Revert "phy: micrel: Disable auto negotiation on startup"
[linux-2.6/btrfs-unstable.git] / mm / page_alloc.c
blob07efbc3a86567676986105005f77c64f9f99597a
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
69 #include <asm/sections.h>
70 #include <asm/tlbflush.h>
71 #include <asm/div64.h>
72 #include "internal.h"
74 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
75 static DEFINE_MUTEX(pcp_batch_high_lock);
76 #define MIN_PERCPU_PAGELIST_FRACTION (8)
78 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
79 DEFINE_PER_CPU(int, numa_node);
80 EXPORT_PER_CPU_SYMBOL(numa_node);
81 #endif
83 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
85 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
86 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
87 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
88 * defined in <linux/topology.h>.
90 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
91 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
92 int _node_numa_mem_[MAX_NUMNODES];
93 #endif
95 /* work_structs for global per-cpu drains */
96 DEFINE_MUTEX(pcpu_drain_mutex);
97 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
99 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
100 volatile unsigned long latent_entropy __latent_entropy;
101 EXPORT_SYMBOL(latent_entropy);
102 #endif
105 * Array of node states.
107 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
108 [N_POSSIBLE] = NODE_MASK_ALL,
109 [N_ONLINE] = { { [0] = 1UL } },
110 #ifndef CONFIG_NUMA
111 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
112 #ifdef CONFIG_HIGHMEM
113 [N_HIGH_MEMORY] = { { [0] = 1UL } },
114 #endif
115 #ifdef CONFIG_MOVABLE_NODE
116 [N_MEMORY] = { { [0] = 1UL } },
117 #endif
118 [N_CPU] = { { [0] = 1UL } },
119 #endif /* NUMA */
121 EXPORT_SYMBOL(node_states);
123 /* Protect totalram_pages and zone->managed_pages */
124 static DEFINE_SPINLOCK(managed_page_count_lock);
126 unsigned long totalram_pages __read_mostly;
127 unsigned long totalreserve_pages __read_mostly;
128 unsigned long totalcma_pages __read_mostly;
130 int percpu_pagelist_fraction;
131 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
141 static inline int get_pcppage_migratetype(struct page *page)
143 return page->index;
146 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148 page->index = migratetype;
151 #ifdef CONFIG_PM_SLEEP
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with pm_mutex held (gfp_allowed_mask also should
157 * only be modified with pm_mutex held, unless the suspend/hibernate code is
158 * guaranteed not to run in parallel with that modification).
161 static gfp_t saved_gfp_mask;
163 void pm_restore_gfp_mask(void)
165 WARN_ON(!mutex_is_locked(&pm_mutex));
166 if (saved_gfp_mask) {
167 gfp_allowed_mask = saved_gfp_mask;
168 saved_gfp_mask = 0;
172 void pm_restrict_gfp_mask(void)
174 WARN_ON(!mutex_is_locked(&pm_mutex));
175 WARN_ON(saved_gfp_mask);
176 saved_gfp_mask = gfp_allowed_mask;
177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180 bool pm_suspended_storage(void)
182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
183 return false;
184 return true;
186 #endif /* CONFIG_PM_SLEEP */
188 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
189 unsigned int pageblock_order __read_mostly;
190 #endif
192 static void __free_pages_ok(struct page *page, unsigned int order);
195 * results with 256, 32 in the lowmem_reserve sysctl:
196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197 * 1G machine -> (16M dma, 784M normal, 224M high)
198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
202 * TBD: should special case ZONE_DMA32 machines here - in those we normally
203 * don't need any ZONE_NORMAL reservation
205 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
206 #ifdef CONFIG_ZONE_DMA
207 256,
208 #endif
209 #ifdef CONFIG_ZONE_DMA32
210 256,
211 #endif
212 #ifdef CONFIG_HIGHMEM
214 #endif
218 EXPORT_SYMBOL(totalram_pages);
220 static char * const zone_names[MAX_NR_ZONES] = {
221 #ifdef CONFIG_ZONE_DMA
222 "DMA",
223 #endif
224 #ifdef CONFIG_ZONE_DMA32
225 "DMA32",
226 #endif
227 "Normal",
228 #ifdef CONFIG_HIGHMEM
229 "HighMem",
230 #endif
231 "Movable",
232 #ifdef CONFIG_ZONE_DEVICE
233 "Device",
234 #endif
237 char * const migratetype_names[MIGRATE_TYPES] = {
238 "Unmovable",
239 "Movable",
240 "Reclaimable",
241 "HighAtomic",
242 #ifdef CONFIG_CMA
243 "CMA",
244 #endif
245 #ifdef CONFIG_MEMORY_ISOLATION
246 "Isolate",
247 #endif
250 compound_page_dtor * const compound_page_dtors[] = {
251 NULL,
252 free_compound_page,
253 #ifdef CONFIG_HUGETLB_PAGE
254 free_huge_page,
255 #endif
256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
257 free_transhuge_page,
258 #endif
261 int min_free_kbytes = 1024;
262 int user_min_free_kbytes = -1;
263 int watermark_scale_factor = 10;
265 static unsigned long __meminitdata nr_kernel_pages;
266 static unsigned long __meminitdata nr_all_pages;
267 static unsigned long __meminitdata dma_reserve;
269 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
271 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __initdata required_kernelcore;
273 static unsigned long __initdata required_movablecore;
274 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
275 static bool mirrored_kernelcore;
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
282 #if MAX_NUMNODES > 1
283 int nr_node_ids __read_mostly = MAX_NUMNODES;
284 int nr_online_nodes __read_mostly = 1;
285 EXPORT_SYMBOL(nr_node_ids);
286 EXPORT_SYMBOL(nr_online_nodes);
287 #endif
289 int page_group_by_mobility_disabled __read_mostly;
291 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
292 static inline void reset_deferred_meminit(pg_data_t *pgdat)
294 pgdat->first_deferred_pfn = ULONG_MAX;
297 /* Returns true if the struct page for the pfn is uninitialised */
298 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
300 int nid = early_pfn_to_nid(pfn);
302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 return true;
305 return false;
309 * Returns false when the remaining initialisation should be deferred until
310 * later in the boot cycle when it can be parallelised.
312 static inline bool update_defer_init(pg_data_t *pgdat,
313 unsigned long pfn, unsigned long zone_end,
314 unsigned long *nr_initialised)
316 unsigned long max_initialise;
318 /* Always populate low zones for address-contrained allocations */
319 if (zone_end < pgdat_end_pfn(pgdat))
320 return true;
322 * Initialise at least 2G of a node but also take into account that
323 * two large system hashes that can take up 1GB for 0.25TB/node.
325 max_initialise = max(2UL << (30 - PAGE_SHIFT),
326 (pgdat->node_spanned_pages >> 8));
328 (*nr_initialised)++;
329 if ((*nr_initialised > max_initialise) &&
330 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
331 pgdat->first_deferred_pfn = pfn;
332 return false;
335 return true;
337 #else
338 static inline void reset_deferred_meminit(pg_data_t *pgdat)
342 static inline bool early_page_uninitialised(unsigned long pfn)
344 return false;
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
351 return true;
353 #endif
355 /* Return a pointer to the bitmap storing bits affecting a block of pages */
356 static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 unsigned long pfn)
359 #ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn)->pageblock_flags;
361 #else
362 return page_zone(page)->pageblock_flags;
363 #endif /* CONFIG_SPARSEMEM */
366 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
368 #ifdef CONFIG_SPARSEMEM
369 pfn &= (PAGES_PER_SECTION-1);
370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371 #else
372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374 #endif /* CONFIG_SPARSEMEM */
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
384 * Return: pageblock_bits flags
386 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 unsigned long pfn,
388 unsigned long end_bitidx,
389 unsigned long mask)
391 unsigned long *bitmap;
392 unsigned long bitidx, word_bitidx;
393 unsigned long word;
395 bitmap = get_pageblock_bitmap(page, pfn);
396 bitidx = pfn_to_bitidx(page, pfn);
397 word_bitidx = bitidx / BITS_PER_LONG;
398 bitidx &= (BITS_PER_LONG-1);
400 word = bitmap[word_bitidx];
401 bitidx += end_bitidx;
402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
405 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 unsigned long end_bitidx,
407 unsigned long mask)
409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
412 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
425 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 unsigned long pfn,
427 unsigned long end_bitidx,
428 unsigned long mask)
430 unsigned long *bitmap;
431 unsigned long bitidx, word_bitidx;
432 unsigned long old_word, word;
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
436 bitmap = get_pageblock_bitmap(page, pfn);
437 bitidx = pfn_to_bitidx(page, pfn);
438 word_bitidx = bitidx / BITS_PER_LONG;
439 bitidx &= (BITS_PER_LONG-1);
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
443 bitidx += end_bitidx;
444 mask <<= (BITS_PER_LONG - bitidx - 1);
445 flags <<= (BITS_PER_LONG - bitidx - 1);
447 word = READ_ONCE(bitmap[word_bitidx]);
448 for (;;) {
449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 if (word == old_word)
451 break;
452 word = old_word;
456 void set_pageblock_migratetype(struct page *page, int migratetype)
458 if (unlikely(page_group_by_mobility_disabled &&
459 migratetype < MIGRATE_PCPTYPES))
460 migratetype = MIGRATE_UNMOVABLE;
462 set_pageblock_flags_group(page, (unsigned long)migratetype,
463 PB_migrate, PB_migrate_end);
466 #ifdef CONFIG_DEBUG_VM
467 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
469 int ret = 0;
470 unsigned seq;
471 unsigned long pfn = page_to_pfn(page);
472 unsigned long sp, start_pfn;
474 do {
475 seq = zone_span_seqbegin(zone);
476 start_pfn = zone->zone_start_pfn;
477 sp = zone->spanned_pages;
478 if (!zone_spans_pfn(zone, pfn))
479 ret = 1;
480 } while (zone_span_seqretry(zone, seq));
482 if (ret)
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn, zone_to_nid(zone), zone->name,
485 start_pfn, start_pfn + sp);
487 return ret;
490 static int page_is_consistent(struct zone *zone, struct page *page)
492 if (!pfn_valid_within(page_to_pfn(page)))
493 return 0;
494 if (zone != page_zone(page))
495 return 0;
497 return 1;
500 * Temporary debugging check for pages not lying within a given zone.
502 static int bad_range(struct zone *zone, struct page *page)
504 if (page_outside_zone_boundaries(zone, page))
505 return 1;
506 if (!page_is_consistent(zone, page))
507 return 1;
509 return 0;
511 #else
512 static inline int bad_range(struct zone *zone, struct page *page)
514 return 0;
516 #endif
518 static void bad_page(struct page *page, const char *reason,
519 unsigned long bad_flags)
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
526 * Allow a burst of 60 reports, then keep quiet for that minute;
527 * or allow a steady drip of one report per second.
529 if (nr_shown == 60) {
530 if (time_before(jiffies, resume)) {
531 nr_unshown++;
532 goto out;
534 if (nr_unshown) {
535 pr_alert(
536 "BUG: Bad page state: %lu messages suppressed\n",
537 nr_unshown);
538 nr_unshown = 0;
540 nr_shown = 0;
542 if (nr_shown++ == 0)
543 resume = jiffies + 60 * HZ;
545 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
546 current->comm, page_to_pfn(page));
547 __dump_page(page, reason);
548 bad_flags &= page->flags;
549 if (bad_flags)
550 pr_alert("bad because of flags: %#lx(%pGp)\n",
551 bad_flags, &bad_flags);
552 dump_page_owner(page);
554 print_modules();
555 dump_stack();
556 out:
557 /* Leave bad fields for debug, except PageBuddy could make trouble */
558 page_mapcount_reset(page); /* remove PageBuddy */
559 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
563 * Higher-order pages are called "compound pages". They are structured thusly:
565 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
567 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
568 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
570 * The first tail page's ->compound_dtor holds the offset in array of compound
571 * page destructors. See compound_page_dtors.
573 * The first tail page's ->compound_order holds the order of allocation.
574 * This usage means that zero-order pages may not be compound.
577 void free_compound_page(struct page *page)
579 __free_pages_ok(page, compound_order(page));
582 void prep_compound_page(struct page *page, unsigned int order)
584 int i;
585 int nr_pages = 1 << order;
587 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
588 set_compound_order(page, order);
589 __SetPageHead(page);
590 for (i = 1; i < nr_pages; i++) {
591 struct page *p = page + i;
592 set_page_count(p, 0);
593 p->mapping = TAIL_MAPPING;
594 set_compound_head(p, page);
596 atomic_set(compound_mapcount_ptr(page), -1);
599 #ifdef CONFIG_DEBUG_PAGEALLOC
600 unsigned int _debug_guardpage_minorder;
601 bool _debug_pagealloc_enabled __read_mostly
602 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
603 EXPORT_SYMBOL(_debug_pagealloc_enabled);
604 bool _debug_guardpage_enabled __read_mostly;
606 static int __init early_debug_pagealloc(char *buf)
608 if (!buf)
609 return -EINVAL;
610 return kstrtobool(buf, &_debug_pagealloc_enabled);
612 early_param("debug_pagealloc", early_debug_pagealloc);
614 static bool need_debug_guardpage(void)
616 /* If we don't use debug_pagealloc, we don't need guard page */
617 if (!debug_pagealloc_enabled())
618 return false;
620 if (!debug_guardpage_minorder())
621 return false;
623 return true;
626 static void init_debug_guardpage(void)
628 if (!debug_pagealloc_enabled())
629 return;
631 if (!debug_guardpage_minorder())
632 return;
634 _debug_guardpage_enabled = true;
637 struct page_ext_operations debug_guardpage_ops = {
638 .need = need_debug_guardpage,
639 .init = init_debug_guardpage,
642 static int __init debug_guardpage_minorder_setup(char *buf)
644 unsigned long res;
646 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
647 pr_err("Bad debug_guardpage_minorder value\n");
648 return 0;
650 _debug_guardpage_minorder = res;
651 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
652 return 0;
654 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
656 static inline bool set_page_guard(struct zone *zone, struct page *page,
657 unsigned int order, int migratetype)
659 struct page_ext *page_ext;
661 if (!debug_guardpage_enabled())
662 return false;
664 if (order >= debug_guardpage_minorder())
665 return false;
667 page_ext = lookup_page_ext(page);
668 if (unlikely(!page_ext))
669 return false;
671 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673 INIT_LIST_HEAD(&page->lru);
674 set_page_private(page, order);
675 /* Guard pages are not available for any usage */
676 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
678 return true;
681 static inline void clear_page_guard(struct zone *zone, struct page *page,
682 unsigned int order, int migratetype)
684 struct page_ext *page_ext;
686 if (!debug_guardpage_enabled())
687 return;
689 page_ext = lookup_page_ext(page);
690 if (unlikely(!page_ext))
691 return;
693 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
695 set_page_private(page, 0);
696 if (!is_migrate_isolate(migratetype))
697 __mod_zone_freepage_state(zone, (1 << order), migratetype);
699 #else
700 struct page_ext_operations debug_guardpage_ops;
701 static inline bool set_page_guard(struct zone *zone, struct page *page,
702 unsigned int order, int migratetype) { return false; }
703 static inline void clear_page_guard(struct zone *zone, struct page *page,
704 unsigned int order, int migratetype) {}
705 #endif
707 static inline void set_page_order(struct page *page, unsigned int order)
709 set_page_private(page, order);
710 __SetPageBuddy(page);
713 static inline void rmv_page_order(struct page *page)
715 __ClearPageBuddy(page);
716 set_page_private(page, 0);
720 * This function checks whether a page is free && is the buddy
721 * we can do coalesce a page and its buddy if
722 * (a) the buddy is not in a hole (check before calling!) &&
723 * (b) the buddy is in the buddy system &&
724 * (c) a page and its buddy have the same order &&
725 * (d) a page and its buddy are in the same zone.
727 * For recording whether a page is in the buddy system, we set ->_mapcount
728 * PAGE_BUDDY_MAPCOUNT_VALUE.
729 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
730 * serialized by zone->lock.
732 * For recording page's order, we use page_private(page).
734 static inline int page_is_buddy(struct page *page, struct page *buddy,
735 unsigned int order)
737 if (page_is_guard(buddy) && page_order(buddy) == order) {
738 if (page_zone_id(page) != page_zone_id(buddy))
739 return 0;
741 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
743 return 1;
746 if (PageBuddy(buddy) && page_order(buddy) == order) {
748 * zone check is done late to avoid uselessly
749 * calculating zone/node ids for pages that could
750 * never merge.
752 if (page_zone_id(page) != page_zone_id(buddy))
753 return 0;
755 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
757 return 1;
759 return 0;
763 * Freeing function for a buddy system allocator.
765 * The concept of a buddy system is to maintain direct-mapped table
766 * (containing bit values) for memory blocks of various "orders".
767 * The bottom level table contains the map for the smallest allocatable
768 * units of memory (here, pages), and each level above it describes
769 * pairs of units from the levels below, hence, "buddies".
770 * At a high level, all that happens here is marking the table entry
771 * at the bottom level available, and propagating the changes upward
772 * as necessary, plus some accounting needed to play nicely with other
773 * parts of the VM system.
774 * At each level, we keep a list of pages, which are heads of continuous
775 * free pages of length of (1 << order) and marked with _mapcount
776 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
777 * field.
778 * So when we are allocating or freeing one, we can derive the state of the
779 * other. That is, if we allocate a small block, and both were
780 * free, the remainder of the region must be split into blocks.
781 * If a block is freed, and its buddy is also free, then this
782 * triggers coalescing into a block of larger size.
784 * -- nyc
787 static inline void __free_one_page(struct page *page,
788 unsigned long pfn,
789 struct zone *zone, unsigned int order,
790 int migratetype)
792 unsigned long combined_pfn;
793 unsigned long uninitialized_var(buddy_pfn);
794 struct page *buddy;
795 unsigned int max_order;
797 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
799 VM_BUG_ON(!zone_is_initialized(zone));
800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
802 VM_BUG_ON(migratetype == -1);
803 if (likely(!is_migrate_isolate(migratetype)))
804 __mod_zone_freepage_state(zone, 1 << order, migratetype);
806 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
807 VM_BUG_ON_PAGE(bad_range(zone, page), page);
809 continue_merging:
810 while (order < max_order - 1) {
811 buddy_pfn = __find_buddy_pfn(pfn, order);
812 buddy = page + (buddy_pfn - pfn);
814 if (!pfn_valid_within(buddy_pfn))
815 goto done_merging;
816 if (!page_is_buddy(page, buddy, order))
817 goto done_merging;
819 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 * merge with it and move up one order.
822 if (page_is_guard(buddy)) {
823 clear_page_guard(zone, buddy, order, migratetype);
824 } else {
825 list_del(&buddy->lru);
826 zone->free_area[order].nr_free--;
827 rmv_page_order(buddy);
829 combined_pfn = buddy_pfn & pfn;
830 page = page + (combined_pfn - pfn);
831 pfn = combined_pfn;
832 order++;
834 if (max_order < MAX_ORDER) {
835 /* If we are here, it means order is >= pageblock_order.
836 * We want to prevent merge between freepages on isolate
837 * pageblock and normal pageblock. Without this, pageblock
838 * isolation could cause incorrect freepage or CMA accounting.
840 * We don't want to hit this code for the more frequent
841 * low-order merging.
843 if (unlikely(has_isolate_pageblock(zone))) {
844 int buddy_mt;
846 buddy_pfn = __find_buddy_pfn(pfn, order);
847 buddy = page + (buddy_pfn - pfn);
848 buddy_mt = get_pageblock_migratetype(buddy);
850 if (migratetype != buddy_mt
851 && (is_migrate_isolate(migratetype) ||
852 is_migrate_isolate(buddy_mt)))
853 goto done_merging;
855 max_order++;
856 goto continue_merging;
859 done_merging:
860 set_page_order(page, order);
863 * If this is not the largest possible page, check if the buddy
864 * of the next-highest order is free. If it is, it's possible
865 * that pages are being freed that will coalesce soon. In case,
866 * that is happening, add the free page to the tail of the list
867 * so it's less likely to be used soon and more likely to be merged
868 * as a higher order page
870 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
871 struct page *higher_page, *higher_buddy;
872 combined_pfn = buddy_pfn & pfn;
873 higher_page = page + (combined_pfn - pfn);
874 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
875 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
876 if (pfn_valid_within(buddy_pfn) &&
877 page_is_buddy(higher_page, higher_buddy, order + 1)) {
878 list_add_tail(&page->lru,
879 &zone->free_area[order].free_list[migratetype]);
880 goto out;
884 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
885 out:
886 zone->free_area[order].nr_free++;
890 * A bad page could be due to a number of fields. Instead of multiple branches,
891 * try and check multiple fields with one check. The caller must do a detailed
892 * check if necessary.
894 static inline bool page_expected_state(struct page *page,
895 unsigned long check_flags)
897 if (unlikely(atomic_read(&page->_mapcount) != -1))
898 return false;
900 if (unlikely((unsigned long)page->mapping |
901 page_ref_count(page) |
902 #ifdef CONFIG_MEMCG
903 (unsigned long)page->mem_cgroup |
904 #endif
905 (page->flags & check_flags)))
906 return false;
908 return true;
911 static void free_pages_check_bad(struct page *page)
913 const char *bad_reason;
914 unsigned long bad_flags;
916 bad_reason = NULL;
917 bad_flags = 0;
919 if (unlikely(atomic_read(&page->_mapcount) != -1))
920 bad_reason = "nonzero mapcount";
921 if (unlikely(page->mapping != NULL))
922 bad_reason = "non-NULL mapping";
923 if (unlikely(page_ref_count(page) != 0))
924 bad_reason = "nonzero _refcount";
925 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
926 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
927 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
929 #ifdef CONFIG_MEMCG
930 if (unlikely(page->mem_cgroup))
931 bad_reason = "page still charged to cgroup";
932 #endif
933 bad_page(page, bad_reason, bad_flags);
936 static inline int free_pages_check(struct page *page)
938 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
939 return 0;
941 /* Something has gone sideways, find it */
942 free_pages_check_bad(page);
943 return 1;
946 static int free_tail_pages_check(struct page *head_page, struct page *page)
948 int ret = 1;
951 * We rely page->lru.next never has bit 0 set, unless the page
952 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
954 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
956 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
957 ret = 0;
958 goto out;
960 switch (page - head_page) {
961 case 1:
962 /* the first tail page: ->mapping is compound_mapcount() */
963 if (unlikely(compound_mapcount(page))) {
964 bad_page(page, "nonzero compound_mapcount", 0);
965 goto out;
967 break;
968 case 2:
970 * the second tail page: ->mapping is
971 * page_deferred_list().next -- ignore value.
973 break;
974 default:
975 if (page->mapping != TAIL_MAPPING) {
976 bad_page(page, "corrupted mapping in tail page", 0);
977 goto out;
979 break;
981 if (unlikely(!PageTail(page))) {
982 bad_page(page, "PageTail not set", 0);
983 goto out;
985 if (unlikely(compound_head(page) != head_page)) {
986 bad_page(page, "compound_head not consistent", 0);
987 goto out;
989 ret = 0;
990 out:
991 page->mapping = NULL;
992 clear_compound_head(page);
993 return ret;
996 static __always_inline bool free_pages_prepare(struct page *page,
997 unsigned int order, bool check_free)
999 int bad = 0;
1001 VM_BUG_ON_PAGE(PageTail(page), page);
1003 trace_mm_page_free(page, order);
1004 kmemcheck_free_shadow(page, order);
1007 * Check tail pages before head page information is cleared to
1008 * avoid checking PageCompound for order-0 pages.
1010 if (unlikely(order)) {
1011 bool compound = PageCompound(page);
1012 int i;
1014 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1016 if (compound)
1017 ClearPageDoubleMap(page);
1018 for (i = 1; i < (1 << order); i++) {
1019 if (compound)
1020 bad += free_tail_pages_check(page, page + i);
1021 if (unlikely(free_pages_check(page + i))) {
1022 bad++;
1023 continue;
1025 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1028 if (PageMappingFlags(page))
1029 page->mapping = NULL;
1030 if (memcg_kmem_enabled() && PageKmemcg(page))
1031 memcg_kmem_uncharge(page, order);
1032 if (check_free)
1033 bad += free_pages_check(page);
1034 if (bad)
1035 return false;
1037 page_cpupid_reset_last(page);
1038 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1039 reset_page_owner(page, order);
1041 if (!PageHighMem(page)) {
1042 debug_check_no_locks_freed(page_address(page),
1043 PAGE_SIZE << order);
1044 debug_check_no_obj_freed(page_address(page),
1045 PAGE_SIZE << order);
1047 arch_free_page(page, order);
1048 kernel_poison_pages(page, 1 << order, 0);
1049 kernel_map_pages(page, 1 << order, 0);
1050 kasan_free_pages(page, order);
1052 return true;
1055 #ifdef CONFIG_DEBUG_VM
1056 static inline bool free_pcp_prepare(struct page *page)
1058 return free_pages_prepare(page, 0, true);
1061 static inline bool bulkfree_pcp_prepare(struct page *page)
1063 return false;
1065 #else
1066 static bool free_pcp_prepare(struct page *page)
1068 return free_pages_prepare(page, 0, false);
1071 static bool bulkfree_pcp_prepare(struct page *page)
1073 return free_pages_check(page);
1075 #endif /* CONFIG_DEBUG_VM */
1078 * Frees a number of pages from the PCP lists
1079 * Assumes all pages on list are in same zone, and of same order.
