1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/export.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
16 #include <linux/kmod.h>
17 #include <linux/perf_event.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/binfmts.h>
52 #include <linux/sched.h>
53 #include <linux/sched/autogroup.h>
54 #include <linux/sched/loadavg.h>
55 #include <linux/sched/stat.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/coredump.h>
58 #include <linux/sched/task.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/rcupdate.h>
61 #include <linux/uidgid.h>
62 #include <linux/cred.h>
64 #include <linux/nospec.h>
66 #include <linux/kmsg_dump.h>
67 /* Move somewhere else to avoid recompiling? */
68 #include <generated/utsrelease.h>
70 #include <linux/uaccess.h>
72 #include <asm/unistd.h>
74 /* Hardening for Spectre-v1 */
75 #include <linux/nospec.h>
79 #ifndef SET_UNALIGN_CTL
80 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
82 #ifndef GET_UNALIGN_CTL
83 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
86 # define SET_FPEMU_CTL(a, b) (-EINVAL)
89 # define GET_FPEMU_CTL(a, b) (-EINVAL)
92 # define SET_FPEXC_CTL(a, b) (-EINVAL)
95 # define GET_FPEXC_CTL(a, b) (-EINVAL)
98 # define GET_ENDIAN(a, b) (-EINVAL)
101 # define SET_ENDIAN(a, b) (-EINVAL)
104 # define GET_TSC_CTL(a) (-EINVAL)
107 # define SET_TSC_CTL(a) (-EINVAL)
109 #ifndef MPX_ENABLE_MANAGEMENT
110 # define MPX_ENABLE_MANAGEMENT() (-EINVAL)
112 #ifndef MPX_DISABLE_MANAGEMENT
113 # define MPX_DISABLE_MANAGEMENT() (-EINVAL)
116 # define GET_FP_MODE(a) (-EINVAL)
119 # define SET_FP_MODE(a,b) (-EINVAL)
122 # define SVE_SET_VL(a) (-EINVAL)
125 # define SVE_GET_VL() (-EINVAL)
129 * this is where the system-wide overflow UID and GID are defined, for
130 * architectures that now have 32-bit UID/GID but didn't in the past
133 int overflowuid
= DEFAULT_OVERFLOWUID
;
134 int overflowgid
= DEFAULT_OVERFLOWGID
;
136 EXPORT_SYMBOL(overflowuid
);
137 EXPORT_SYMBOL(overflowgid
);
140 * the same as above, but for filesystems which can only store a 16-bit
141 * UID and GID. as such, this is needed on all architectures
144 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
145 int fs_overflowgid
= DEFAULT_FS_OVERFLOWGID
;
147 EXPORT_SYMBOL(fs_overflowuid
);
148 EXPORT_SYMBOL(fs_overflowgid
);
151 * Returns true if current's euid is same as p's uid or euid,
152 * or has CAP_SYS_NICE to p's user_ns.
154 * Called with rcu_read_lock, creds are safe
156 static bool set_one_prio_perm(struct task_struct
*p
)
158 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
160 if (uid_eq(pcred
->uid
, cred
->euid
) ||
161 uid_eq(pcred
->euid
, cred
->euid
))
163 if (ns_capable(pcred
->user_ns
, CAP_SYS_NICE
))
169 * set the priority of a task
170 * - the caller must hold the RCU read lock
172 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
176 if (!set_one_prio_perm(p
)) {
180 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
184 no_nice
= security_task_setnice(p
, niceval
);
191 set_user_nice(p
, niceval
);
196 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
198 struct task_struct
*g
, *p
;
199 struct user_struct
*user
;
200 const struct cred
*cred
= current_cred();
205 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
208 /* normalize: avoid signed division (rounding problems) */
210 if (niceval
< MIN_NICE
)
212 if (niceval
> MAX_NICE
)
216 read_lock(&tasklist_lock
);
220 p
= find_task_by_vpid(who
);
224 error
= set_one_prio(p
, niceval
, error
);
228 pgrp
= find_vpid(who
);
230 pgrp
= task_pgrp(current
);
231 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
232 error
= set_one_prio(p
, niceval
, error
);
233 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
236 uid
= make_kuid(cred
->user_ns
, who
);
240 else if (!uid_eq(uid
, cred
->uid
)) {
241 user
= find_user(uid
);
243 goto out_unlock
; /* No processes for this user */
245 do_each_thread(g
, p
) {
246 if (uid_eq(task_uid(p
), uid
) && task_pid_vnr(p
))
247 error
= set_one_prio(p
, niceval
, error
);
248 } while_each_thread(g
, p
);
249 if (!uid_eq(uid
, cred
->uid
))
250 free_uid(user
); /* For find_user() */
254 read_unlock(&tasklist_lock
);
261 * Ugh. To avoid negative return values, "getpriority()" will
262 * not return the normal nice-value, but a negated value that
263 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
264 * to stay compatible.
266 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
268 struct task_struct
*g
, *p
;
269 struct user_struct
*user
;
270 const struct cred
*cred
= current_cred();
271 long niceval
, retval
= -ESRCH
;
275 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
279 read_lock(&tasklist_lock
);
283 p
= find_task_by_vpid(who
);
287 niceval
= nice_to_rlimit(task_nice(p
));
288 if (niceval
> retval
)
294 pgrp
= find_vpid(who
);
296 pgrp
= task_pgrp(current
);
297 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
298 niceval
= nice_to_rlimit(task_nice(p
));
299 if (niceval
> retval
)
301 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
304 uid
= make_kuid(cred
->user_ns
, who
);
308 else if (!uid_eq(uid
, cred
->uid
)) {
309 user
= find_user(uid
);
311 goto out_unlock
; /* No processes for this user */
313 do_each_thread(g
, p
) {
314 if (uid_eq(task_uid(p
), uid
) && task_pid_vnr(p
)) {
315 niceval
= nice_to_rlimit(task_nice(p
));
316 if (niceval
> retval
)
319 } while_each_thread(g
, p
);
320 if (!uid_eq(uid
, cred
->uid
))
321 free_uid(user
); /* for find_user() */
325 read_unlock(&tasklist_lock
);
332 * Unprivileged users may change the real gid to the effective gid
333 * or vice versa. (BSD-style)
335 * If you set the real gid at all, or set the effective gid to a value not
336 * equal to the real gid, then the saved gid is set to the new effective gid.
338 * This makes it possible for a setgid program to completely drop its
339 * privileges, which is often a useful assertion to make when you are doing
340 * a security audit over a program.
342 * The general idea is that a program which uses just setregid() will be
343 * 100% compatible with BSD. A program which uses just setgid() will be
344 * 100% compatible with POSIX with saved IDs.
346 * SMP: There are not races, the GIDs are checked only by filesystem
347 * operations (as far as semantic preservation is concerned).
349 #ifdef CONFIG_MULTIUSER
350 long __sys_setregid(gid_t rgid
, gid_t egid
)
352 struct user_namespace
*ns
= current_user_ns();
353 const struct cred
*old
;
358 krgid
= make_kgid(ns
, rgid
);
359 kegid
= make_kgid(ns
, egid
);
361 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
363 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
366 new = prepare_creds();
369 old
= current_cred();
372 if (rgid
!= (gid_t
) -1) {
373 if (gid_eq(old
->gid
, krgid
) ||
374 gid_eq(old
->egid
, krgid
) ||
375 ns_capable(old
->user_ns
, CAP_SETGID
))
380 if (egid
!= (gid_t
) -1) {
381 if (gid_eq(old
->gid
, kegid
) ||
382 gid_eq(old
->egid
, kegid
) ||
383 gid_eq(old
->sgid
, kegid
) ||
384 ns_capable(old
->user_ns
, CAP_SETGID
))
390 if (rgid
!= (gid_t
) -1 ||
391 (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
)))
392 new->sgid
= new->egid
;
393 new->fsgid
= new->egid
;
395 return commit_creds(new);
402 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
404 return __sys_setregid(rgid
, egid
);
408 * setgid() is implemented like SysV w/ SAVED_IDS
410 * SMP: Same implicit races as above.
