Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-2.6/btrfs-unstable.git] / fs / f2fs / node.c
blob342597a5897f059a2d31823923d8664861b7b969
1 /*
2 * fs/f2fs/node.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
33 struct f2fs_nm_info *nm_i = NM_I(sbi);
34 struct sysinfo val;
35 unsigned long avail_ram;
36 unsigned long mem_size = 0;
37 bool res = false;
39 si_meminfo(&val);
41 /* only uses low memory */
42 avail_ram = val.totalram - val.totalhigh;
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47 if (type == FREE_NIDS) {
48 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
49 PAGE_CACHE_SHIFT;
50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 } else if (type == NAT_ENTRIES) {
52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 PAGE_CACHE_SHIFT;
54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 } else if (type == DIRTY_DENTS) {
56 if (sbi->sb->s_bdi->wb.dirty_exceeded)
57 return false;
58 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
59 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
60 } else if (type == INO_ENTRIES) {
61 int i;
63 for (i = 0; i <= UPDATE_INO; i++)
64 mem_size += (sbi->im[i].ino_num *
65 sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
66 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
67 } else if (type == EXTENT_CACHE) {
68 mem_size = (atomic_read(&sbi->total_ext_tree) *
69 sizeof(struct extent_tree) +
70 atomic_read(&sbi->total_ext_node) *
71 sizeof(struct extent_node)) >> PAGE_CACHE_SHIFT;
72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
73 } else {
74 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
75 return true;
77 return res;
80 static void clear_node_page_dirty(struct page *page)
82 struct address_space *mapping = page->mapping;
83 unsigned int long flags;
85 if (PageDirty(page)) {
86 spin_lock_irqsave(&mapping->tree_lock, flags);
87 radix_tree_tag_clear(&mapping->page_tree,
88 page_index(page),
89 PAGECACHE_TAG_DIRTY);
90 spin_unlock_irqrestore(&mapping->tree_lock, flags);
92 clear_page_dirty_for_io(page);
93 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
95 ClearPageUptodate(page);
98 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
100 pgoff_t index = current_nat_addr(sbi, nid);
101 return get_meta_page(sbi, index);
104 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
106 struct page *src_page;
107 struct page *dst_page;
108 pgoff_t src_off;
109 pgoff_t dst_off;
110 void *src_addr;
111 void *dst_addr;
112 struct f2fs_nm_info *nm_i = NM_I(sbi);
114 src_off = current_nat_addr(sbi, nid);
115 dst_off = next_nat_addr(sbi, src_off);
117 /* get current nat block page with lock */
118 src_page = get_meta_page(sbi, src_off);
119 dst_page = grab_meta_page(sbi, dst_off);
120 f2fs_bug_on(sbi, PageDirty(src_page));
122 src_addr = page_address(src_page);
123 dst_addr = page_address(dst_page);
124 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
125 set_page_dirty(dst_page);
126 f2fs_put_page(src_page, 1);
128 set_to_next_nat(nm_i, nid);
130 return dst_page;
133 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
135 return radix_tree_lookup(&nm_i->nat_root, n);
138 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
139 nid_t start, unsigned int nr, struct nat_entry **ep)
141 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
144 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
146 list_del(&e->list);
147 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
148 nm_i->nat_cnt--;
149 kmem_cache_free(nat_entry_slab, e);
152 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
153 struct nat_entry *ne)
155 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
156 struct nat_entry_set *head;
158 if (get_nat_flag(ne, IS_DIRTY))
159 return;
161 head = radix_tree_lookup(&nm_i->nat_set_root, set);
162 if (!head) {
163 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
165 INIT_LIST_HEAD(&head->entry_list);
166 INIT_LIST_HEAD(&head->set_list);
167 head->set = set;
168 head->entry_cnt = 0;
169 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
171 list_move_tail(&ne->list, &head->entry_list);
172 nm_i->dirty_nat_cnt++;
173 head->entry_cnt++;
174 set_nat_flag(ne, IS_DIRTY, true);
177 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
178 struct nat_entry *ne)
180 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
181 struct nat_entry_set *head;
183 head = radix_tree_lookup(&nm_i->nat_set_root, set);
184 if (head) {
185 list_move_tail(&ne->list, &nm_i->nat_entries);
186 set_nat_flag(ne, IS_DIRTY, false);
187 head->entry_cnt--;
188 nm_i->dirty_nat_cnt--;
192 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
193 nid_t start, unsigned int nr, struct nat_entry_set **ep)
195 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
196 start, nr);
199 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
201 struct f2fs_nm_info *nm_i = NM_I(sbi);
202 struct nat_entry *e;
203 bool need = false;
205 down_read(&nm_i->nat_tree_lock);
206 e = __lookup_nat_cache(nm_i, nid);
207 if (e) {
208 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
209 !get_nat_flag(e, HAS_FSYNCED_INODE))
210 need = true;
212 up_read(&nm_i->nat_tree_lock);
213 return need;
216 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
218 struct f2fs_nm_info *nm_i = NM_I(sbi);
219 struct nat_entry *e;
220 bool is_cp = true;
222 down_read(&nm_i->nat_tree_lock);
223 e = __lookup_nat_cache(nm_i, nid);
224 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
225 is_cp = false;
226 up_read(&nm_i->nat_tree_lock);
227 return is_cp;
230 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
232 struct f2fs_nm_info *nm_i = NM_I(sbi);
233 struct nat_entry *e;
234 bool need_update = true;
236 down_read(&nm_i->nat_tree_lock);
237 e = __lookup_nat_cache(nm_i, ino);
238 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
239 (get_nat_flag(e, IS_CHECKPOINTED) ||
240 get_nat_flag(e, HAS_FSYNCED_INODE)))
241 need_update = false;
242 up_read(&nm_i->nat_tree_lock);
243 return need_update;
246 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
248 struct nat_entry *new;
250 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
251 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
252 memset(new, 0, sizeof(struct nat_entry));
253 nat_set_nid(new, nid);
254 nat_reset_flag(new);
255 list_add_tail(&new->list, &nm_i->nat_entries);
256 nm_i->nat_cnt++;
257 return new;
260 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
261 struct f2fs_nat_entry *ne)
263 struct nat_entry *e;
265 e = __lookup_nat_cache(nm_i, nid);
266 if (!e) {
267 e = grab_nat_entry(nm_i, nid);
268 node_info_from_raw_nat(&e->ni, ne);
272 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
273 block_t new_blkaddr, bool fsync_done)
275 struct f2fs_nm_info *nm_i = NM_I(sbi);
276 struct nat_entry *e;
278 down_write(&nm_i->nat_tree_lock);
279 e = __lookup_nat_cache(nm_i, ni->nid);
280 if (!e) {
281 e = grab_nat_entry(nm_i, ni->nid);
282 copy_node_info(&e->ni, ni);
283 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
284 } else if (new_blkaddr == NEW_ADDR) {
286 * when nid is reallocated,
287 * previous nat entry can be remained in nat cache.
288 * So, reinitialize it with new information.