1080 * count is the number of pages to free.
1082 * If the zone was previously in an "all pages pinned" state then look to
1083 * see if this freeing clears that state.
1085 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1086 * pinned" detection logic.
1088 static void free_pcppages_bulk(struct zone *zone, int count,
1089 struct per_cpu_pages *pcp)
1091 int migratetype = 0;
1092 int batch_free = 0;
1093 unsigned long nr_scanned;
1094 bool isolated_pageblocks;
1096 spin_lock(&zone->lock);
1097 isolated_pageblocks = has_isolate_pageblock(zone);
1098 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1099 if (nr_scanned)
1100 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1102 while (count) {
1103 struct page *page;
1104 struct list_head *list;
1107 * Remove pages from lists in a round-robin fashion. A
1108 * batch_free count is maintained that is incremented when an
1109 * empty list is encountered. This is so more pages are freed
1110 * off fuller lists instead of spinning excessively around empty
1111 * lists
1113 do {
1114 batch_free++;
1115 if (++migratetype == MIGRATE_PCPTYPES)
1116 migratetype = 0;
1117 list = &pcp->lists[migratetype];
1118 } while (list_empty(list));
1120 /* This is the only non-empty list. Free them all. */
1121 if (batch_free == MIGRATE_PCPTYPES)
1122 batch_free = count;
1124 do {
1125 int mt; /* migratetype of the to-be-freed page */
1127 page = list_last_entry(list, struct page, lru);
1128 /* must delete as __free_one_page list manipulates */
1129 list_del(&page->lru);
1131 mt = get_pcppage_migratetype(page);
1132 /* MIGRATE_ISOLATE page should not go to pcplists */
1133 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1134 /* Pageblock could have been isolated meanwhile */
1135 if (unlikely(isolated_pageblocks))
1136 mt = get_pageblock_migratetype(page);
1138 if (bulkfree_pcp_prepare(page))
1139 continue;
1141 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1142 trace_mm_page_pcpu_drain(page, 0, mt);
1143 } while (--count && --batch_free && !list_empty(list));
1145 spin_unlock(&zone->lock);
1148 static void free_one_page(struct zone *zone,
1149 struct page *page, unsigned long pfn,
1150 unsigned int order,
1151 int migratetype)
1153 unsigned long nr_scanned;
1154 spin_lock(&zone->lock);
1155 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1156 if (nr_scanned)
1157 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1159 if (unlikely(has_isolate_pageblock(zone) ||
1160 is_migrate_isolate(migratetype))) {
1161 migratetype = get_pfnblock_migratetype(page, pfn);
1163 __free_one_page(page, pfn, zone, order, migratetype);
1164 spin_unlock(&zone->lock);
1167 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1168 unsigned long zone, int nid)
1170 set_page_links(page, zone, nid, pfn);
1171 init_page_count(page);
1172 page_mapcount_reset(page);
1173 page_cpupid_reset_last(page);
1175 INIT_LIST_HEAD(&page->lru);
1176 #ifdef WANT_PAGE_VIRTUAL
1177 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1178 if (!is_highmem_idx(zone))
1179 set_page_address(page, __va(pfn << PAGE_SHIFT));
1180 #endif
1183 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1184 int nid)
1186 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1189 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1190 static void init_reserved_page(unsigned long pfn)
1192 pg_data_t *pgdat;
1193 int nid, zid;
1195 if (!early_page_uninitialised(pfn))
1196 return;
1198 nid = early_pfn_to_nid(pfn);
1199 pgdat = NODE_DATA(nid);
1201 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1202 struct zone *zone = &pgdat->node_zones[zid];
1204 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1205 break;
1207 __init_single_pfn(pfn, zid, nid);
1209 #else
1210 static inline void init_reserved_page(unsigned long pfn)
1213 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1216 * Initialised pages do not have PageReserved set. This function is
1217 * called for each range allocated by the bootmem allocator and
1218 * marks the pages PageReserved. The remaining valid pages are later
1219 * sent to the buddy page allocator.
1221 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1223 unsigned long start_pfn = PFN_DOWN(start);
1224 unsigned long end_pfn = PFN_UP(end);
1226 for (; start_pfn < end_pfn; start_pfn++) {
1227 if (pfn_valid(start_pfn)) {
1228 struct page *page = pfn_to_page(start_pfn);
1230 init_reserved_page(start_pfn);
1232 /* Avoid false-positive PageTail() */
1233 INIT_LIST_HEAD(&page->lru);
1235 SetPageReserved(page);
1240 static void __free_pages_ok(struct page *page, unsigned int order)
1242 unsigned long flags;
1243 int migratetype;
1244 unsigned long pfn = page_to_pfn(page);
1246 if (!free_pages_prepare(page, order, true))
1247 return;
1249 migratetype = get_pfnblock_migratetype(page, pfn);
1250 local_irq_save(flags);
1251 __count_vm_events(PGFREE, 1 << order);
1252 free_one_page(page_zone(page), page, pfn, order, migratetype);
1253 local_irq_restore(flags);
1256 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1258 unsigned int nr_pages = 1 << order;
1259 struct page *p = page;
1260 unsigned int loop;
1262 prefetchw(p);
1263 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1264 prefetchw(p + 1);
1265 __ClearPageReserved(p);
1266 set_page_count(p, 0);
1268 __ClearPageReserved(p);
1269 set_page_count(p, 0);
1271 page_zone(page)->managed_pages += nr_pages;
1272 set_page_refcounted(page);
1273 __free_pages(page, order);
1276 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1277 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1279 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1281 int __meminit early_pfn_to_nid(unsigned long pfn)
1283 static DEFINE_SPINLOCK(early_pfn_lock);
1284 int nid;
1286 spin_lock(&early_pfn_lock);
1287 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1288 if (nid < 0)
1289 nid = first_online_node;
1290 spin_unlock(&early_pfn_lock);
1292 return nid;
1294 #endif
1296 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1297 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1298 struct mminit_pfnnid_cache *state)
1300 int nid;
1302 nid = __early_pfn_to_nid(pfn, state);
1303 if (nid >= 0 && nid != node)
1304 return false;
1305 return true;
1308 /* Only safe to use early in boot when initialisation is single-threaded */
1309 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1311 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1314 #else
1316 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1318 return true;
1320 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1321 struct mminit_pfnnid_cache *state)
1323 return true;
1325 #endif
1328 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1329 unsigned int order)
1331 if (early_page_uninitialised(pfn))
1332 return;
1333 return __free_pages_boot_core(page, order);
1337 * Check that the whole (or subset of) a pageblock given by the interval of
1338 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1339 * with the migration of free compaction scanner. The scanners then need to
1340 * use only pfn_valid_within() check for arches that allow holes within
1341 * pageblocks.
1343 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1345 * It's possible on some configurations to have a setup like node0 node1 node0
1346 * i.e. it's possible that all pages within a zones range of pages do not
1347 * belong to a single zone. We assume that a border between node0 and node1
1348 * can occur within a single pageblock, but not a node0 node1 node0
1349 * interleaving within a single pageblock. It is therefore sufficient to check
1350 * the first and last page of a pageblock and avoid checking each individual
1351 * page in a pageblock.
1353 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1354 unsigned long end_pfn, struct zone *zone)
1356 struct page *start_page;
1357 struct page *end_page;
1359 /* end_pfn is one past the range we are checking */
1360 end_pfn--;
1362 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1363 return NULL;
1365 start_page = pfn_to_page(start_pfn);
1367 if (page_zone(start_page) != zone)
1368 return NULL;
1370 end_page = pfn_to_page(end_pfn);
1372 /* This gives a shorter code than deriving page_zone(end_page) */
1373 if (page_zone_id(start_page) != page_zone_id(end_page))
1374 return NULL;
1376 return start_page;
1379 void set_zone_contiguous(struct zone *zone)
1381 unsigned long block_start_pfn = zone->zone_start_pfn;
1382 unsigned long block_end_pfn;
1384 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1385 for (; block_start_pfn < zone_end_pfn(zone);
1386 block_start_pfn = block_end_pfn,
1387 block_end_pfn += pageblock_nr_pages) {
1389 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1391 if (!__pageblock_pfn_to_page(block_start_pfn,
1392 block_end_pfn, zone))
1393 return;
1396 /* We confirm that there is no hole */
1397 zone->contiguous = true;
1400 void clear_zone_contiguous(struct zone *zone)
1402 zone->contiguous = false;
1405 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1406 static void __init deferred_free_range(struct page *page,
1407 unsigned long pfn, int nr_pages)
1409 int i;
1411 if (!page)
1412 return;
1414 /* Free a large naturally-aligned chunk if possible */
1415 if (nr_pages == pageblock_nr_pages &&
1416 (pfn & (pageblock_nr_pages - 1)) == 0) {
1417 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1418 __free_pages_boot_core(page, pageblock_order);
1419 return;
1422 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1423 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1424 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1425 __free_pages_boot_core(page, 0);
1429 /* Completion tracking for deferred_init_memmap() threads */
1430 static atomic_t pgdat_init_n_undone __initdata;
1431 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1433 static inline void __init pgdat_init_report_one_done(void)
1435 if (atomic_dec_and_test(&pgdat_init_n_undone))
1436 complete(&pgdat_init_all_done_comp);
1439 /* Initialise remaining memory on a node */
1440 static int __init deferred_init_memmap(void *data)
1442 pg_data_t *pgdat = data;
1443 int nid = pgdat->node_id;
1444 struct mminit_pfnnid_cache nid_init_state = { };
1445 unsigned long start = jiffies;
1446 unsigned long nr_pages = 0;
1447 unsigned long walk_start, walk_end;
1448 int i, zid;
1449 struct zone *zone;
1450 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1451 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1453 if (first_init_pfn == ULONG_MAX) {
1454 pgdat_init_report_one_done();
1455 return 0;
1458 /* Bind memory initialisation thread to a local node if possible */
1459 if (!cpumask_empty(cpumask))
1460 set_cpus_allowed_ptr(current, cpumask);
1462 /* Sanity check boundaries */
1463 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1464 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1465 pgdat->first_deferred_pfn = ULONG_MAX;
1467 /* Only the highest zone is deferred so find it */
1468 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1469 zone = pgdat->node_zones + zid;
1470 if (first_init_pfn < zone_end_pfn(zone))
1471 break;
1474 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1475 unsigned long pfn, end_pfn;
1476 struct page *page = NULL;
1477 struct page *free_base_page = NULL;
1478 unsigned long free_base_pfn = 0;
1479 int nr_to_free = 0;
1481 end_pfn = min(walk_end, zone_end_pfn(zone));
1482 pfn = first_init_pfn;
1483 if (pfn < walk_start)
1484 pfn = walk_start;
1485 if (pfn < zone->zone_start_pfn)
1486 pfn = zone->zone_start_pfn;
1488 for (; pfn < end_pfn; pfn++) {
1489 if (!pfn_valid_within(pfn))
1490 goto free_range;
1493 * Ensure pfn_valid is checked every
1494 * pageblock_nr_pages for memory holes
1496 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1497 if (!pfn_valid(pfn)) {
1498 page = NULL;
1499 goto free_range;
1503 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1504 page = NULL;
1505 goto free_range;
1508 /* Minimise pfn page lookups and scheduler checks */
1509 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1510 page++;
1511 } else {
1512 nr_pages += nr_to_free;
1513 deferred_free_range(free_base_page,
1514 free_base_pfn, nr_to_free);
1515 free_base_page = NULL;
1516 free_base_pfn = nr_to_free = 0;
1518 page = pfn_to_page(pfn);
1519 cond_resched();
1522 if (page->flags) {
1523 VM_BUG_ON(page_zone(page) != zone);
1524 goto free_range;
1527 __init_single_page(page, pfn, zid, nid);
1528 if (!free_base_page) {
1529 free_base_page = page;
1530 free_base_pfn = pfn;
1531 nr_to_free = 0;
1533 nr_to_free++;
1535 /* Where possible, batch up pages for a single free */
1536 continue;
1537 free_range:
1538 /* Free the current block of pages to allocator */
1539 nr_pages += nr_to_free;
1540 deferred_free_range(free_base_page, free_base_pfn,
1541 nr_to_free);
1542 free_base_page = NULL;
1543 free_base_pfn = nr_to_free = 0;
1545 /* Free the last block of pages to allocator */
1546 nr_pages += nr_to_free;
1547 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1549 first_init_pfn = max(end_pfn, first_init_pfn);
1552 /* Sanity check that the next zone really is unpopulated */
1553 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1555 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1556 jiffies_to_msecs(jiffies - start));
1558 pgdat_init_report_one_done();
1559 return 0;
1561 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1563 void __init page_alloc_init_late(void)
1565 struct zone *zone;
1567 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1568 int nid;
1570 /* There will be num_node_state(N_MEMORY) threads */
1571 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1572 for_each_node_state(nid, N_MEMORY) {
1573 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1576 /* Block until all are initialised */
1577 wait_for_completion(&pgdat_init_all_done_comp);
1579 /* Reinit limits that are based on free pages after the kernel is up */
1580 files_maxfiles_init();
1581 #endif
1583 for_each_populated_zone(zone)
1584 set_zone_contiguous(zone);
1587 #ifdef CONFIG_CMA
1588 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1589 void __init init_cma_reserved_pageblock(struct page *page)
1591 unsigned i = pageblock_nr_pages;
1592 struct page *p = page;
1594 do {
1595 __ClearPageReserved(p);
1596 set_page_count(p, 0);
1597 } while (++p, --i);
1599 set_pageblock_migratetype(page, MIGRATE_CMA);
1601 if (pageblock_order >= MAX_ORDER) {
1602 i = pageblock_nr_pages;
1603 p = page;
1604 do {
1605 set_page_refcounted(p);
1606 __free_pages(p, MAX_ORDER - 1);
1607 p += MAX_ORDER_NR_PAGES;
1608 } while (i -= MAX_ORDER_NR_PAGES);
1609 } else {
1610 set_page_refcounted(page);
1611 __free_pages(page, pageblock_order);
1614 adjust_managed_page_count(page, pageblock_nr_pages);
1616 #endif
1619 * The order of subdivision here is critical for the IO subsystem.
1620 * Please do not alter this order without good reasons and regression
1621 * testing. Specifically, as large blocks of memory are subdivided,
1622 * the order in which smaller blocks are delivered depends on the order
1623 * they're subdivided in this function. This is the primary factor
1624 * influencing the order in which pages are delivered to the IO
1625 * subsystem according to empirical testing, and this is also justified
1626 * by considering the behavior of a buddy system containing a single
1627 * large block of memory acted on by a series of small allocations.
1628 * This behavior is a critical factor in sglist merging's success.
1630 * -- nyc
1632 static inline void expand(struct zone *zone, struct page *page,
1633 int low, int high, struct free_area *area,
1634 int migratetype)
1636 unsigned long size = 1 << high;
1638 while (high > low) {
1639 area--;
1640 high--;
1641 size >>= 1;
1642 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1645 * Mark as guard pages (or page), that will allow to
1646 * merge back to allocator when buddy will be freed.
1647 * Corresponding page table entries will not be touched,
1648 * pages will stay not present in virtual address space
1650 if (set_page_guard(zone, &page[size], high, migratetype))
1651 continue;
1653 list_add(&page[size].lru, &area->free_list[migratetype]);
1654 area->nr_free++;
1655 set_page_order(&page[size], high);
1659 static void check_new_page_bad(struct page *page)
1661 const char *bad_reason = NULL;
1662 unsigned long bad_flags = 0;
1664 if (unlikely(atomic_read(&page->_mapcount) != -1))
1665 bad_reason = "nonzero mapcount";
1666 if (unlikely(page->mapping != NULL))
1667 bad_reason = "non-NULL mapping";
1668 if (unlikely(page_ref_count(page) != 0))
1669 bad_reason = "nonzero _count";
1670 if (unlikely(page->flags & __PG_HWPOISON)) {
1671 bad_reason = "HWPoisoned (hardware-corrupted)";
1672 bad_flags = __PG_HWPOISON;
1673 /* Don't complain about hwpoisoned pages */
1674 page_mapcount_reset(page); /* remove PageBuddy */
1675 return;
1677 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1678 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1679 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1681 #ifdef CONFIG_MEMCG
1682 if (unlikely(page->mem_cgroup))
1683 bad_reason = "page still charged to cgroup";
1684 #endif
1685 bad_page(page, bad_reason, bad_flags);
1689 * This page is about to be returned from the page allocator
1691 static inline int check_new_page(struct page *page)
1693 if (likely(page_expected_state(page,
1694 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1695 return 0;
1697 check_new_page_bad(page);
1698 return 1;
1701 static inline bool free_pages_prezeroed(bool poisoned)
1703 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1704 page_poisoning_enabled() && poisoned;
1707 #ifdef CONFIG_DEBUG_VM
1708 static bool check_pcp_refill(struct page *page)
1710 return false;
1713 static bool check_new_pcp(struct page *page)
1715 return check_new_page(page);
1717 #else
1718 static bool check_pcp_refill(struct page *page)
1720 return check_new_page(page);
1722 static bool check_new_pcp(struct page *page)
1724 return false;
1726 #endif /* CONFIG_DEBUG_VM */
1728 static bool check_new_pages(struct page *page, unsigned int order)
1730 int i;
1731 for (i = 0; i < (1 << order); i++) {
1732 struct page *p = page + i;
1734 if (unlikely(check_new_page(p)))
1735 return true;
1738 return false;
1741 inline void post_alloc_hook(struct page *page, unsigned int order,
1742 gfp_t gfp_flags)
1744 set_page_private(page, 0);
1745 set_page_refcounted(page);
1747 arch_alloc_page(page, order);
1748 kernel_map_pages(page, 1 << order, 1);
1749 kernel_poison_pages(page, 1 << order, 1);
1750 kasan_alloc_pages(page, order);
1751 set_page_owner(page, order, gfp_flags);
1754 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1755 unsigned int alloc_flags)
1757 int i;
1758 bool poisoned = true;
1760 for (i = 0; i < (1 << order); i++) {
1761 struct page *p = page + i;
1762 if (poisoned)
1763 poisoned &= page_is_poisoned(p);
1766 post_alloc_hook(page, order, gfp_flags);
1768 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1769 for (i = 0; i < (1 << order); i++)
1770 clear_highpage(page + i);
1772 if (order && (gfp_flags & __GFP_COMP))
1773 prep_compound_page(page, order);
1776 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1777 * allocate the page. The expectation is that the caller is taking
1778 * steps that will free more memory. The caller should avoid the page
1779 * being used for !PFMEMALLOC purposes.
1781 if (alloc_flags & ALLOC_NO_WATERMARKS)
1782 set_page_pfmemalloc(page);
1783 else
1784 clear_page_pfmemalloc(page);
1788 * Go through the free lists for the given migratetype and remove
1789 * the smallest available page from the freelists
1791 static inline
1792 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1793 int migratetype)
1795 unsigned int current_order;
1796 struct free_area *area;
1797 struct page *page;
1799 /* Find a page of the appropriate size in the preferred list */
1800 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1801 area = &(zone->free_area[current_order]);
1802 page = list_first_entry_or_null(&area->free_list[migratetype],
1803 struct page, lru);
1804 if (!page)
1805 continue;
1806 list_del(&page->lru);
1807 rmv_page_order(page);
1808 area->nr_free--;
1809 expand(zone, page, order, current_order, area, migratetype);
1810 set_pcppage_migratetype(page, migratetype);
1811 return page;
1814 return NULL;
1819 * This array describes the order lists are fallen back to when
1820 * the free lists for the desirable migrate type are depleted
1822 static int fallbacks[MIGRATE_TYPES][4] = {
1823 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1824 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1825 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1826 #ifdef CONFIG_CMA
1827 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1828 #endif
1829 #ifdef CONFIG_MEMORY_ISOLATION
1830 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1831 #endif
1834 #ifdef CONFIG_CMA
1835 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1836 unsigned int order)
1838 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1840 #else
1841 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1842 unsigned int order) { return NULL; }
1843 #endif
1846 * Move the free pages in a range to the free lists of the requested type.
1847 * Note that start_page and end_pages are not aligned on a pageblock
1848 * boundary. If alignment is required, use move_freepages_block()
1850 int move_freepages(struct zone *zone,
1851 struct page *start_page, struct page *end_page,
1852 int migratetype)
1854 struct page *page;
1855 unsigned int order;
1856 int pages_moved = 0;
1858 #ifndef CONFIG_HOLES_IN_ZONE
1860 * page_zone is not safe to call in this context when
1861 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1862 * anyway as we check zone boundaries in move_freepages_block().
1863 * Remove at a later date when no bug reports exist related to
1864 * grouping pages by mobility
1866 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1867 #endif
1869 for (page = start_page; page <= end_page;) {
1870 if (!pfn_valid_within(page_to_pfn(page))) {
1871 page++;
1872 continue;
1875 /* Make sure we are not inadvertently changing nodes */
1876 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1878 if (!PageBuddy(page)) {
1879 page++;
1880 continue;
1883 order = page_order(page);
1884 list_move(&page->lru,
1885 &zone->free_area[order].free_list[migratetype]);
1886 page += 1 << order;
1887 pages_moved += 1 << order;
1890 return pages_moved;
1893 int move_freepages_block(struct zone *zone, struct page *page,
1894 int migratetype)
1896 unsigned long start_pfn, end_pfn;
1897 struct page *start_page, *end_page;
1899 start_pfn = page_to_pfn(page);
1900 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1901 start_page = pfn_to_page(start_pfn);
1902 end_page = start_page + pageblock_nr_pages - 1;
1903 end_pfn = start_pfn + pageblock_nr_pages - 1;
1905 /* Do not cross zone boundaries */
1906 if (!zone_spans_pfn(zone, start_pfn))
1907 start_page = page;
1908 if (!zone_spans_pfn(zone, end_pfn))
1909 return 0;
1911 return move_freepages(zone, start_page, end_page, migratetype);
1914 static void change_pageblock_range(struct page *pageblock_page,
1915 int start_order, int migratetype)
1917 int nr_pageblocks = 1 << (start_order - pageblock_order);
1919 while (nr_pageblocks--) {
1920 set_pageblock_migratetype(pageblock_page, migratetype);
1921 pageblock_page += pageblock_nr_pages;
1926 * When we are falling back to another migratetype during allocation, try to
1927 * steal extra free pages from the same pageblocks to satisfy further
1928 * allocations, instead of polluting multiple pageblocks.
1930 * If we are stealing a relatively large buddy page, it is likely there will
1931 * be more free pages in the pageblock, so try to steal them all. For
1932 * reclaimable and unmovable allocations, we steal regardless of page size,
1933 * as fragmentation caused by those allocations polluting movable pageblocks
1934 * is worse than movable allocations stealing from unmovable and reclaimable
1935 * pageblocks.
1937 static bool can_steal_fallback(unsigned int order, int start_mt)
1940 * Leaving this order check is intended, although there is
1941 * relaxed order check in next check. The reason is that
1942 * we can actually steal whole pageblock if this condition met,
1943 * but, below check doesn't guarantee it and that is just heuristic
1944 * so could be changed anytime.
1946 if (order >= pageblock_order)
1947 return true;
1949 if (order >= pageblock_order / 2 ||
1950 start_mt == MIGRATE_RECLAIMABLE ||
1951 start_mt == MIGRATE_UNMOVABLE ||
1952 page_group_by_mobility_disabled)
1953 return true;
1955 return false;
1959 * This function implements actual steal behaviour. If order is large enough,
1960 * we can steal whole pageblock. If not, we first move freepages in this
1961 * pageblock and check whether half of pages are moved or not. If half of
1962 * pages are moved, we can change migratetype of pageblock and permanently
1963 * use it's pages as requested migratetype in the future.
1965 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1966 int start_type)
1968 unsigned int current_order = page_order(page);
1969 int pages;
1971 /* Take ownership for orders >= pageblock_order */
1972 if (current_order >= pageblock_order) {
1973 change_pageblock_range(page, current_order, start_type);
1974 return;
1977 pages = move_freepages_block(zone, page, start_type);
1979 /* Claim the whole block if over half of it is free */
1980 if (pages >= (1 << (pageblock_order-1)) ||
1981 page_group_by_mobility_disabled)
1982 set_pageblock_migratetype(page, start_type);
1986 * Check whether there is a suitable fallback freepage with requested order.
1987 * If only_stealable is true, this function returns fallback_mt only if
1988 * we can steal other freepages all together. This would help to reduce
1989 * fragmentation due to mixed migratetype pages in one pageblock.