412 long __sys_setgid(gid_t gid
)
414 struct user_namespace
*ns
= current_user_ns();
415 const struct cred
*old
;
420 kgid
= make_kgid(ns
, gid
);
421 if (!gid_valid(kgid
))
424 new = prepare_creds();
427 old
= current_cred();
430 if (ns_capable(old
->user_ns
, CAP_SETGID
))
431 new->gid
= new->egid
= new->sgid
= new->fsgid
= kgid
;
432 else if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->sgid
))
433 new->egid
= new->fsgid
= kgid
;
437 return commit_creds(new);
444 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
446 return __sys_setgid(gid
);
450 * change the user struct in a credentials set to match the new UID
452 static int set_user(struct cred
*new)
454 struct user_struct
*new_user
;
456 new_user
= alloc_uid(new->uid
);
461 * We don't fail in case of NPROC limit excess here because too many
462 * poorly written programs don't check set*uid() return code, assuming
463 * it never fails if called by root. We may still enforce NPROC limit
464 * for programs doing set*uid()+execve() by harmlessly deferring the
465 * failure to the execve() stage.
467 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
468 new_user
!= INIT_USER
)
469 current
->flags
|= PF_NPROC_EXCEEDED
;
471 current
->flags
&= ~PF_NPROC_EXCEEDED
;
474 new->user
= new_user
;
479 * Unprivileged users may change the real uid to the effective uid
480 * or vice versa. (BSD-style)
482 * If you set the real uid at all, or set the effective uid to a value not
483 * equal to the real uid, then the saved uid is set to the new effective uid.
485 * This makes it possible for a setuid program to completely drop its
486 * privileges, which is often a useful assertion to make when you are doing
487 * a security audit over a program.
489 * The general idea is that a program which uses just setreuid() will be
490 * 100% compatible with BSD. A program which uses just setuid() will be
491 * 100% compatible with POSIX with saved IDs.
493 long __sys_setreuid(uid_t ruid
, uid_t euid
)
495 struct user_namespace
*ns
= current_user_ns();
496 const struct cred
*old
;
501 kruid
= make_kuid(ns
, ruid
);
502 keuid
= make_kuid(ns
, euid
);
504 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
506 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
509 new = prepare_creds();
512 old
= current_cred();
515 if (ruid
!= (uid_t
) -1) {
517 if (!uid_eq(old
->uid
, kruid
) &&
518 !uid_eq(old
->euid
, kruid
) &&
519 !ns_capable(old
->user_ns
, CAP_SETUID
))
523 if (euid
!= (uid_t
) -1) {
525 if (!uid_eq(old
->uid
, keuid
) &&
526 !uid_eq(old
->euid
, keuid
) &&
527 !uid_eq(old
->suid
, keuid
) &&
528 !ns_capable(old
->user_ns
, CAP_SETUID
))
532 if (!uid_eq(new->uid
, old
->uid
)) {
533 retval
= set_user(new);
537 if (ruid
!= (uid_t
) -1 ||
538 (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
)))
539 new->suid
= new->euid
;
540 new->fsuid
= new->euid
;
542 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
546 return commit_creds(new);
553 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
555 return __sys_setreuid(ruid
, euid
);
559 * setuid() is implemented like SysV with SAVED_IDS
561 * Note that SAVED_ID's is deficient in that a setuid root program
562 * like sendmail, for example, cannot set its uid to be a normal
563 * user and then switch back, because if you're root, setuid() sets
564 * the saved uid too. If you don't like this, blame the bright people
565 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
566 * will allow a root program to temporarily drop privileges and be able to
567 * regain them by swapping the real and effective uid.
569 long __sys_setuid(uid_t uid
)
571 struct user_namespace
*ns
= current_user_ns();
572 const struct cred
*old
;
577 kuid
= make_kuid(ns
, uid
);
578 if (!uid_valid(kuid
))
581 new = prepare_creds();
584 old
= current_cred();
587 if (ns_capable(old
->user_ns
, CAP_SETUID
)) {
588 new->suid
= new->uid
= kuid
;
589 if (!uid_eq(kuid
, old
->uid
)) {
590 retval
= set_user(new);
594 } else if (!uid_eq(kuid
, old
->uid
) && !uid_eq(kuid
, new->suid
)) {
598 new->fsuid
= new->euid
= kuid
;
600 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
604 return commit_creds(new);
611 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
613 return __sys_setuid(uid
);
618 * This function implements a generic ability to update ruid, euid,
619 * and suid. This allows you to implement the 4.4 compatible seteuid().
621 long __sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
623 struct user_namespace
*ns
= current_user_ns();
624 const struct cred
*old
;
627 kuid_t kruid
, keuid
, ksuid
;
629 kruid
= make_kuid(ns
, ruid
);
630 keuid
= make_kuid(ns
, euid
);
631 ksuid
= make_kuid(ns
, suid
);
633 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
636 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
639 if ((suid
!= (uid_t
) -1) && !uid_valid(ksuid
))
642 new = prepare_creds();
646 old
= current_cred();
649 if (!ns_capable(old
->user_ns
, CAP_SETUID
)) {
650 if (ruid
!= (uid_t
) -1 && !uid_eq(kruid
, old
->uid
) &&
651 !uid_eq(kruid
, old
->euid
) && !uid_eq(kruid
, old
->suid
))
653 if (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
) &&
654 !uid_eq(keuid
, old
->euid
) && !uid_eq(keuid
, old
->suid
))
656 if (suid
!= (uid_t
) -1 && !uid_eq(ksuid
, old
->uid
) &&
657 !uid_eq(ksuid
, old
->euid
) && !uid_eq(ksuid
, old
->suid
))
661 if (ruid
!= (uid_t
) -1) {
663 if (!uid_eq(kruid
, old
->uid
)) {
664 retval
= set_user(new);
669 if (euid
!= (uid_t
) -1)
671 if (suid
!= (uid_t
) -1)
673 new->fsuid
= new->euid
;
675 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
679 return commit_creds(new);
686 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
688 return __sys_setresuid(ruid
, euid
, suid
);
691 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruidp
, uid_t __user
*, euidp
, uid_t __user
*, suidp
)
693 const struct cred
*cred
= current_cred();
695 uid_t ruid
, euid
, suid
;
697 ruid
= from_kuid_munged(cred
->user_ns
, cred
->uid
);
698 euid
= from_kuid_munged(cred
->user_ns
, cred
->euid
);
699 suid
= from_kuid_munged(cred
->user_ns
, cred
->suid
);
701 retval
= put_user(ruid
, ruidp
);
703 retval
= put_user(euid
, euidp
);
705 return put_user(suid
, suidp
);
711 * Same as above, but for rgid, egid, sgid.
713 long __sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
715 struct user_namespace
*ns
= current_user_ns();
716 const struct cred
*old
;
719 kgid_t krgid
, kegid
, ksgid
;
721 krgid
= make_kgid(ns
, rgid
);
722 kegid
= make_kgid(ns
, egid
);
723 ksgid
= make_kgid(ns
, sgid
);
725 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
727 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
729 if ((sgid
!= (gid_t
) -1) && !gid_valid(ksgid
))
732 new = prepare_creds();
735 old
= current_cred();
738 if (!ns_capable(old
->user_ns
, CAP_SETGID
)) {
739 if (rgid
!= (gid_t
) -1 && !gid_eq(krgid
, old
->gid
) &&
740 !gid_eq(krgid
, old
->egid
) && !gid_eq(krgid
, old
->sgid
))
742 if (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
) &&
743 !gid_eq(kegid
, old
->egid
) && !gid_eq(kegid
, old
->sgid
))
745 if (sgid
!= (gid_t
) -1 && !gid_eq(ksgid
, old
->gid
) &&
746 !gid_eq(ksgid
, old
->egid
) && !gid_eq(ksgid
, old
->sgid
))
750 if (rgid
!= (gid_t
) -1)
752 if (egid
!= (gid_t
) -1)
754 if (sgid
!= (gid_t
) -1)
756 new->fsgid
= new->egid
;
758 return commit_creds(new);
765 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
767 return __sys_setresgid(rgid
, egid
, sgid
);
770 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgidp
, gid_t __user
*, egidp
, gid_t __user
*, sgidp
)
772 const struct cred
*cred
= current_cred();
774 gid_t rgid
, egid
, sgid
;
776 rgid
= from_kgid_munged(cred
->user_ns
, cred
->gid
);
777 egid
= from_kgid_munged(cred
->user_ns
, cred
->egid
);
778 sgid
= from_kgid_munged(cred
->user_ns
, cred
->sgid
);
780 retval
= put_user(rgid
, rgidp
);
782 retval
= put_user(egid
, egidp
);
784 retval
= put_user(sgid
, sgidp
);
792 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
793 * is used for "access()" and for the NFS daemon (letting nfsd stay at
794 * whatever uid it wants to). It normally shadows "euid", except when
795 * explicitly set by setfsuid() or for access..