290 copy_node_info(&e->ni, ni);
291 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
294 /* sanity check */
295 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
296 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
297 new_blkaddr == NULL_ADDR);
298 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
299 new_blkaddr == NEW_ADDR);
300 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
301 nat_get_blkaddr(e) != NULL_ADDR &&
302 new_blkaddr == NEW_ADDR);
304 /* increment version no as node is removed */
305 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
306 unsigned char version = nat_get_version(e);
307 nat_set_version(e, inc_node_version(version));
309 /* in order to reuse the nid */
310 if (nm_i->next_scan_nid > ni->nid)
311 nm_i->next_scan_nid = ni->nid;
314 /* change address */
315 nat_set_blkaddr(e, new_blkaddr);
316 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
317 set_nat_flag(e, IS_CHECKPOINTED, false);
318 __set_nat_cache_dirty(nm_i, e);
320 /* update fsync_mark if its inode nat entry is still alive */
321 if (ni->nid != ni->ino)
322 e = __lookup_nat_cache(nm_i, ni->ino);
323 if (e) {
324 if (fsync_done && ni->nid == ni->ino)
325 set_nat_flag(e, HAS_FSYNCED_INODE, true);
326 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
328 up_write(&nm_i->nat_tree_lock);
331 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
333 struct f2fs_nm_info *nm_i = NM_I(sbi);
334 int nr = nr_shrink;
336 if (!down_write_trylock(&nm_i->nat_tree_lock))
337 return 0;
339 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
340 struct nat_entry *ne;
341 ne = list_first_entry(&nm_i->nat_entries,
342 struct nat_entry, list);
343 __del_from_nat_cache(nm_i, ne);
344 nr_shrink--;
346 up_write(&nm_i->nat_tree_lock);
347 return nr - nr_shrink;
351 * This function always returns success
353 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
355 struct f2fs_nm_info *nm_i = NM_I(sbi);
356 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
357 struct f2fs_summary_block *sum = curseg->sum_blk;
358 nid_t start_nid = START_NID(nid);
359 struct f2fs_nat_block *nat_blk;
360 struct page *page = NULL;
361 struct f2fs_nat_entry ne;
362 struct nat_entry *e;
363 int i;
365 ni->nid = nid;
367 /* Check nat cache */
368 down_read(&nm_i->nat_tree_lock);
369 e = __lookup_nat_cache(nm_i, nid);
370 if (e) {
371 ni->ino = nat_get_ino(e);
372 ni->blk_addr = nat_get_blkaddr(e);
373 ni->version = nat_get_version(e);
375 up_read(&nm_i->nat_tree_lock);
376 if (e)
377 return;
379 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
381 down_write(&nm_i->nat_tree_lock);
383 /* Check current segment summary */
384 mutex_lock(&curseg->curseg_mutex);
385 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
386 if (i >= 0) {
387 ne = nat_in_journal(sum, i);
388 node_info_from_raw_nat(ni, &ne);
390 mutex_unlock(&curseg->curseg_mutex);
391 if (i >= 0)
392 goto cache;
394 /* Fill node_info from nat page */
395 page = get_current_nat_page(sbi, start_nid);
396 nat_blk = (struct f2fs_nat_block *)page_address(page);
397 ne = nat_blk->entries[nid - start_nid];
398 node_info_from_raw_nat(ni, &ne);
399 f2fs_put_page(page, 1);
400 cache:
401 /* cache nat entry */
402 cache_nat_entry(NM_I(sbi), nid, &ne);
403 up_write(&nm_i->nat_tree_lock);
407 * The maximum depth is four.
408 * Offset[0] will have raw inode offset.
410 static int get_node_path(struct f2fs_inode_info *fi, long block,
411 int offset[4], unsigned int noffset[4])
413 const long direct_index = ADDRS_PER_INODE(fi);
414 const long direct_blks = ADDRS_PER_BLOCK;
415 const long dptrs_per_blk = NIDS_PER_BLOCK;
416 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
417 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
418 int n = 0;
419 int level = 0;
421 noffset[0] = 0;
423 if (block < direct_index) {
424 offset[n] = block;
425 goto got;
427 block -= direct_index;
428 if (block < direct_blks) {
429 offset[n++] = NODE_DIR1_BLOCK;
430 noffset[n] = 1;
431 offset[n] = block;
432 level = 1;
433 goto got;
435 block -= direct_blks;
436 if (block < direct_blks) {
437 offset[n++] = NODE_DIR2_BLOCK;
438 noffset[n] = 2;
439 offset[n] = block;
440 level = 1;
441 goto got;
443 block -= direct_blks;
444 if (block < indirect_blks) {
445 offset[n++] = NODE_IND1_BLOCK;
446 noffset[n] = 3;
447 offset[n++] = block / direct_blks;
448 noffset[n] = 4 + offset[n - 1];
449 offset[n] = block % direct_blks;
450 level = 2;
451 goto got;
453 block -= indirect_blks;
454 if (block < indirect_blks) {
455 offset[n++] = NODE_IND2_BLOCK;
456 noffset[n] = 4 + dptrs_per_blk;
457 offset[n++] = block / direct_blks;
458 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
459 offset[n] = block % direct_blks;
460 level = 2;
461 goto got;
463 block -= indirect_blks;
464 if (block < dindirect_blks) {
465 offset[n++] = NODE_DIND_BLOCK;
466 noffset[n] = 5 + (dptrs_per_blk * 2);
467 offset[n++] = block / indirect_blks;
468 noffset[n] = 6 + (dptrs_per_blk * 2) +
469 offset[n - 1] * (dptrs_per_blk + 1);
470 offset[n++] = (block / direct_blks) % dptrs_per_blk;
471 noffset[n] = 7 + (dptrs_per_blk * 2) +
472 offset[n - 2] * (dptrs_per_blk + 1) +
473 offset[n - 1];
474 offset[n] = block % direct_blks;
475 level = 3;
476 goto got;
477 } else {
478 BUG();
480 got:
481 return level;
485 * Caller should call f2fs_put_dnode(dn).
486 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
487 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
488 * In the case of RDONLY_NODE, we don't need to care about mutex.