1991 int find_suitable_fallback(struct free_area *area, unsigned int order,
1992 int migratetype, bool only_stealable, bool *can_steal)
1994 int i;
1995 int fallback_mt;
1997 if (area->nr_free == 0)
1998 return -1;
2000 *can_steal = false;
2001 for (i = 0;; i++) {
2002 fallback_mt = fallbacks[migratetype][i];
2003 if (fallback_mt == MIGRATE_TYPES)
2004 break;
2006 if (list_empty(&area->free_list[fallback_mt]))
2007 continue;
2009 if (can_steal_fallback(order, migratetype))
2010 *can_steal = true;
2012 if (!only_stealable)
2013 return fallback_mt;
2015 if (*can_steal)
2016 return fallback_mt;
2019 return -1;
2023 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2024 * there are no empty page blocks that contain a page with a suitable order
2026 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2027 unsigned int alloc_order)
2029 int mt;
2030 unsigned long max_managed, flags;
2033 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2034 * Check is race-prone but harmless.
2036 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2037 if (zone->nr_reserved_highatomic >= max_managed)
2038 return;
2040 spin_lock_irqsave(&zone->lock, flags);
2042 /* Recheck the nr_reserved_highatomic limit under the lock */
2043 if (zone->nr_reserved_highatomic >= max_managed)
2044 goto out_unlock;
2046 /* Yoink! */
2047 mt = get_pageblock_migratetype(page);
2048 if (mt != MIGRATE_HIGHATOMIC &&
2049 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2050 zone->nr_reserved_highatomic += pageblock_nr_pages;
2051 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2052 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2055 out_unlock:
2056 spin_unlock_irqrestore(&zone->lock, flags);
2060 * Used when an allocation is about to fail under memory pressure. This
2061 * potentially hurts the reliability of high-order allocations when under
2062 * intense memory pressure but failed atomic allocations should be easier
2063 * to recover from than an OOM.
2065 * If @force is true, try to unreserve a pageblock even though highatomic
2066 * pageblock is exhausted.
2068 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2069 bool force)
2071 struct zonelist *zonelist = ac->zonelist;
2072 unsigned long flags;
2073 struct zoneref *z;
2074 struct zone *zone;
2075 struct page *page;
2076 int order;
2077 bool ret;
2079 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2080 ac->nodemask) {
2082 * Preserve at least one pageblock unless memory pressure
2083 * is really high.
2085 if (!force && zone->nr_reserved_highatomic <=
2086 pageblock_nr_pages)
2087 continue;
2089 spin_lock_irqsave(&zone->lock, flags);
2090 for (order = 0; order < MAX_ORDER; order++) {
2091 struct free_area *area = &(zone->free_area[order]);
2093 page = list_first_entry_or_null(
2094 &area->free_list[MIGRATE_HIGHATOMIC],
2095 struct page, lru);
2096 if (!page)
2097 continue;
2100 * In page freeing path, migratetype change is racy so
2101 * we can counter several free pages in a pageblock
2102 * in this loop althoug we changed the pageblock type
2103 * from highatomic to ac->migratetype. So we should
2104 * adjust the count once.
2106 if (get_pageblock_migratetype(page) ==
2107 MIGRATE_HIGHATOMIC) {
2109 * It should never happen but changes to
2110 * locking could inadvertently allow a per-cpu
2111 * drain to add pages to MIGRATE_HIGHATOMIC
2112 * while unreserving so be safe and watch for
2113 * underflows.
2115 zone->nr_reserved_highatomic -= min(
2116 pageblock_nr_pages,
2117 zone->nr_reserved_highatomic);
2121 * Convert to ac->migratetype and avoid the normal
2122 * pageblock stealing heuristics. Minimally, the caller
2123 * is doing the work and needs the pages. More
2124 * importantly, if the block was always converted to
2125 * MIGRATE_UNMOVABLE or another type then the number
2126 * of pageblocks that cannot be completely freed
2127 * may increase.
2129 set_pageblock_migratetype(page, ac->migratetype);
2130 ret = move_freepages_block(zone, page, ac->migratetype);
2131 if (ret) {
2132 spin_unlock_irqrestore(&zone->lock, flags);
2133 return ret;
2136 spin_unlock_irqrestore(&zone->lock, flags);
2139 return false;
2142 /* Remove an element from the buddy allocator from the fallback list */
2143 static inline struct page *
2144 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2146 struct free_area *area;
2147 unsigned int current_order;
2148 struct page *page;
2149 int fallback_mt;
2150 bool can_steal;
2152 /* Find the largest possible block of pages in the other list */
2153 for (current_order = MAX_ORDER-1;
2154 current_order >= order && current_order <= MAX_ORDER-1;
2155 --current_order) {
2156 area = &(zone->free_area[current_order]);
2157 fallback_mt = find_suitable_fallback(area, current_order,
2158 start_migratetype, false, &can_steal);
2159 if (fallback_mt == -1)
2160 continue;
2162 page = list_first_entry(&area->free_list[fallback_mt],
2163 struct page, lru);
2164 if (can_steal &&
2165 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
2166 steal_suitable_fallback(zone, page, start_migratetype);
2168 /* Remove the page from the freelists */
2169 area->nr_free--;
2170 list_del(&page->lru);
2171 rmv_page_order(page);
2173 expand(zone, page, order, current_order, area,
2174 start_migratetype);
2176 * The pcppage_migratetype may differ from pageblock's
2177 * migratetype depending on the decisions in
2178 * find_suitable_fallback(). This is OK as long as it does not
2179 * differ for MIGRATE_CMA pageblocks. Those can be used as
2180 * fallback only via special __rmqueue_cma_fallback() function
2182 set_pcppage_migratetype(page, start_migratetype);
2184 trace_mm_page_alloc_extfrag(page, order, current_order,
2185 start_migratetype, fallback_mt);
2187 return page;
2190 return NULL;
2194 * Do the hard work of removing an element from the buddy allocator.
2195 * Call me with the zone->lock already held.
2197 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2198 int migratetype)
2200 struct page *page;
2202 page = __rmqueue_smallest(zone, order, migratetype);
2203 if (unlikely(!page)) {
2204 if (migratetype == MIGRATE_MOVABLE)
2205 page = __rmqueue_cma_fallback(zone, order);
2207 if (!page)
2208 page = __rmqueue_fallback(zone, order, migratetype);
2211 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2212 return page;
2216 * Obtain a specified number of elements from the buddy allocator, all under
2217 * a single hold of the lock, for efficiency. Add them to the supplied list.
2218 * Returns the number of new pages which were placed at *list.
2220 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2221 unsigned long count, struct list_head *list,
2222 int migratetype, bool cold)
2224 int i, alloced = 0;
2226 spin_lock(&zone->lock);
2227 for (i = 0; i < count; ++i) {
2228 struct page *page = __rmqueue(zone, order, migratetype);
2229 if (unlikely(page == NULL))
2230 break;
2232 if (unlikely(check_pcp_refill(page)))
2233 continue;
2236 * Split buddy pages returned by expand() are received here
2237 * in physical page order. The page is added to the callers and
2238 * list and the list head then moves forward. From the callers
2239 * perspective, the linked list is ordered by page number in
2240 * some conditions. This is useful for IO devices that can
2241 * merge IO requests if the physical pages are ordered
2242 * properly.
2244 if (likely(!cold))
2245 list_add(&page->lru, list);
2246 else
2247 list_add_tail(&page->lru, list);
2248 list = &page->lru;
2249 alloced++;
2250 if (is_migrate_cma(get_pcppage_migratetype(page)))
2251 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2252 -(1 << order));
2256 * i pages were removed from the buddy list even if some leak due
2257 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2258 * on i. Do not confuse with 'alloced' which is the number of
2259 * pages added to the pcp list.
2261 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2262 spin_unlock(&zone->lock);
2263 return alloced;
2266 #ifdef CONFIG_NUMA
2268 * Called from the vmstat counter updater to drain pagesets of this
2269 * currently executing processor on remote nodes after they have
2270 * expired.
2272 * Note that this function must be called with the thread pinned to
2273 * a single processor.
2275 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2277 unsigned long flags;
2278 int to_drain, batch;
2280 local_irq_save(flags);
2281 batch = READ_ONCE(pcp->batch);
2282 to_drain = min(pcp->count, batch);
2283 if (to_drain > 0) {
2284 free_pcppages_bulk(zone, to_drain, pcp);
2285 pcp->count -= to_drain;
2287 local_irq_restore(flags);
2289 #endif
2292 * Drain pcplists of the indicated processor and zone.
2294 * The processor must either be the current processor and the
2295 * thread pinned to the current processor or a processor that
2296 * is not online.
2298 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2300 unsigned long flags;
2301 struct per_cpu_pageset *pset;
2302 struct per_cpu_pages *pcp;
2304 local_irq_save(flags);
2305 pset = per_cpu_ptr(zone->pageset, cpu);
2307 pcp = &pset->pcp;
2308 if (pcp->count) {
2309 free_pcppages_bulk(zone, pcp->count, pcp);
2310 pcp->count = 0;
2312 local_irq_restore(flags);
2316 * Drain pcplists of all zones on the indicated processor.
2318 * The processor must either be the current processor and the
2319 * thread pinned to the current processor or a processor that
2320 * is not online.
2322 static void drain_pages(unsigned int cpu)
2324 struct zone *zone;
2326 for_each_populated_zone(zone) {
2327 drain_pages_zone(cpu, zone);
2332 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2334 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2335 * the single zone's pages.
2337 void drain_local_pages(struct zone *zone)
2339 int cpu = smp_processor_id();
2341 if (zone)
2342 drain_pages_zone(cpu, zone);
2343 else
2344 drain_pages(cpu);
2347 static void drain_local_pages_wq(struct work_struct *work)
2350 * drain_all_pages doesn't use proper cpu hotplug protection so
2351 * we can race with cpu offline when the WQ can move this from
2352 * a cpu pinned worker to an unbound one. We can operate on a different
2353 * cpu which is allright but we also have to make sure to not move to
2354 * a different one.
2356 preempt_disable();
2357 drain_local_pages(NULL);
2358 preempt_enable();
2362 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2364 * When zone parameter is non-NULL, spill just the single zone's pages.
2366 * Note that this can be extremely slow as the draining happens in a workqueue.
2368 void drain_all_pages(struct zone *zone)
2370 int cpu;
2373 * Allocate in the BSS so we wont require allocation in
2374 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2376 static cpumask_t cpus_with_pcps;
2379 * Make sure nobody triggers this path before mm_percpu_wq is fully
2380 * initialized.
2382 if (WARN_ON_ONCE(!mm_percpu_wq))
2383 return;
2385 /* Workqueues cannot recurse */
2386 if (current->flags & PF_WQ_WORKER)
2387 return;
2390 * Do not drain if one is already in progress unless it's specific to
2391 * a zone. Such callers are primarily CMA and memory hotplug and need
2392 * the drain to be complete when the call returns.
2394 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2395 if (!zone)
2396 return;
2397 mutex_lock(&pcpu_drain_mutex);
2401 * We don't care about racing with CPU hotplug event
2402 * as offline notification will cause the notified
2403 * cpu to drain that CPU pcps and on_each_cpu_mask
2404 * disables preemption as part of its processing
2406 for_each_online_cpu(cpu) {
2407 struct per_cpu_pageset *pcp;
2408 struct zone *z;
2409 bool has_pcps = false;
2411 if (zone) {
2412 pcp = per_cpu_ptr(zone->pageset, cpu);
2413 if (pcp->pcp.count)
2414 has_pcps = true;
2415 } else {
2416 for_each_populated_zone(z) {
2417 pcp = per_cpu_ptr(z->pageset, cpu);
2418 if (pcp->pcp.count) {
2419 has_pcps = true;
2420 break;
2425 if (has_pcps)
2426 cpumask_set_cpu(cpu, &cpus_with_pcps);
2427 else
2428 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2431 for_each_cpu(cpu, &cpus_with_pcps) {
2432 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2433 INIT_WORK(work, drain_local_pages_wq);
2434 queue_work_on(cpu, mm_percpu_wq, work);
2436 for_each_cpu(cpu, &cpus_with_pcps)
2437 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2439 mutex_unlock(&pcpu_drain_mutex);
2442 #ifdef CONFIG_HIBERNATION
2444 void mark_free_pages(struct zone *zone)
2446 unsigned long pfn, max_zone_pfn;
2447 unsigned long flags;
2448 unsigned int order, t;
2449 struct page *page;
2451 if (zone_is_empty(zone))
2452 return;
2454 spin_lock_irqsave(&zone->lock, flags);
2456 max_zone_pfn = zone_end_pfn(zone);
2457 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2458 if (pfn_valid(pfn)) {
2459 page = pfn_to_page(pfn);
2461 if (page_zone(page) != zone)
2462 continue;
2464 if (!swsusp_page_is_forbidden(page))
2465 swsusp_unset_page_free(page);
2468 for_each_migratetype_order(order, t) {
2469 list_for_each_entry(page,
2470 &zone->free_area[order].free_list[t], lru) {
2471 unsigned long i;
2473 pfn = page_to_pfn(page);
2474 for (i = 0; i < (1UL << order); i++)
2475 swsusp_set_page_free(pfn_to_page(pfn + i));
2478 spin_unlock_irqrestore(&zone->lock, flags);
2480 #endif /* CONFIG_PM */
2483 * Free a 0-order page
2484 * cold == true ? free a cold page : free a hot page
2486 void free_hot_cold_page(struct page *page, bool cold)
2488 struct zone *zone = page_zone(page);
2489 struct per_cpu_pages *pcp;
2490 unsigned long flags;
2491 unsigned long pfn = page_to_pfn(page);
2492 int migratetype;
2494 if (!free_pcp_prepare(page))
2495 return;
2497 migratetype = get_pfnblock_migratetype(page, pfn);
2498 set_pcppage_migratetype(page, migratetype);
2499 local_irq_save(flags);
2500 __count_vm_event(PGFREE);
2503 * We only track unmovable, reclaimable and movable on pcp lists.
2504 * Free ISOLATE pages back to the allocator because they are being
2505 * offlined but treat RESERVE as movable pages so we can get those
2506 * areas back if necessary. Otherwise, we may have to free
2507 * excessively into the page allocator
2509 if (migratetype >= MIGRATE_PCPTYPES) {
2510 if (unlikely(is_migrate_isolate(migratetype))) {
2511 free_one_page(zone, page, pfn, 0, migratetype);
2512 goto out;
2514 migratetype = MIGRATE_MOVABLE;
2517 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2518 if (!cold)
2519 list_add(&page->lru, &pcp->lists[migratetype]);
2520 else
2521 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2522 pcp->count++;
2523 if (pcp->count >= pcp->high) {
2524 unsigned long batch = READ_ONCE(pcp->batch);
2525 free_pcppages_bulk(zone, batch, pcp);
2526 pcp->count -= batch;
2529 out:
2530 local_irq_restore(flags);
2534 * Free a list of 0-order pages
2536 void free_hot_cold_page_list(struct list_head *list, bool cold)
2538 struct page *page, *next;
2540 list_for_each_entry_safe(page, next, list, lru) {
2541 trace_mm_page_free_batched(page, cold);
2542 free_hot_cold_page(page, cold);
2547 * split_page takes a non-compound higher-order page, and splits it into
2548 * n (1<<order) sub-pages: page[0..n]
2549 * Each sub-page must be freed individually.
2551 * Note: this is probably too low level an operation for use in drivers.
2552 * Please consult with lkml before using this in your driver.
2554 void split_page(struct page *page, unsigned int order)
2556 int i;
2558 VM_BUG_ON_PAGE(PageCompound(page), page);
2559 VM_BUG_ON_PAGE(!page_count(page), page);
2561 #ifdef CONFIG_KMEMCHECK
2563 * Split shadow pages too, because free(page[0]) would
2564 * otherwise free the whole shadow.
2566 if (kmemcheck_page_is_tracked(page))
2567 split_page(virt_to_page(page[0].shadow), order);
2568 #endif
2570 for (i = 1; i < (1 << order); i++)
2571 set_page_refcounted(page + i);
2572 split_page_owner(page, order);
2574 EXPORT_SYMBOL_GPL(split_page);
2576 int __isolate_free_page(struct page *page, unsigned int order)
2578 unsigned long watermark;
2579 struct zone *zone;
2580 int mt;
2582 BUG_ON(!PageBuddy(page));
2584 zone = page_zone(page);
2585 mt = get_pageblock_migratetype(page);
2587 if (!is_migrate_isolate(mt)) {
2589 * Obey watermarks as if the page was being allocated. We can
2590 * emulate a high-order watermark check with a raised order-0
2591 * watermark, because we already know our high-order page
2592 * exists.
2594 watermark = min_wmark_pages(zone) + (1UL << order);
2595 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2596 return 0;
2598 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2601 /* Remove page from free list */
2602 list_del(&page->lru);
2603 zone->free_area[order].nr_free--;
2604 rmv_page_order(page);
2607 * Set the pageblock if the isolated page is at least half of a
2608 * pageblock
2610 if (order >= pageblock_order - 1) {
2611 struct page *endpage = page + (1 << order) - 1;
2612 for (; page < endpage; page += pageblock_nr_pages) {
2613 int mt = get_pageblock_migratetype(page);
2614 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2615 && mt != MIGRATE_HIGHATOMIC)
2616 set_pageblock_migratetype(page,
2617 MIGRATE_MOVABLE);
2622 return 1UL << order;
2626 * Update NUMA hit/miss statistics
2628 * Must be called with interrupts disabled.
2630 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2632 #ifdef CONFIG_NUMA
2633 enum zone_stat_item local_stat = NUMA_LOCAL;
2635 if (z->node != numa_node_id())
2636 local_stat = NUMA_OTHER;
2638 if (z->node == preferred_zone->node)
2639 __inc_zone_state(z, NUMA_HIT);
2640 else {
2641 __inc_zone_state(z, NUMA_MISS);
2642 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2644 __inc_zone_state(z, local_stat);
2645 #endif
2648 /* Remove page from the per-cpu list, caller must protect the list */
2649 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2650 bool cold, struct per_cpu_pages *pcp,
2651 struct list_head *list)
2653 struct page *page;
2655 do {
2656 if (list_empty(list)) {
2657 pcp->count += rmqueue_bulk(zone, 0,
2658 pcp->batch, list,
2659 migratetype, cold);
2660 if (unlikely(list_empty(list)))
2661 return NULL;
2664 if (cold)
2665 page = list_last_entry(list, struct page, lru);
2666 else
2667 page = list_first_entry(list, struct page, lru);
2669 list_del(&page->lru);
2670 pcp->count--;
2671 } while (check_new_pcp(page));
2673 return page;
2676 /* Lock and remove page from the per-cpu list */
2677 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2678 struct zone *zone, unsigned int order,
2679 gfp_t gfp_flags, int migratetype)
2681 struct per_cpu_pages *pcp;
2682 struct list_head *list;
2683 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2684 struct page *page;
2685 unsigned long flags;
2687 local_irq_save(flags);
2688 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2689 list = &pcp->lists[migratetype];
2690 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2691 if (page) {
2692 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2693 zone_statistics(preferred_zone, zone);
2695 local_irq_restore(flags);
2696 return page;
2700 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2702 static inline
2703 struct page *rmqueue(struct zone *preferred_zone,
2704 struct zone *zone, unsigned int order,
2705 gfp_t gfp_flags, unsigned int alloc_flags,
2706 int migratetype)
2708 unsigned long flags;
2709 struct page *page;
2711 if (likely(order == 0)) {
2712 page = rmqueue_pcplist(preferred_zone, zone, order,
2713 gfp_flags, migratetype);
2714 goto out;
2718 * We most definitely don't want callers attempting to
2719 * allocate greater than order-1 page units with __GFP_NOFAIL.
2721 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2722 spin_lock_irqsave(&zone->lock, flags);
2724 do {
2725 page = NULL;
2726 if (alloc_flags & ALLOC_HARDER) {
2727 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2728 if (page)
2729 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2731 if (!page)
2732 page = __rmqueue(zone, order, migratetype);
2733 } while (page && check_new_pages(page, order));
2734 spin_unlock(&zone->lock);
2735 if (!page)
2736 goto failed;
2737 __mod_zone_freepage_state(zone, -(1 << order),
2738 get_pcppage_migratetype(page));
2740 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2741 zone_statistics(preferred_zone, zone);
2742 local_irq_restore(flags);
2744 out:
2745 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2746 return page;
2748 failed:
2749 local_irq_restore(flags);
2750 return NULL;
2753 #ifdef CONFIG_FAIL_PAGE_ALLOC
2755 static struct {
2756 struct fault_attr attr;
2758 bool ignore_gfp_highmem;
2759 bool ignore_gfp_reclaim;
2760 u32 min_order;
2761 } fail_page_alloc = {
2762 .attr = FAULT_ATTR_INITIALIZER,
2763 .ignore_gfp_reclaim = true,
2764 .ignore_gfp_highmem = true,
2765 .min_order = 1,
2768 static int __init setup_fail_page_alloc(char *str)
2770 return setup_fault_attr(&fail_page_alloc.attr, str);
2772 __setup("fail_page_alloc=", setup_fail_page_alloc);
2774 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2776 if (order < fail_page_alloc.min_order)
2777 return false;
2778 if (gfp_mask & __GFP_NOFAIL)
2779 return false;
2780 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2781 return false;
2782 if (fail_page_alloc.ignore_gfp_reclaim &&
2783 (gfp_mask & __GFP_DIRECT_RECLAIM))
2784 return false;
2786 return should_fail(&fail_page_alloc.attr, 1 << order);
2789 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2791 static int __init fail_page_alloc_debugfs(void)
2793 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2794 struct dentry *dir;
2796 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2797 &fail_page_alloc.attr);
2798 if (IS_ERR(dir))
2799 return PTR_ERR(dir);
2801 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2802 &fail_page_alloc.ignore_gfp_reclaim))
2803 goto fail;
2804 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2805 &fail_page_alloc.ignore_gfp_highmem))
2806 goto fail;
2807 if (!debugfs_create_u32("min-order", mode, dir,
2808 &fail_page_alloc.min_order))
2809 goto fail;
2811 return 0;
2812 fail:
2813 debugfs_remove_recursive(dir);
2815 return -ENOMEM;
2818 late_initcall(fail_page_alloc_debugfs);
2820 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2822 #else /* CONFIG_FAIL_PAGE_ALLOC */
2824 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2826 return false;
2829 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2832 * Return true if free base pages are above 'mark'. For high-order checks it
2833 * will return true of the order-0 watermark is reached and there is at least
2834 * one free page of a suitable size. Checking now avoids taking the zone lock
2835 * to check in the allocation paths if no pages are free.
2837 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2838 int classzone_idx, unsigned int alloc_flags,
2839 long free_pages)
2841 long min = mark;
2842 int o;
2843 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2845 /* free_pages may go negative - that's OK */
2846 free_pages -= (1 << order) - 1;
2848 if (alloc_flags & ALLOC_HIGH)
2849 min -= min / 2;
2852 * If the caller does not have rights to ALLOC_HARDER then subtract
2853 * the high-atomic reserves. This will over-estimate the size of the
2854 * atomic reserve but it avoids a search.
2856 if (likely(!alloc_harder))
2857 free_pages -= z->nr_reserved_highatomic;
2858 else
2859 min -= min / 4;
2861 #ifdef CONFIG_CMA
2862 /* If allocation can't use CMA areas don't use free CMA pages */
2863 if (!(alloc_flags & ALLOC_CMA))
2864 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2865 #endif
2868 * Check watermarks for an order-0 allocation request. If these
2869 * are not met, then a high-order request also cannot go ahead
2870 * even if a suitable page happened to be free.
2872 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2873 return false;
2875 /* If this is an order-0 request then the watermark is fine */
2876 if (!order)
2877 return true;
2879 /* For a high-order request, check at least one suitable page is free */
2880 for (o = order; o < MAX_ORDER; o++) {
2881 struct free_area *area = &z->free_area[o];
2882 int mt;
2884 if (!area->nr_free)
2885 continue;
2887 if (alloc_harder)
2888 return true;
2890 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2891 if (!list_empty(&area->free_list[mt]))
2892 return true;
2895 #ifdef CONFIG_CMA
2896 if ((alloc_flags & ALLOC_CMA) &&
2897 !list_empty(&area->free_list[MIGRATE_CMA])) {
2898 return true;
2900 #endif
2902 return false;
2905 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2906 int classzone_idx, unsigned int alloc_flags)
2908 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2909 zone_page_state(z, NR_FREE_PAGES));
2912 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2913 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2915 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2916 long cma_pages = 0;
2918 #ifdef CONFIG_CMA
2919 /* If allocation can't use CMA areas don't use free CMA pages */
2920 if (!(alloc_flags & ALLOC_CMA))
2921 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2922 #endif
2925 * Fast check for order-0 only. If this fails then the reserves
2926 * need to be calculated. There is a corner case where the check
2927 * passes but only the high-order atomic reserve are free. If
2928 * the caller is !atomic then it'll uselessly search the free
2929 * list. That corner case is then slower but it is harmless.