797 long __sys_setfsuid(uid_t uid
)
799 const struct cred
*old
;
804 old
= current_cred();
805 old_fsuid
= from_kuid_munged(old
->user_ns
, old
->fsuid
);
807 kuid
= make_kuid(old
->user_ns
, uid
);
808 if (!uid_valid(kuid
))
811 new = prepare_creds();
815 if (uid_eq(kuid
, old
->uid
) || uid_eq(kuid
, old
->euid
) ||
816 uid_eq(kuid
, old
->suid
) || uid_eq(kuid
, old
->fsuid
) ||
817 ns_capable(old
->user_ns
, CAP_SETUID
)) {
818 if (!uid_eq(kuid
, old
->fsuid
)) {
820 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
833 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
835 return __sys_setfsuid(uid
);
839 * Samma på svenska..
841 long __sys_setfsgid(gid_t gid
)
843 const struct cred
*old
;
848 old
= current_cred();
849 old_fsgid
= from_kgid_munged(old
->user_ns
, old
->fsgid
);
851 kgid
= make_kgid(old
->user_ns
, gid
);
852 if (!gid_valid(kgid
))
855 new = prepare_creds();
859 if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->egid
) ||
860 gid_eq(kgid
, old
->sgid
) || gid_eq(kgid
, old
->fsgid
) ||
861 ns_capable(old
->user_ns
, CAP_SETGID
)) {
862 if (!gid_eq(kgid
, old
->fsgid
)) {
876 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
878 return __sys_setfsgid(gid
);
880 #endif /* CONFIG_MULTIUSER */
883 * sys_getpid - return the thread group id of the current process
885 * Note, despite the name, this returns the tgid not the pid. The tgid and
886 * the pid are identical unless CLONE_THREAD was specified on clone() in
887 * which case the tgid is the same in all threads of the same group.
889 * This is SMP safe as current->tgid does not change.
891 SYSCALL_DEFINE0(getpid
)
893 return task_tgid_vnr(current
);
896 /* Thread ID - the internal kernel "pid" */
897 SYSCALL_DEFINE0(gettid
)
899 return task_pid_vnr(current
);
903 * Accessing ->real_parent is not SMP-safe, it could
904 * change from under us. However, we can use a stale
905 * value of ->real_parent under rcu_read_lock(), see
906 * release_task()->call_rcu(delayed_put_task_struct).
908 SYSCALL_DEFINE0(getppid
)
913 pid
= task_tgid_vnr(rcu_dereference(current
->real_parent
));
919 SYSCALL_DEFINE0(getuid
)
921 /* Only we change this so SMP safe */
922 return from_kuid_munged(current_user_ns(), current_uid());
925 SYSCALL_DEFINE0(geteuid
)
927 /* Only we change this so SMP safe */
928 return from_kuid_munged(current_user_ns(), current_euid());
931 SYSCALL_DEFINE0(getgid
)
933 /* Only we change this so SMP safe */
934 return from_kgid_munged(current_user_ns(), current_gid());
937 SYSCALL_DEFINE0(getegid
)
939 /* Only we change this so SMP safe */
940 return from_kgid_munged(current_user_ns(), current_egid());
943 static void do_sys_times(struct tms
*tms
)
945 u64 tgutime
, tgstime
, cutime
, cstime
;
947 thread_group_cputime_adjusted(current
, &tgutime
, &tgstime
);
948 cutime
= current
->signal
->cutime
;
949 cstime
= current
->signal
->cstime
;
950 tms
->tms_utime
= nsec_to_clock_t(tgutime
);
951 tms
->tms_stime
= nsec_to_clock_t(tgstime
);
952 tms
->tms_cutime
= nsec_to_clock_t(cutime
);
953 tms
->tms_cstime
= nsec_to_clock_t(cstime
);
956 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
962 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
965 force_successful_syscall_return();
966 return (long) jiffies_64_to_clock_t(get_jiffies_64());
970 static compat_clock_t
clock_t_to_compat_clock_t(clock_t x
)
972 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x
));
975 COMPAT_SYSCALL_DEFINE1(times
, struct compat_tms __user
*, tbuf
)
979 struct compat_tms tmp
;
982 /* Convert our struct tms to the compat version. */
983 tmp
.tms_utime
= clock_t_to_compat_clock_t(tms
.tms_utime
);
984 tmp
.tms_stime
= clock_t_to_compat_clock_t(tms
.tms_stime
);
985 tmp
.tms_cutime
= clock_t_to_compat_clock_t(tms
.tms_cutime
);
986 tmp
.tms_cstime
= clock_t_to_compat_clock_t(tms
.tms_cstime
);
987 if (copy_to_user(tbuf
, &tmp
, sizeof(tmp
)))
990 force_successful_syscall_return();
991 return compat_jiffies_to_clock_t(jiffies
);
996 * This needs some heavy checking ...
997 * I just haven't the stomach for it. I also don't fully
998 * understand sessions/pgrp etc. Let somebody who does explain it.
1000 * OK, I think I have the protection semantics right.... this is really
1001 * only important on a multi-user system anyway, to make sure one user
1002 * can't send a signal to a process owned by another. -TYT, 12/12/91
1004 * !PF_FORKNOEXEC check to conform completely to POSIX.
1006 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
1008 struct task_struct
*p
;
1009 struct task_struct
*group_leader
= current
->group_leader
;
1014 pid
= task_pid_vnr(group_leader
);
1021 /* From this point forward we keep holding onto the tasklist lock
1022 * so that our parent does not change from under us. -DaveM
1024 write_lock_irq(&tasklist_lock
);
1027 p
= find_task_by_vpid(pid
);
1032 if (!thread_group_leader(p
))
1035 if (same_thread_group(p
->real_parent
, group_leader
)) {
1037 if (task_session(p
) != task_session(group_leader
))
1040 if (!(p
->flags
& PF_FORKNOEXEC
))
1044 if (p
!= group_leader
)
1049 if (p
->signal
->leader
)
1054 struct task_struct
*g
;
1056 pgrp
= find_vpid(pgid
);
1057 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1058 if (!g
|| task_session(g
) != task_session(group_leader
))
1062 err
= security_task_setpgid(p
, pgid
);
1066 if (task_pgrp(p
) != pgrp
)
1067 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1071 /* All paths lead to here, thus we are safe. -DaveM */
1072 write_unlock_irq(&tasklist_lock
);
1077 static int do_getpgid(pid_t pid
)
1079 struct task_struct
*p
;
1085 grp
= task_pgrp(current
);
1088 p
= find_task_by_vpid(pid
);
1095 retval
= security_task_getpgid(p
);
1099 retval
= pid_vnr(grp
);
1105 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1107 return do_getpgid(pid
);
1110 #ifdef __ARCH_WANT_SYS_GETPGRP
1112 SYSCALL_DEFINE0(getpgrp
)
1114 return do_getpgid(0);
1119 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1121 struct task_struct
*p
;
1127 sid
= task_session(current
);
1130 p
= find_task_by_vpid(pid
);
1133 sid
= task_session(p
);
1137 retval
= security_task_getsid(p
);
1141 retval
= pid_vnr(sid
);
1147 static void set_special_pids(struct pid
*pid
)
1149 struct task_struct
*curr
= current
->group_leader
;
1151 if (task_session(curr
) != pid
)
1152 change_pid(curr
, PIDTYPE_SID
, pid
);
1154 if (task_pgrp(curr
) != pid
)
1155 change_pid(curr
, PIDTYPE_PGID
, pid
);
1158 int ksys_setsid(void)
1160 struct task_struct
*group_leader
= current
->group_leader
;
1161 struct pid
*sid
= task_pid(group_leader
);
1162 pid_t session
= pid_vnr(sid
);
1165 write_lock_irq(&tasklist_lock
);
1166 /* Fail if I am already a session leader */
1167 if (group_leader
->signal
->leader
)
1170 /* Fail if a process group id already exists that equals the
1171 * proposed session id.
