
470 sz = min_t(size_t, PAGE_SIZE - offset, size);
472 local_irq_save(flags);
473 buffer = kmap_atomic(pfn_to_page(pfn));
474 if (dir == DMA_TO_DEVICE)
475 memcpy(vaddr, buffer + offset, sz);
476 else
477 memcpy(buffer + offset, vaddr, sz);
478 kunmap_atomic(buffer);
479 local_irq_restore(flags);
481 size -= sz;
482 pfn++;
483 vaddr += sz;
484 offset = 0;
486 } else if (dir == DMA_TO_DEVICE) {
487 memcpy(vaddr, phys_to_virt(orig_addr), size);
488 } else {
489 memcpy(phys_to_virt(orig_addr), vaddr, size);
493 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
494 dma_addr_t tbl_dma_addr,
495 phys_addr_t orig_addr, size_t size,
496 enum dma_data_direction dir,
497 unsigned long attrs)
499 unsigned long flags;
500 phys_addr_t tlb_addr;
501 unsigned int nslots, stride, index, wrap;
502 int i;
503 unsigned long mask;
504 unsigned long offset_slots;
505 unsigned long max_slots;
507 if (no_iotlb_memory)
508 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
510 if (mem_encrypt_active())
511 pr_warn_once("%s is active and system is using DMA bounce buffers\n",
512 sme_active() ? "SME" : "SEV");
514 mask = dma_get_seg_boundary(hwdev);
516 tbl_dma_addr &= mask;
518 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
521 * Carefully handle integer overflow which can occur when mask == ~0UL.
523 max_slots = mask + 1
524 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
525 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
528 * For mappings greater than or equal to a page, we limit the stride
529 * (and hence alignment) to a page size.
531 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
532 if (size >= PAGE_SIZE)
533 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
534 else
535 stride = 1;
537 BUG_ON(!nslots);
540 * Find suitable number of IO TLB entries size that will fit this
541 * request and allocate a buffer from that IO TLB pool.
543 spin_lock_irqsave(&io_tlb_lock, flags);
544 index = ALIGN(io_tlb_index, stride);
545 if (index >= io_tlb_nslabs)
546 index = 0;
547 wrap = index;
549 do {
550 while (iommu_is_span_boundary(index, nslots, offset_slots,
551 max_slots)) {
552 index += stride;
553 if (index >= io_tlb_nslabs)
554 index = 0;
555 if (index == wrap)
556 goto not_found;
560 * If we find a slot that indicates we have 'nslots' number of
561 * contiguous buffers, we allocate the buffers from that slot
562 * and mark the entries as '0' indicating unavailable.
564 if (io_tlb_list[index] >= nslots) {
565 int count = 0;
567 for (i = index; i < (int) (index + nslots); i++)
568 io_tlb_list[i] = 0;
569 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
570 io_tlb_list[i] = ++count;
571 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
574 * Update the indices to avoid searching in the next
575 * round.
577 io_tlb_index = ((index + nslots) < io_tlb_nslabs
578 ? (index + nslots) : 0);
580 goto found;
582 index += stride;
583 if (index >= io_tlb_nslabs)
584 index = 0;
585 } while (index != wrap);
587 not_found:
588 spin_unlock_irqrestore(&io_tlb_lock, flags);
589 if (printk_ratelimit())
590 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
591 return SWIOTLB_MAP_ERROR;
592 found:
593 spin_unlock_irqrestore(&io_tlb_lock, flags);
596 * Save away the mapping from the original address to the DMA address.
597 * This is needed when we sync the memory. Then we sync the buffer if
598 * needed.
600 for (i = 0; i < nslots; i++)
601 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
602 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
603 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
604 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
606 return tlb_addr;
608 EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
611 * Allocates bounce buffer and returns its kernel virtual address.