2931 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2932 return true;
2934 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2935 free_pages);
2938 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2939 unsigned long mark, int classzone_idx)
2941 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2943 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2944 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2946 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2947 free_pages);
2950 #ifdef CONFIG_NUMA
2951 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2953 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2954 RECLAIM_DISTANCE;
2956 #else /* CONFIG_NUMA */
2957 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2959 return true;
2961 #endif /* CONFIG_NUMA */
2964 * get_page_from_freelist goes through the zonelist trying to allocate
2965 * a page.
2967 static struct page *
2968 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2969 const struct alloc_context *ac)
2971 struct zoneref *z = ac->preferred_zoneref;
2972 struct zone *zone;
2973 struct pglist_data *last_pgdat_dirty_limit = NULL;
2976 * Scan zonelist, looking for a zone with enough free.
2977 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2979 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2980 ac->nodemask) {
2981 struct page *page;
2982 unsigned long mark;
2984 if (cpusets_enabled() &&
2985 (alloc_flags & ALLOC_CPUSET) &&
2986 !__cpuset_zone_allowed(zone, gfp_mask))
2987 continue;
2989 * When allocating a page cache page for writing, we
2990 * want to get it from a node that is within its dirty
2991 * limit, such that no single node holds more than its
2992 * proportional share of globally allowed dirty pages.
2993 * The dirty limits take into account the node's
2994 * lowmem reserves and high watermark so that kswapd
2995 * should be able to balance it without having to
2996 * write pages from its LRU list.
2998 * XXX: For now, allow allocations to potentially
2999 * exceed the per-node dirty limit in the slowpath
3000 * (spread_dirty_pages unset) before going into reclaim,
3001 * which is important when on a NUMA setup the allowed
3002 * nodes are together not big enough to reach the
3003 * global limit. The proper fix for these situations
3004 * will require awareness of nodes in the
3005 * dirty-throttling and the flusher threads.
3007 if (ac->spread_dirty_pages) {
3008 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3009 continue;
3011 if (!node_dirty_ok(zone->zone_pgdat)) {
3012 last_pgdat_dirty_limit = zone->zone_pgdat;
3013 continue;
3017 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3018 if (!zone_watermark_fast(zone, order, mark,
3019 ac_classzone_idx(ac), alloc_flags)) {
3020 int ret;
3022 /* Checked here to keep the fast path fast */
3023 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3024 if (alloc_flags & ALLOC_NO_WATERMARKS)
3025 goto try_this_zone;
3027 if (node_reclaim_mode == 0 ||
3028 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3029 continue;
3031 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3032 switch (ret) {
3033 case NODE_RECLAIM_NOSCAN:
3034 /* did not scan */
3035 continue;
3036 case NODE_RECLAIM_FULL:
3037 /* scanned but unreclaimable */
3038 continue;
3039 default:
3040 /* did we reclaim enough */
3041 if (zone_watermark_ok(zone, order, mark,
3042 ac_classzone_idx(ac), alloc_flags))
3043 goto try_this_zone;
3045 continue;
3049 try_this_zone:
3050 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3051 gfp_mask, alloc_flags, ac->migratetype);
3052 if (page) {
3053 prep_new_page(page, order, gfp_mask, alloc_flags);
3056 * If this is a high-order atomic allocation then check
3057 * if the pageblock should be reserved for the future
3059 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3060 reserve_highatomic_pageblock(page, zone, order);
3062 return page;
3066 return NULL;
3070 * Large machines with many possible nodes should not always dump per-node
3071 * meminfo in irq context.
3073 static inline bool should_suppress_show_mem(void)
3075 bool ret = false;
3077 #if NODES_SHIFT > 8
3078 ret = in_interrupt();
3079 #endif
3080 return ret;
3083 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3085 unsigned int filter = SHOW_MEM_FILTER_NODES;
3086 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3088 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3089 return;
3092 * This documents exceptions given to allocations in certain
3093 * contexts that are allowed to allocate outside current's set
3094 * of allowed nodes.
3096 if (!(gfp_mask & __GFP_NOMEMALLOC))
3097 if (test_thread_flag(TIF_MEMDIE) ||
3098 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3099 filter &= ~SHOW_MEM_FILTER_NODES;
3100 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3101 filter &= ~SHOW_MEM_FILTER_NODES;
3103 show_mem(filter, nodemask);
3106 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3108 struct va_format vaf;
3109 va_list args;
3110 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3111 DEFAULT_RATELIMIT_BURST);
3113 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3114 debug_guardpage_minorder() > 0)
3115 return;
3117 pr_warn("%s: ", current->comm);
3119 va_start(args, fmt);
3120 vaf.fmt = fmt;
3121 vaf.va = &args;
3122 pr_cont("%pV", &vaf);
3123 va_end(args);
3125 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3126 if (nodemask)
3127 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3128 else
3129 pr_cont("(null)\n");
3131 cpuset_print_current_mems_allowed();
3133 dump_stack();
3134 warn_alloc_show_mem(gfp_mask, nodemask);
3137 static inline struct page *
3138 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3139 unsigned int alloc_flags,
3140 const struct alloc_context *ac)
3142 struct page *page;
3144 page = get_page_from_freelist(gfp_mask, order,
3145 alloc_flags|ALLOC_CPUSET, ac);
3147 * fallback to ignore cpuset restriction if our nodes
3148 * are depleted
3150 if (!page)
3151 page = get_page_from_freelist(gfp_mask, order,
3152 alloc_flags, ac);
3154 return page;
3157 static inline struct page *
3158 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3159 const struct alloc_context *ac, unsigned long *did_some_progress)
3161 struct oom_control oc = {
3162 .zonelist = ac->zonelist,
3163 .nodemask = ac->nodemask,
3164 .memcg = NULL,
3165 .gfp_mask = gfp_mask,
3166 .order = order,
3168 struct page *page;
3170 *did_some_progress = 0;
3173 * Acquire the oom lock. If that fails, somebody else is
3174 * making progress for us.
3176 if (!mutex_trylock(&oom_lock)) {
3177 *did_some_progress = 1;
3178 schedule_timeout_uninterruptible(1);
3179 return NULL;
3183 * Go through the zonelist yet one more time, keep very high watermark
3184 * here, this is only to catch a parallel oom killing, we must fail if
3185 * we're still under heavy pressure.
3187 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3188 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3189 if (page)
3190 goto out;
3192 /* Coredumps can quickly deplete all memory reserves */
3193 if (current->flags & PF_DUMPCORE)
3194 goto out;
3195 /* The OOM killer will not help higher order allocs */
3196 if (order > PAGE_ALLOC_COSTLY_ORDER)
3197 goto out;
3198 /* The OOM killer does not needlessly kill tasks for lowmem */
3199 if (ac->high_zoneidx < ZONE_NORMAL)
3200 goto out;
3201 if (pm_suspended_storage())
3202 goto out;
3204 * XXX: GFP_NOFS allocations should rather fail than rely on
3205 * other request to make a forward progress.
3206 * We are in an unfortunate situation where out_of_memory cannot
3207 * do much for this context but let's try it to at least get
3208 * access to memory reserved if the current task is killed (see
3209 * out_of_memory). Once filesystems are ready to handle allocation
3210 * failures more gracefully we should just bail out here.
3213 /* The OOM killer may not free memory on a specific node */
3214 if (gfp_mask & __GFP_THISNODE)
3215 goto out;
3217 /* Exhausted what can be done so it's blamo time */
3218 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3219 *did_some_progress = 1;
3222 * Help non-failing allocations by giving them access to memory
3223 * reserves
3225 if (gfp_mask & __GFP_NOFAIL)
3226 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3227 ALLOC_NO_WATERMARKS, ac);
3229 out:
3230 mutex_unlock(&oom_lock);
3231 return page;
3235 * Maximum number of compaction retries wit a progress before OOM
3236 * killer is consider as the only way to move forward.
3238 #define MAX_COMPACT_RETRIES 16
3240 #ifdef CONFIG_COMPACTION
3241 /* Try memory compaction for high-order allocations before reclaim */
3242 static struct page *
3243 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3244 unsigned int alloc_flags, const struct alloc_context *ac,
3245 enum compact_priority prio, enum compact_result *compact_result)
3247 struct page *page;
3249 if (!order)
3250 return NULL;
3252 current->flags |= PF_MEMALLOC;
3253 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3254 prio);
3255 current->flags &= ~PF_MEMALLOC;
3257 if (*compact_result <= COMPACT_INACTIVE)
3258 return NULL;
3261 * At least in one zone compaction wasn't deferred or skipped, so let's
3262 * count a compaction stall
3264 count_vm_event(COMPACTSTALL);
3266 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3268 if (page) {
3269 struct zone *zone = page_zone(page);
3271 zone->compact_blockskip_flush = false;
3272 compaction_defer_reset(zone, order, true);
3273 count_vm_event(COMPACTSUCCESS);
3274 return page;
3278 * It's bad if compaction run occurs and fails. The most likely reason
3279 * is that pages exist, but not enough to satisfy watermarks.
3281 count_vm_event(COMPACTFAIL);
3283 cond_resched();
3285 return NULL;
3288 static inline bool
3289 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3290 enum compact_result compact_result,
3291 enum compact_priority *compact_priority,
3292 int *compaction_retries)
3294 int max_retries = MAX_COMPACT_RETRIES;
3295 int min_priority;
3296 bool ret = false;
3297 int retries = *compaction_retries;
3298 enum compact_priority priority = *compact_priority;
3300 if (!order)
3301 return false;
3303 if (compaction_made_progress(compact_result))
3304 (*compaction_retries)++;
3307 * compaction considers all the zone as desperately out of memory
3308 * so it doesn't really make much sense to retry except when the
3309 * failure could be caused by insufficient priority
3311 if (compaction_failed(compact_result))
3312 goto check_priority;
3315 * make sure the compaction wasn't deferred or didn't bail out early
3316 * due to locks contention before we declare that we should give up.
3317 * But do not retry if the given zonelist is not suitable for
3318 * compaction.
3320 if (compaction_withdrawn(compact_result)) {
3321 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3322 goto out;
3326 * !costly requests are much more important than __GFP_REPEAT
3327 * costly ones because they are de facto nofail and invoke OOM
3328 * killer to move on while costly can fail and users are ready
3329 * to cope with that. 1/4 retries is rather arbitrary but we
3330 * would need much more detailed feedback from compaction to
3331 * make a better decision.
3333 if (order > PAGE_ALLOC_COSTLY_ORDER)
3334 max_retries /= 4;
3335 if (*compaction_retries <= max_retries) {
3336 ret = true;
3337 goto out;
3341 * Make sure there are attempts at the highest priority if we exhausted
3342 * all retries or failed at the lower priorities.
3344 check_priority:
3345 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3346 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3348 if (*compact_priority > min_priority) {
3349 (*compact_priority)--;
3350 *compaction_retries = 0;
3351 ret = true;
3353 out:
3354 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3355 return ret;
3357 #else
3358 static inline struct page *
3359 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3360 unsigned int alloc_flags, const struct alloc_context *ac,
3361 enum compact_priority prio, enum compact_result *compact_result)
3363 *compact_result = COMPACT_SKIPPED;
3364 return NULL;
3367 static inline bool
3368 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3369 enum compact_result compact_result,
3370 enum compact_priority *compact_priority,
3371 int *compaction_retries)
3373 struct zone *zone;
3374 struct zoneref *z;
3376 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3377 return false;
3380 * There are setups with compaction disabled which would prefer to loop
3381 * inside the allocator rather than hit the oom killer prematurely.
3382 * Let's give them a good hope and keep retrying while the order-0
3383 * watermarks are OK.
3385 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3386 ac->nodemask) {
3387 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3388 ac_classzone_idx(ac), alloc_flags))
3389 return true;
3391 return false;
3393 #endif /* CONFIG_COMPACTION */
3395 /* Perform direct synchronous page reclaim */
3396 static int
3397 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3398 const struct alloc_context *ac)
3400 struct reclaim_state reclaim_state;
3401 int progress;
3403 cond_resched();
3405 /* We now go into synchronous reclaim */
3406 cpuset_memory_pressure_bump();
3407 current->flags |= PF_MEMALLOC;
3408 lockdep_set_current_reclaim_state(gfp_mask);
3409 reclaim_state.reclaimed_slab = 0;
3410 current->reclaim_state = &reclaim_state;
3412 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3413 ac->nodemask);
3415 current->reclaim_state = NULL;
3416 lockdep_clear_current_reclaim_state();
3417 current->flags &= ~PF_MEMALLOC;
3419 cond_resched();
3421 return progress;
3424 /* The really slow allocator path where we enter direct reclaim */
3425 static inline struct page *
3426 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3427 unsigned int alloc_flags, const struct alloc_context *ac,
3428 unsigned long *did_some_progress)
3430 struct page *page = NULL;
3431 bool drained = false;
3433 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3434 if (unlikely(!(*did_some_progress)))
3435 return NULL;
3437 retry:
3438 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3441 * If an allocation failed after direct reclaim, it could be because
3442 * pages are pinned on the per-cpu lists or in high alloc reserves.
3443 * Shrink them them and try again
3445 if (!page && !drained) {
3446 unreserve_highatomic_pageblock(ac, false);
3447 drain_all_pages(NULL);
3448 drained = true;
3449 goto retry;
3452 return page;
3455 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3457 struct zoneref *z;
3458 struct zone *zone;
3459 pg_data_t *last_pgdat = NULL;
3461 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3462 ac->high_zoneidx, ac->nodemask) {
3463 if (last_pgdat != zone->zone_pgdat)
3464 wakeup_kswapd(zone, order, ac->high_zoneidx);
3465 last_pgdat = zone->zone_pgdat;
3469 static inline unsigned int
3470 gfp_to_alloc_flags(gfp_t gfp_mask)
3472 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3474 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3475 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3478 * The caller may dip into page reserves a bit more if the caller
3479 * cannot run direct reclaim, or if the caller has realtime scheduling
3480 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3481 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3483 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3485 if (gfp_mask & __GFP_ATOMIC) {
3487 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3488 * if it can't schedule.
3490 if (!(gfp_mask & __GFP_NOMEMALLOC))
3491 alloc_flags |= ALLOC_HARDER;
3493 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3494 * comment for __cpuset_node_allowed().
3496 alloc_flags &= ~ALLOC_CPUSET;
3497 } else if (unlikely(rt_task(current)) && !in_interrupt())
3498 alloc_flags |= ALLOC_HARDER;
3500 #ifdef CONFIG_CMA
3501 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3502 alloc_flags |= ALLOC_CMA;
3503 #endif
3504 return alloc_flags;
3507 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3509 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3510 return false;
3512 if (gfp_mask & __GFP_MEMALLOC)
3513 return true;
3514 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3515 return true;
3516 if (!in_interrupt() &&
3517 ((current->flags & PF_MEMALLOC) ||
3518 unlikely(test_thread_flag(TIF_MEMDIE))))
3519 return true;
3521 return false;
3525 * Maximum number of reclaim retries without any progress before OOM killer
3526 * is consider as the only way to move forward.
3528 #define MAX_RECLAIM_RETRIES 16
3531 * Checks whether it makes sense to retry the reclaim to make a forward progress
3532 * for the given allocation request.
3533 * The reclaim feedback represented by did_some_progress (any progress during
3534 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3535 * any progress in a row) is considered as well as the reclaimable pages on the
3536 * applicable zone list (with a backoff mechanism which is a function of
3537 * no_progress_loops).
3539 * Returns true if a retry is viable or false to enter the oom path.
3541 static inline bool
3542 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3543 struct alloc_context *ac, int alloc_flags,
3544 bool did_some_progress, int *no_progress_loops)
3546 struct zone *zone;
3547 struct zoneref *z;
3550 * Costly allocations might have made a progress but this doesn't mean
3551 * their order will become available due to high fragmentation so
3552 * always increment the no progress counter for them
3554 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3555 *no_progress_loops = 0;
3556 else
3557 (*no_progress_loops)++;
3560 * Make sure we converge to OOM if we cannot make any progress
3561 * several times in the row.
3563 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3564 /* Before OOM, exhaust highatomic_reserve */
3565 return unreserve_highatomic_pageblock(ac, true);
3569 * Keep reclaiming pages while there is a chance this will lead
3570 * somewhere. If none of the target zones can satisfy our allocation
3571 * request even if all reclaimable pages are considered then we are
3572 * screwed and have to go OOM.
3574 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3575 ac->nodemask) {
3576 unsigned long available;
3577 unsigned long reclaimable;
3578 unsigned long min_wmark = min_wmark_pages(zone);
3579 bool wmark;
3581 available = reclaimable = zone_reclaimable_pages(zone);
3582 available -= DIV_ROUND_UP((*no_progress_loops) * available,
3583 MAX_RECLAIM_RETRIES);
3584 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3587 * Would the allocation succeed if we reclaimed the whole
3588 * available?
3590 wmark = __zone_watermark_ok(zone, order, min_wmark,
3591 ac_classzone_idx(ac), alloc_flags, available);
3592 trace_reclaim_retry_zone(z, order, reclaimable,
3593 available, min_wmark, *no_progress_loops, wmark);
3594 if (wmark) {
3596 * If we didn't make any progress and have a lot of
3597 * dirty + writeback pages then we should wait for
3598 * an IO to complete to slow down the reclaim and
3599 * prevent from pre mature OOM
3601 if (!did_some_progress) {
3602 unsigned long write_pending;
3604 write_pending = zone_page_state_snapshot(zone,
3605 NR_ZONE_WRITE_PENDING);
3607 if (2 * write_pending > reclaimable) {
3608 congestion_wait(BLK_RW_ASYNC, HZ/10);
3609 return true;
3614 * Memory allocation/reclaim might be called from a WQ
3615 * context and the current implementation of the WQ
3616 * concurrency control doesn't recognize that
3617 * a particular WQ is congested if the worker thread is
3618 * looping without ever sleeping. Therefore we have to
3619 * do a short sleep here rather than calling
3620 * cond_resched().
3622 if (current->flags & PF_WQ_WORKER)
3623 schedule_timeout_uninterruptible(1);
3624 else
3625 cond_resched();
3627 return true;
3631 return false;
3634 static inline struct page *
3635 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3636 struct alloc_context *ac)
3638 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3639 struct page *page = NULL;
3640 unsigned int alloc_flags;
3641 unsigned long did_some_progress;
3642 enum compact_priority compact_priority;
3643 enum compact_result compact_result;
3644 int compaction_retries;
3645 int no_progress_loops;
3646 unsigned long alloc_start = jiffies;
3647 unsigned int stall_timeout = 10 * HZ;
3648 unsigned int cpuset_mems_cookie;
3651 * In the slowpath, we sanity check order to avoid ever trying to
3652 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3653 * be using allocators in order of preference for an area that is
3654 * too large.
3656 if (order >= MAX_ORDER) {
3657 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3658 return NULL;
3662 * We also sanity check to catch abuse of atomic reserves being used by
3663 * callers that are not in atomic context.
3665 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3666 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3667 gfp_mask &= ~__GFP_ATOMIC;
3669 retry_cpuset:
3670 compaction_retries = 0;
3671 no_progress_loops = 0;
3672 compact_priority = DEF_COMPACT_PRIORITY;
3673 cpuset_mems_cookie = read_mems_allowed_begin();
3676 * The fast path uses conservative alloc_flags to succeed only until
3677 * kswapd needs to be woken up, and to avoid the cost of setting up
3678 * alloc_flags precisely. So we do that now.
3680 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3683 * We need to recalculate the starting point for the zonelist iterator
3684 * because we might have used different nodemask in the fast path, or
3685 * there was a cpuset modification and we are retrying - otherwise we
3686 * could end up iterating over non-eligible zones endlessly.
3688 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3689 ac->high_zoneidx, ac->nodemask);
3690 if (!ac->preferred_zoneref->zone)
3691 goto nopage;
3693 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3694 wake_all_kswapds(order, ac);
3697 * The adjusted alloc_flags might result in immediate success, so try
3698 * that first
3700 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3701 if (page)
3702 goto got_pg;
3705 * For costly allocations, try direct compaction first, as it's likely
3706 * that we have enough base pages and don't need to reclaim. Don't try
3707 * that for allocations that are allowed to ignore watermarks, as the
3708 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3710 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3711 !gfp_pfmemalloc_allowed(gfp_mask)) {
3712 page = __alloc_pages_direct_compact(gfp_mask, order,
3713 alloc_flags, ac,
3714 INIT_COMPACT_PRIORITY,
3715 &compact_result);
3716 if (page)
3717 goto got_pg;
3720 * Checks for costly allocations with __GFP_NORETRY, which
3721 * includes THP page fault allocations
3723 if (gfp_mask & __GFP_NORETRY) {
3725 * If compaction is deferred for high-order allocations,
3726 * it is because sync compaction recently failed. If
3727 * this is the case and the caller requested a THP
3728 * allocation, we do not want to heavily disrupt the
3729 * system, so we fail the allocation instead of entering
3730 * direct reclaim.
3732 if (compact_result == COMPACT_DEFERRED)
3733 goto nopage;
3736 * Looks like reclaim/compaction is worth trying, but
3737 * sync compaction could be very expensive, so keep
3738 * using async compaction.
3740 compact_priority = INIT_COMPACT_PRIORITY;
3744 retry:
3745 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3746 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3747 wake_all_kswapds(order, ac);
3749 if (gfp_pfmemalloc_allowed(gfp_mask))
3750 alloc_flags = ALLOC_NO_WATERMARKS;
3753 * Reset the zonelist iterators if memory policies can be ignored.
3754 * These allocations are high priority and system rather than user
3755 * orientated.
3757 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3758 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3759 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3760 ac->high_zoneidx, ac->nodemask);
3763 /* Attempt with potentially adjusted zonelist and alloc_flags */
3764 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3765 if (page)
3766 goto got_pg;
3768 /* Caller is not willing to reclaim, we can't balance anything */
3769 if (!can_direct_reclaim)
3770 goto nopage;
3772 /* Make sure we know about allocations which stall for too long */
3773 if (time_after(jiffies, alloc_start + stall_timeout)) {
3774 warn_alloc(gfp_mask, ac->nodemask,
3775 "page allocation stalls for %ums, order:%u",
3776 jiffies_to_msecs(jiffies-alloc_start), order);
3777 stall_timeout += 10 * HZ;
3780 /* Avoid recursion of direct reclaim */
3781 if (current->flags & PF_MEMALLOC)
3782 goto nopage;
3784 /* Try direct reclaim and then allocating */
3785 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3786 &did_some_progress);
3787 if (page)
3788 goto got_pg;
3790 /* Try direct compaction and then allocating */
3791 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3792 compact_priority, &compact_result);
3793 if (page)
3794 goto got_pg;
3796 /* Do not loop if specifically requested */
3797 if (gfp_mask & __GFP_NORETRY)
3798 goto nopage;
3801 * Do not retry costly high order allocations unless they are
3802 * __GFP_REPEAT
3804 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3805 goto nopage;
3807 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3808 did_some_progress > 0, &no_progress_loops))
3809 goto retry;
3812 * It doesn't make any sense to retry for the compaction if the order-0
3813 * reclaim is not able to make any progress because the current
3814 * implementation of the compaction depends on the sufficient amount
3815 * of free memory (see __compaction_suitable)
3817 if (did_some_progress > 0 &&
3818 should_compact_retry(ac, order, alloc_flags,
3819 compact_result, &compact_priority,
3820 &compaction_retries))
3821 goto retry;
3824 * It's possible we raced with cpuset update so the OOM would be
3825 * premature (see below the nopage: label for full explanation).
3827 if (read_mems_allowed_retry(cpuset_mems_cookie))
3828 goto retry_cpuset;
3830 /* Reclaim has failed us, start killing things */
3831 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3832 if (page)
3833 goto got_pg;
3835 /* Avoid allocations with no watermarks from looping endlessly */
3836 if (test_thread_flag(TIF_MEMDIE))
3837 goto nopage;
3839 /* Retry as long as the OOM killer is making progress */
3840 if (did_some_progress) {
3841 no_progress_loops = 0;
3842 goto retry;
3845 nopage:
3847 * When updating a task's mems_allowed or mempolicy nodemask, it is
3848 * possible to race with parallel threads in such a way that our
3849 * allocation can fail while the mask is being updated. If we are about
3850 * to fail, check if the cpuset changed during allocation and if so,
3851 * retry.
3853 if (read_mems_allowed_retry(cpuset_mems_cookie))
3854 goto retry_cpuset;
3857 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3858 * we always retry
3860 if (gfp_mask & __GFP_NOFAIL) {
3862 * All existing users of the __GFP_NOFAIL are blockable, so warn
3863 * of any new users that actually require GFP_NOWAIT
3865 if (WARN_ON_ONCE(!can_direct_reclaim))
3866 goto fail;
3869 * PF_MEMALLOC request from this context is rather bizarre
3870 * because we cannot reclaim anything and only can loop waiting
3871 * for somebody to do a work for us
3873 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3876 * non failing costly orders are a hard requirement which we
3877 * are not prepared for much so let's warn about these users
3878 * so that we can identify them and convert them to something
3879 * else.