1173 if (pid_task(sid
, PIDTYPE_PGID
))
1176 group_leader
->signal
->leader
= 1;
1177 set_special_pids(sid
);
1179 proc_clear_tty(group_leader
);
1183 write_unlock_irq(&tasklist_lock
);
1185 proc_sid_connector(group_leader
);
1186 sched_autogroup_create_attach(group_leader
);
1191 SYSCALL_DEFINE0(setsid
)
1193 return ksys_setsid();
1196 DECLARE_RWSEM(uts_sem
);
1198 #ifdef COMPAT_UTS_MACHINE
1199 #define override_architecture(name) \
1200 (personality(current->personality) == PER_LINUX32 && \
1201 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1202 sizeof(COMPAT_UTS_MACHINE)))
1204 #define override_architecture(name) 0
1208 * Work around broken programs that cannot handle "Linux 3.0".
1209 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1210 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1212 static int override_release(char __user
*release
, size_t len
)
1216 if (current
->personality
& UNAME26
) {
1217 const char *rest
= UTS_RELEASE
;
1218 char buf
[65] = { 0 };
1224 if (*rest
== '.' && ++ndots
>= 3)
1226 if (!isdigit(*rest
) && *rest
!= '.')
1230 v
= ((LINUX_VERSION_CODE
>> 8) & 0xff) + 60;
1231 copy
= clamp_t(size_t, len
, 1, sizeof(buf
));
1232 copy
= scnprintf(buf
, copy
, "2.6.%u%s", v
, rest
);
1233 ret
= copy_to_user(release
, buf
, copy
+ 1);
1238 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1240 struct new_utsname tmp
;
1242 down_read(&uts_sem
);
1243 memcpy(&tmp
, utsname(), sizeof(tmp
));
1245 if (copy_to_user(name
, &tmp
, sizeof(tmp
)))
1248 if (override_release(name
->release
, sizeof(name
->release
)))
1250 if (override_architecture(name
))
1255 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1259 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1261 struct old_utsname tmp
;
1266 down_read(&uts_sem
);
1267 memcpy(&tmp
, utsname(), sizeof(tmp
));
1269 if (copy_to_user(name
, &tmp
, sizeof(tmp
)))
1272 if (override_release(name
->release
, sizeof(name
->release
)))
1274 if (override_architecture(name
))
1279 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1281 struct oldold_utsname tmp
= {};
1286 down_read(&uts_sem
);
1287 memcpy(&tmp
.sysname
, &utsname()->sysname
, __OLD_UTS_LEN
);
1288 memcpy(&tmp
.nodename
, &utsname()->nodename
, __OLD_UTS_LEN
);
1289 memcpy(&tmp
.release
, &utsname()->release
, __OLD_UTS_LEN
);
1290 memcpy(&tmp
.version
, &utsname()->version
, __OLD_UTS_LEN
);
1291 memcpy(&tmp
.machine
, &utsname()->machine
, __OLD_UTS_LEN
);
1293 if (copy_to_user(name
, &tmp
, sizeof(tmp
)))
1296 if (override_architecture(name
))
1298 if (override_release(name
->release
, sizeof(name
->release
)))
1304 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1307 char tmp
[__NEW_UTS_LEN
];
1309 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1312 if (len
< 0 || len
> __NEW_UTS_LEN
)
1315 if (!copy_from_user(tmp
, name
, len
)) {
1316 struct new_utsname
*u
;
1318 down_write(&uts_sem
);
1320 memcpy(u
->nodename
, tmp
, len
);
1321 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1323 uts_proc_notify(UTS_PROC_HOSTNAME
);
1329 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1331 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1334 struct new_utsname
*u
;
1335 char tmp
[__NEW_UTS_LEN
+ 1];
1339 down_read(&uts_sem
);
1341 i
= 1 + strlen(u
->nodename
);
1344 memcpy(tmp
, u
->nodename
, i
);
1346 if (copy_to_user(name
, tmp
, i
))
1354 * Only setdomainname; getdomainname can be implemented by calling
1357 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1360 char tmp
[__NEW_UTS_LEN
];
1362 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1364 if (len
< 0 || len
> __NEW_UTS_LEN
)
1368 if (!copy_from_user(tmp
, name
, len
)) {
1369 struct new_utsname
*u
;
1371 down_write(&uts_sem
);
1373 memcpy(u
->domainname
, tmp
, len
);
1374 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1376 uts_proc_notify(UTS_PROC_DOMAINNAME
);
1382 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1384 struct rlimit value
;
1387 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1389 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1394 #ifdef CONFIG_COMPAT
1396 COMPAT_SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
,
1397 struct compat_rlimit __user
*, rlim
)
1400 struct compat_rlimit r32
;
1402 if (copy_from_user(&r32
, rlim
, sizeof(struct compat_rlimit
)))
1405 if (r32
.rlim_cur
== COMPAT_RLIM_INFINITY
)
1406 r
.rlim_cur
= RLIM_INFINITY
;
1408 r
.rlim_cur
= r32
.rlim_cur
;
1409 if (r32
.rlim_max
== COMPAT_RLIM_INFINITY
)
1410 r
.rlim_max
= RLIM_INFINITY
;
1412 r
.rlim_max
= r32
.rlim_max
;
1413 return do_prlimit(current
, resource
, &r
, NULL
);
1416 COMPAT_SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
,
1417 struct compat_rlimit __user
*, rlim
)
1422 ret
= do_prlimit(current
, resource
, NULL
, &r
);
1424 struct compat_rlimit r32
;
1425 if (r
.rlim_cur
> COMPAT_RLIM_INFINITY
)
1426 r32
.rlim_cur
= COMPAT_RLIM_INFINITY
;
1428 r32
.rlim_cur
= r
.rlim_cur
;
1429 if (r
.rlim_max
> COMPAT_RLIM_INFINITY
)
1430 r32
.rlim_max
= COMPAT_RLIM_INFINITY
;
1432 r32
.rlim_max
= r
.rlim_max
;
1434 if (copy_to_user(rlim
, &r32
, sizeof(struct compat_rlimit
)))
1442 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1445 * Back compatibility for getrlimit. Needed for some apps.