490 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
492 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
493 struct page *npage[4];
494 struct page *parent = NULL;
495 int offset[4];
496 unsigned int noffset[4];
497 nid_t nids[4];
498 int level, i;
499 int err = 0;
501 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
503 nids[0] = dn->inode->i_ino;
504 npage[0] = dn->inode_page;
506 if (!npage[0]) {
507 npage[0] = get_node_page(sbi, nids[0]);
508 if (IS_ERR(npage[0]))
509 return PTR_ERR(npage[0]);
512 /* if inline_data is set, should not report any block indices */
513 if (f2fs_has_inline_data(dn->inode) && index) {
514 err = -ENOENT;
515 f2fs_put_page(npage[0], 1);
516 goto release_out;
519 parent = npage[0];
520 if (level != 0)
521 nids[1] = get_nid(parent, offset[0], true);
522 dn->inode_page = npage[0];
523 dn->inode_page_locked = true;
525 /* get indirect or direct nodes */
526 for (i = 1; i <= level; i++) {
527 bool done = false;
529 if (!nids[i] && mode == ALLOC_NODE) {
530 /* alloc new node */
531 if (!alloc_nid(sbi, &(nids[i]))) {
532 err = -ENOSPC;
533 goto release_pages;
536 dn->nid = nids[i];
537 npage[i] = new_node_page(dn, noffset[i], NULL);
538 if (IS_ERR(npage[i])) {
539 alloc_nid_failed(sbi, nids[i]);
540 err = PTR_ERR(npage[i]);
541 goto release_pages;
544 set_nid(parent, offset[i - 1], nids[i], i == 1);
545 alloc_nid_done(sbi, nids[i]);
546 done = true;
547 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
548 npage[i] = get_node_page_ra(parent, offset[i - 1]);
549 if (IS_ERR(npage[i])) {
550 err = PTR_ERR(npage[i]);
551 goto release_pages;
553 done = true;
555 if (i == 1) {
556 dn->inode_page_locked = false;
557 unlock_page(parent);
558 } else {
559 f2fs_put_page(parent, 1);
562 if (!done) {
563 npage[i] = get_node_page(sbi, nids[i]);
564 if (IS_ERR(npage[i])) {
565 err = PTR_ERR(npage[i]);
566 f2fs_put_page(npage[0], 0);
567 goto release_out;
570 if (i < level) {
571 parent = npage[i];
572 nids[i + 1] = get_nid(parent, offset[i], false);
575 dn->nid = nids[level];
576 dn->ofs_in_node = offset[level];
577 dn->node_page = npage[level];
578 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
579 return 0;
581 release_pages:
582 f2fs_put_page(parent, 1);
583 if (i > 1)
584 f2fs_put_page(npage[0], 0);
585 release_out:
586 dn->inode_page = NULL;
587 dn->node_page = NULL;
588 return err;
591 static void truncate_node(struct dnode_of_data *dn)
593 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
594 struct node_info ni;
596 get_node_info(sbi, dn->nid, &ni);
597 if (dn->inode->i_blocks == 0) {
598 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
599 goto invalidate;
601 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
603 /* Deallocate node address */
604 invalidate_blocks(sbi, ni.blk_addr);
605 dec_valid_node_count(sbi, dn->inode);
606 set_node_addr(sbi, &ni, NULL_ADDR, false);
608 if (dn->nid == dn->inode->i_ino) {
609 remove_orphan_inode(sbi, dn->nid);
610 dec_valid_inode_count(sbi);
611 } else {
612 sync_inode_page(dn);
614 invalidate:
615 clear_node_page_dirty(dn->node_page);
616 set_sbi_flag(sbi, SBI_IS_DIRTY);
618 f2fs_put_page(dn->node_page, 1);
620 invalidate_mapping_pages(NODE_MAPPING(sbi),
621 dn->node_page->index, dn->node_page->index);
623 dn->node_page = NULL;
624 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
627 static int truncate_dnode(struct dnode_of_data *dn)
629 struct page *page;
631 if (dn->nid == 0)
632 return 1;
634 /* get direct node */
635 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
636 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
637 return 1;
638 else if (IS_ERR(page))
639 return PTR_ERR(page);
641 /* Make dnode_of_data for parameter */
642 dn->node_page = page;
643 dn->ofs_in_node = 0;
644 truncate_data_blocks(dn);
645 truncate_node(dn);
646 return 1;
649 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
650 int ofs, int depth)
652 struct dnode_of_data rdn = *dn;
653 struct page *page;
654 struct f2fs_node *rn;
655 nid_t child_nid;
656 unsigned int child_nofs;
657 int freed = 0;
658 int i, ret;
660 if (dn->nid == 0)
661 return NIDS_PER_BLOCK + 1;
663 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
665 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
666 if (IS_ERR(page)) {
667 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
668 return PTR_ERR(page);
671 rn = F2FS_NODE(page);
672 if (depth < 3) {
673 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
674 child_nid = le32_to_cpu(rn->in.nid[i]);
675 if (child_nid == 0)
676 continue;
677 rdn.nid = child_nid;
678 ret = truncate_dnode(&rdn);
679 if (ret < 0)
680 goto out_err;
681 if (set_nid(page, i, 0, false))
682 dn->node_changed = true;
684 } else {
685 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
686 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
687 child_nid = le32_to_cpu(rn->in.nid[i]);
688 if (child_nid == 0) {
689 child_nofs += NIDS_PER_BLOCK + 1;
690 continue;
692 rdn.nid = child_nid;
693 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
694 if (ret == (NIDS_PER_BLOCK + 1)) {
695 if (set_nid(page, i, 0, false))
696 dn->node_changed = true;
697 child_nofs += ret;
698 } else if (ret < 0 && ret != -ENOENT) {
699 goto out_err;
702 freed = child_nofs;
705 if (!ofs) {
706 /* remove current indirect node */
707 dn->node_page = page;
708 truncate_node(dn);
709 freed++;
710 } else {
711 f2fs_put_page(page, 1);
713 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
714 return freed;
716 out_err:
717 f2fs_put_page(page, 1);
718 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
719 return ret;
722 static int truncate_partial_nodes(struct dnode_of_data *dn,
723 struct f2fs_inode *ri, int *offset, int depth)
725 struct page *pages[2];
726 nid_t nid[3];
727 nid_t child_nid;
728 int err = 0;
729 int i;
730 int idx = depth - 2;
732 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
733 if (!nid[0])
734 return 0;
736 /* get indirect nodes in the path */
737 for (i = 0; i < idx + 1; i++) {
738 /* reference count'll be increased */
739 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
740 if (IS_ERR(pages[i])) {
741 err = PTR_ERR(pages[i]);
742 idx = i - 1;
743 goto fail;
745 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
748 /* free direct nodes linked to a partial indirect node */
749 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
750 child_nid = get_nid(pages[idx], i, false);
751 if (!child_nid)
752 continue;
753 dn->nid = child_nid;
754 err = truncate_dnode(dn);
755 if (err < 0)
756 goto fail;
757 if (set_nid(pages[idx], i, 0, false))
758 dn->node_changed = true;
761 if (offset[idx + 1] == 0) {
762 dn->node_page = pages[idx];
763 dn->nid = nid[idx];
764 truncate_node(dn);
765 } else {
766 f2fs_put_page(pages[idx], 1);
768 offset[idx]++;
769 offset[idx + 1] = 0;
770 idx--;
771 fail:
772 for (i = idx; i >= 0; i--)
773 f2fs_put_page(pages[i], 1);
775 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
777 return err;
781 * All the block addresses of data and nodes should be nullified.