614 static phys_addr_t
615 map_single(struct device *hwdev, phys_addr_t phys, size_t size,
616 enum dma_data_direction dir, unsigned long attrs)
618 dma_addr_t start_dma_addr;
620 if (swiotlb_force == SWIOTLB_NO_FORCE) {
621 dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
622 &phys);
623 return SWIOTLB_MAP_ERROR;
626 start_dma_addr = swiotlb_phys_to_dma(hwdev, io_tlb_start);
627 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
628 dir, attrs);
632 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
634 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
635 size_t size, enum dma_data_direction dir,
636 unsigned long attrs)
638 unsigned long flags;
639 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
640 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
641 phys_addr_t orig_addr = io_tlb_orig_addr[index];
644 * First, sync the memory before unmapping the entry
646 if (orig_addr != INVALID_PHYS_ADDR &&
647 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
648 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
649 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
652 * Return the buffer to the free list by setting the corresponding
653 * entries to indicate the number of contiguous entries available.
654 * While returning the entries to the free list, we merge the entries
655 * with slots below and above the pool being returned.
657 spin_lock_irqsave(&io_tlb_lock, flags);
659 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
660 io_tlb_list[index + nslots] : 0);
662 * Step 1: return the slots to the free list, merging the
663 * slots with superceeding slots
665 for (i = index + nslots - 1; i >= index; i--) {
666 io_tlb_list[i] = ++count;
667 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
670 * Step 2: merge the returned slots with the preceding slots,
671 * if available (non zero)
673 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
674 io_tlb_list[i] = ++count;
676 spin_unlock_irqrestore(&io_tlb_lock, flags);
678 EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
680 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
681 size_t size, enum dma_data_direction dir,
682 enum dma_sync_target target)
684 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
685 phys_addr_t orig_addr = io_tlb_orig_addr[index];
687 if (orig_addr == INVALID_PHYS_ADDR)
688 return;
689 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
691 switch (target) {
692 case SYNC_FOR_CPU:
693 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
694 swiotlb_bounce(orig_addr, tlb_addr,
695 size, DMA_FROM_DEVICE);
696 else
697 BUG_ON(dir != DMA_TO_DEVICE);
698 break;
699 case SYNC_FOR_DEVICE:
700 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
701 swiotlb_bounce(orig_addr, tlb_addr,
702 size, DMA_TO_DEVICE);
703 else
704 BUG_ON(dir != DMA_FROM_DEVICE);
705 break;
706 default:
707 BUG();
710 EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
712 void *
713 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
714 dma_addr_t *dma_handle, gfp_t flags)
716 dma_addr_t dev_addr;
717 void *ret;
718 int order = get_order(size);
719 u64 dma_mask = DMA_BIT_MASK(32);
721 if (hwdev && hwdev->coherent_dma_mask)
722 dma_mask = hwdev->coherent_dma_mask;
724 ret = (void *)__get_free_pages(flags, order);
725 if (ret) {
726 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
727 if (dev_addr + size - 1 > dma_mask) {
729 * The allocated memory isn't reachable by the device.
731 free_pages((unsigned long) ret, order);
732 ret = NULL;
735 if (!ret) {
737 * We are either out of memory or the device can't DMA to
738 * GFP_DMA memory; fall back on map_single(), which
739 * will grab memory from the lowest available address range.
741 phys_addr_t paddr = map_single(hwdev, 0, size,
742 DMA_FROM_DEVICE, 0);
743 if (paddr == SWIOTLB_MAP_ERROR)
744 goto err_warn;
746 ret = phys_to_virt(paddr);
747 dev_addr = swiotlb_phys_to_dma(hwdev, paddr);
749 /* Confirm address can be DMA'd by device */
750 if (dev_addr + size - 1 > dma_mask) {
751 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
752 (unsigned long long)dma_mask,
753 (unsigned long long)dev_addr);
756 * DMA_TO_DEVICE to avoid memcpy in unmap_single.
757 * The DMA_ATTR_SKIP_CPU_SYNC is optional.
759 swiotlb_tbl_unmap_single(hwdev, paddr,
760 size, DMA_TO_DEVICE,
761 DMA_ATTR_SKIP_CPU_SYNC);
762 goto err_warn;
766 *dma_handle = dev_addr;
767 memset(ret, 0, size);
769 return ret;
771 err_warn:
772 pr_warn("swiotlb: coherent allocation failed for device %s size=%zu\n",
773 dev_name(hwdev), size);
774 dump_stack();
776 return NULL;
778 EXPORT_SYMBOL(swiotlb_alloc_coherent);
780 void
781 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
782 dma_addr_t dev_addr)
784 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
786 WARN_ON(irqs_disabled());
787 if (!is_swiotlb_buffer(paddr))
788 free_pages((unsigned long)vaddr, get_order(size));
789 else
791 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
792 * DMA_ATTR_SKIP_CPU_SYNC is optional.