1447 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1448 struct rlimit __user
*, rlim
)
1451 if (resource
>= RLIM_NLIMITS
)
1454 resource
= array_index_nospec(resource
, RLIM_NLIMITS
);
1455 task_lock(current
->group_leader
);
1456 x
= current
->signal
->rlim
[resource
];
1457 task_unlock(current
->group_leader
);
1458 if (x
.rlim_cur
> 0x7FFFFFFF)
1459 x
.rlim_cur
= 0x7FFFFFFF;
1460 if (x
.rlim_max
> 0x7FFFFFFF)
1461 x
.rlim_max
= 0x7FFFFFFF;
1462 return copy_to_user(rlim
, &x
, sizeof(x
)) ? -EFAULT
: 0;
1465 #ifdef CONFIG_COMPAT
1466 COMPAT_SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1467 struct compat_rlimit __user
*, rlim
)
1471 if (resource
>= RLIM_NLIMITS
)
1474 resource
= array_index_nospec(resource
, RLIM_NLIMITS
);
1475 task_lock(current
->group_leader
);
1476 r
= current
->signal
->rlim
[resource
];
1477 task_unlock(current
->group_leader
);
1478 if (r
.rlim_cur
> 0x7FFFFFFF)
1479 r
.rlim_cur
= 0x7FFFFFFF;
1480 if (r
.rlim_max
> 0x7FFFFFFF)
1481 r
.rlim_max
= 0x7FFFFFFF;
1483 if (put_user(r
.rlim_cur
, &rlim
->rlim_cur
) ||
1484 put_user(r
.rlim_max
, &rlim
->rlim_max
))
1492 static inline bool rlim64_is_infinity(__u64 rlim64
)
1494 #if BITS_PER_LONG < 64
1495 return rlim64
>= ULONG_MAX
;
1497 return rlim64
== RLIM64_INFINITY
;
1501 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1503 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1504 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1506 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1507 if (rlim
->rlim_max
== RLIM_INFINITY
)
1508 rlim64
->rlim_max
= RLIM64_INFINITY
;
1510 rlim64
->rlim_max
= rlim
->rlim_max
;
1513 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1515 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1516 rlim
->rlim_cur
= RLIM_INFINITY
;
1518 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1519 if (rlim64_is_infinity(rlim64
->rlim_max
))
1520 rlim
->rlim_max
= RLIM_INFINITY
;
1522 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1525 /* make sure you are allowed to change @tsk limits before calling this */
1526 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1527 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1529 struct rlimit
*rlim
;
1532 if (resource
>= RLIM_NLIMITS
)
1535 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1537 if (resource
== RLIMIT_NOFILE
&&
1538 new_rlim
->rlim_max
> sysctl_nr_open
)
1542 /* protect tsk->signal and tsk->sighand from disappearing */
1543 read_lock(&tasklist_lock
);
1544 if (!tsk
->sighand
) {
1549 rlim
= tsk
->signal
->rlim
+ resource
;
1550 task_lock(tsk
->group_leader
);
1552 /* Keep the capable check against init_user_ns until
1553 cgroups can contain all limits */
1554 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1555 !capable(CAP_SYS_RESOURCE
))
1558 retval
= security_task_setrlimit(tsk
, resource
, new_rlim
);
1559 if (resource
== RLIMIT_CPU
&& new_rlim
->rlim_cur
== 0) {
1561 * The caller is asking for an immediate RLIMIT_CPU
1562 * expiry. But we use the zero value to mean "it was
1563 * never set". So let's cheat and make it one second
1566 new_rlim
->rlim_cur
= 1;
1575 task_unlock(tsk
->group_leader
);
1578 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1579 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1580 * very long-standing error, and fixing it now risks breakage of
1581 * applications, so we live with it
1583 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1584 new_rlim
->rlim_cur
!= RLIM_INFINITY
&&
1585 IS_ENABLED(CONFIG_POSIX_TIMERS
))
1586 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1588 read_unlock(&tasklist_lock
);
1592 /* rcu lock must be held */
1593 static int check_prlimit_permission(struct task_struct
*task
,
1596 const struct cred
*cred
= current_cred(), *tcred
;
1599 if (current
== task
)
1602 tcred
= __task_cred(task
);
1603 id_match
= (uid_eq(cred
->uid
, tcred
->euid
) &&
1604 uid_eq(cred
->uid
, tcred
->suid
) &&
1605 uid_eq(cred
->uid
, tcred
->uid
) &&
1606 gid_eq(cred
->gid
, tcred
->egid
) &&
1607 gid_eq(cred
->gid
, tcred
->sgid
) &&
1608 gid_eq(cred
->gid
, tcred
->gid
));
1609 if (!id_match
&& !ns_capable(tcred
->user_ns
, CAP_SYS_RESOURCE
))
1612 return security_task_prlimit(cred
, tcred
, flags
);
1615 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1616 const struct rlimit64 __user
*, new_rlim
,
1617 struct rlimit64 __user
*, old_rlim
)
1619 struct rlimit64 old64
, new64
;
1620 struct rlimit old
, new;
1621 struct task_struct
*tsk
;
1622 unsigned int checkflags
= 0;
1626 checkflags
|= LSM_PRLIMIT_READ
;
1629 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1631 rlim64_to_rlim(&new64
, &new);
1632 checkflags
|= LSM_PRLIMIT_WRITE
;
1636 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1641 ret
= check_prlimit_permission(tsk
, checkflags
);
1646 get_task_struct(tsk
);
1649 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1650 old_rlim
? &old
: NULL
);
1652 if (!ret
&& old_rlim
) {
1653 rlim_to_rlim64(&old
, &old64
);
1654 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1658 put_task_struct(tsk
);
1662 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1664 struct rlimit new_rlim
;
1666 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1668 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1672 * It would make sense to put struct rusage in the task_struct,
1673 * except that would make the task_struct be *really big*. After
1674 * task_struct gets moved into malloc'ed memory, it would
1675 * make sense to do this. It will make moving the rest of the information
1676 * a lot simpler! (Which we're not doing right now because we're not
1677 * measuring them yet).
1679 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1680 * races with threads incrementing their own counters. But since word
1681 * reads are atomic, we either get new values or old values and we don't
1682 * care which for the sums. We always take the siglock to protect reading
1683 * the c* fields from p->signal from races with exit.c updating those
1684 * fields when reaping, so a sample either gets all the additions of a
1685 * given child after it's reaped, or none so this sample is before reaping.
1688 * We need to take the siglock for CHILDEREN, SELF and BOTH
1689 * for the cases current multithreaded, non-current single threaded
1690 * non-current multithreaded. Thread traversal is now safe with
1692 * Strictly speaking, we donot need to take the siglock if we are current and
1693 * single threaded, as no one else can take our signal_struct away, no one
1694 * else can reap the children to update signal->c* counters, and no one else
1695 * can race with the signal-> fields. If we do not take any lock, the
1696 * signal-> fields could be read out of order while another thread was just
1697 * exiting. So we should place a read memory barrier when we avoid the lock.
1698 * On the writer side, write memory barrier is implied in __exit_signal
1699 * as __exit_signal releases the siglock spinlock after updating the signal->
1700 * fields. But we don't do this yet to keep things simple.
1704 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1706 r
->ru_nvcsw
+= t
->nvcsw
;
1707 r
->ru_nivcsw
+= t
->nivcsw
;
1708 r
->ru_minflt
+= t
->min_flt
;
1709 r
->ru_majflt
+= t
->maj_flt
;
1710 r
->ru_inblock
+= task_io_get_inblock(t
);
1711 r
->ru_oublock
+= task_io_get_oublock(t
);
1714 void getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1716 struct task_struct
*t
;
1717 unsigned long flags
;
1718 u64 tgutime
, tgstime
, utime
, stime
;
1719 unsigned long maxrss
= 0;
1721 memset((char *)r
, 0, sizeof (*r
));
1724 if (who
== RUSAGE_THREAD
) {
1725 task_cputime_adjusted(current
, &utime
, &stime
);
1726 accumulate_thread_rusage(p
, r
);
1727 maxrss
= p
->signal
->maxrss
;
1731 if (!lock_task_sighand(p
, &flags
))
1736 case RUSAGE_CHILDREN
:
1737 utime
= p
->signal
->cutime
;
1738 stime
= p
->signal
->cstime
;
1739 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1740 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1741 r
->ru_minflt
= p
->signal
->cmin_flt
;
1742 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1743 r
->ru_inblock
= p
->signal
->cinblock
;
1744 r
->ru_oublock
= p
->signal
->coublock
;
1745 maxrss
= p
->signal
->cmaxrss
;
1747 if (who
== RUSAGE_CHILDREN
)
1751 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1754 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1755 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1756 r
->ru_minflt
+= p
->signal
->min_flt
;
1757 r
->ru_majflt
+= p
->signal
->maj_flt
;
1758 r
->ru_inblock
+= p
->signal
->inblock
;
1759 r
->ru_oublock
+= p
->signal
->oublock
;
1760 if (maxrss
< p
->signal
->maxrss
)
1761 maxrss
= p
->signal
->maxrss
;
1764 accumulate_thread_rusage(t
, r
);
1765 } while_each_thread(p
, t
);
1771 unlock_task_sighand(p
, &flags
);
1774 r
->ru_utime
= ns_to_timeval(utime
);
1775 r
->ru_stime
= ns_to_timeval(stime
);
1777 if (who
!= RUSAGE_CHILDREN
) {
1778 struct mm_struct
*mm
= get_task_mm(p
);
1781 setmax_mm_hiwater_rss(&maxrss
, mm
);
1785 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1788 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1792 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1793 who
!= RUSAGE_THREAD
)
1796 getrusage(current
, who
, &r
);
1797 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1800 #ifdef CONFIG_COMPAT
1801 COMPAT_SYSCALL_DEFINE2(getrusage
, int, who
, struct compat_rusage __user
*, ru
)
1805 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1806 who
!= RUSAGE_THREAD
)
1809 getrusage(current
, who
, &r
);
1810 return put_compat_rusage(&r
, ru
);
1814 SYSCALL_DEFINE1(umask
, int, mask
)
1816 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1820 static int prctl_set_mm_exe_file(struct mm_struct
*mm
, unsigned int fd
)
1823 struct file
*old_exe
, *exe_file
;
1824 struct inode
*inode
;
1831 inode
= file_inode(exe
.file
);
1834 * Because the original mm->exe_file points to executable file, make
1835 * sure that this one is executable as well, to avoid breaking an
1839 if (!S_ISREG(inode
->i_mode
) || path_noexec(&exe
.file
->f_path
))
1842 err
= inode_permission(inode
, MAY_EXEC
);
1847 * Forbid mm->exe_file change if old file still mapped.