3881 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3884 * Help non-failing allocations by giving them access to memory
3885 * reserves but do not use ALLOC_NO_WATERMARKS because this
3886 * could deplete whole memory reserves which would just make
3887 * the situation worse
3889 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3890 if (page)
3891 goto got_pg;
3893 cond_resched();
3894 goto retry;
3896 fail:
3897 warn_alloc(gfp_mask, ac->nodemask,
3898 "page allocation failure: order:%u", order);
3899 got_pg:
3900 return page;
3903 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3904 struct zonelist *zonelist, nodemask_t *nodemask,
3905 struct alloc_context *ac, gfp_t *alloc_mask,
3906 unsigned int *alloc_flags)
3908 ac->high_zoneidx = gfp_zone(gfp_mask);
3909 ac->zonelist = zonelist;
3910 ac->nodemask = nodemask;
3911 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3913 if (cpusets_enabled()) {
3914 *alloc_mask |= __GFP_HARDWALL;
3915 if (!ac->nodemask)
3916 ac->nodemask = &cpuset_current_mems_allowed;
3917 else
3918 *alloc_flags |= ALLOC_CPUSET;
3921 lockdep_trace_alloc(gfp_mask);
3923 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3925 if (should_fail_alloc_page(gfp_mask, order))
3926 return false;
3928 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3929 *alloc_flags |= ALLOC_CMA;
3931 return true;
3934 /* Determine whether to spread dirty pages and what the first usable zone */
3935 static inline void finalise_ac(gfp_t gfp_mask,
3936 unsigned int order, struct alloc_context *ac)
3938 /* Dirty zone balancing only done in the fast path */
3939 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3942 * The preferred zone is used for statistics but crucially it is
3943 * also used as the starting point for the zonelist iterator. It
3944 * may get reset for allocations that ignore memory policies.
3946 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3947 ac->high_zoneidx, ac->nodemask);
3951 * This is the 'heart' of the zoned buddy allocator.
3953 struct page *
3954 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3955 struct zonelist *zonelist, nodemask_t *nodemask)
3957 struct page *page;
3958 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3959 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3960 struct alloc_context ac = { };
3962 gfp_mask &= gfp_allowed_mask;
3963 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
3964 return NULL;
3966 finalise_ac(gfp_mask, order, &ac);
3968 /* First allocation attempt */
3969 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3970 if (likely(page))
3971 goto out;
3974 * Runtime PM, block IO and its error handling path can deadlock
3975 * because I/O on the device might not complete.
3977 alloc_mask = memalloc_noio_flags(gfp_mask);
3978 ac.spread_dirty_pages = false;
3981 * Restore the original nodemask if it was potentially replaced with
3982 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3984 if (unlikely(ac.nodemask != nodemask))
3985 ac.nodemask = nodemask;
3987 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3989 out:
3990 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3991 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3992 __free_pages(page, order);
3993 page = NULL;
3996 if (kmemcheck_enabled && page)
3997 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3999 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4001 return page;
4003 EXPORT_SYMBOL(__alloc_pages_nodemask);
4006 * Common helper functions.
4008 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4010 struct page *page;
4013 * __get_free_pages() returns a 32-bit address, which cannot represent
4014 * a highmem page
4016 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4018 page = alloc_pages(gfp_mask, order);
4019 if (!page)
4020 return 0;
4021 return (unsigned long) page_address(page);
4023 EXPORT_SYMBOL(__get_free_pages);
4025 unsigned long get_zeroed_page(gfp_t gfp_mask)
4027 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4029 EXPORT_SYMBOL(get_zeroed_page);
4031 void __free_pages(struct page *page, unsigned int order)
4033 if (put_page_testzero(page)) {
4034 if (order == 0)
4035 free_hot_cold_page(page, false);
4036 else
4037 __free_pages_ok(page, order);
4041 EXPORT_SYMBOL(__free_pages);
4043 void free_pages(unsigned long addr, unsigned int order)
4045 if (addr != 0) {
4046 VM_BUG_ON(!virt_addr_valid((void *)addr));
4047 __free_pages(virt_to_page((void *)addr), order);
4051 EXPORT_SYMBOL(free_pages);
4054 * Page Fragment:
4055 * An arbitrary-length arbitrary-offset area of memory which resides
4056 * within a 0 or higher order page. Multiple fragments within that page
4057 * are individually refcounted, in the page's reference counter.
4059 * The page_frag functions below provide a simple allocation framework for
4060 * page fragments. This is used by the network stack and network device
4061 * drivers to provide a backing region of memory for use as either an
4062 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4064 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4065 gfp_t gfp_mask)
4067 struct page *page = NULL;
4068 gfp_t gfp = gfp_mask;
4070 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4071 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4072 __GFP_NOMEMALLOC;
4073 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4074 PAGE_FRAG_CACHE_MAX_ORDER);
4075 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4076 #endif
4077 if (unlikely(!page))
4078 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4080 nc->va = page ? page_address(page) : NULL;
4082 return page;
4085 void __page_frag_cache_drain(struct page *page, unsigned int count)
4087 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4089 if (page_ref_sub_and_test(page, count)) {
4090 unsigned int order = compound_order(page);
4092 if (order == 0)
4093 free_hot_cold_page(page, false);
4094 else
4095 __free_pages_ok(page, order);
4098 EXPORT_SYMBOL(__page_frag_cache_drain);
4100 void *page_frag_alloc(struct page_frag_cache *nc,
4101 unsigned int fragsz, gfp_t gfp_mask)
4103 unsigned int size = PAGE_SIZE;
4104 struct page *page;
4105 int offset;
4107 if (unlikely(!nc->va)) {
4108 refill:
4109 page = __page_frag_cache_refill(nc, gfp_mask);
4110 if (!page)
4111 return NULL;
4113 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4114 /* if size can vary use size else just use PAGE_SIZE */
4115 size = nc->size;
4116 #endif
4117 /* Even if we own the page, we do not use atomic_set().
4118 * This would break get_page_unless_zero() users.
4120 page_ref_add(page, size - 1);
4122 /* reset page count bias and offset to start of new frag */
4123 nc->pfmemalloc = page_is_pfmemalloc(page);
4124 nc->pagecnt_bias = size;
4125 nc->offset = size;
4128 offset = nc->offset - fragsz;
4129 if (unlikely(offset < 0)) {
4130 page = virt_to_page(nc->va);
4132 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4133 goto refill;
4135 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4136 /* if size can vary use size else just use PAGE_SIZE */
4137 size = nc->size;
4138 #endif
4139 /* OK, page count is 0, we can safely set it */
4140 set_page_count(page, size);
4142 /* reset page count bias and offset to start of new frag */
4143 nc->pagecnt_bias = size;
4144 offset = size - fragsz;
4147 nc->pagecnt_bias--;
4148 nc->offset = offset;
4150 return nc->va + offset;
4152 EXPORT_SYMBOL(page_frag_alloc);
4155 * Frees a page fragment allocated out of either a compound or order 0 page.
4157 void page_frag_free(void *addr)
4159 struct page *page = virt_to_head_page(addr);
4161 if (unlikely(put_page_testzero(page)))
4162 __free_pages_ok(page, compound_order(page));
4164 EXPORT_SYMBOL(page_frag_free);
4166 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4167 size_t size)
4169 if (addr) {
4170 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4171 unsigned long used = addr + PAGE_ALIGN(size);
4173 split_page(virt_to_page((void *)addr), order);
4174 while (used < alloc_end) {
4175 free_page(used);
4176 used += PAGE_SIZE;
4179 return (void *)addr;
4183 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4184 * @size: the number of bytes to allocate
4185 * @gfp_mask: GFP flags for the allocation
4187 * This function is similar to alloc_pages(), except that it allocates the
4188 * minimum number of pages to satisfy the request. alloc_pages() can only
4189 * allocate memory in power-of-two pages.
4191 * This function is also limited by MAX_ORDER.
4193 * Memory allocated by this function must be released by free_pages_exact().
4195 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4197 unsigned int order = get_order(size);
4198 unsigned long addr;
4200 addr = __get_free_pages(gfp_mask, order);
4201 return make_alloc_exact(addr, order, size);
4203 EXPORT_SYMBOL(alloc_pages_exact);
4206 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4207 * pages on a node.
4208 * @nid: the preferred node ID where memory should be allocated
4209 * @size: the number of bytes to allocate
4210 * @gfp_mask: GFP flags for the allocation
4212 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4213 * back.
4215 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4217 unsigned int order = get_order(size);
4218 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4219 if (!p)
4220 return NULL;
4221 return make_alloc_exact((unsigned long)page_address(p), order, size);
4225 * free_pages_exact - release memory allocated via alloc_pages_exact()
4226 * @virt: the value returned by alloc_pages_exact.
4227 * @size: size of allocation, same value as passed to alloc_pages_exact().
4229 * Release the memory allocated by a previous call to alloc_pages_exact.
4231 void free_pages_exact(void *virt, size_t size)
4233 unsigned long addr = (unsigned long)virt;
4234 unsigned long end = addr + PAGE_ALIGN(size);
4236 while (addr < end) {
4237 free_page(addr);
4238 addr += PAGE_SIZE;
4241 EXPORT_SYMBOL(free_pages_exact);
4244 * nr_free_zone_pages - count number of pages beyond high watermark
4245 * @offset: The zone index of the highest zone
4247 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4248 * high watermark within all zones at or below a given zone index. For each
4249 * zone, the number of pages is calculated as:
4250 * managed_pages - high_pages
4252 static unsigned long nr_free_zone_pages(int offset)
4254 struct zoneref *z;
4255 struct zone *zone;
4257 /* Just pick one node, since fallback list is circular */
4258 unsigned long sum = 0;
4260 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4262 for_each_zone_zonelist(zone, z, zonelist, offset) {
4263 unsigned long size = zone->managed_pages;
4264 unsigned long high = high_wmark_pages(zone);
4265 if (size > high)
4266 sum += size - high;
4269 return sum;
4273 * nr_free_buffer_pages - count number of pages beyond high watermark
4275 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4276 * watermark within ZONE_DMA and ZONE_NORMAL.
4278 unsigned long nr_free_buffer_pages(void)
4280 return nr_free_zone_pages(gfp_zone(GFP_USER));
4282 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4285 * nr_free_pagecache_pages - count number of pages beyond high watermark
4287 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4288 * high watermark within all zones.
4290 unsigned long nr_free_pagecache_pages(void)
4292 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4295 static inline void show_node(struct zone *zone)
4297 if (IS_ENABLED(CONFIG_NUMA))
4298 printk("Node %d ", zone_to_nid(zone));
4301 long si_mem_available(void)
4303 long available;
4304 unsigned long pagecache;
4305 unsigned long wmark_low = 0;
4306 unsigned long pages[NR_LRU_LISTS];
4307 struct zone *zone;
4308 int lru;
4310 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4311 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4313 for_each_zone(zone)
4314 wmark_low += zone->watermark[WMARK_LOW];
4317 * Estimate the amount of memory available for userspace allocations,
4318 * without causing swapping.
4320 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4323 * Not all the page cache can be freed, otherwise the system will
4324 * start swapping. Assume at least half of the page cache, or the
4325 * low watermark worth of cache, needs to stay.
4327 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4328 pagecache -= min(pagecache / 2, wmark_low);
4329 available += pagecache;
4332 * Part of the reclaimable slab consists of items that are in use,
4333 * and cannot be freed. Cap this estimate at the low watermark.
4335 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4336 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4338 if (available < 0)
4339 available = 0;
4340 return available;
4342 EXPORT_SYMBOL_GPL(si_mem_available);
4344 void si_meminfo(struct sysinfo *val)
4346 val->totalram = totalram_pages;
4347 val->sharedram = global_node_page_state(NR_SHMEM);
4348 val->freeram = global_page_state(NR_FREE_PAGES);
4349 val->bufferram = nr_blockdev_pages();
4350 val->totalhigh = totalhigh_pages;
4351 val->freehigh = nr_free_highpages();
4352 val->mem_unit = PAGE_SIZE;
4355 EXPORT_SYMBOL(si_meminfo);
4357 #ifdef CONFIG_NUMA
4358 void si_meminfo_node(struct sysinfo *val, int nid)
4360 int zone_type; /* needs to be signed */
4361 unsigned long managed_pages = 0;
4362 unsigned long managed_highpages = 0;
4363 unsigned long free_highpages = 0;
4364 pg_data_t *pgdat = NODE_DATA(nid);
4366 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4367 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4368 val->totalram = managed_pages;
4369 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4370 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4371 #ifdef CONFIG_HIGHMEM
4372 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4373 struct zone *zone = &pgdat->node_zones[zone_type];
4375 if (is_highmem(zone)) {
4376 managed_highpages += zone->managed_pages;
4377 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4380 val->totalhigh = managed_highpages;
4381 val->freehigh = free_highpages;
4382 #else
4383 val->totalhigh = managed_highpages;
4384 val->freehigh = free_highpages;
4385 #endif
4386 val->mem_unit = PAGE_SIZE;
4388 #endif
4391 * Determine whether the node should be displayed or not, depending on whether
4392 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4394 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4396 if (!(flags & SHOW_MEM_FILTER_NODES))
4397 return false;
4400 * no node mask - aka implicit memory numa policy. Do not bother with
4401 * the synchronization - read_mems_allowed_begin - because we do not
4402 * have to be precise here.
4404 if (!nodemask)
4405 nodemask = &cpuset_current_mems_allowed;
4407 return !node_isset(nid, *nodemask);
4410 #define K(x) ((x) << (PAGE_SHIFT-10))
4412 static void show_migration_types(unsigned char type)
4414 static const char types[MIGRATE_TYPES] = {
4415 [MIGRATE_UNMOVABLE] = 'U',
4416 [MIGRATE_MOVABLE] = 'M',
4417 [MIGRATE_RECLAIMABLE] = 'E',
4418 [MIGRATE_HIGHATOMIC] = 'H',
4419 #ifdef CONFIG_CMA
4420 [MIGRATE_CMA] = 'C',
4421 #endif
4422 #ifdef CONFIG_MEMORY_ISOLATION
4423 [MIGRATE_ISOLATE] = 'I',
4424 #endif
4426 char tmp[MIGRATE_TYPES + 1];
4427 char *p = tmp;
4428 int i;
4430 for (i = 0; i < MIGRATE_TYPES; i++) {
4431 if (type & (1 << i))
4432 *p++ = types[i];
4435 *p = '\0';
4436 printk(KERN_CONT "(%s) ", tmp);
4440 * Show free area list (used inside shift_scroll-lock stuff)
4441 * We also calculate the percentage fragmentation. We do this by counting the
4442 * memory on each free list with the exception of the first item on the list.
4444 * Bits in @filter:
4445 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4446 * cpuset.
4448 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4450 unsigned long free_pcp = 0;
4451 int cpu;
4452 struct zone *zone;
4453 pg_data_t *pgdat;
4455 for_each_populated_zone(zone) {
4456 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4457 continue;
4459 for_each_online_cpu(cpu)
4460 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4463 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4464 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4465 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4466 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4467 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4468 " free:%lu free_pcp:%lu free_cma:%lu\n",
4469 global_node_page_state(NR_ACTIVE_ANON),
4470 global_node_page_state(NR_INACTIVE_ANON),
4471 global_node_page_state(NR_ISOLATED_ANON),
4472 global_node_page_state(NR_ACTIVE_FILE),
4473 global_node_page_state(NR_INACTIVE_FILE),
4474 global_node_page_state(NR_ISOLATED_FILE),
4475 global_node_page_state(NR_UNEVICTABLE),
4476 global_node_page_state(NR_FILE_DIRTY),
4477 global_node_page_state(NR_WRITEBACK),
4478 global_node_page_state(NR_UNSTABLE_NFS),
4479 global_page_state(NR_SLAB_RECLAIMABLE),
4480 global_page_state(NR_SLAB_UNRECLAIMABLE),
4481 global_node_page_state(NR_FILE_MAPPED),
4482 global_node_page_state(NR_SHMEM),
4483 global_page_state(NR_PAGETABLE),
4484 global_page_state(NR_BOUNCE),
4485 global_page_state(NR_FREE_PAGES),
4486 free_pcp,
4487 global_page_state(NR_FREE_CMA_PAGES));
4489 for_each_online_pgdat(pgdat) {
4490 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4491 continue;
4493 printk("Node %d"
4494 " active_anon:%lukB"
4495 " inactive_anon:%lukB"
4496 " active_file:%lukB"
4497 " inactive_file:%lukB"
4498 " unevictable:%lukB"
4499 " isolated(anon):%lukB"
4500 " isolated(file):%lukB"
4501 " mapped:%lukB"
4502 " dirty:%lukB"
4503 " writeback:%lukB"
4504 " shmem:%lukB"
4505 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4506 " shmem_thp: %lukB"
4507 " shmem_pmdmapped: %lukB"
4508 " anon_thp: %lukB"
4509 #endif
4510 " writeback_tmp:%lukB"
4511 " unstable:%lukB"
4512 " pages_scanned:%lu"
4513 " all_unreclaimable? %s"
4514 "\n",
4515 pgdat->node_id,
4516 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4517 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4518 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4519 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4520 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4521 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4522 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4523 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4524 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4525 K(node_page_state(pgdat, NR_WRITEBACK)),
4526 K(node_page_state(pgdat, NR_SHMEM)),
4527 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4528 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4529 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4530 * HPAGE_PMD_NR),
4531 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4532 #endif
4533 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4534 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4535 node_page_state(pgdat, NR_PAGES_SCANNED),
4536 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4539 for_each_populated_zone(zone) {
4540 int i;
4542 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4543 continue;
4545 free_pcp = 0;
4546 for_each_online_cpu(cpu)
4547 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4549 show_node(zone);
4550 printk(KERN_CONT
4551 "%s"
4552 " free:%lukB"
4553 " min:%lukB"
4554 " low:%lukB"
4555 " high:%lukB"
4556 " active_anon:%lukB"
4557 " inactive_anon:%lukB"
4558 " active_file:%lukB"
4559 " inactive_file:%lukB"
4560 " unevictable:%lukB"
4561 " writepending:%lukB"
4562 " present:%lukB"
4563 " managed:%lukB"
4564 " mlocked:%lukB"
4565 " slab_reclaimable:%lukB"
4566 " slab_unreclaimable:%lukB"
4567 " kernel_stack:%lukB"
4568 " pagetables:%lukB"
4569 " bounce:%lukB"
4570 " free_pcp:%lukB"
4571 " local_pcp:%ukB"
4572 " free_cma:%lukB"
4573 "\n",
4574 zone->name,
4575 K(zone_page_state(zone, NR_FREE_PAGES)),
4576 K(min_wmark_pages(zone)),
4577 K(low_wmark_pages(zone)),
4578 K(high_wmark_pages(zone)),
4579 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4580 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4581 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4582 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4583 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4584 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4585 K(zone->present_pages),
4586 K(zone->managed_pages),
4587 K(zone_page_state(zone, NR_MLOCK)),
4588 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4589 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4590 zone_page_state(zone, NR_KERNEL_STACK_KB),
4591 K(zone_page_state(zone, NR_PAGETABLE)),
4592 K(zone_page_state(zone, NR_BOUNCE)),
4593 K(free_pcp),
4594 K(this_cpu_read(zone->pageset->pcp.count)),
4595 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4596 printk("lowmem_reserve[]:");
4597 for (i = 0; i < MAX_NR_ZONES; i++)
4598 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4599 printk(KERN_CONT "\n");
4602 for_each_populated_zone(zone) {
4603 unsigned int order;
4604 unsigned long nr[MAX_ORDER], flags, total = 0;
4605 unsigned char types[MAX_ORDER];
4607 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4608 continue;
4609 show_node(zone);
4610 printk(KERN_CONT "%s: ", zone->name);
4612 spin_lock_irqsave(&zone->lock, flags);
4613 for (order = 0; order < MAX_ORDER; order++) {
4614 struct free_area *area = &zone->free_area[order];
4615 int type;
4617 nr[order] = area->nr_free;
4618 total += nr[order] << order;
4620 types[order] = 0;
4621 for (type = 0; type < MIGRATE_TYPES; type++) {
4622 if (!list_empty(&area->free_list[type]))
4623 types[order] |= 1 << type;
4626 spin_unlock_irqrestore(&zone->lock, flags);
4627 for (order = 0; order < MAX_ORDER; order++) {
4628 printk(KERN_CONT "%lu*%lukB ",
4629 nr[order], K(1UL) << order);
4630 if (nr[order])
4631 show_migration_types(types[order]);
4633 printk(KERN_CONT "= %lukB\n", K(total));
4636 hugetlb_show_meminfo();
4638 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4640 show_swap_cache_info();
4643 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4645 zoneref->zone = zone;
4646 zoneref->zone_idx = zone_idx(zone);
4650 * Builds allocation fallback zone lists.
4652 * Add all populated zones of a node to the zonelist.
4654 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4655 int nr_zones)
4657 struct zone *zone;
4658 enum zone_type zone_type = MAX_NR_ZONES;
4660 do {
4661 zone_type--;
4662 zone = pgdat->node_zones + zone_type;
4663 if (managed_zone(zone)) {
4664 zoneref_set_zone(zone,
4665 &zonelist->_zonerefs[nr_zones++]);
4666 check_highest_zone(zone_type);
4668 } while (zone_type);
4670 return nr_zones;
4675 * zonelist_order:
4676 * 0 = automatic detection of better ordering.
4677 * 1 = order by ([node] distance, -zonetype)
4678 * 2 = order by (-zonetype, [node] distance)
4680 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4681 * the same zonelist. So only NUMA can configure this param.
4683 #define ZONELIST_ORDER_DEFAULT 0
4684 #define ZONELIST_ORDER_NODE 1
4685 #define ZONELIST_ORDER_ZONE 2
4687 /* zonelist order in the kernel.
4688 * set_zonelist_order() will set this to NODE or ZONE.
4690 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4691 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4694 #ifdef CONFIG_NUMA
4695 /* The value user specified ....changed by config */
4696 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4697 /* string for sysctl */
4698 #define NUMA_ZONELIST_ORDER_LEN 16
4699 char numa_zonelist_order[16] = "default";
4702 * interface for configure zonelist ordering.
4703 * command line option "numa_zonelist_order"
4704 * = "[dD]efault - default, automatic configuration.
4705 * = "[nN]ode - order by node locality, then by zone within node
4706 * = "[zZ]one - order by zone, then by locality within zone
4709 static int __parse_numa_zonelist_order(char *s)
4711 if (*s == 'd' || *s == 'D') {
4712 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4713 } else if (*s == 'n' || *s == 'N') {
4714 user_zonelist_order = ZONELIST_ORDER_NODE;
4715 } else if (*s == 'z' || *s == 'Z') {
4716 user_zonelist_order = ZONELIST_ORDER_ZONE;
4717 } else {
4718 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4719 return -EINVAL;
4721 return 0;
4724 static __init int setup_numa_zonelist_order(char *s)
4726 int ret;
4728 if (!s)
4729 return 0;
4731 ret = __parse_numa_zonelist_order(s);
4732 if (ret == 0)
4733 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4735 return ret;
4737 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4740 * sysctl handler for numa_zonelist_order
4742 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4743 void __user *buffer, size_t *length,
4744 loff_t *ppos)
4746 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4747 int ret;
4748 static DEFINE_MUTEX(zl_order_mutex);
4750 mutex_lock(&zl_order_mutex);
4751 if (write) {
4752 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4753 ret = -EINVAL;
4754 goto out;
4756 strcpy(saved_string, (char *)table->data);
4758 ret = proc_dostring(table, write, buffer, length, ppos);
4759 if (ret)
4760 goto out;
4761 if (write) {
4762 int oldval = user_zonelist_order;
4764 ret = __parse_numa_zonelist_order((char *)table->data);
4765 if (ret) {
4767 * bogus value. restore saved string
4769 strncpy((char *)table->data, saved_string,
4770 NUMA_ZONELIST_ORDER_LEN);
4771 user_zonelist_order = oldval;
4772 } else if (oldval != user_zonelist_order) {
4773 mutex_lock(&zonelists_mutex);
4774 build_all_zonelists(NULL, NULL);
4775 mutex_unlock(&zonelists_mutex);
4778 out:
4779 mutex_unlock(&zl_order_mutex);
4780 return ret;
4784 #define MAX_NODE_LOAD (nr_online_nodes)
4785 static int node_load[MAX_NUMNODES];
4788 * find_next_best_node - find the next node that should appear in a given node's fallback list
4789 * @node: node whose fallback list we're appending
4790 * @used_node_mask: nodemask_t of already used nodes
4792 * We use a number of factors to determine which is the next node that should
4793 * appear on a given node's fallback list. The node should not have appeared
4794 * already in @node's fallback list, and it should be the next closest node
4795 * according to the distance array (which contains arbitrary distance values
4796 * from each node to each node in the system), and should also prefer nodes
4797 * with no CPUs, since presumably they'll have very little allocation pressure
4798 * on them otherwise.
4799 * It returns -1 if no node is found.