794 swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE,
795 DMA_ATTR_SKIP_CPU_SYNC);
797 EXPORT_SYMBOL(swiotlb_free_coherent);
799 static void
800 swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
801 int do_panic)
803 if (swiotlb_force == SWIOTLB_NO_FORCE)
804 return;
807 * Ran out of IOMMU space for this operation. This is very bad.
808 * Unfortunately the drivers cannot handle this operation properly.
809 * unless they check for dma_mapping_error (most don't)
810 * When the mapping is small enough return a static buffer to limit
811 * the damage, or panic when the transfer is too big.
813 dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
814 size);
816 if (size <= io_tlb_overflow || !do_panic)
817 return;
819 if (dir == DMA_BIDIRECTIONAL)
820 panic("DMA: Random memory could be DMA accessed\n");
821 if (dir == DMA_FROM_DEVICE)
822 panic("DMA: Random memory could be DMA written\n");
823 if (dir == DMA_TO_DEVICE)
824 panic("DMA: Random memory could be DMA read\n");
828 * Map a single buffer of the indicated size for DMA in streaming mode. The
829 * physical address to use is returned.
831 * Once the device is given the dma address, the device owns this memory until
832 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
834 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
835 unsigned long offset, size_t size,
836 enum dma_data_direction dir,
837 unsigned long attrs)
839 phys_addr_t map, phys = page_to_phys(page) + offset;
840 dma_addr_t dev_addr = phys_to_dma(dev, phys);
842 BUG_ON(dir == DMA_NONE);
844 * If the address happens to be in the device's DMA window,
845 * we can safely return the device addr and not worry about bounce
846 * buffering it.
848 if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
849 return dev_addr;
851 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
853 /* Oh well, have to allocate and map a bounce buffer. */
854 map = map_single(dev, phys, size, dir, attrs);
855 if (map == SWIOTLB_MAP_ERROR) {
856 swiotlb_full(dev, size, dir, 1);
857 return swiotlb_phys_to_dma(dev, io_tlb_overflow_buffer);
860 dev_addr = swiotlb_phys_to_dma(dev, map);
862 /* Ensure that the address returned is DMA'ble */
863 if (dma_capable(dev, dev_addr, size))
864 return dev_addr;
866 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
867 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
869 return swiotlb_phys_to_dma(dev, io_tlb_overflow_buffer);
871 EXPORT_SYMBOL_GPL(swiotlb_map_page);
874 * Unmap a single streaming mode DMA translation. The dma_addr and size must
875 * match what was provided for in a previous swiotlb_map_page call. All
876 * other usages are undefined.
878 * After this call, reads by the cpu to the buffer are guaranteed to see
879 * whatever the device wrote there.
881 static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
882 size_t size, enum dma_data_direction dir,
883 unsigned long attrs)
885 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
887 BUG_ON(dir == DMA_NONE);
889 if (is_swiotlb_buffer(paddr)) {
890 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
891 return;
894 if (dir != DMA_FROM_DEVICE)
895 return;
898 * phys_to_virt doesn't work with hihgmem page but we could
899 * call dma_mark_clean() with hihgmem page here. However, we
900 * are fine since dma_mark_clean() is null on POWERPC. We can
901 * make dma_mark_clean() take a physical address if necessary.
903 dma_mark_clean(phys_to_virt(paddr), size);
906 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
907 size_t size, enum dma_data_direction dir,
908 unsigned long attrs)
910 unmap_single(hwdev, dev_addr, size, dir, attrs);
912 EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
915 * Make physical memory consistent for a single streaming mode DMA translation
916 * after a transfer.