1849 exe_file
= get_mm_exe_file(mm
);
1852 struct vm_area_struct
*vma
;
1854 down_read(&mm
->mmap_sem
);
1855 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1858 if (path_equal(&vma
->vm_file
->f_path
,
1863 up_read(&mm
->mmap_sem
);
1868 /* set the new file, lockless */
1870 old_exe
= xchg(&mm
->exe_file
, exe
.file
);
1877 up_read(&mm
->mmap_sem
);
1883 * WARNING: we don't require any capability here so be very careful
1884 * in what is allowed for modification from userspace.
1886 static int validate_prctl_map(struct prctl_mm_map
*prctl_map
)
1888 unsigned long mmap_max_addr
= TASK_SIZE
;
1889 struct mm_struct
*mm
= current
->mm
;
1890 int error
= -EINVAL
, i
;
1892 static const unsigned char offsets
[] = {
1893 offsetof(struct prctl_mm_map
, start_code
),
1894 offsetof(struct prctl_mm_map
, end_code
),
1895 offsetof(struct prctl_mm_map
, start_data
),
1896 offsetof(struct prctl_mm_map
, end_data
),
1897 offsetof(struct prctl_mm_map
, start_brk
),
1898 offsetof(struct prctl_mm_map
, brk
),
1899 offsetof(struct prctl_mm_map
, start_stack
),
1900 offsetof(struct prctl_mm_map
, arg_start
),
1901 offsetof(struct prctl_mm_map
, arg_end
),
1902 offsetof(struct prctl_mm_map
, env_start
),
1903 offsetof(struct prctl_mm_map
, env_end
),
1907 * Make sure the members are not somewhere outside
1908 * of allowed address space.
1910 for (i
= 0; i
< ARRAY_SIZE(offsets
); i
++) {
1911 u64 val
= *(u64
*)((char *)prctl_map
+ offsets
[i
]);
1913 if ((unsigned long)val
>= mmap_max_addr
||
1914 (unsigned long)val
< mmap_min_addr
)
1919 * Make sure the pairs are ordered.
1921 #define __prctl_check_order(__m1, __op, __m2) \
1922 ((unsigned long)prctl_map->__m1 __op \
1923 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1924 error
= __prctl_check_order(start_code
, <, end_code
);
1925 error
|= __prctl_check_order(start_data
, <, end_data
);
1926 error
|= __prctl_check_order(start_brk
, <=, brk
);
1927 error
|= __prctl_check_order(arg_start
, <=, arg_end
);
1928 error
|= __prctl_check_order(env_start
, <=, env_end
);
1931 #undef __prctl_check_order
1936 * @brk should be after @end_data in traditional maps.
1938 if (prctl_map
->start_brk
<= prctl_map
->end_data
||
1939 prctl_map
->brk
<= prctl_map
->end_data
)
1943 * Neither we should allow to override limits if they set.
1945 if (check_data_rlimit(rlimit(RLIMIT_DATA
), prctl_map
->brk
,
1946 prctl_map
->start_brk
, prctl_map
->end_data
,
1947 prctl_map
->start_data
))
1951 * Someone is trying to cheat the auxv vector.
1953 if (prctl_map
->auxv_size
) {
1954 if (!prctl_map
->auxv
|| prctl_map
->auxv_size
> sizeof(mm
->saved_auxv
))
1959 * Finally, make sure the caller has the rights to
1960 * change /proc/pid/exe link: only local sys admin should
1963 if (prctl_map
->exe_fd
!= (u32
)-1) {
1964 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
1973 #ifdef CONFIG_CHECKPOINT_RESTORE
1974 static int prctl_set_mm_map(int opt
, const void __user
*addr
, unsigned long data_size
)
1976 struct prctl_mm_map prctl_map
= { .exe_fd
= (u32
)-1, };
1977 unsigned long user_auxv
[AT_VECTOR_SIZE
];
1978 struct mm_struct
*mm
= current
->mm
;
1981 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
1982 BUILD_BUG_ON(sizeof(struct prctl_mm_map
) > 256);
1984 if (opt
== PR_SET_MM_MAP_SIZE
)
1985 return put_user((unsigned int)sizeof(prctl_map
),
1986 (unsigned int __user
*)addr
);
1988 if (data_size
!= sizeof(prctl_map
))
1991 if (copy_from_user(&prctl_map
, addr
, sizeof(prctl_map
)))
1994 error
= validate_prctl_map(&prctl_map
);
1998 if (prctl_map
.auxv_size
) {
1999 memset(user_auxv
, 0, sizeof(user_auxv
));
2000 if (copy_from_user(user_auxv
,
2001 (const void __user
*)prctl_map
.auxv
,
2002 prctl_map
.auxv_size
))
2005 /* Last entry must be AT_NULL as specification requires */
2006 user_auxv
[AT_VECTOR_SIZE
- 2] = AT_NULL
;
2007 user_auxv
[AT_VECTOR_SIZE
- 1] = AT_NULL
;
2010 if (prctl_map
.exe_fd
!= (u32
)-1) {
2011 error
= prctl_set_mm_exe_file(mm
, prctl_map
.exe_fd
);
2017 * arg_lock protects concurent updates but we still need mmap_sem for
2018 * read to exclude races with sys_brk.
2020 down_read(&mm
->mmap_sem
);
2023 * We don't validate if these members are pointing to
2024 * real present VMAs because application may have correspond
2025 * VMAs already unmapped and kernel uses these members for statistics
2026 * output in procfs mostly, except
2028 * - @start_brk/@brk which are used in do_brk but kernel lookups
2029 * for VMAs when updating these memvers so anything wrong written
2030 * here cause kernel to swear at userspace program but won't lead
2031 * to any problem in kernel itself
2034 spin_lock(&mm
->arg_lock
);
2035 mm
->start_code
= prctl_map
.start_code
;
2036 mm
->end_code
= prctl_map
.end_code
;
2037 mm
->start_data
= prctl_map
.start_data
;
2038 mm
->end_data
= prctl_map
.end_data
;
2039 mm
->start_brk
= prctl_map
.start_brk
;
2040 mm
->brk
= prctl_map
.brk
;
2041 mm
->start_stack
= prctl_map
.start_stack
;
2042 mm
->arg_start
= prctl_map
.arg_start
;
2043 mm
->arg_end
= prctl_map
.arg_end
;
2044 mm
->env_start
= prctl_map
.env_start
;
2045 mm
->env_end
= prctl_map
.env_end
;
2046 spin_unlock(&mm
->arg_lock
);
2049 * Note this update of @saved_auxv is lockless thus
2050 * if someone reads this member in procfs while we're
2051 * updating -- it may get partly updated results. It's
2052 * known and acceptable trade off: we leave it as is to
2053 * not introduce additional locks here making the kernel
2056 if (prctl_map
.auxv_size
)
2057 memcpy(mm
->saved_auxv
, user_auxv
, sizeof(user_auxv
));
2059 up_read(&mm
->mmap_sem
);
2062 #endif /* CONFIG_CHECKPOINT_RESTORE */
2064 static int prctl_set_auxv(struct mm_struct
*mm
, unsigned long addr
,
2068 * This doesn't move the auxiliary vector itself since it's pinned to
2069 * mm_struct, but it permits filling the vector with new values. It's
2070 * up to the caller to provide sane values here, otherwise userspace
2071 * tools which use this vector might be unhappy.