783 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
785 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
786 int err = 0, cont = 1;
787 int level, offset[4], noffset[4];
788 unsigned int nofs = 0;
789 struct f2fs_inode *ri;
790 struct dnode_of_data dn;
791 struct page *page;
793 trace_f2fs_truncate_inode_blocks_enter(inode, from);
795 level = get_node_path(F2FS_I(inode), from, offset, noffset);
796 restart:
797 page = get_node_page(sbi, inode->i_ino);
798 if (IS_ERR(page)) {
799 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
800 return PTR_ERR(page);
803 set_new_dnode(&dn, inode, page, NULL, 0);
804 unlock_page(page);
806 ri = F2FS_INODE(page);
807 switch (level) {
808 case 0:
809 case 1:
810 nofs = noffset[1];
811 break;
812 case 2:
813 nofs = noffset[1];
814 if (!offset[level - 1])
815 goto skip_partial;
816 err = truncate_partial_nodes(&dn, ri, offset, level);
817 if (err < 0 && err != -ENOENT)
818 goto fail;
819 nofs += 1 + NIDS_PER_BLOCK;
820 break;
821 case 3:
822 nofs = 5 + 2 * NIDS_PER_BLOCK;
823 if (!offset[level - 1])
824 goto skip_partial;
825 err = truncate_partial_nodes(&dn, ri, offset, level);
826 if (err < 0 && err != -ENOENT)
827 goto fail;
828 break;
829 default:
830 BUG();
833 skip_partial:
834 while (cont) {
835 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
836 switch (offset[0]) {
837 case NODE_DIR1_BLOCK:
838 case NODE_DIR2_BLOCK:
839 err = truncate_dnode(&dn);
840 break;
842 case NODE_IND1_BLOCK:
843 case NODE_IND2_BLOCK:
844 err = truncate_nodes(&dn, nofs, offset[1], 2);
845 break;
847 case NODE_DIND_BLOCK:
848 err = truncate_nodes(&dn, nofs, offset[1], 3);
849 cont = 0;
850 break;
852 default:
853 BUG();
855 if (err < 0 && err != -ENOENT)
856 goto fail;
857 if (offset[1] == 0 &&
858 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
859 lock_page(page);
860 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
861 f2fs_put_page(page, 1);
862 goto restart;
864 f2fs_wait_on_page_writeback(page, NODE);
865 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
866 set_page_dirty(page);
867 unlock_page(page);
869 offset[1] = 0;
870 offset[0]++;
871 nofs += err;
873 fail:
874 f2fs_put_page(page, 0);
875 trace_f2fs_truncate_inode_blocks_exit(inode, err);
876 return err > 0 ? 0 : err;
879 int truncate_xattr_node(struct inode *inode, struct page *page)
881 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
882 nid_t nid = F2FS_I(inode)->i_xattr_nid;
883 struct dnode_of_data dn;
884 struct page *npage;
886 if (!nid)
887 return 0;
889 npage = get_node_page(sbi, nid);
890 if (IS_ERR(npage))
891 return PTR_ERR(npage);
893 F2FS_I(inode)->i_xattr_nid = 0;
895 /* need to do checkpoint during fsync */
896 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
898 set_new_dnode(&dn, inode, page, npage, nid);
900 if (page)
901 dn.inode_page_locked = true;
902 truncate_node(&dn);
903 return 0;
907 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
908 * f2fs_unlock_op().
910 int remove_inode_page(struct inode *inode)
912 struct dnode_of_data dn;
913 int err;
915 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
916 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
917 if (err)
918 return err;
920 err = truncate_xattr_node(inode, dn.inode_page);
921 if (err) {
922 f2fs_put_dnode(&dn);
923 return err;
926 /* remove potential inline_data blocks */
927 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
928 S_ISLNK(inode->i_mode))
929 truncate_data_blocks_range(&dn, 1);
931 /* 0 is possible, after f2fs_new_inode() has failed */
932 f2fs_bug_on(F2FS_I_SB(inode),
933 inode->i_blocks != 0 && inode->i_blocks != 1);
935 /* will put inode & node pages */
936 truncate_node(&dn);
937 return 0;
940 struct page *new_inode_page(struct inode *inode)
942 struct dnode_of_data dn;
944 /* allocate inode page for new inode */
945 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
947 /* caller should f2fs_put_page(page, 1); */
948 return new_node_page(&dn, 0, NULL);
951 struct page *new_node_page(struct dnode_of_data *dn,
952 unsigned int ofs, struct page *ipage)
954 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
955 struct node_info old_ni, new_ni;
956 struct page *page;
957 int err;
959 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
960 return ERR_PTR(-EPERM);
962 page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
963 if (!page)
964 return ERR_PTR(-ENOMEM);
966 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
967 err = -ENOSPC;
968 goto fail;
971 get_node_info(sbi, dn->nid, &old_ni);
973 /* Reinitialize old_ni with new node page */
974 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
975 new_ni = old_ni;
976 new_ni.ino = dn->inode->i_ino;
977 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
979 f2fs_wait_on_page_writeback(page, NODE);
980 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
981 set_cold_node(dn->inode, page);
982 SetPageUptodate(page);
983 if (set_page_dirty(page))
984 dn->node_changed = true;
986 if (f2fs_has_xattr_block(ofs))
987 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
989 dn->node_page = page;
990 if (ipage)
991 update_inode(dn->inode, ipage);
992 else
993 sync_inode_page(dn);
994 if (ofs == 0)
995 inc_valid_inode_count(sbi);
997 return page;
999 fail:
1000 clear_node_page_dirty(page);
1001 f2fs_put_page(page, 1);
1002 return ERR_PTR(err);
1006 * Caller should do after getting the following values.
1007 * 0: f2fs_put_page(page, 0)
1008 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1010 static int read_node_page(struct page *page, int rw)
1012 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1013 struct node_info ni;
1014 struct f2fs_io_info fio = {
1015 .sbi = sbi,
1016 .type = NODE,
1017 .rw = rw,
1018 .page = page,
1019 .encrypted_page = NULL,
1022 get_node_info(sbi, page->index, &ni);
1024 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1025 ClearPageUptodate(page);
1026 return -ENOENT;
1029 if (PageUptodate(page))
1030 return LOCKED_PAGE;
1032 fio.blk_addr = ni.blk_addr;
1033 return f2fs_submit_page_bio(&fio);
1037 * Readahead a node page
1039 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1041 struct page *apage;
1042 int err;
1044 if (!nid)
1045 return;
1046 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1048 apage = find_get_page(NODE_MAPPING(sbi), nid);
1049 if (apage && PageUptodate(apage)) {
1050 f2fs_put_page(apage, 0);
1051 return;
1053 f2fs_put_page(apage, 0);
1055 apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1056 if (!apage)
1057 return;
1059 err = read_node_page(apage, READA);
1060 f2fs_put_page(apage, err ? 1 : 0);
1064 * readahead MAX_RA_NODE number of node pages.