4801 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4803 int n, val;
4804 int min_val = INT_MAX;
4805 int best_node = NUMA_NO_NODE;
4806 const struct cpumask *tmp = cpumask_of_node(0);
4808 /* Use the local node if we haven't already */
4809 if (!node_isset(node, *used_node_mask)) {
4810 node_set(node, *used_node_mask);
4811 return node;
4814 for_each_node_state(n, N_MEMORY) {
4816 /* Don't want a node to appear more than once */
4817 if (node_isset(n, *used_node_mask))
4818 continue;
4820 /* Use the distance array to find the distance */
4821 val = node_distance(node, n);
4823 /* Penalize nodes under us ("prefer the next node") */
4824 val += (n < node);
4826 /* Give preference to headless and unused nodes */
4827 tmp = cpumask_of_node(n);
4828 if (!cpumask_empty(tmp))
4829 val += PENALTY_FOR_NODE_WITH_CPUS;
4831 /* Slight preference for less loaded node */
4832 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4833 val += node_load[n];
4835 if (val < min_val) {
4836 min_val = val;
4837 best_node = n;
4841 if (best_node >= 0)
4842 node_set(best_node, *used_node_mask);
4844 return best_node;
4849 * Build zonelists ordered by node and zones within node.
4850 * This results in maximum locality--normal zone overflows into local
4851 * DMA zone, if any--but risks exhausting DMA zone.
4853 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4855 int j;
4856 struct zonelist *zonelist;
4858 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4859 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4861 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4862 zonelist->_zonerefs[j].zone = NULL;
4863 zonelist->_zonerefs[j].zone_idx = 0;
4867 * Build gfp_thisnode zonelists
4869 static void build_thisnode_zonelists(pg_data_t *pgdat)
4871 int j;
4872 struct zonelist *zonelist;
4874 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4875 j = build_zonelists_node(pgdat, zonelist, 0);
4876 zonelist->_zonerefs[j].zone = NULL;
4877 zonelist->_zonerefs[j].zone_idx = 0;
4881 * Build zonelists ordered by zone and nodes within zones.
4882 * This results in conserving DMA zone[s] until all Normal memory is
4883 * exhausted, but results in overflowing to remote node while memory
4884 * may still exist in local DMA zone.
4886 static int node_order[MAX_NUMNODES];
4888 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4890 int pos, j, node;
4891 int zone_type; /* needs to be signed */
4892 struct zone *z;
4893 struct zonelist *zonelist;
4895 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4896 pos = 0;
4897 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4898 for (j = 0; j < nr_nodes; j++) {
4899 node = node_order[j];
4900 z = &NODE_DATA(node)->node_zones[zone_type];
4901 if (managed_zone(z)) {
4902 zoneref_set_zone(z,
4903 &zonelist->_zonerefs[pos++]);
4904 check_highest_zone(zone_type);
4908 zonelist->_zonerefs[pos].zone = NULL;
4909 zonelist->_zonerefs[pos].zone_idx = 0;
4912 #if defined(CONFIG_64BIT)
4914 * Devices that require DMA32/DMA are relatively rare and do not justify a
4915 * penalty to every machine in case the specialised case applies. Default
4916 * to Node-ordering on 64-bit NUMA machines
4918 static int default_zonelist_order(void)
4920 return ZONELIST_ORDER_NODE;
4922 #else
4924 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4925 * by the kernel. If processes running on node 0 deplete the low memory zone
4926 * then reclaim will occur more frequency increasing stalls and potentially
4927 * be easier to OOM if a large percentage of the zone is under writeback or
4928 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4929 * Hence, default to zone ordering on 32-bit.
4931 static int default_zonelist_order(void)
4933 return ZONELIST_ORDER_ZONE;
4935 #endif /* CONFIG_64BIT */
4937 static void set_zonelist_order(void)
4939 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4940 current_zonelist_order = default_zonelist_order();
4941 else
4942 current_zonelist_order = user_zonelist_order;
4945 static void build_zonelists(pg_data_t *pgdat)
4947 int i, node, load;
4948 nodemask_t used_mask;
4949 int local_node, prev_node;
4950 struct zonelist *zonelist;
4951 unsigned int order = current_zonelist_order;
4953 /* initialize zonelists */
4954 for (i = 0; i < MAX_ZONELISTS; i++) {
4955 zonelist = pgdat->node_zonelists + i;
4956 zonelist->_zonerefs[0].zone = NULL;
4957 zonelist->_zonerefs[0].zone_idx = 0;
4960 /* NUMA-aware ordering of nodes */
4961 local_node = pgdat->node_id;
4962 load = nr_online_nodes;
4963 prev_node = local_node;
4964 nodes_clear(used_mask);
4966 memset(node_order, 0, sizeof(node_order));
4967 i = 0;
4969 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4971 * We don't want to pressure a particular node.
4972 * So adding penalty to the first node in same
4973 * distance group to make it round-robin.
4975 if (node_distance(local_node, node) !=
4976 node_distance(local_node, prev_node))
4977 node_load[node] = load;
4979 prev_node = node;
4980 load--;
4981 if (order == ZONELIST_ORDER_NODE)
4982 build_zonelists_in_node_order(pgdat, node);
4983 else
4984 node_order[i++] = node; /* remember order */
4987 if (order == ZONELIST_ORDER_ZONE) {
4988 /* calculate node order -- i.e., DMA last! */
4989 build_zonelists_in_zone_order(pgdat, i);
4992 build_thisnode_zonelists(pgdat);
4995 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4997 * Return node id of node used for "local" allocations.
4998 * I.e., first node id of first zone in arg node's generic zonelist.
4999 * Used for initializing percpu 'numa_mem', which is used primarily
5000 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5002 int local_memory_node(int node)
5004 struct zoneref *z;
5006 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5007 gfp_zone(GFP_KERNEL),
5008 NULL);
5009 return z->zone->node;
5011 #endif
5013 static void setup_min_unmapped_ratio(void);
5014 static void setup_min_slab_ratio(void);
5015 #else /* CONFIG_NUMA */
5017 static void set_zonelist_order(void)
5019 current_zonelist_order = ZONELIST_ORDER_ZONE;
5022 static void build_zonelists(pg_data_t *pgdat)
5024 int node, local_node;
5025 enum zone_type j;
5026 struct zonelist *zonelist;
5028 local_node = pgdat->node_id;
5030 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5031 j = build_zonelists_node(pgdat, zonelist, 0);
5034 * Now we build the zonelist so that it contains the zones
5035 * of all the other nodes.
5036 * We don't want to pressure a particular node, so when
5037 * building the zones for node N, we make sure that the
5038 * zones coming right after the local ones are those from
5039 * node N+1 (modulo N)
5041 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5042 if (!node_online(node))
5043 continue;
5044 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5046 for (node = 0; node < local_node; node++) {
5047 if (!node_online(node))
5048 continue;
5049 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5052 zonelist->_zonerefs[j].zone = NULL;
5053 zonelist->_zonerefs[j].zone_idx = 0;
5056 #endif /* CONFIG_NUMA */
5059 * Boot pageset table. One per cpu which is going to be used for all
5060 * zones and all nodes. The parameters will be set in such a way
5061 * that an item put on a list will immediately be handed over to
5062 * the buddy list. This is safe since pageset manipulation is done
5063 * with interrupts disabled.
5065 * The boot_pagesets must be kept even after bootup is complete for
5066 * unused processors and/or zones. They do play a role for bootstrapping
5067 * hotplugged processors.
5069 * zoneinfo_show() and maybe other functions do
5070 * not check if the processor is online before following the pageset pointer.
5071 * Other parts of the kernel may not check if the zone is available.
5073 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5074 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5075 static void setup_zone_pageset(struct zone *zone);
5078 * Global mutex to protect against size modification of zonelists
5079 * as well as to serialize pageset setup for the new populated zone.
5081 DEFINE_MUTEX(zonelists_mutex);
5083 /* return values int ....just for stop_machine() */
5084 static int __build_all_zonelists(void *data)
5086 int nid;
5087 int cpu;
5088 pg_data_t *self = data;
5090 #ifdef CONFIG_NUMA
5091 memset(node_load, 0, sizeof(node_load));
5092 #endif
5094 if (self && !node_online(self->node_id)) {
5095 build_zonelists(self);
5098 for_each_online_node(nid) {
5099 pg_data_t *pgdat = NODE_DATA(nid);
5101 build_zonelists(pgdat);
5105 * Initialize the boot_pagesets that are going to be used
5106 * for bootstrapping processors. The real pagesets for
5107 * each zone will be allocated later when the per cpu
5108 * allocator is available.
5110 * boot_pagesets are used also for bootstrapping offline
5111 * cpus if the system is already booted because the pagesets
5112 * are needed to initialize allocators on a specific cpu too.
5113 * F.e. the percpu allocator needs the page allocator which
5114 * needs the percpu allocator in order to allocate its pagesets
5115 * (a chicken-egg dilemma).
5117 for_each_possible_cpu(cpu) {
5118 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5120 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5122 * We now know the "local memory node" for each node--
5123 * i.e., the node of the first zone in the generic zonelist.
5124 * Set up numa_mem percpu variable for on-line cpus. During
5125 * boot, only the boot cpu should be on-line; we'll init the
5126 * secondary cpus' numa_mem as they come on-line. During
5127 * node/memory hotplug, we'll fixup all on-line cpus.
5129 if (cpu_online(cpu))
5130 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5131 #endif
5134 return 0;
5137 static noinline void __init
5138 build_all_zonelists_init(void)
5140 __build_all_zonelists(NULL);
5141 mminit_verify_zonelist();
5142 cpuset_init_current_mems_allowed();
5146 * Called with zonelists_mutex held always
5147 * unless system_state == SYSTEM_BOOTING.
5149 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5150 * [we're only called with non-NULL zone through __meminit paths] and
5151 * (2) call of __init annotated helper build_all_zonelists_init
5152 * [protected by SYSTEM_BOOTING].
5154 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5156 set_zonelist_order();
5158 if (system_state == SYSTEM_BOOTING) {
5159 build_all_zonelists_init();
5160 } else {
5161 #ifdef CONFIG_MEMORY_HOTPLUG
5162 if (zone)
5163 setup_zone_pageset(zone);
5164 #endif
5165 /* we have to stop all cpus to guarantee there is no user
5166 of zonelist */
5167 stop_machine(__build_all_zonelists, pgdat, NULL);
5168 /* cpuset refresh routine should be here */
5170 vm_total_pages = nr_free_pagecache_pages();
5172 * Disable grouping by mobility if the number of pages in the
5173 * system is too low to allow the mechanism to work. It would be
5174 * more accurate, but expensive to check per-zone. This check is
5175 * made on memory-hotadd so a system can start with mobility
5176 * disabled and enable it later
5178 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5179 page_group_by_mobility_disabled = 1;
5180 else
5181 page_group_by_mobility_disabled = 0;
5183 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5184 nr_online_nodes,
5185 zonelist_order_name[current_zonelist_order],
5186 page_group_by_mobility_disabled ? "off" : "on",
5187 vm_total_pages);
5188 #ifdef CONFIG_NUMA
5189 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5190 #endif
5194 * Initially all pages are reserved - free ones are freed
5195 * up by free_all_bootmem() once the early boot process is
5196 * done. Non-atomic initialization, single-pass.
5198 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5199 unsigned long start_pfn, enum memmap_context context)
5201 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5202 unsigned long end_pfn = start_pfn + size;
5203 pg_data_t *pgdat = NODE_DATA(nid);
5204 unsigned long pfn;
5205 unsigned long nr_initialised = 0;
5206 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5207 struct memblock_region *r = NULL, *tmp;
5208 #endif
5210 if (highest_memmap_pfn < end_pfn - 1)
5211 highest_memmap_pfn = end_pfn - 1;
5214 * Honor reservation requested by the driver for this ZONE_DEVICE
5215 * memory
5217 if (altmap && start_pfn == altmap->base_pfn)
5218 start_pfn += altmap->reserve;
5220 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5222 * There can be holes in boot-time mem_map[]s handed to this
5223 * function. They do not exist on hotplugged memory.
5225 if (context != MEMMAP_EARLY)
5226 goto not_early;
5228 if (!early_pfn_valid(pfn)) {
5229 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5231 * Skip to the pfn preceding the next valid one (or
5232 * end_pfn), such that we hit a valid pfn (or end_pfn)
5233 * on our next iteration of the loop.
5235 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5236 #endif
5237 continue;
5239 if (!early_pfn_in_nid(pfn, nid))
5240 continue;
5241 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5242 break;
5244 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5246 * Check given memblock attribute by firmware which can affect
5247 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5248 * mirrored, it's an overlapped memmap init. skip it.
5250 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5251 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5252 for_each_memblock(memory, tmp)
5253 if (pfn < memblock_region_memory_end_pfn(tmp))
5254 break;
5255 r = tmp;
5257 if (pfn >= memblock_region_memory_base_pfn(r) &&
5258 memblock_is_mirror(r)) {
5259 /* already initialized as NORMAL */
5260 pfn = memblock_region_memory_end_pfn(r);
5261 continue;
5264 #endif
5266 not_early:
5268 * Mark the block movable so that blocks are reserved for
5269 * movable at startup. This will force kernel allocations
5270 * to reserve their blocks rather than leaking throughout
5271 * the address space during boot when many long-lived
5272 * kernel allocations are made.
5274 * bitmap is created for zone's valid pfn range. but memmap
5275 * can be created for invalid pages (for alignment)
5276 * check here not to call set_pageblock_migratetype() against
5277 * pfn out of zone.
5279 if (!(pfn & (pageblock_nr_pages - 1))) {
5280 struct page *page = pfn_to_page(pfn);
5282 __init_single_page(page, pfn, zone, nid);
5283 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5284 } else {
5285 __init_single_pfn(pfn, zone, nid);
5290 static void __meminit zone_init_free_lists(struct zone *zone)
5292 unsigned int order, t;
5293 for_each_migratetype_order(order, t) {
5294 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5295 zone->free_area[order].nr_free = 0;
5299 #ifndef __HAVE_ARCH_MEMMAP_INIT
5300 #define memmap_init(size, nid, zone, start_pfn) \
5301 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5302 #endif
5304 static int zone_batchsize(struct zone *zone)
5306 #ifdef CONFIG_MMU
5307 int batch;
5310 * The per-cpu-pages pools are set to around 1000th of the
5311 * size of the zone. But no more than 1/2 of a meg.
5313 * OK, so we don't know how big the cache is. So guess.
5315 batch = zone->managed_pages / 1024;
5316 if (batch * PAGE_SIZE > 512 * 1024)
5317 batch = (512 * 1024) / PAGE_SIZE;
5318 batch /= 4; /* We effectively *= 4 below */
5319 if (batch < 1)
5320 batch = 1;
5323 * Clamp the batch to a 2^n - 1 value. Having a power
5324 * of 2 value was found to be more likely to have
5325 * suboptimal cache aliasing properties in some cases.
5327 * For example if 2 tasks are alternately allocating
5328 * batches of pages, one task can end up with a lot
5329 * of pages of one half of the possible page colors
5330 * and the other with pages of the other colors.
5332 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5334 return batch;
5336 #else
5337 /* The deferral and batching of frees should be suppressed under NOMMU
5338 * conditions.
5340 * The problem is that NOMMU needs to be able to allocate large chunks
5341 * of contiguous memory as there's no hardware page translation to
5342 * assemble apparent contiguous memory from discontiguous pages.
5344 * Queueing large contiguous runs of pages for batching, however,
5345 * causes the pages to actually be freed in smaller chunks. As there
5346 * can be a significant delay between the individual batches being
5347 * recycled, this leads to the once large chunks of space being
5348 * fragmented and becoming unavailable for high-order allocations.
5350 return 0;
5351 #endif
5355 * pcp->high and pcp->batch values are related and dependent on one another:
5356 * ->batch must never be higher then ->high.
5357 * The following function updates them in a safe manner without read side
5358 * locking.
5360 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5361 * those fields changing asynchronously (acording the the above rule).
5363 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5364 * outside of boot time (or some other assurance that no concurrent updaters
5365 * exist).
5367 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5368 unsigned long batch)
5370 /* start with a fail safe value for batch */
5371 pcp->batch = 1;
5372 smp_wmb();
5374 /* Update high, then batch, in order */
5375 pcp->high = high;
5376 smp_wmb();
5378 pcp->batch = batch;
5381 /* a companion to pageset_set_high() */
5382 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5384 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5387 static void pageset_init(struct per_cpu_pageset *p)
5389 struct per_cpu_pages *pcp;
5390 int migratetype;
5392 memset(p, 0, sizeof(*p));
5394 pcp = &p->pcp;
5395 pcp->count = 0;
5396 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5397 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5400 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5402 pageset_init(p);
5403 pageset_set_batch(p, batch);
5407 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5408 * to the value high for the pageset p.
5410 static void pageset_set_high(struct per_cpu_pageset *p,
5411 unsigned long high)
5413 unsigned long batch = max(1UL, high / 4);
5414 if ((high / 4) > (PAGE_SHIFT * 8))
5415 batch = PAGE_SHIFT * 8;
5417 pageset_update(&p->pcp, high, batch);
5420 static void pageset_set_high_and_batch(struct zone *zone,
5421 struct per_cpu_pageset *pcp)
5423 if (percpu_pagelist_fraction)
5424 pageset_set_high(pcp,
5425 (zone->managed_pages /
5426 percpu_pagelist_fraction));
5427 else
5428 pageset_set_batch(pcp, zone_batchsize(zone));
5431 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5433 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5435 pageset_init(pcp);
5436 pageset_set_high_and_batch(zone, pcp);
5439 static void __meminit setup_zone_pageset(struct zone *zone)
5441 int cpu;
5442 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5443 for_each_possible_cpu(cpu)
5444 zone_pageset_init(zone, cpu);
5448 * Allocate per cpu pagesets and initialize them.
5449 * Before this call only boot pagesets were available.
5451 void __init setup_per_cpu_pageset(void)
5453 struct pglist_data *pgdat;
5454 struct zone *zone;
5456 for_each_populated_zone(zone)
5457 setup_zone_pageset(zone);
5459 for_each_online_pgdat(pgdat)
5460 pgdat->per_cpu_nodestats =
5461 alloc_percpu(struct per_cpu_nodestat);
5464 static __meminit void zone_pcp_init(struct zone *zone)
5467 * per cpu subsystem is not up at this point. The following code
5468 * relies on the ability of the linker to provide the
5469 * offset of a (static) per cpu variable into the per cpu area.
5471 zone->pageset = &boot_pageset;
5473 if (populated_zone(zone))
5474 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5475 zone->name, zone->present_pages,
5476 zone_batchsize(zone));
5479 int __meminit init_currently_empty_zone(struct zone *zone,
5480 unsigned long zone_start_pfn,
5481 unsigned long size)
5483 struct pglist_data *pgdat = zone->zone_pgdat;
5485 pgdat->nr_zones = zone_idx(zone) + 1;
5487 zone->zone_start_pfn = zone_start_pfn;
5489 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5490 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5491 pgdat->node_id,
5492 (unsigned long)zone_idx(zone),
5493 zone_start_pfn, (zone_start_pfn + size));
5495 zone_init_free_lists(zone);
5496 zone->initialized = 1;
5498 return 0;
5501 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5502 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5505 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5507 int __meminit __early_pfn_to_nid(unsigned long pfn,
5508 struct mminit_pfnnid_cache *state)
5510 unsigned long start_pfn, end_pfn;
5511 int nid;
5513 if (state->last_start <= pfn && pfn < state->last_end)
5514 return state->last_nid;
5516 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5517 if (nid != -1) {
5518 state->last_start = start_pfn;
5519 state->last_end = end_pfn;
5520 state->last_nid = nid;
5523 return nid;
5525 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5528 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5529 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5530 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5532 * If an architecture guarantees that all ranges registered contain no holes
5533 * and may be freed, this this function may be used instead of calling
5534 * memblock_free_early_nid() manually.
5536 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5538 unsigned long start_pfn, end_pfn;
5539 int i, this_nid;
5541 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5542 start_pfn = min(start_pfn, max_low_pfn);
5543 end_pfn = min(end_pfn, max_low_pfn);
5545 if (start_pfn < end_pfn)
5546 memblock_free_early_nid(PFN_PHYS(start_pfn),
5547 (end_pfn - start_pfn) << PAGE_SHIFT,
5548 this_nid);
5553 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5554 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5556 * If an architecture guarantees that all ranges registered contain no holes and may
5557 * be freed, this function may be used instead of calling memory_present() manually.
5559 void __init sparse_memory_present_with_active_regions(int nid)
5561 unsigned long start_pfn, end_pfn;
5562 int i, this_nid;
5564 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5565 memory_present(this_nid, start_pfn, end_pfn);
5569 * get_pfn_range_for_nid - Return the start and end page frames for a node
5570 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5571 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5572 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5574 * It returns the start and end page frame of a node based on information
5575 * provided by memblock_set_node(). If called for a node
5576 * with no available memory, a warning is printed and the start and end
5577 * PFNs will be 0.
5579 void __meminit get_pfn_range_for_nid(unsigned int nid,
5580 unsigned long *start_pfn, unsigned long *end_pfn)
5582 unsigned long this_start_pfn, this_end_pfn;
5583 int i;
5585 *start_pfn = -1UL;
5586 *end_pfn = 0;
5588 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5589 *start_pfn = min(*start_pfn, this_start_pfn);
5590 *end_pfn = max(*end_pfn, this_end_pfn);
5593 if (*start_pfn == -1UL)
5594 *start_pfn = 0;
5598 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5599 * assumption is made that zones within a node are ordered in monotonic
5600 * increasing memory addresses so that the "highest" populated zone is used
5602 static void __init find_usable_zone_for_movable(void)
5604 int zone_index;
5605 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5606 if (zone_index == ZONE_MOVABLE)
5607 continue;
5609 if (arch_zone_highest_possible_pfn[zone_index] >
5610 arch_zone_lowest_possible_pfn[zone_index])
5611 break;
5614 VM_BUG_ON(zone_index == -1);
5615 movable_zone = zone_index;
5619 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5620 * because it is sized independent of architecture. Unlike the other zones,
5621 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5622 * in each node depending on the size of each node and how evenly kernelcore
5623 * is distributed. This helper function adjusts the zone ranges
5624 * provided by the architecture for a given node by using the end of the
5625 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5626 * zones within a node are in order of monotonic increases memory addresses
5628 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5629 unsigned long zone_type,
5630 unsigned long node_start_pfn,
5631 unsigned long node_end_pfn,
5632 unsigned long *zone_start_pfn,
5633 unsigned long *zone_end_pfn)
5635 /* Only adjust if ZONE_MOVABLE is on this node */
5636 if (zone_movable_pfn[nid]) {
5637 /* Size ZONE_MOVABLE */
5638 if (zone_type == ZONE_MOVABLE) {
5639 *zone_start_pfn = zone_movable_pfn[nid];
5640 *zone_end_pfn = min(node_end_pfn,
5641 arch_zone_highest_possible_pfn[movable_zone]);
5643 /* Adjust for ZONE_MOVABLE starting within this range */
5644 } else if (!mirrored_kernelcore &&
5645 *zone_start_pfn < zone_movable_pfn[nid] &&
5646 *zone_end_pfn > zone_movable_pfn[nid]) {
5647 *zone_end_pfn = zone_movable_pfn[nid];
5649 /* Check if this whole range is within ZONE_MOVABLE */
5650 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5651 *zone_start_pfn = *zone_end_pfn;
5656 * Return the number of pages a zone spans in a node, including holes
5657 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5659 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5660 unsigned long zone_type,
5661 unsigned long node_start_pfn,
5662 unsigned long node_end_pfn,
5663 unsigned long *zone_start_pfn,
5664 unsigned long *zone_end_pfn,
5665 unsigned long *ignored)
5667 /* When hotadd a new node from cpu_up(), the node should be empty */
5668 if (!node_start_pfn && !node_end_pfn)
5669 return 0;
5671 /* Get the start and end of the zone */
5672 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5673 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5674 adjust_zone_range_for_zone_movable(nid, zone_type,
5675 node_start_pfn, node_end_pfn,
5676 zone_start_pfn, zone_end_pfn);
5678 /* Check that this node has pages within the zone's required range */
5679 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5680 return 0;
5682 /* Move the zone boundaries inside the node if necessary */
5683 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5684 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5686 /* Return the spanned pages */
5687 return *zone_end_pfn - *zone_start_pfn;
5691 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5692 * then all holes in the requested range will be accounted for.
5694 unsigned long __meminit __absent_pages_in_range(int nid,
5695 unsigned long range_start_pfn,
5696 unsigned long range_end_pfn)
5698 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5699 unsigned long start_pfn, end_pfn;
5700 int i;
5702 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5703 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5704 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5705 nr_absent -= end_pfn - start_pfn;
5707 return nr_absent;
5711 * absent_pages_in_range - Return number of page frames in holes within a range
5712 * @start_pfn: The start PFN to start searching for holes
5713 * @end_pfn: The end PFN to stop searching for holes
5715 * It returns the number of pages frames in memory holes within a range.