2073 unsigned long user_auxv
[AT_VECTOR_SIZE
];
2075 if (len
> sizeof(user_auxv
))
2078 if (copy_from_user(user_auxv
, (const void __user
*)addr
, len
))
2081 /* Make sure the last entry is always AT_NULL */
2082 user_auxv
[AT_VECTOR_SIZE
- 2] = 0;
2083 user_auxv
[AT_VECTOR_SIZE
- 1] = 0;
2085 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
2088 memcpy(mm
->saved_auxv
, user_auxv
, len
);
2089 task_unlock(current
);
2094 static int prctl_set_mm(int opt
, unsigned long addr
,
2095 unsigned long arg4
, unsigned long arg5
)
2097 struct mm_struct
*mm
= current
->mm
;
2098 struct prctl_mm_map prctl_map
;
2099 struct vm_area_struct
*vma
;
2102 if (arg5
|| (arg4
&& (opt
!= PR_SET_MM_AUXV
&&
2103 opt
!= PR_SET_MM_MAP
&&
2104 opt
!= PR_SET_MM_MAP_SIZE
)))
2107 #ifdef CONFIG_CHECKPOINT_RESTORE
2108 if (opt
== PR_SET_MM_MAP
|| opt
== PR_SET_MM_MAP_SIZE
)
2109 return prctl_set_mm_map(opt
, (const void __user
*)addr
, arg4
);
2112 if (!capable(CAP_SYS_RESOURCE
))
2115 if (opt
== PR_SET_MM_EXE_FILE
)
2116 return prctl_set_mm_exe_file(mm
, (unsigned int)addr
);
2118 if (opt
== PR_SET_MM_AUXV
)
2119 return prctl_set_auxv(mm
, addr
, arg4
);
2121 if (addr
>= TASK_SIZE
|| addr
< mmap_min_addr
)
2126 down_write(&mm
->mmap_sem
);
2127 vma
= find_vma(mm
, addr
);
2129 prctl_map
.start_code
= mm
->start_code
;
2130 prctl_map
.end_code
= mm
->end_code
;
2131 prctl_map
.start_data
= mm
->start_data
;
2132 prctl_map
.end_data
= mm
->end_data
;
2133 prctl_map
.start_brk
= mm
->start_brk
;
2134 prctl_map
.brk
= mm
->brk
;
2135 prctl_map
.start_stack
= mm
->start_stack
;
2136 prctl_map
.arg_start
= mm
->arg_start
;
2137 prctl_map
.arg_end
= mm
->arg_end
;
2138 prctl_map
.env_start
= mm
->env_start
;
2139 prctl_map
.env_end
= mm
->env_end
;
2140 prctl_map
.auxv
= NULL
;
2141 prctl_map
.auxv_size
= 0;
2142 prctl_map
.exe_fd
= -1;
2145 case PR_SET_MM_START_CODE
:
2146 prctl_map
.start_code
= addr
;
2148 case PR_SET_MM_END_CODE
:
2149 prctl_map
.end_code
= addr
;
2151 case PR_SET_MM_START_DATA
:
2152 prctl_map
.start_data
= addr
;
2154 case PR_SET_MM_END_DATA
:
2155 prctl_map
.end_data
= addr
;
2157 case PR_SET_MM_START_STACK
:
2158 prctl_map
.start_stack
= addr
;
2160 case PR_SET_MM_START_BRK
:
2161 prctl_map
.start_brk
= addr
;
2164 prctl_map
.brk
= addr
;
2166 case PR_SET_MM_ARG_START
:
2167 prctl_map
.arg_start
= addr
;
2169 case PR_SET_MM_ARG_END
:
2170 prctl_map
.arg_end
= addr
;
2172 case PR_SET_MM_ENV_START
:
2173 prctl_map
.env_start
= addr
;
2175 case PR_SET_MM_ENV_END
:
2176 prctl_map
.env_end
= addr
;
2182 error
= validate_prctl_map(&prctl_map
);
2188 * If command line arguments and environment
2189 * are placed somewhere else on stack, we can
2190 * set them up here, ARG_START/END to setup
2191 * command line argumets and ENV_START/END
2194 case PR_SET_MM_START_STACK
:
2195 case PR_SET_MM_ARG_START
:
2196 case PR_SET_MM_ARG_END
:
2197 case PR_SET_MM_ENV_START
:
2198 case PR_SET_MM_ENV_END
:
2205 mm
->start_code
= prctl_map
.start_code
;
2206 mm
->end_code
= prctl_map
.end_code
;
2207 mm
->start_data
= prctl_map
.start_data
;
2208 mm
->end_data
= prctl_map
.end_data
;
2209 mm
->start_brk
= prctl_map
.start_brk
;
2210 mm
->brk
= prctl_map
.brk
;
2211 mm
->start_stack
= prctl_map
.start_stack
;
2212 mm
->arg_start
= prctl_map
.arg_start
;
2213 mm
->arg_end
= prctl_map
.arg_end
;
2214 mm
->env_start
= prctl_map
.env_start
;
2215 mm
->env_end
= prctl_map
.env_end
;
2219 up_write(&mm
->mmap_sem
);
2223 #ifdef CONFIG_CHECKPOINT_RESTORE
2224 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2226 return put_user(me
->clear_child_tid
, tid_addr
);
2229 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2235 static int propagate_has_child_subreaper(struct task_struct
*p
, void *data
)
2238 * If task has has_child_subreaper - all its decendants
2239 * already have these flag too and new decendants will
2240 * inherit it on fork, skip them.
2242 * If we've found child_reaper - skip descendants in
2243 * it's subtree as they will never get out pidns.
2245 if (p
->signal
->has_child_subreaper
||
2246 is_child_reaper(task_pid(p
)))
2249 p
->signal
->has_child_subreaper
= 1;
2253 int __weak
arch_prctl_spec_ctrl_get(struct task_struct
*t
, unsigned long which
)
2258 int __weak
arch_prctl_spec_ctrl_set(struct task_struct
*t
, unsigned long which
,
2264 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
2265 unsigned long, arg4
, unsigned long, arg5
)
2267 struct task_struct
*me
= current
;
2268 unsigned char comm
[sizeof(me
->comm
)];
2271 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
2272 if (error
!= -ENOSYS
)
2277 case PR_SET_PDEATHSIG
:
2278 if (!valid_signal(arg2
)) {
2282 me
->pdeath_signal
= arg2
;
2284 case PR_GET_PDEATHSIG
:
2285 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
2287 case PR_GET_DUMPABLE
:
2288 error
= get_dumpable(me
->mm
);
2290 case PR_SET_DUMPABLE
:
2291 if (arg2
!= SUID_DUMP_DISABLE
&& arg2
!= SUID_DUMP_USER
) {
2295 set_dumpable(me
->mm
, arg2
);
2298 case PR_SET_UNALIGN
:
2299 error
= SET_UNALIGN_CTL(me
, arg2
);
2301 case PR_GET_UNALIGN
:
2302 error
= GET_UNALIGN_CTL(me
, arg2
);
2305 error
= SET_FPEMU_CTL(me
, arg2
);
2308 error
= GET_FPEMU_CTL(me
, arg2
);
2311 error
= SET_FPEXC_CTL(me
, arg2
);
2314 error
= GET_FPEXC_CTL(me
, arg2
);
2317 error
= PR_TIMING_STATISTICAL
;
2320 if (arg2
!= PR_TIMING_STATISTICAL
)
2324 comm
[sizeof(me
->comm
) - 1] = 0;
2325 if (strncpy_from_user(comm
, (char __user
*)arg2
,
2326 sizeof(me
->comm
) - 1) < 0)
2328 set_task_comm(me
, comm
);
2329 proc_comm_connector(me
);
2332 get_task_comm(comm
, me
);
2333 if (copy_to_user((char __user
*)arg2
, comm
, sizeof(comm
)))
2337 error
= GET_ENDIAN(me
, arg2
);
2340 error
= SET_ENDIAN(me
, arg2
);
2342 case PR_GET_SECCOMP
:
2343 error
= prctl_get_seccomp();
2345 case PR_SET_SECCOMP
:
2346 error
= prctl_set_seccomp(arg2
, (char __user
*)arg3
);
2349 error
= GET_TSC_CTL(arg2
);
2352 error
= SET_TSC_CTL(arg2
);
2354 case PR_TASK_PERF_EVENTS_DISABLE
:
2355 error
= perf_event_task_disable();
2357 case PR_TASK_PERF_EVENTS_ENABLE
:
2358 error
= perf_event_task_enable();
2360 case PR_GET_TIMERSLACK
:
2361 if (current
->timer_slack_ns
> ULONG_MAX
)
2364 error
= current
->timer_slack_ns
;
2366 case PR_SET_TIMERSLACK
:
2368 current
->timer_slack_ns
=
2369 current
->default_timer_slack_ns
;
2371 current
->timer_slack_ns
= arg2
;
2377 case PR_MCE_KILL_CLEAR
:
2380 current
->flags
&= ~PF_MCE_PROCESS
;
2382 case PR_MCE_KILL_SET
:
2383 current
->flags
|= PF_MCE_PROCESS
;
2384 if (arg3
== PR_MCE_KILL_EARLY
)
2385 current
->flags
|= PF_MCE_EARLY
;
2386 else if (arg3
== PR_MCE_KILL_LATE
)
2387 current
->flags
&= ~PF_MCE_EARLY
;
2388 else if (arg3
== PR_MCE_KILL_DEFAULT
)
2390 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
2398 case PR_MCE_KILL_GET
:
2399 if (arg2
| arg3
| arg4
| arg5
)
2401 if (current
->flags
& PF_MCE_PROCESS
)
2402 error
= (current
->flags
& PF_MCE_EARLY
) ?