1066 void ra_node_pages(struct page *parent, int start)
1068 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1069 struct blk_plug plug;
1070 int i, end;
1071 nid_t nid;
1073 blk_start_plug(&plug);
1075 /* Then, try readahead for siblings of the desired node */
1076 end = start + MAX_RA_NODE;
1077 end = min(end, NIDS_PER_BLOCK);
1078 for (i = start; i < end; i++) {
1079 nid = get_nid(parent, i, false);
1080 ra_node_page(sbi, nid);
1083 blk_finish_plug(&plug);
1086 struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1087 struct page *parent, int start)
1089 struct page *page;
1090 int err;
1092 if (!nid)
1093 return ERR_PTR(-ENOENT);
1094 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1095 repeat:
1096 page = grab_cache_page(NODE_MAPPING(sbi), nid);
1097 if (!page)
1098 return ERR_PTR(-ENOMEM);
1100 err = read_node_page(page, READ_SYNC);
1101 if (err < 0) {
1102 f2fs_put_page(page, 1);
1103 return ERR_PTR(err);
1104 } else if (err == LOCKED_PAGE) {
1105 goto page_hit;
1108 if (parent)
1109 ra_node_pages(parent, start + 1);
1111 lock_page(page);
1113 if (unlikely(!PageUptodate(page))) {
1114 f2fs_put_page(page, 1);
1115 return ERR_PTR(-EIO);
1117 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1118 f2fs_put_page(page, 1);
1119 goto repeat;
1121 page_hit:
1122 f2fs_bug_on(sbi, nid != nid_of_node(page));
1123 return page;
1126 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1128 return __get_node_page(sbi, nid, NULL, 0);
1131 struct page *get_node_page_ra(struct page *parent, int start)
1133 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1134 nid_t nid = get_nid(parent, start, false);
1136 return __get_node_page(sbi, nid, parent, start);
1139 void sync_inode_page(struct dnode_of_data *dn)
1141 int ret = 0;
1143 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1144 ret = update_inode(dn->inode, dn->node_page);
1145 } else if (dn->inode_page) {
1146 if (!dn->inode_page_locked)
1147 lock_page(dn->inode_page);
1148 ret = update_inode(dn->inode, dn->inode_page);
1149 if (!dn->inode_page_locked)
1150 unlock_page(dn->inode_page);
1151 } else {
1152 ret = update_inode_page(dn->inode);
1154 dn->node_changed = ret ? true: false;
1157 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1158 struct writeback_control *wbc)
1160 pgoff_t index, end;
1161 struct pagevec pvec;
1162 int step = ino ? 2 : 0;
1163 int nwritten = 0, wrote = 0;
1165 pagevec_init(&pvec, 0);
1167 next_step:
1168 index = 0;
1169 end = LONG_MAX;
1171 while (index <= end) {
1172 int i, nr_pages;
1173 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1174 PAGECACHE_TAG_DIRTY,
1175 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1176 if (nr_pages == 0)
1177 break;
1179 for (i = 0; i < nr_pages; i++) {
1180 struct page *page = pvec.pages[i];
1182 if (unlikely(f2fs_cp_error(sbi))) {
1183 pagevec_release(&pvec);
1184 return -EIO;
1188 * flushing sequence with step:
1189 * 0. indirect nodes
1190 * 1. dentry dnodes
1191 * 2. file dnodes
1193 if (step == 0 && IS_DNODE(page))
1194 continue;
1195 if (step == 1 && (!IS_DNODE(page) ||
1196 is_cold_node(page)))
1197 continue;
1198 if (step == 2 && (!IS_DNODE(page) ||
1199 !is_cold_node(page)))
1200 continue;
1203 * If an fsync mode,
1204 * we should not skip writing node pages.
1206 if (ino && ino_of_node(page) == ino)
1207 lock_page(page);
1208 else if (!trylock_page(page))
1209 continue;
1211 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1212 continue_unlock:
1213 unlock_page(page);
1214 continue;
1216 if (ino && ino_of_node(page) != ino)
1217 goto continue_unlock;
1219 if (!PageDirty(page)) {
1220 /* someone wrote it for us */
1221 goto continue_unlock;
1224 if (!clear_page_dirty_for_io(page))
1225 goto continue_unlock;
1227 /* called by fsync() */
1228 if (ino && IS_DNODE(page)) {
1229 set_fsync_mark(page, 1);
1230 if (IS_INODE(page))
1231 set_dentry_mark(page,
1232 need_dentry_mark(sbi, ino));
1233 nwritten++;
1234 } else {
1235 set_fsync_mark(page, 0);
1236 set_dentry_mark(page, 0);
1239 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1240 unlock_page(page);
1241 else
1242 wrote++;
1244 if (--wbc->nr_to_write == 0)
1245 break;
1247 pagevec_release(&pvec);
1248 cond_resched();
1250 if (wbc->nr_to_write == 0) {
1251 step = 2;
1252 break;
1256 if (step < 2) {
1257 step++;
1258 goto next_step;
1261 if (wrote)
1262 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1263 return nwritten;
1266 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1268 pgoff_t index = 0, end = LONG_MAX;
1269 struct pagevec pvec;
1270 int ret2 = 0, ret = 0;
1272 pagevec_init(&pvec, 0);
1274 while (index <= end) {
1275 int i, nr_pages;
1276 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1277 PAGECACHE_TAG_WRITEBACK,
1278 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1279 if (nr_pages == 0)
1280 break;
1282 for (i = 0; i < nr_pages; i++) {
1283 struct page *page = pvec.pages[i];
1285 /* until radix tree lookup accepts end_index */
1286 if (unlikely(page->index > end))
1287 continue;
1289 if (ino && ino_of_node(page) == ino) {
1290 f2fs_wait_on_page_writeback(page, NODE);
1291 if (TestClearPageError(page))
1292 ret = -EIO;
1295 pagevec_release(&pvec);
1296 cond_resched();
1299 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1300 ret2 = -ENOSPC;
1301 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1302 ret2 = -EIO;
1303 if (!ret)
1304 ret = ret2;
1305 return ret;
1308 static int f2fs_write_node_page(struct page *page,
1309 struct writeback_control *wbc)
1311 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1312 nid_t nid;
1313 struct node_info ni;
1314 struct f2fs_io_info fio = {
1315 .sbi = sbi,
1316 .type = NODE,
1317 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1318 .page = page,
1319 .encrypted_page = NULL,
1322 trace_f2fs_writepage(page, NODE);
1324 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1325 goto redirty_out;
1326 if (unlikely(f2fs_cp_error(sbi)))
1327 goto redirty_out;
1329 f2fs_wait_on_page_writeback(page, NODE);
1331 /* get old block addr of this node page */
1332 nid = nid_of_node(page);
1333 f2fs_bug_on(sbi, page->index != nid);
1335 if (wbc->for_reclaim) {
1336 if (!down_read_trylock(&sbi->node_write))
1337 goto redirty_out;
1338 } else {
1339 down_read(&sbi->node_write);
1342 get_node_info(sbi, nid, &ni);
1344 /* This page is already truncated */
1345 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1346 ClearPageUptodate(page);
1347 dec_page_count(sbi, F2FS_DIRTY_NODES);
1348 up_read(&sbi->node_write);
1349 unlock_page(page);
1350 return 0;
1353 set_page_writeback(page);
1354 fio.blk_addr = ni.blk_addr;
1355 write_node_page(nid, &fio);
1356 set_node_addr(sbi, &ni, fio.blk_addr, is_fsync_dnode(page));
1357 dec_page_count(sbi, F2FS_DIRTY_NODES);
1358 up_read(&sbi->node_write);
1359 unlock_page(page);
1361 if (wbc->for_reclaim || unlikely(f2fs_cp_error(sbi)))
1362 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1364 return 0;
1366 redirty_out:
1367 redirty_page_for_writepage(wbc, page);
1368 return AOP_WRITEPAGE_ACTIVATE;