5717 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5718 unsigned long end_pfn)
5720 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5723 /* Return the number of page frames in holes in a zone on a node */
5724 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5725 unsigned long zone_type,
5726 unsigned long node_start_pfn,
5727 unsigned long node_end_pfn,
5728 unsigned long *ignored)
5730 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5731 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5732 unsigned long zone_start_pfn, zone_end_pfn;
5733 unsigned long nr_absent;
5735 /* When hotadd a new node from cpu_up(), the node should be empty */
5736 if (!node_start_pfn && !node_end_pfn)
5737 return 0;
5739 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5740 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5742 adjust_zone_range_for_zone_movable(nid, zone_type,
5743 node_start_pfn, node_end_pfn,
5744 &zone_start_pfn, &zone_end_pfn);
5745 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5748 * ZONE_MOVABLE handling.
5749 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5750 * and vice versa.
5752 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5753 unsigned long start_pfn, end_pfn;
5754 struct memblock_region *r;
5756 for_each_memblock(memory, r) {
5757 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5758 zone_start_pfn, zone_end_pfn);
5759 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5760 zone_start_pfn, zone_end_pfn);
5762 if (zone_type == ZONE_MOVABLE &&
5763 memblock_is_mirror(r))
5764 nr_absent += end_pfn - start_pfn;
5766 if (zone_type == ZONE_NORMAL &&
5767 !memblock_is_mirror(r))
5768 nr_absent += end_pfn - start_pfn;
5772 return nr_absent;
5775 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5776 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5777 unsigned long zone_type,
5778 unsigned long node_start_pfn,
5779 unsigned long node_end_pfn,
5780 unsigned long *zone_start_pfn,
5781 unsigned long *zone_end_pfn,
5782 unsigned long *zones_size)
5784 unsigned int zone;
5786 *zone_start_pfn = node_start_pfn;
5787 for (zone = 0; zone < zone_type; zone++)
5788 *zone_start_pfn += zones_size[zone];
5790 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5792 return zones_size[zone_type];
5795 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5796 unsigned long zone_type,
5797 unsigned long node_start_pfn,
5798 unsigned long node_end_pfn,
5799 unsigned long *zholes_size)
5801 if (!zholes_size)
5802 return 0;
5804 return zholes_size[zone_type];
5807 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5809 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5810 unsigned long node_start_pfn,
5811 unsigned long node_end_pfn,
5812 unsigned long *zones_size,
5813 unsigned long *zholes_size)
5815 unsigned long realtotalpages = 0, totalpages = 0;
5816 enum zone_type i;
5818 for (i = 0; i < MAX_NR_ZONES; i++) {
5819 struct zone *zone = pgdat->node_zones + i;
5820 unsigned long zone_start_pfn, zone_end_pfn;
5821 unsigned long size, real_size;
5823 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5824 node_start_pfn,
5825 node_end_pfn,
5826 &zone_start_pfn,
5827 &zone_end_pfn,
5828 zones_size);
5829 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5830 node_start_pfn, node_end_pfn,
5831 zholes_size);
5832 if (size)
5833 zone->zone_start_pfn = zone_start_pfn;
5834 else
5835 zone->zone_start_pfn = 0;
5836 zone->spanned_pages = size;
5837 zone->present_pages = real_size;
5839 totalpages += size;
5840 realtotalpages += real_size;
5843 pgdat->node_spanned_pages = totalpages;
5844 pgdat->node_present_pages = realtotalpages;
5845 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5846 realtotalpages);
5849 #ifndef CONFIG_SPARSEMEM
5851 * Calculate the size of the zone->blockflags rounded to an unsigned long
5852 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5853 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5854 * round what is now in bits to nearest long in bits, then return it in
5855 * bytes.
5857 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5859 unsigned long usemapsize;
5861 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5862 usemapsize = roundup(zonesize, pageblock_nr_pages);
5863 usemapsize = usemapsize >> pageblock_order;
5864 usemapsize *= NR_PAGEBLOCK_BITS;
5865 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5867 return usemapsize / 8;
5870 static void __init setup_usemap(struct pglist_data *pgdat,
5871 struct zone *zone,
5872 unsigned long zone_start_pfn,
5873 unsigned long zonesize)
5875 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5876 zone->pageblock_flags = NULL;
5877 if (usemapsize)
5878 zone->pageblock_flags =
5879 memblock_virt_alloc_node_nopanic(usemapsize,
5880 pgdat->node_id);
5882 #else
5883 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5884 unsigned long zone_start_pfn, unsigned long zonesize) {}
5885 #endif /* CONFIG_SPARSEMEM */
5887 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5889 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5890 void __paginginit set_pageblock_order(void)
5892 unsigned int order;
5894 /* Check that pageblock_nr_pages has not already been setup */
5895 if (pageblock_order)
5896 return;
5898 if (HPAGE_SHIFT > PAGE_SHIFT)
5899 order = HUGETLB_PAGE_ORDER;
5900 else
5901 order = MAX_ORDER - 1;
5904 * Assume the largest contiguous order of interest is a huge page.
5905 * This value may be variable depending on boot parameters on IA64 and
5906 * powerpc.
5908 pageblock_order = order;
5910 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5913 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5914 * is unused as pageblock_order is set at compile-time. See
5915 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5916 * the kernel config
5918 void __paginginit set_pageblock_order(void)
5922 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5924 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5925 unsigned long present_pages)
5927 unsigned long pages = spanned_pages;
5930 * Provide a more accurate estimation if there are holes within
5931 * the zone and SPARSEMEM is in use. If there are holes within the
5932 * zone, each populated memory region may cost us one or two extra
5933 * memmap pages due to alignment because memmap pages for each
5934 * populated regions may not be naturally aligned on page boundary.
5935 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5937 if (spanned_pages > present_pages + (present_pages >> 4) &&
5938 IS_ENABLED(CONFIG_SPARSEMEM))
5939 pages = present_pages;
5941 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5945 * Set up the zone data structures:
5946 * - mark all pages reserved
5947 * - mark all memory queues empty
5948 * - clear the memory bitmaps
5950 * NOTE: pgdat should get zeroed by caller.
5952 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5954 enum zone_type j;
5955 int nid = pgdat->node_id;
5956 int ret;
5958 pgdat_resize_init(pgdat);
5959 #ifdef CONFIG_NUMA_BALANCING
5960 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5961 pgdat->numabalancing_migrate_nr_pages = 0;
5962 pgdat->numabalancing_migrate_next_window = jiffies;
5963 #endif
5964 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5965 spin_lock_init(&pgdat->split_queue_lock);
5966 INIT_LIST_HEAD(&pgdat->split_queue);
5967 pgdat->split_queue_len = 0;
5968 #endif
5969 init_waitqueue_head(&pgdat->kswapd_wait);
5970 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5971 #ifdef CONFIG_COMPACTION
5972 init_waitqueue_head(&pgdat->kcompactd_wait);
5973 #endif
5974 pgdat_page_ext_init(pgdat);
5975 spin_lock_init(&pgdat->lru_lock);
5976 lruvec_init(node_lruvec(pgdat));
5978 for (j = 0; j < MAX_NR_ZONES; j++) {
5979 struct zone *zone = pgdat->node_zones + j;
5980 unsigned long size, realsize, freesize, memmap_pages;
5981 unsigned long zone_start_pfn = zone->zone_start_pfn;
5983 size = zone->spanned_pages;
5984 realsize = freesize = zone->present_pages;
5987 * Adjust freesize so that it accounts for how much memory
5988 * is used by this zone for memmap. This affects the watermark
5989 * and per-cpu initialisations
5991 memmap_pages = calc_memmap_size(size, realsize);
5992 if (!is_highmem_idx(j)) {
5993 if (freesize >= memmap_pages) {
5994 freesize -= memmap_pages;
5995 if (memmap_pages)
5996 printk(KERN_DEBUG
5997 " %s zone: %lu pages used for memmap\n",
5998 zone_names[j], memmap_pages);
5999 } else
6000 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6001 zone_names[j], memmap_pages, freesize);
6004 /* Account for reserved pages */
6005 if (j == 0 && freesize > dma_reserve) {
6006 freesize -= dma_reserve;
6007 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6008 zone_names[0], dma_reserve);
6011 if (!is_highmem_idx(j))
6012 nr_kernel_pages += freesize;
6013 /* Charge for highmem memmap if there are enough kernel pages */
6014 else if (nr_kernel_pages > memmap_pages * 2)
6015 nr_kernel_pages -= memmap_pages;
6016 nr_all_pages += freesize;
6019 * Set an approximate value for lowmem here, it will be adjusted
6020 * when the bootmem allocator frees pages into the buddy system.
6021 * And all highmem pages will be managed by the buddy system.
6023 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6024 #ifdef CONFIG_NUMA
6025 zone->node = nid;
6026 #endif
6027 zone->name = zone_names[j];
6028 zone->zone_pgdat = pgdat;
6029 spin_lock_init(&zone->lock);
6030 zone_seqlock_init(zone);
6031 zone_pcp_init(zone);
6033 if (!size)
6034 continue;
6036 set_pageblock_order();
6037 setup_usemap(pgdat, zone, zone_start_pfn, size);
6038 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6039 BUG_ON(ret);
6040 memmap_init(size, nid, j, zone_start_pfn);
6044 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6046 unsigned long __maybe_unused start = 0;
6047 unsigned long __maybe_unused offset = 0;
6049 /* Skip empty nodes */
6050 if (!pgdat->node_spanned_pages)
6051 return;
6053 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6054 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6055 offset = pgdat->node_start_pfn - start;
6056 /* ia64 gets its own node_mem_map, before this, without bootmem */
6057 if (!pgdat->node_mem_map) {
6058 unsigned long size, end;
6059 struct page *map;
6062 * The zone's endpoints aren't required to be MAX_ORDER
6063 * aligned but the node_mem_map endpoints must be in order
6064 * for the buddy allocator to function correctly.
6066 end = pgdat_end_pfn(pgdat);
6067 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6068 size = (end - start) * sizeof(struct page);
6069 map = alloc_remap(pgdat->node_id, size);
6070 if (!map)
6071 map = memblock_virt_alloc_node_nopanic(size,
6072 pgdat->node_id);
6073 pgdat->node_mem_map = map + offset;
6075 #ifndef CONFIG_NEED_MULTIPLE_NODES
6077 * With no DISCONTIG, the global mem_map is just set as node 0's
6079 if (pgdat == NODE_DATA(0)) {
6080 mem_map = NODE_DATA(0)->node_mem_map;
6081 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6082 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6083 mem_map -= offset;
6084 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6086 #endif
6087 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6090 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6091 unsigned long node_start_pfn, unsigned long *zholes_size)
6093 pg_data_t *pgdat = NODE_DATA(nid);
6094 unsigned long start_pfn = 0;
6095 unsigned long end_pfn = 0;
6097 /* pg_data_t should be reset to zero when it's allocated */
6098 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6100 reset_deferred_meminit(pgdat);
6101 pgdat->node_id = nid;
6102 pgdat->node_start_pfn = node_start_pfn;
6103 pgdat->per_cpu_nodestats = NULL;
6104 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6105 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6106 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6107 (u64)start_pfn << PAGE_SHIFT,
6108 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6109 #else
6110 start_pfn = node_start_pfn;
6111 #endif
6112 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6113 zones_size, zholes_size);
6115 alloc_node_mem_map(pgdat);
6116 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6117 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6118 nid, (unsigned long)pgdat,
6119 (unsigned long)pgdat->node_mem_map);
6120 #endif
6122 free_area_init_core(pgdat);
6125 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6127 #if MAX_NUMNODES > 1
6129 * Figure out the number of possible node ids.
6131 void __init setup_nr_node_ids(void)
6133 unsigned int highest;
6135 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6136 nr_node_ids = highest + 1;
6138 #endif
6141 * node_map_pfn_alignment - determine the maximum internode alignment
6143 * This function should be called after node map is populated and sorted.
6144 * It calculates the maximum power of two alignment which can distinguish
6145 * all the nodes.
6147 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6148 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6149 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6150 * shifted, 1GiB is enough and this function will indicate so.
6152 * This is used to test whether pfn -> nid mapping of the chosen memory
6153 * model has fine enough granularity to avoid incorrect mapping for the
6154 * populated node map.
6156 * Returns the determined alignment in pfn's. 0 if there is no alignment
6157 * requirement (single node).
6159 unsigned long __init node_map_pfn_alignment(void)
6161 unsigned long accl_mask = 0, last_end = 0;
6162 unsigned long start, end, mask;
6163 int last_nid = -1;
6164 int i, nid;
6166 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6167 if (!start || last_nid < 0 || last_nid == nid) {
6168 last_nid = nid;
6169 last_end = end;
6170 continue;
6174 * Start with a mask granular enough to pin-point to the
6175 * start pfn and tick off bits one-by-one until it becomes
6176 * too coarse to separate the current node from the last.
6178 mask = ~((1 << __ffs(start)) - 1);
6179 while (mask && last_end <= (start & (mask << 1)))
6180 mask <<= 1;
6182 /* accumulate all internode masks */
6183 accl_mask |= mask;
6186 /* convert mask to number of pages */
6187 return ~accl_mask + 1;
6190 /* Find the lowest pfn for a node */
6191 static unsigned long __init find_min_pfn_for_node(int nid)
6193 unsigned long min_pfn = ULONG_MAX;
6194 unsigned long start_pfn;
6195 int i;
6197 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6198 min_pfn = min(min_pfn, start_pfn);
6200 if (min_pfn == ULONG_MAX) {
6201 pr_warn("Could not find start_pfn for node %d\n", nid);
6202 return 0;
6205 return min_pfn;
6209 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6211 * It returns the minimum PFN based on information provided via
6212 * memblock_set_node().
6214 unsigned long __init find_min_pfn_with_active_regions(void)
6216 return find_min_pfn_for_node(MAX_NUMNODES);
6220 * early_calculate_totalpages()
6221 * Sum pages in active regions for movable zone.
6222 * Populate N_MEMORY for calculating usable_nodes.
6224 static unsigned long __init early_calculate_totalpages(void)
6226 unsigned long totalpages = 0;
6227 unsigned long start_pfn, end_pfn;
6228 int i, nid;
6230 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6231 unsigned long pages = end_pfn - start_pfn;
6233 totalpages += pages;
6234 if (pages)
6235 node_set_state(nid, N_MEMORY);
6237 return totalpages;
6241 * Find the PFN the Movable zone begins in each node. Kernel memory
6242 * is spread evenly between nodes as long as the nodes have enough
6243 * memory. When they don't, some nodes will have more kernelcore than
6244 * others
6246 static void __init find_zone_movable_pfns_for_nodes(void)
6248 int i, nid;
6249 unsigned long usable_startpfn;
6250 unsigned long kernelcore_node, kernelcore_remaining;
6251 /* save the state before borrow the nodemask */
6252 nodemask_t saved_node_state = node_states[N_MEMORY];
6253 unsigned long totalpages = early_calculate_totalpages();
6254 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6255 struct memblock_region *r;
6257 /* Need to find movable_zone earlier when movable_node is specified. */
6258 find_usable_zone_for_movable();
6261 * If movable_node is specified, ignore kernelcore and movablecore
6262 * options.
6264 if (movable_node_is_enabled()) {
6265 for_each_memblock(memory, r) {
6266 if (!memblock_is_hotpluggable(r))
6267 continue;
6269 nid = r->nid;
6271 usable_startpfn = PFN_DOWN(r->base);
6272 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6273 min(usable_startpfn, zone_movable_pfn[nid]) :
6274 usable_startpfn;
6277 goto out2;
6281 * If kernelcore=mirror is specified, ignore movablecore option
6283 if (mirrored_kernelcore) {
6284 bool mem_below_4gb_not_mirrored = false;
6286 for_each_memblock(memory, r) {
6287 if (memblock_is_mirror(r))
6288 continue;
6290 nid = r->nid;
6292 usable_startpfn = memblock_region_memory_base_pfn(r);
6294 if (usable_startpfn < 0x100000) {
6295 mem_below_4gb_not_mirrored = true;
6296 continue;
6299 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6300 min(usable_startpfn, zone_movable_pfn[nid]) :
6301 usable_startpfn;
6304 if (mem_below_4gb_not_mirrored)
6305 pr_warn("This configuration results in unmirrored kernel memory.");
6307 goto out2;
6311 * If movablecore=nn[KMG] was specified, calculate what size of
6312 * kernelcore that corresponds so that memory usable for
6313 * any allocation type is evenly spread. If both kernelcore
6314 * and movablecore are specified, then the value of kernelcore
6315 * will be used for required_kernelcore if it's greater than
6316 * what movablecore would have allowed.
6318 if (required_movablecore) {
6319 unsigned long corepages;
6322 * Round-up so that ZONE_MOVABLE is at least as large as what
6323 * was requested by the user
6325 required_movablecore =
6326 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6327 required_movablecore = min(totalpages, required_movablecore);
6328 corepages = totalpages - required_movablecore;
6330 required_kernelcore = max(required_kernelcore, corepages);
6334 * If kernelcore was not specified or kernelcore size is larger
6335 * than totalpages, there is no ZONE_MOVABLE.
6337 if (!required_kernelcore || required_kernelcore >= totalpages)
6338 goto out;
6340 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6341 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6343 restart:
6344 /* Spread kernelcore memory as evenly as possible throughout nodes */
6345 kernelcore_node = required_kernelcore / usable_nodes;
6346 for_each_node_state(nid, N_MEMORY) {
6347 unsigned long start_pfn, end_pfn;
6350 * Recalculate kernelcore_node if the division per node
6351 * now exceeds what is necessary to satisfy the requested
6352 * amount of memory for the kernel
6354 if (required_kernelcore < kernelcore_node)
6355 kernelcore_node = required_kernelcore / usable_nodes;
6358 * As the map is walked, we track how much memory is usable
6359 * by the kernel using kernelcore_remaining. When it is
6360 * 0, the rest of the node is usable by ZONE_MOVABLE
6362 kernelcore_remaining = kernelcore_node;
6364 /* Go through each range of PFNs within this node */
6365 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6366 unsigned long size_pages;
6368 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6369 if (start_pfn >= end_pfn)
6370 continue;
6372 /* Account for what is only usable for kernelcore */
6373 if (start_pfn < usable_startpfn) {
6374 unsigned long kernel_pages;
6375 kernel_pages = min(end_pfn, usable_startpfn)
6376 - start_pfn;
6378 kernelcore_remaining -= min(kernel_pages,
6379 kernelcore_remaining);
6380 required_kernelcore -= min(kernel_pages,
6381 required_kernelcore);
6383 /* Continue if range is now fully accounted */
6384 if (end_pfn <= usable_startpfn) {
6387 * Push zone_movable_pfn to the end so
6388 * that if we have to rebalance
6389 * kernelcore across nodes, we will
6390 * not double account here
6392 zone_movable_pfn[nid] = end_pfn;
6393 continue;
6395 start_pfn = usable_startpfn;
6399 * The usable PFN range for ZONE_MOVABLE is from
6400 * start_pfn->end_pfn. Calculate size_pages as the
6401 * number of pages used as kernelcore
6403 size_pages = end_pfn - start_pfn;
6404 if (size_pages > kernelcore_remaining)
6405 size_pages = kernelcore_remaining;
6406 zone_movable_pfn[nid] = start_pfn + size_pages;
6409 * Some kernelcore has been met, update counts and
6410 * break if the kernelcore for this node has been
6411 * satisfied
6413 required_kernelcore -= min(required_kernelcore,
6414 size_pages);
6415 kernelcore_remaining -= size_pages;
6416 if (!kernelcore_remaining)
6417 break;
6422 * If there is still required_kernelcore, we do another pass with one
6423 * less node in the count. This will push zone_movable_pfn[nid] further
6424 * along on the nodes that still have memory until kernelcore is
6425 * satisfied
6427 usable_nodes--;
6428 if (usable_nodes && required_kernelcore > usable_nodes)
6429 goto restart;
6431 out2:
6432 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6433 for (nid = 0; nid < MAX_NUMNODES; nid++)
6434 zone_movable_pfn[nid] =
6435 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6437 out:
6438 /* restore the node_state */
6439 node_states[N_MEMORY] = saved_node_state;
6442 /* Any regular or high memory on that node ? */
6443 static void check_for_memory(pg_data_t *pgdat, int nid)
6445 enum zone_type zone_type;
6447 if (N_MEMORY == N_NORMAL_MEMORY)
6448 return;
6450 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6451 struct zone *zone = &pgdat->node_zones[zone_type];
6452 if (populated_zone(zone)) {
6453 node_set_state(nid, N_HIGH_MEMORY);
6454 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6455 zone_type <= ZONE_NORMAL)
6456 node_set_state(nid, N_NORMAL_MEMORY);
6457 break;
6463 * free_area_init_nodes - Initialise all pg_data_t and zone data
6464 * @max_zone_pfn: an array of max PFNs for each zone
6466 * This will call free_area_init_node() for each active node in the system.
6467 * Using the page ranges provided by memblock_set_node(), the size of each
6468 * zone in each node and their holes is calculated. If the maximum PFN
6469 * between two adjacent zones match, it is assumed that the zone is empty.
6470 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6471 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6472 * starts where the previous one ended. For example, ZONE_DMA32 starts
6473 * at arch_max_dma_pfn.
6475 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6477 unsigned long start_pfn, end_pfn;
6478 int i, nid;
6480 /* Record where the zone boundaries are */
6481 memset(arch_zone_lowest_possible_pfn, 0,
6482 sizeof(arch_zone_lowest_possible_pfn));
6483 memset(arch_zone_highest_possible_pfn, 0,
6484 sizeof(arch_zone_highest_possible_pfn));
6486 start_pfn = find_min_pfn_with_active_regions();
6488 for (i = 0; i < MAX_NR_ZONES; i++) {
6489 if (i == ZONE_MOVABLE)
6490 continue;
6492 end_pfn = max(max_zone_pfn[i], start_pfn);
6493 arch_zone_lowest_possible_pfn[i] = start_pfn;
6494 arch_zone_highest_possible_pfn[i] = end_pfn;
6496 start_pfn = end_pfn;
6499 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6500 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6501 find_zone_movable_pfns_for_nodes();
6503 /* Print out the zone ranges */
6504 pr_info("Zone ranges:\n");
6505 for (i = 0; i < MAX_NR_ZONES; i++) {
6506 if (i == ZONE_MOVABLE)
6507 continue;
6508 pr_info(" %-8s ", zone_names[i]);
6509 if (arch_zone_lowest_possible_pfn[i] ==
6510 arch_zone_highest_possible_pfn[i])
6511 pr_cont("empty\n");
6512 else
6513 pr_cont("[mem %#018Lx-%#018Lx]\n",
6514 (u64)arch_zone_lowest_possible_pfn[i]
6515 << PAGE_SHIFT,
6516 ((u64)arch_zone_highest_possible_pfn[i]
6517 << PAGE_SHIFT) - 1);
6520 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6521 pr_info("Movable zone start for each node\n");
6522 for (i = 0; i < MAX_NUMNODES; i++) {
6523 if (zone_movable_pfn[i])
6524 pr_info(" Node %d: %#018Lx\n", i,
6525 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6528 /* Print out the early node map */
6529 pr_info("Early memory node ranges\n");
6530 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6531 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6532 (u64)start_pfn << PAGE_SHIFT,
6533 ((u64)end_pfn << PAGE_SHIFT) - 1);
6535 /* Initialise every node */
6536 mminit_verify_pageflags_layout();
6537 setup_nr_node_ids();
6538 for_each_online_node(nid) {
6539 pg_data_t *pgdat = NODE_DATA(nid);
6540 free_area_init_node(nid, NULL,
6541 find_min_pfn_for_node(nid), NULL);
6543 /* Any memory on that node */
6544 if (pgdat->node_present_pages)
6545 node_set_state(nid, N_MEMORY);
6546 check_for_memory(pgdat, nid);
6550 static int __init cmdline_parse_core(char *p, unsigned long *core)
6552 unsigned long long coremem;
6553 if (!p)
6554 return -EINVAL;
6556 coremem = memparse(p, &p);
6557 *core = coremem >> PAGE_SHIFT;
6559 /* Paranoid check that UL is enough for the coremem value */
6560 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6562 return 0;
6566 * kernelcore=size sets the amount of memory for use for allocations that
6567 * cannot be reclaimed or migrated.
6569 static int __init cmdline_parse_kernelcore(char *p)
6571 /* parse kernelcore=mirror */
6572 if (parse_option_str(p, "mirror")) {
6573 mirrored_kernelcore = true;
6574 return 0;
6577 return cmdline_parse_core(p, &required_kernelcore);
6581 * movablecore=size sets the amount of memory for use for allocations that
6582 * can be reclaimed or migrated.