2403 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
2405 error
= PR_MCE_KILL_DEFAULT
;
2408 error
= prctl_set_mm(arg2
, arg3
, arg4
, arg5
);
2410 case PR_GET_TID_ADDRESS
:
2411 error
= prctl_get_tid_address(me
, (int __user
**)arg2
);
2413 case PR_SET_CHILD_SUBREAPER
:
2414 me
->signal
->is_child_subreaper
= !!arg2
;
2418 walk_process_tree(me
, propagate_has_child_subreaper
, NULL
);
2420 case PR_GET_CHILD_SUBREAPER
:
2421 error
= put_user(me
->signal
->is_child_subreaper
,
2422 (int __user
*)arg2
);
2424 case PR_SET_NO_NEW_PRIVS
:
2425 if (arg2
!= 1 || arg3
|| arg4
|| arg5
)
2428 task_set_no_new_privs(current
);
2430 case PR_GET_NO_NEW_PRIVS
:
2431 if (arg2
|| arg3
|| arg4
|| arg5
)
2433 return task_no_new_privs(current
) ? 1 : 0;
2434 case PR_GET_THP_DISABLE
:
2435 if (arg2
|| arg3
|| arg4
|| arg5
)
2437 error
= !!test_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2439 case PR_SET_THP_DISABLE
:
2440 if (arg3
|| arg4
|| arg5
)
2442 if (down_write_killable(&me
->mm
->mmap_sem
))
2445 set_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2447 clear_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2448 up_write(&me
->mm
->mmap_sem
);
2450 case PR_MPX_ENABLE_MANAGEMENT
:
2451 if (arg2
|| arg3
|| arg4
|| arg5
)
2453 error
= MPX_ENABLE_MANAGEMENT();
2455 case PR_MPX_DISABLE_MANAGEMENT
:
2456 if (arg2
|| arg3
|| arg4
|| arg5
)
2458 error
= MPX_DISABLE_MANAGEMENT();
2460 case PR_SET_FP_MODE
:
2461 error
= SET_FP_MODE(me
, arg2
);
2463 case PR_GET_FP_MODE
:
2464 error
= GET_FP_MODE(me
);
2467 error
= SVE_SET_VL(arg2
);
2470 error
= SVE_GET_VL();
2472 case PR_GET_SPECULATION_CTRL
:
2473 if (arg3
|| arg4
|| arg5
)
2475 error
= arch_prctl_spec_ctrl_get(me
, arg2
);
2477 case PR_SET_SPECULATION_CTRL
:
2480 error
= arch_prctl_spec_ctrl_set(me
, arg2
, arg3
);
2489 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
2490 struct getcpu_cache __user
*, unused
)
2493 int cpu
= raw_smp_processor_id();
2496 err
|= put_user(cpu
, cpup
);
2498 err
|= put_user(cpu_to_node(cpu
), nodep
);
2499 return err
? -EFAULT
: 0;
2503 * do_sysinfo - fill in sysinfo struct
2504 * @info: pointer to buffer to fill
2506 static int do_sysinfo(struct sysinfo
*info
)
2508 unsigned long mem_total
, sav_total
;
2509 unsigned int mem_unit
, bitcount
;
2510 struct timespec64 tp
;
2512 memset(info
, 0, sizeof(struct sysinfo
));
2514 ktime_get_boottime_ts64(&tp
);
2515 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
2517 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
2519 info
->procs
= nr_threads
;
2525 * If the sum of all the available memory (i.e. ram + swap)
2526 * is less than can be stored in a 32 bit unsigned long then
2527 * we can be binary compatible with 2.2.x kernels. If not,
2528 * well, in that case 2.2.x was broken anyways...
2530 * -Erik Andersen <andersee@debian.org>
2533 mem_total
= info
->totalram
+ info
->totalswap
;
2534 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
2537 mem_unit
= info
->mem_unit
;
2538 while (mem_unit
> 1) {
2541 sav_total
= mem_total
;
2543 if (mem_total
< sav_total
)
2548 * If mem_total did not overflow, multiply all memory values by
2549 * info->mem_unit and set it to 1. This leaves things compatible
2550 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2555 info
->totalram
<<= bitcount
;
2556 info
->freeram
<<= bitcount
;
2557 info
->sharedram
<<= bitcount
;
2558 info
->bufferram
<<= bitcount
;
2559 info
->totalswap
<<= bitcount
;
2560 info
->freeswap
<<= bitcount
;
2561 info
->totalhigh
<<= bitcount
;
2562 info
->freehigh
<<= bitcount
;
2568 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
2574 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
2580 #ifdef CONFIG_COMPAT
2581 struct compat_sysinfo
{
2595 char _f
[20-2*sizeof(u32
)-sizeof(int)];
2598 COMPAT_SYSCALL_DEFINE1(sysinfo
, struct compat_sysinfo __user
*, info
)
2604 /* Check to see if any memory value is too large for 32-bit and scale
2607 if (upper_32_bits(s
.totalram
) || upper_32_bits(s
.totalswap
)) {
2610 while (s
.mem_unit
< PAGE_SIZE
) {
2615 s
.totalram
>>= bitcount
;
2616 s
.freeram
>>= bitcount
;
2617 s
.sharedram
>>= bitcount
;
2618 s
.bufferram
>>= bitcount
;
2619 s
.totalswap
>>= bitcount
;
2620 s
.freeswap
>>= bitcount
;
2621 s
.totalhigh
>>= bitcount
;
2622 s
.freehigh
>>= bitcount
;
2625 if (!access_ok(VERIFY_WRITE
, info
, sizeof(struct compat_sysinfo
)) ||
2626 __put_user(s
.uptime
, &info
->uptime
) ||
2627 __put_user(s
.loads
[0], &info
->loads
[0]) ||
2628 __put_user(s
.loads
[1], &info
->loads
[1]) ||
2629 __put_user(s
.loads
[2], &info
->loads
[2]) ||
2630 __put_user(s
.totalram
, &info
->totalram
) ||
2631 __put_user(s
.freeram
, &info
->freeram
) ||
2632 __put_user(s
.sharedram
, &info
->sharedram
) ||
2633 __put_user(s
.bufferram
, &info
->bufferram
) ||
2634 __put_user(s
.totalswap
, &info
->totalswap
) ||
2635 __put_user(s
.freeswap
, &info
->freeswap
) ||
2636 __put_user(s
.procs
, &info
->procs
) ||
2637 __put_user(s
.totalhigh
, &info
->totalhigh
) ||
2638 __put_user(s
.freehigh
, &info
->freehigh
) ||
2639 __put_user(s
.mem_unit
, &info
->mem_unit
))
2644 #endif /* CONFIG_COMPAT */