1371 static int f2fs_write_node_pages(struct address_space *mapping,
1372 struct writeback_control *wbc)
1374 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1375 long diff;
1377 trace_f2fs_writepages(mapping->host, wbc, NODE);
1379 /* balancing f2fs's metadata in background */
1380 f2fs_balance_fs_bg(sbi);
1382 /* collect a number of dirty node pages and write together */
1383 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1384 goto skip_write;
1386 diff = nr_pages_to_write(sbi, NODE, wbc);
1387 wbc->sync_mode = WB_SYNC_NONE;
1388 sync_node_pages(sbi, 0, wbc);
1389 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1390 return 0;
1392 skip_write:
1393 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1394 return 0;
1397 static int f2fs_set_node_page_dirty(struct page *page)
1399 trace_f2fs_set_page_dirty(page, NODE);
1401 SetPageUptodate(page);
1402 if (!PageDirty(page)) {
1403 __set_page_dirty_nobuffers(page);
1404 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1405 SetPagePrivate(page);
1406 f2fs_trace_pid(page);
1407 return 1;
1409 return 0;
1413 * Structure of the f2fs node operations
1415 const struct address_space_operations f2fs_node_aops = {
1416 .writepage = f2fs_write_node_page,
1417 .writepages = f2fs_write_node_pages,
1418 .set_page_dirty = f2fs_set_node_page_dirty,
1419 .invalidatepage = f2fs_invalidate_page,
1420 .releasepage = f2fs_release_page,
1423 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1424 nid_t n)
1426 return radix_tree_lookup(&nm_i->free_nid_root, n);
1429 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1430 struct free_nid *i)
1432 list_del(&i->list);
1433 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1436 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1438 struct f2fs_nm_info *nm_i = NM_I(sbi);
1439 struct free_nid *i;
1440 struct nat_entry *ne;
1441 bool allocated = false;
1443 if (!available_free_memory(sbi, FREE_NIDS))
1444 return -1;
1446 /* 0 nid should not be used */
1447 if (unlikely(nid == 0))
1448 return 0;
1450 if (build) {
1451 /* do not add allocated nids */
1452 ne = __lookup_nat_cache(nm_i, nid);
1453 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1454 nat_get_blkaddr(ne) != NULL_ADDR))
1455 allocated = true;
1456 if (allocated)
1457 return 0;
1460 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1461 i->nid = nid;
1462 i->state = NID_NEW;
1464 if (radix_tree_preload(GFP_NOFS)) {
1465 kmem_cache_free(free_nid_slab, i);
1466 return 0;
1469 spin_lock(&nm_i->free_nid_list_lock);
1470 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1471 spin_unlock(&nm_i->free_nid_list_lock);
1472 radix_tree_preload_end();
1473 kmem_cache_free(free_nid_slab, i);
1474 return 0;
1476 list_add_tail(&i->list, &nm_i->free_nid_list);
1477 nm_i->fcnt++;
1478 spin_unlock(&nm_i->free_nid_list_lock);
1479 radix_tree_preload_end();
1480 return 1;
1483 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1485 struct free_nid *i;
1486 bool need_free = false;
1488 spin_lock(&nm_i->free_nid_list_lock);
1489 i = __lookup_free_nid_list(nm_i, nid);
1490 if (i && i->state == NID_NEW) {
1491 __del_from_free_nid_list(nm_i, i);
1492 nm_i->fcnt--;
1493 need_free = true;
1495 spin_unlock(&nm_i->free_nid_list_lock);
1497 if (need_free)
1498 kmem_cache_free(free_nid_slab, i);
1501 static void scan_nat_page(struct f2fs_sb_info *sbi,
1502 struct page *nat_page, nid_t start_nid)
1504 struct f2fs_nm_info *nm_i = NM_I(sbi);
1505 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1506 block_t blk_addr;
1507 int i;
1509 i = start_nid % NAT_ENTRY_PER_BLOCK;
1511 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1513 if (unlikely(start_nid >= nm_i->max_nid))
1514 break;
1516 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1517 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1518 if (blk_addr == NULL_ADDR) {
1519 if (add_free_nid(sbi, start_nid, true) < 0)
1520 break;
1525 static void build_free_nids(struct f2fs_sb_info *sbi)
1527 struct f2fs_nm_info *nm_i = NM_I(sbi);
1528 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1529 struct f2fs_summary_block *sum = curseg->sum_blk;
1530 int i = 0;
1531 nid_t nid = nm_i->next_scan_nid;
1533 /* Enough entries */
1534 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1535 return;
1537 /* readahead nat pages to be scanned */
1538 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1539 META_NAT, true);
1541 down_read(&nm_i->nat_tree_lock);
1543 while (1) {
1544 struct page *page = get_current_nat_page(sbi, nid);
1546 scan_nat_page(sbi, page, nid);
1547 f2fs_put_page(page, 1);
1549 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1550 if (unlikely(nid >= nm_i->max_nid))
1551 nid = 0;
1553 if (++i >= FREE_NID_PAGES)
1554 break;
1557 /* go to the next free nat pages to find free nids abundantly */
1558 nm_i->next_scan_nid = nid;
1560 /* find free nids from current sum_pages */
1561 mutex_lock(&curseg->curseg_mutex);
1562 for (i = 0; i < nats_in_cursum(sum); i++) {
1563 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1564 nid = le32_to_cpu(nid_in_journal(sum, i));
1565 if (addr == NULL_ADDR)
1566 add_free_nid(sbi, nid, true);
1567 else
1568 remove_free_nid(nm_i, nid);
1570 mutex_unlock(&curseg->curseg_mutex);
1571 up_read(&nm_i->nat_tree_lock);
1573 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1574 nm_i->ra_nid_pages, META_NAT, false);
1578 * If this function returns success, caller can obtain a new nid
1579 * from second parameter of this function.
1580 * The returned nid could be used ino as well as nid when inode is created.
1582 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1584 struct f2fs_nm_info *nm_i = NM_I(sbi);
1585 struct free_nid *i = NULL;
1586 retry:
1587 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1588 return false;
1590 spin_lock(&nm_i->free_nid_list_lock);
1592 /* We should not use stale free nids created by build_free_nids */
1593 if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1594 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1595 list_for_each_entry(i, &nm_i->free_nid_list, list)
1596 if (i->state == NID_NEW)
1597 break;
1599 f2fs_bug_on(sbi, i->state != NID_NEW);
1600 *nid = i->nid;
1601 i->state = NID_ALLOC;
1602 nm_i->fcnt--;
1603 spin_unlock(&nm_i->free_nid_list_lock);
1604 return true;
1606 spin_unlock(&nm_i->free_nid_list_lock);
1608 /* Let's scan nat pages and its caches to get free nids */
1609 mutex_lock(&nm_i->build_lock);
1610 build_free_nids(sbi);
1611 mutex_unlock(&nm_i->build_lock);
1612 goto retry;
1616 * alloc_nid() should be called prior to this function.
1618 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1620 struct f2fs_nm_info *nm_i = NM_I(sbi);
1621 struct free_nid *i;
1623 spin_lock(&nm_i->free_nid_list_lock);
1624 i = __lookup_free_nid_list(nm_i, nid);
1625 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1626 __del_from_free_nid_list(nm_i, i);
1627 spin_unlock(&nm_i->free_nid_list_lock);
1629 kmem_cache_free(free_nid_slab, i);
1633 * alloc_nid() should be called prior to this function.