918 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
919 * using the cpu, yet do not wish to teardown the dma mapping, you must
920 * call this function before doing so. At the next point you give the dma
921 * address back to the card, you must first perform a
922 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
924 static void
925 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
926 size_t size, enum dma_data_direction dir,
927 enum dma_sync_target target)
929 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
931 BUG_ON(dir == DMA_NONE);
933 if (is_swiotlb_buffer(paddr)) {
934 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
935 return;
938 if (dir != DMA_FROM_DEVICE)
939 return;
941 dma_mark_clean(phys_to_virt(paddr), size);
944 void
945 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
946 size_t size, enum dma_data_direction dir)
948 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
950 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
952 void
953 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
954 size_t size, enum dma_data_direction dir)
956 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
958 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
961 * Map a set of buffers described by scatterlist in streaming mode for DMA.
962 * This is the scatter-gather version of the above swiotlb_map_page
963 * interface. Here the scatter gather list elements are each tagged with the
964 * appropriate dma address and length. They are obtained via
965 * sg_dma_{address,length}(SG).
967 * NOTE: An implementation may be able to use a smaller number of
968 * DMA address/length pairs than there are SG table elements.
969 * (for example via virtual mapping capabilities)
970 * The routine returns the number of addr/length pairs actually
971 * used, at most nents.
973 * Device ownership issues as mentioned above for swiotlb_map_page are the
974 * same here.
977 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
978 enum dma_data_direction dir, unsigned long attrs)
980 struct scatterlist *sg;
981 int i;
983 BUG_ON(dir == DMA_NONE);
985 for_each_sg(sgl, sg, nelems, i) {
986 phys_addr_t paddr = sg_phys(sg);
987 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
989 if (swiotlb_force == SWIOTLB_FORCE ||
990 !dma_capable(hwdev, dev_addr, sg->length)) {
991 phys_addr_t map = map_single(hwdev, sg_phys(sg),
992 sg->length, dir, attrs);
993 if (map == SWIOTLB_MAP_ERROR) {
994 /* Don't panic here, we expect map_sg users
995 to do proper error handling. */
996 swiotlb_full(hwdev, sg->length, dir, 0);
997 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
998 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
999 attrs);
1000 sg_dma_len(sgl) = 0;
1001 return 0;
1003 sg->dma_address = swiotlb_phys_to_dma(hwdev, map);
1004 } else
1005 sg->dma_address = dev_addr;
1006 sg_dma_len(sg) = sg->length;
1008 return nelems;
1010 EXPORT_SYMBOL(swiotlb_map_sg_attrs);
1013 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
1014 * concerning calls here are the same as for swiotlb_unmap_page() above.
1016 void
1017 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
1018 int nelems, enum dma_data_direction dir,
1019 unsigned long attrs)
1021 struct scatterlist *sg;
1022 int i;
1024 BUG_ON(dir == DMA_NONE);
1026 for_each_sg(sgl, sg, nelems, i)
1027 unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
1028 attrs);
1030 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
1033 * Make physical memory consistent for a set of streaming mode DMA translations
1034 * after a transfer.
1036 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
1037 * and usage.
1039 static void
1040 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
1041 int nelems, enum dma_data_direction dir,
1042 enum dma_sync_target target)
1044 struct scatterlist *sg;
1045 int i;
1047 for_each_sg(sgl, sg, nelems, i)
1048 swiotlb_sync_single(hwdev, sg->dma_address,
1049 sg_dma_len(sg), dir, target);
1052 void
1053 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
1054 int nelems, enum dma_data_direction dir)
1056 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
1058 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
1060 void
1061 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
1062 int nelems, enum dma_data_direction dir)
1064 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1066 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1069 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1071 return (dma_addr == swiotlb_phys_to_dma(hwdev, io_tlb_overflow_buffer));
1073 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1076 * Return whether the given device DMA address mask can be supported
1077 * properly. For example, if your device can only drive the low 24-bits
1078 * during bus mastering, then you would pass 0x00ffffff as the mask to
1079 * this function.
1082 swiotlb_dma_supported(struct device *hwdev, u64 mask)
1084 return swiotlb_phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1086 EXPORT_SYMBOL(swiotlb_dma_supported);