1635 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1637 struct f2fs_nm_info *nm_i = NM_I(sbi);
1638 struct free_nid *i;
1639 bool need_free = false;
1641 if (!nid)
1642 return;
1644 spin_lock(&nm_i->free_nid_list_lock);
1645 i = __lookup_free_nid_list(nm_i, nid);
1646 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1647 if (!available_free_memory(sbi, FREE_NIDS)) {
1648 __del_from_free_nid_list(nm_i, i);
1649 need_free = true;
1650 } else {
1651 i->state = NID_NEW;
1652 nm_i->fcnt++;
1654 spin_unlock(&nm_i->free_nid_list_lock);
1656 if (need_free)
1657 kmem_cache_free(free_nid_slab, i);
1660 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1662 struct f2fs_nm_info *nm_i = NM_I(sbi);
1663 struct free_nid *i, *next;
1664 int nr = nr_shrink;
1666 if (!mutex_trylock(&nm_i->build_lock))
1667 return 0;
1669 spin_lock(&nm_i->free_nid_list_lock);
1670 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1671 if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK)
1672 break;
1673 if (i->state == NID_ALLOC)
1674 continue;
1675 __del_from_free_nid_list(nm_i, i);
1676 kmem_cache_free(free_nid_slab, i);
1677 nm_i->fcnt--;
1678 nr_shrink--;
1680 spin_unlock(&nm_i->free_nid_list_lock);
1681 mutex_unlock(&nm_i->build_lock);
1683 return nr - nr_shrink;
1686 void recover_inline_xattr(struct inode *inode, struct page *page)
1688 void *src_addr, *dst_addr;
1689 size_t inline_size;
1690 struct page *ipage;
1691 struct f2fs_inode *ri;
1693 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1694 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1696 ri = F2FS_INODE(page);
1697 if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1698 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1699 goto update_inode;
1702 dst_addr = inline_xattr_addr(ipage);
1703 src_addr = inline_xattr_addr(page);
1704 inline_size = inline_xattr_size(inode);
1706 f2fs_wait_on_page_writeback(ipage, NODE);
1707 memcpy(dst_addr, src_addr, inline_size);
1708 update_inode:
1709 update_inode(inode, ipage);
1710 f2fs_put_page(ipage, 1);
1713 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1715 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1716 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1717 nid_t new_xnid = nid_of_node(page);
1718 struct node_info ni;
1720 /* 1: invalidate the previous xattr nid */
1721 if (!prev_xnid)
1722 goto recover_xnid;
1724 /* Deallocate node address */
1725 get_node_info(sbi, prev_xnid, &ni);
1726 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1727 invalidate_blocks(sbi, ni.blk_addr);
1728 dec_valid_node_count(sbi, inode);
1729 set_node_addr(sbi, &ni, NULL_ADDR, false);
1731 recover_xnid:
1732 /* 2: allocate new xattr nid */
1733 if (unlikely(!inc_valid_node_count(sbi, inode)))
1734 f2fs_bug_on(sbi, 1);
1736 remove_free_nid(NM_I(sbi), new_xnid);
1737 get_node_info(sbi, new_xnid, &ni);
1738 ni.ino = inode->i_ino;
1739 set_node_addr(sbi, &ni, NEW_ADDR, false);
1740 F2FS_I(inode)->i_xattr_nid = new_xnid;
1742 /* 3: update xattr blkaddr */
1743 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1744 set_node_addr(sbi, &ni, blkaddr, false);
1746 update_inode_page(inode);
1749 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1751 struct f2fs_inode *src, *dst;
1752 nid_t ino = ino_of_node(page);
1753 struct node_info old_ni, new_ni;
1754 struct page *ipage;
1756 get_node_info(sbi, ino, &old_ni);
1758 if (unlikely(old_ni.blk_addr != NULL_ADDR))
1759 return -EINVAL;
1761 ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1762 if (!ipage)
1763 return -ENOMEM;
1765 /* Should not use this inode from free nid list */
1766 remove_free_nid(NM_I(sbi), ino);
1768 SetPageUptodate(ipage);
1769 fill_node_footer(ipage, ino, ino, 0, true);
1771 src = F2FS_INODE(page);
1772 dst = F2FS_INODE(ipage);
1774 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1775 dst->i_size = 0;
1776 dst->i_blocks = cpu_to_le64(1);
1777 dst->i_links = cpu_to_le32(1);
1778 dst->i_xattr_nid = 0;
1779 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1781 new_ni = old_ni;
1782 new_ni.ino = ino;
1784 if (unlikely(!inc_valid_node_count(sbi, NULL)))
1785 WARN_ON(1);
1786 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1787 inc_valid_inode_count(sbi);
1788 set_page_dirty(ipage);
1789 f2fs_put_page(ipage, 1);
1790 return 0;
1793 int restore_node_summary(struct f2fs_sb_info *sbi,
1794 unsigned int segno, struct f2fs_summary_block *sum)
1796 struct f2fs_node *rn;
1797 struct f2fs_summary *sum_entry;
1798 block_t addr;
1799 int bio_blocks = MAX_BIO_BLOCKS(sbi);
1800 int i, idx, last_offset, nrpages;
1802 /* scan the node segment */
1803 last_offset = sbi->blocks_per_seg;
1804 addr = START_BLOCK(sbi, segno);
1805 sum_entry = &sum->entries[0];
1807 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1808 nrpages = min(last_offset - i, bio_blocks);
1810 /* readahead node pages */
1811 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
1813 for (idx = addr; idx < addr + nrpages; idx++) {
1814 struct page *page = get_tmp_page(sbi, idx);
1816 rn = F2FS_NODE(page);
1817 sum_entry->nid = rn->footer.nid;
1818 sum_entry->version = 0;
1819 sum_entry->ofs_in_node = 0;
1820 sum_entry++;
1821 f2fs_put_page(page, 1);
1824 invalidate_mapping_pages(META_MAPPING(sbi), addr,
1825 addr + nrpages);
1827 return 0;
1830 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1832 struct f2fs_nm_info *nm_i = NM_I(sbi);
1833 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1834 struct f2fs_summary_block *sum = curseg->sum_blk;
1835 int i;
1837 mutex_lock(&curseg->curseg_mutex);
1838 for (i = 0; i < nats_in_cursum(sum); i++) {
1839 struct nat_entry *ne;
1840 struct f2fs_nat_entry raw_ne;
1841 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1843 raw_ne = nat_in_journal(sum, i);
1845 ne = __lookup_nat_cache(nm_i, nid);
1846 if (!ne) {
1847 ne = grab_nat_entry(nm_i, nid);
1848 node_info_from_raw_nat(&ne->ni, &raw_ne);
1850 __set_nat_cache_dirty(nm_i, ne);
1852 update_nats_in_cursum(sum, -i);
1853 mutex_unlock(&curseg->curseg_mutex);
1856 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1857 struct list_head *head, int max)
1859 struct nat_entry_set *cur;
1861 if (nes->entry_cnt >= max)
1862 goto add_out;
1864 list_for_each_entry(cur, head, set_list) {
1865 if (cur->entry_cnt >= nes->entry_cnt) {
1866 list_add(&nes->set_list, cur->set_list.prev);
1867 return;
1870 add_out:
1871 list_add_tail(&nes->set_list, head);
1874 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1875 struct nat_entry_set *set)
1877 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1878 struct f2fs_summary_block *sum = curseg->sum_blk;
1879 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1880 bool to_journal = true;
1881 struct f2fs_nat_block *nat_blk;
1882 struct nat_entry *ne, *cur;
1883 struct page *page = NULL;
1886 * there are two steps to flush nat entries:
1887 * #1, flush nat entries to journal in current hot data summary block.
1888 * #2, flush nat entries to nat page.
1890 if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
1891 to_journal = false;
1893 if (to_journal) {
1894 mutex_lock(&curseg->curseg_mutex);
1895 } else {
1896 page = get_next_nat_page(sbi, start_nid);
1897 nat_blk = page_address(page);
1898 f2fs_bug_on(sbi, !nat_blk);
1901 /* flush dirty nats in nat entry set */
1902 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1903 struct f2fs_nat_entry *raw_ne;
1904 nid_t nid = nat_get_nid(ne);
1905 int offset;
1907 if (nat_get_blkaddr(ne) == NEW_ADDR)
1908 continue;
1910 if (to_journal) {
1911 offset = lookup_journal_in_cursum(sum,
1912 NAT_JOURNAL, nid, 1);
1913 f2fs_bug_on(sbi, offset < 0);
1914 raw_ne = &nat_in_journal(sum, offset);
1915 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1916 } else {
1917 raw_ne = &nat_blk->entries[nid - start_nid];
1919 raw_nat_from_node_info(raw_ne, &ne->ni);
1920 nat_reset_flag(ne);
1921 __clear_nat_cache_dirty(NM_I(sbi), ne);
1922 if (nat_get_blkaddr(ne) == NULL_ADDR)
1923 add_free_nid(sbi, nid, false);
1926 if (to_journal)
1927 mutex_unlock(&curseg->curseg_mutex);
1928 else
1929 f2fs_put_page(page, 1);
1931 f2fs_bug_on(sbi, set->entry_cnt);
1933 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
1934 kmem_cache_free(nat_entry_set_slab, set);
1938 * This function is called during the checkpointing process.
1940 void flush_nat_entries(struct f2fs_sb_info *sbi)
1942 struct f2fs_nm_info *nm_i = NM_I(sbi);
1943 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1944 struct f2fs_summary_block *sum = curseg->sum_blk;
1945 struct nat_entry_set *setvec[SETVEC_SIZE];
1946 struct nat_entry_set *set, *tmp;
1947 unsigned int found;
1948 nid_t set_idx = 0;
1949 LIST_HEAD(sets);
1951 if (!nm_i->dirty_nat_cnt)
1952 return;
1954 down_write(&nm_i->nat_tree_lock);
1957 * if there are no enough space in journal to store dirty nat
1958 * entries, remove all entries from journal and merge them
1959 * into nat entry set.
1961 if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
1962 remove_nats_in_journal(sbi);
1964 while ((found = __gang_lookup_nat_set(nm_i,
1965 set_idx, SETVEC_SIZE, setvec))) {
1966 unsigned idx;
1967 set_idx = setvec[found - 1]->set + 1;
1968 for (idx = 0; idx < found; idx++)
1969 __adjust_nat_entry_set(setvec[idx], &sets,
1970 MAX_NAT_JENTRIES(sum));
1973 /* flush dirty nats in nat entry set */
1974 list_for_each_entry_safe(set, tmp, &sets, set_list)
1975 __flush_nat_entry_set(sbi, set);
1977 up_write(&nm_i->nat_tree_lock);
1979 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
1982 static int init_node_manager(struct f2fs_sb_info *sbi)
1984 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1985 struct f2fs_nm_info *nm_i = NM_I(sbi);
1986 unsigned char *version_bitmap;
1987 unsigned int nat_segs, nat_blocks;
1989 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1991 /* segment_count_nat includes pair segment so divide to 2. */
1992 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1993 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1995 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1997 /* not used nids: 0, node, meta, (and root counted as valid node) */
1998 nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
1999 nm_i->fcnt = 0;
2000 nm_i->nat_cnt = 0;
2001 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2002 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2004 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2005 INIT_LIST_HEAD(&nm_i->free_nid_list);
2006 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2007 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2008 INIT_LIST_HEAD(&nm_i->nat_entries);
2010 mutex_init(&nm_i->build_lock);
2011 spin_lock_init(&nm_i->free_nid_list_lock);
2012 init_rwsem(&nm_i->nat_tree_lock);
2014 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2015 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2016 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2017 if (!version_bitmap)
2018 return -EFAULT;
2020 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2021 GFP_KERNEL);
2022 if (!nm_i->nat_bitmap)
2023 return -ENOMEM;
2024 return 0;
2027 int build_node_manager(struct f2fs_sb_info *sbi)
2029 int err;
2031 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2032 if (!sbi->nm_info)
2033 return -ENOMEM;
2035 err = init_node_manager(sbi);
2036 if (err)
2037 return err;
2039 build_free_nids(sbi);
2040 return 0;
2043 void destroy_node_manager(struct f2fs_sb_info *sbi)
2045 struct f2fs_nm_info *nm_i = NM_I(sbi);
2046 struct free_nid *i, *next_i;
2047 struct nat_entry *natvec[NATVEC_SIZE];
2048 struct nat_entry_set *setvec[SETVEC_SIZE];
2049 nid_t nid = 0;
2050 unsigned int found;
2052 if (!nm_i)
2053 return;
2055 /* destroy free nid list */
2056 spin_lock(&nm_i->free_nid_list_lock);
2057 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2058 f2fs_bug_on(sbi, i->state == NID_ALLOC);
2059 __del_from_free_nid_list(nm_i, i);
2060 nm_i->fcnt--;
2061 spin_unlock(&nm_i->free_nid_list_lock);
2062 kmem_cache_free(free_nid_slab, i);
2063 spin_lock(&nm_i->free_nid_list_lock);
2065 f2fs_bug_on(sbi, nm_i->fcnt);
2066 spin_unlock(&nm_i->free_nid_list_lock);
2068 /* destroy nat cache */
2069 down_write(&nm_i->nat_tree_lock);
2070 while ((found = __gang_lookup_nat_cache(nm_i,
2071 nid, NATVEC_SIZE, natvec))) {
2072 unsigned idx;
2074 nid = nat_get_nid(natvec[found - 1]) + 1;
2075 for (idx = 0; idx < found; idx++)
2076 __del_from_nat_cache(nm_i, natvec[idx]);
2078 f2fs_bug_on(sbi, nm_i->nat_cnt);
2080 /* destroy nat set cache */
2081 nid = 0;
2082 while ((found = __gang_lookup_nat_set(nm_i,
2083 nid, SETVEC_SIZE, setvec))) {
2084 unsigned idx;
2086 nid = setvec[found - 1]->set + 1;
2087 for (idx = 0; idx < found; idx++) {
2088 /* entry_cnt is not zero, when cp_error was occurred */
2089 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2090 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2091 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2094 up_write(&nm_i->nat_tree_lock);
2096 kfree(nm_i->nat_bitmap);
2097 sbi->nm_info = NULL;
2098 kfree(nm_i);
2101 int __init create_node_manager_caches(void)
2103 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2104 sizeof(struct nat_entry));
2105 if (!nat_entry_slab)
2106 goto fail;
2108 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2109 sizeof(struct free_nid));
2110 if (!free_nid_slab)
2111 goto destroy_nat_entry;
2113 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2114 sizeof(struct nat_entry_set));
2115 if (!nat_entry_set_slab)
2116 goto destroy_free_nid;
2117 return 0;
2119 destroy_free_nid:
2120 kmem_cache_destroy(free_nid_slab);
2121 destroy_nat_entry:
2122 kmem_cache_destroy(nat_entry_slab);
2123 fail:
2124 return -ENOMEM;
2127 void destroy_node_manager_caches(void)
2129 kmem_cache_destroy(nat_entry_set_slab);
2130 kmem_cache_destroy(free_nid_slab);
2131 kmem_cache_destroy(nat_entry_slab);