6584 static int __init cmdline_parse_movablecore(char *p)
6586 return cmdline_parse_core(p, &required_movablecore);
6589 early_param("kernelcore", cmdline_parse_kernelcore);
6590 early_param("movablecore", cmdline_parse_movablecore);
6592 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6594 void adjust_managed_page_count(struct page *page, long count)
6596 spin_lock(&managed_page_count_lock);
6597 page_zone(page)->managed_pages += count;
6598 totalram_pages += count;
6599 #ifdef CONFIG_HIGHMEM
6600 if (PageHighMem(page))
6601 totalhigh_pages += count;
6602 #endif
6603 spin_unlock(&managed_page_count_lock);
6605 EXPORT_SYMBOL(adjust_managed_page_count);
6607 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6609 void *pos;
6610 unsigned long pages = 0;
6612 start = (void *)PAGE_ALIGN((unsigned long)start);
6613 end = (void *)((unsigned long)end & PAGE_MASK);
6614 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6615 if ((unsigned int)poison <= 0xFF)
6616 memset(pos, poison, PAGE_SIZE);
6617 free_reserved_page(virt_to_page(pos));
6620 if (pages && s)
6621 pr_info("Freeing %s memory: %ldK\n",
6622 s, pages << (PAGE_SHIFT - 10));
6624 return pages;
6626 EXPORT_SYMBOL(free_reserved_area);
6628 #ifdef CONFIG_HIGHMEM
6629 void free_highmem_page(struct page *page)
6631 __free_reserved_page(page);
6632 totalram_pages++;
6633 page_zone(page)->managed_pages++;
6634 totalhigh_pages++;
6636 #endif
6639 void __init mem_init_print_info(const char *str)
6641 unsigned long physpages, codesize, datasize, rosize, bss_size;
6642 unsigned long init_code_size, init_data_size;
6644 physpages = get_num_physpages();
6645 codesize = _etext - _stext;
6646 datasize = _edata - _sdata;
6647 rosize = __end_rodata - __start_rodata;
6648 bss_size = __bss_stop - __bss_start;
6649 init_data_size = __init_end - __init_begin;
6650 init_code_size = _einittext - _sinittext;
6653 * Detect special cases and adjust section sizes accordingly:
6654 * 1) .init.* may be embedded into .data sections
6655 * 2) .init.text.* may be out of [__init_begin, __init_end],
6656 * please refer to arch/tile/kernel/vmlinux.lds.S.
6657 * 3) .rodata.* may be embedded into .text or .data sections.
6659 #define adj_init_size(start, end, size, pos, adj) \
6660 do { \
6661 if (start <= pos && pos < end && size > adj) \
6662 size -= adj; \
6663 } while (0)
6665 adj_init_size(__init_begin, __init_end, init_data_size,
6666 _sinittext, init_code_size);
6667 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6668 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6669 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6670 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6672 #undef adj_init_size
6674 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6675 #ifdef CONFIG_HIGHMEM
6676 ", %luK highmem"
6677 #endif
6678 "%s%s)\n",
6679 nr_free_pages() << (PAGE_SHIFT - 10),
6680 physpages << (PAGE_SHIFT - 10),
6681 codesize >> 10, datasize >> 10, rosize >> 10,
6682 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6683 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6684 totalcma_pages << (PAGE_SHIFT - 10),
6685 #ifdef CONFIG_HIGHMEM
6686 totalhigh_pages << (PAGE_SHIFT - 10),
6687 #endif
6688 str ? ", " : "", str ? str : "");
6692 * set_dma_reserve - set the specified number of pages reserved in the first zone
6693 * @new_dma_reserve: The number of pages to mark reserved
6695 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6696 * In the DMA zone, a significant percentage may be consumed by kernel image
6697 * and other unfreeable allocations which can skew the watermarks badly. This
6698 * function may optionally be used to account for unfreeable pages in the
6699 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6700 * smaller per-cpu batchsize.
6702 void __init set_dma_reserve(unsigned long new_dma_reserve)
6704 dma_reserve = new_dma_reserve;
6707 void __init free_area_init(unsigned long *zones_size)
6709 free_area_init_node(0, zones_size,
6710 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6713 static int page_alloc_cpu_dead(unsigned int cpu)
6716 lru_add_drain_cpu(cpu);
6717 drain_pages(cpu);
6720 * Spill the event counters of the dead processor
6721 * into the current processors event counters.
6722 * This artificially elevates the count of the current
6723 * processor.
6725 vm_events_fold_cpu(cpu);
6728 * Zero the differential counters of the dead processor
6729 * so that the vm statistics are consistent.
6731 * This is only okay since the processor is dead and cannot
6732 * race with what we are doing.
6734 cpu_vm_stats_fold(cpu);
6735 return 0;
6738 void __init page_alloc_init(void)
6740 int ret;
6742 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6743 "mm/page_alloc:dead", NULL,
6744 page_alloc_cpu_dead);
6745 WARN_ON(ret < 0);
6749 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6750 * or min_free_kbytes changes.
6752 static void calculate_totalreserve_pages(void)
6754 struct pglist_data *pgdat;
6755 unsigned long reserve_pages = 0;
6756 enum zone_type i, j;
6758 for_each_online_pgdat(pgdat) {
6760 pgdat->totalreserve_pages = 0;
6762 for (i = 0; i < MAX_NR_ZONES; i++) {
6763 struct zone *zone = pgdat->node_zones + i;
6764 long max = 0;
6766 /* Find valid and maximum lowmem_reserve in the zone */
6767 for (j = i; j < MAX_NR_ZONES; j++) {
6768 if (zone->lowmem_reserve[j] > max)
6769 max = zone->lowmem_reserve[j];
6772 /* we treat the high watermark as reserved pages. */
6773 max += high_wmark_pages(zone);
6775 if (max > zone->managed_pages)
6776 max = zone->managed_pages;
6778 pgdat->totalreserve_pages += max;
6780 reserve_pages += max;
6783 totalreserve_pages = reserve_pages;
6787 * setup_per_zone_lowmem_reserve - called whenever
6788 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6789 * has a correct pages reserved value, so an adequate number of
6790 * pages are left in the zone after a successful __alloc_pages().
6792 static void setup_per_zone_lowmem_reserve(void)
6794 struct pglist_data *pgdat;
6795 enum zone_type j, idx;
6797 for_each_online_pgdat(pgdat) {
6798 for (j = 0; j < MAX_NR_ZONES; j++) {
6799 struct zone *zone = pgdat->node_zones + j;
6800 unsigned long managed_pages = zone->managed_pages;
6802 zone->lowmem_reserve[j] = 0;
6804 idx = j;
6805 while (idx) {
6806 struct zone *lower_zone;
6808 idx--;
6810 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6811 sysctl_lowmem_reserve_ratio[idx] = 1;
6813 lower_zone = pgdat->node_zones + idx;
6814 lower_zone->lowmem_reserve[j] = managed_pages /
6815 sysctl_lowmem_reserve_ratio[idx];
6816 managed_pages += lower_zone->managed_pages;
6821 /* update totalreserve_pages */
6822 calculate_totalreserve_pages();
6825 static void __setup_per_zone_wmarks(void)
6827 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6828 unsigned long lowmem_pages = 0;
6829 struct zone *zone;
6830 unsigned long flags;
6832 /* Calculate total number of !ZONE_HIGHMEM pages */
6833 for_each_zone(zone) {
6834 if (!is_highmem(zone))
6835 lowmem_pages += zone->managed_pages;
6838 for_each_zone(zone) {
6839 u64 tmp;
6841 spin_lock_irqsave(&zone->lock, flags);
6842 tmp = (u64)pages_min * zone->managed_pages;
6843 do_div(tmp, lowmem_pages);
6844 if (is_highmem(zone)) {
6846 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6847 * need highmem pages, so cap pages_min to a small
6848 * value here.
6850 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6851 * deltas control asynch page reclaim, and so should
6852 * not be capped for highmem.
6854 unsigned long min_pages;
6856 min_pages = zone->managed_pages / 1024;
6857 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6858 zone->watermark[WMARK_MIN] = min_pages;
6859 } else {
6861 * If it's a lowmem zone, reserve a number of pages
6862 * proportionate to the zone's size.
6864 zone->watermark[WMARK_MIN] = tmp;
6868 * Set the kswapd watermarks distance according to the
6869 * scale factor in proportion to available memory, but
6870 * ensure a minimum size on small systems.
6872 tmp = max_t(u64, tmp >> 2,
6873 mult_frac(zone->managed_pages,
6874 watermark_scale_factor, 10000));
6876 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6877 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6879 spin_unlock_irqrestore(&zone->lock, flags);
6882 /* update totalreserve_pages */
6883 calculate_totalreserve_pages();
6887 * setup_per_zone_wmarks - called when min_free_kbytes changes
6888 * or when memory is hot-{added|removed}
6890 * Ensures that the watermark[min,low,high] values for each zone are set
6891 * correctly with respect to min_free_kbytes.
6893 void setup_per_zone_wmarks(void)
6895 mutex_lock(&zonelists_mutex);
6896 __setup_per_zone_wmarks();
6897 mutex_unlock(&zonelists_mutex);
6901 * Initialise min_free_kbytes.
6903 * For small machines we want it small (128k min). For large machines
6904 * we want it large (64MB max). But it is not linear, because network
6905 * bandwidth does not increase linearly with machine size. We use
6907 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6908 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6910 * which yields
6912 * 16MB: 512k
6913 * 32MB: 724k
6914 * 64MB: 1024k
6915 * 128MB: 1448k
6916 * 256MB: 2048k
6917 * 512MB: 2896k
6918 * 1024MB: 4096k
6919 * 2048MB: 5792k
6920 * 4096MB: 8192k
6921 * 8192MB: 11584k
6922 * 16384MB: 16384k
6924 int __meminit init_per_zone_wmark_min(void)
6926 unsigned long lowmem_kbytes;
6927 int new_min_free_kbytes;
6929 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6930 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6932 if (new_min_free_kbytes > user_min_free_kbytes) {
6933 min_free_kbytes = new_min_free_kbytes;
6934 if (min_free_kbytes < 128)
6935 min_free_kbytes = 128;
6936 if (min_free_kbytes > 65536)
6937 min_free_kbytes = 65536;
6938 } else {
6939 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6940 new_min_free_kbytes, user_min_free_kbytes);
6942 setup_per_zone_wmarks();
6943 refresh_zone_stat_thresholds();
6944 setup_per_zone_lowmem_reserve();
6946 #ifdef CONFIG_NUMA
6947 setup_min_unmapped_ratio();
6948 setup_min_slab_ratio();
6949 #endif
6951 return 0;
6953 core_initcall(init_per_zone_wmark_min)
6956 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6957 * that we can call two helper functions whenever min_free_kbytes
6958 * changes.
6960 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6961 void __user *buffer, size_t *length, loff_t *ppos)
6963 int rc;
6965 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6966 if (rc)
6967 return rc;
6969 if (write) {
6970 user_min_free_kbytes = min_free_kbytes;
6971 setup_per_zone_wmarks();
6973 return 0;
6976 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6977 void __user *buffer, size_t *length, loff_t *ppos)
6979 int rc;
6981 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6982 if (rc)
6983 return rc;
6985 if (write)
6986 setup_per_zone_wmarks();
6988 return 0;
6991 #ifdef CONFIG_NUMA
6992 static void setup_min_unmapped_ratio(void)
6994 pg_data_t *pgdat;
6995 struct zone *zone;
6997 for_each_online_pgdat(pgdat)
6998 pgdat->min_unmapped_pages = 0;
7000 for_each_zone(zone)
7001 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7002 sysctl_min_unmapped_ratio) / 100;
7006 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7007 void __user *buffer, size_t *length, loff_t *ppos)
7009 int rc;
7011 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7012 if (rc)
7013 return rc;
7015 setup_min_unmapped_ratio();
7017 return 0;
7020 static void setup_min_slab_ratio(void)
7022 pg_data_t *pgdat;
7023 struct zone *zone;
7025 for_each_online_pgdat(pgdat)
7026 pgdat->min_slab_pages = 0;
7028 for_each_zone(zone)
7029 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7030 sysctl_min_slab_ratio) / 100;
7033 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7034 void __user *buffer, size_t *length, loff_t *ppos)
7036 int rc;
7038 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7039 if (rc)
7040 return rc;
7042 setup_min_slab_ratio();
7044 return 0;
7046 #endif
7049 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7050 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7051 * whenever sysctl_lowmem_reserve_ratio changes.
7053 * The reserve ratio obviously has absolutely no relation with the
7054 * minimum watermarks. The lowmem reserve ratio can only make sense
7055 * if in function of the boot time zone sizes.
7057 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7058 void __user *buffer, size_t *length, loff_t *ppos)
7060 proc_dointvec_minmax(table, write, buffer, length, ppos);
7061 setup_per_zone_lowmem_reserve();
7062 return 0;
7066 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7067 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7068 * pagelist can have before it gets flushed back to buddy allocator.
7070 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7071 void __user *buffer, size_t *length, loff_t *ppos)
7073 struct zone *zone;
7074 int old_percpu_pagelist_fraction;
7075 int ret;
7077 mutex_lock(&pcp_batch_high_lock);
7078 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7080 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7081 if (!write || ret < 0)
7082 goto out;
7084 /* Sanity checking to avoid pcp imbalance */
7085 if (percpu_pagelist_fraction &&
7086 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7087 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7088 ret = -EINVAL;
7089 goto out;
7092 /* No change? */
7093 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7094 goto out;
7096 for_each_populated_zone(zone) {
7097 unsigned int cpu;
7099 for_each_possible_cpu(cpu)
7100 pageset_set_high_and_batch(zone,
7101 per_cpu_ptr(zone->pageset, cpu));
7103 out:
7104 mutex_unlock(&pcp_batch_high_lock);
7105 return ret;
7108 #ifdef CONFIG_NUMA
7109 int hashdist = HASHDIST_DEFAULT;
7111 static int __init set_hashdist(char *str)
7113 if (!str)
7114 return 0;
7115 hashdist = simple_strtoul(str, &str, 0);
7116 return 1;
7118 __setup("hashdist=", set_hashdist);
7119 #endif
7121 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7123 * Returns the number of pages that arch has reserved but
7124 * is not known to alloc_large_system_hash().
7126 static unsigned long __init arch_reserved_kernel_pages(void)
7128 return 0;
7130 #endif
7133 * allocate a large system hash table from bootmem
7134 * - it is assumed that the hash table must contain an exact power-of-2
7135 * quantity of entries
7136 * - limit is the number of hash buckets, not the total allocation size
7138 void *__init alloc_large_system_hash(const char *tablename,
7139 unsigned long bucketsize,
7140 unsigned long numentries,
7141 int scale,
7142 int flags,
7143 unsigned int *_hash_shift,
7144 unsigned int *_hash_mask,
7145 unsigned long low_limit,
7146 unsigned long high_limit)
7148 unsigned long long max = high_limit;
7149 unsigned long log2qty, size;
7150 void *table = NULL;
7152 /* allow the kernel cmdline to have a say */
7153 if (!numentries) {
7154 /* round applicable memory size up to nearest megabyte */
7155 numentries = nr_kernel_pages;
7156 numentries -= arch_reserved_kernel_pages();
7158 /* It isn't necessary when PAGE_SIZE >= 1MB */
7159 if (PAGE_SHIFT < 20)
7160 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7162 /* limit to 1 bucket per 2^scale bytes of low memory */
7163 if (scale > PAGE_SHIFT)
7164 numentries >>= (scale - PAGE_SHIFT);
7165 else
7166 numentries <<= (PAGE_SHIFT - scale);
7168 /* Make sure we've got at least a 0-order allocation.. */
7169 if (unlikely(flags & HASH_SMALL)) {
7170 /* Makes no sense without HASH_EARLY */
7171 WARN_ON(!(flags & HASH_EARLY));
7172 if (!(numentries >> *_hash_shift)) {
7173 numentries = 1UL << *_hash_shift;
7174 BUG_ON(!numentries);
7176 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7177 numentries = PAGE_SIZE / bucketsize;
7179 numentries = roundup_pow_of_two(numentries);
7181 /* limit allocation size to 1/16 total memory by default */
7182 if (max == 0) {
7183 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7184 do_div(max, bucketsize);
7186 max = min(max, 0x80000000ULL);
7188 if (numentries < low_limit)
7189 numentries = low_limit;
7190 if (numentries > max)
7191 numentries = max;
7193 log2qty = ilog2(numentries);
7195 do {
7196 size = bucketsize << log2qty;
7197 if (flags & HASH_EARLY)
7198 table = memblock_virt_alloc_nopanic(size, 0);
7199 else if (hashdist)
7200 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7201 else {
7203 * If bucketsize is not a power-of-two, we may free
7204 * some pages at the end of hash table which
7205 * alloc_pages_exact() automatically does
7207 if (get_order(size) < MAX_ORDER) {
7208 table = alloc_pages_exact(size, GFP_ATOMIC);
7209 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7212 } while (!table && size > PAGE_SIZE && --log2qty);
7214 if (!table)
7215 panic("Failed to allocate %s hash table\n", tablename);
7217 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7218 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7220 if (_hash_shift)
7221 *_hash_shift = log2qty;
7222 if (_hash_mask)
7223 *_hash_mask = (1 << log2qty) - 1;
7225 return table;
7229 * This function checks whether pageblock includes unmovable pages or not.
7230 * If @count is not zero, it is okay to include less @count unmovable pages
7232 * PageLRU check without isolation or lru_lock could race so that
7233 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7234 * check without lock_page also may miss some movable non-lru pages at
7235 * race condition. So you can't expect this function should be exact.
7237 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7238 bool skip_hwpoisoned_pages)
7240 unsigned long pfn, iter, found;
7241 int mt;
7244 * For avoiding noise data, lru_add_drain_all() should be called
7245 * If ZONE_MOVABLE, the zone never contains unmovable pages
7247 if (zone_idx(zone) == ZONE_MOVABLE)
7248 return false;
7249 mt = get_pageblock_migratetype(page);
7250 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7251 return false;
7253 pfn = page_to_pfn(page);
7254 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7255 unsigned long check = pfn + iter;
7257 if (!pfn_valid_within(check))
7258 continue;
7260 page = pfn_to_page(check);
7263 * Hugepages are not in LRU lists, but they're movable.
7264 * We need not scan over tail pages bacause we don't
7265 * handle each tail page individually in migration.
7267 if (PageHuge(page)) {
7268 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7269 continue;
7273 * We can't use page_count without pin a page
7274 * because another CPU can free compound page.
7275 * This check already skips compound tails of THP
7276 * because their page->_refcount is zero at all time.
7278 if (!page_ref_count(page)) {
7279 if (PageBuddy(page))
7280 iter += (1 << page_order(page)) - 1;
7281 continue;
7285 * The HWPoisoned page may be not in buddy system, and
7286 * page_count() is not 0.
7288 if (skip_hwpoisoned_pages && PageHWPoison(page))
7289 continue;
7291 if (__PageMovable(page))
7292 continue;
7294 if (!PageLRU(page))
7295 found++;
7297 * If there are RECLAIMABLE pages, we need to check
7298 * it. But now, memory offline itself doesn't call
7299 * shrink_node_slabs() and it still to be fixed.
7302 * If the page is not RAM, page_count()should be 0.
7303 * we don't need more check. This is an _used_ not-movable page.
7305 * The problematic thing here is PG_reserved pages. PG_reserved
7306 * is set to both of a memory hole page and a _used_ kernel
7307 * page at boot.
7309 if (found > count)
7310 return true;
7312 return false;
7315 bool is_pageblock_removable_nolock(struct page *page)
7317 struct zone *zone;
7318 unsigned long pfn;
7321 * We have to be careful here because we are iterating over memory
7322 * sections which are not zone aware so we might end up outside of
7323 * the zone but still within the section.
7324 * We have to take care about the node as well. If the node is offline
7325 * its NODE_DATA will be NULL - see page_zone.
7327 if (!node_online(page_to_nid(page)))
7328 return false;
7330 zone = page_zone(page);
7331 pfn = page_to_pfn(page);
7332 if (!zone_spans_pfn(zone, pfn))
7333 return false;
7335 return !has_unmovable_pages(zone, page, 0, true);
7338 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7340 static unsigned long pfn_max_align_down(unsigned long pfn)
7342 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7343 pageblock_nr_pages) - 1);
7346 static unsigned long pfn_max_align_up(unsigned long pfn)
7348 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7349 pageblock_nr_pages));
7352 /* [start, end) must belong to a single zone. */
7353 static int __alloc_contig_migrate_range(struct compact_control *cc,
7354 unsigned long start, unsigned long end)
7356 /* This function is based on compact_zone() from compaction.c. */
7357 unsigned long nr_reclaimed;
7358 unsigned long pfn = start;
7359 unsigned int tries = 0;
7360 int ret = 0;
7362 migrate_prep();
7364 while (pfn < end || !list_empty(&cc->migratepages)) {
7365 if (fatal_signal_pending(current)) {
7366 ret = -EINTR;
7367 break;
7370 if (list_empty(&cc->migratepages)) {
7371 cc->nr_migratepages = 0;
7372 pfn = isolate_migratepages_range(cc, pfn, end);
7373 if (!pfn) {
7374 ret = -EINTR;
7375 break;
7377 tries = 0;
7378 } else if (++tries == 5) {
7379 ret = ret < 0 ? ret : -EBUSY;
7380 break;
7383 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7384 &cc->migratepages);
7385 cc->nr_migratepages -= nr_reclaimed;
7387 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7388 NULL, 0, cc->mode, MR_CMA);
7390 if (ret < 0) {
7391 putback_movable_pages(&cc->migratepages);
7392 return ret;
7394 return 0;
7398 * alloc_contig_range() -- tries to allocate given range of pages
7399 * @start: start PFN to allocate
7400 * @end: one-past-the-last PFN to allocate
7401 * @migratetype: migratetype of the underlaying pageblocks (either
7402 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7403 * in range must have the same migratetype and it must
7404 * be either of the two.
7405 * @gfp_mask: GFP mask to use during compaction
7407 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7408 * aligned, however it's the caller's responsibility to guarantee that
7409 * we are the only thread that changes migrate type of pageblocks the
7410 * pages fall in.
7412 * The PFN range must belong to a single zone.
7414 * Returns zero on success or negative error code. On success all
7415 * pages which PFN is in [start, end) are allocated for the caller and
7416 * need to be freed with free_contig_range().
7418 int alloc_contig_range(unsigned long start, unsigned long end,
7419 unsigned migratetype, gfp_t gfp_mask)
7421 unsigned long outer_start, outer_end;
7422 unsigned int order;
7423 int ret = 0;
7425 struct compact_control cc = {
7426 .nr_migratepages = 0,
7427 .order = -1,
7428 .zone = page_zone(pfn_to_page(start)),
7429 .mode = MIGRATE_SYNC,
7430 .ignore_skip_hint = true,
7431 .gfp_mask = memalloc_noio_flags(gfp_mask),
7433 INIT_LIST_HEAD(&cc.migratepages);
7436 * What we do here is we mark all pageblocks in range as
7437 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7438 * have different sizes, and due to the way page allocator
7439 * work, we align the range to biggest of the two pages so
7440 * that page allocator won't try to merge buddies from
7441 * different pageblocks and change MIGRATE_ISOLATE to some
7442 * other migration type.
7444 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7445 * migrate the pages from an unaligned range (ie. pages that
7446 * we are interested in). This will put all the pages in
7447 * range back to page allocator as MIGRATE_ISOLATE.
7449 * When this is done, we take the pages in range from page
7450 * allocator removing them from the buddy system. This way
7451 * page allocator will never consider using them.
7453 * This lets us mark the pageblocks back as
7454 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7455 * aligned range but not in the unaligned, original range are
7456 * put back to page allocator so that buddy can use them.
7459 ret = start_isolate_page_range(pfn_max_align_down(start),
7460 pfn_max_align_up(end), migratetype,
7461 false);
7462 if (ret)
7463 return ret;
7466 * In case of -EBUSY, we'd like to know which page causes problem.
7467 * So, just fall through. We will check it in test_pages_isolated().
7469 ret = __alloc_contig_migrate_range(&cc, start, end);
7470 if (ret && ret != -EBUSY)
7471 goto done;
7474 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7475 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7476 * more, all pages in [start, end) are free in page allocator.
7477 * What we are going to do is to allocate all pages from
7478 * [start, end) (that is remove them from page allocator).
7480 * The only problem is that pages at the beginning and at the
7481 * end of interesting range may be not aligned with pages that
7482 * page allocator holds, ie. they can be part of higher order
7483 * pages. Because of this, we reserve the bigger range and
7484 * once this is done free the pages we are not interested in.
7486 * We don't have to hold zone->lock here because the pages are
7487 * isolated thus they won't get removed from buddy.
7490 lru_add_drain_all();
7491 drain_all_pages(cc.zone);
7493 order = 0;
7494 outer_start = start;
7495 while (!PageBuddy(pfn_to_page(outer_start))) {
7496 if (++order >= MAX_ORDER) {
7497 outer_start = start;
7498 break;
7500 outer_start &= ~0UL << order;
7503 if (outer_start != start) {
7504 order = page_order(pfn_to_page(outer_start));
7507 * outer_start page could be small order buddy page and
7508 * it doesn't include start page. Adjust outer_start
7509 * in this case to report failed page properly
7510 * on tracepoint in test_pages_isolated()
7512 if (outer_start + (1UL << order) <= start)
7513 outer_start = start;
7516 /* Make sure the range is really isolated. */
7517 if (test_pages_isolated(outer_start, end, false)) {
7518 pr_info("%s: [%lx, %lx) PFNs busy\n",
7519 __func__, outer_start, end);
7520 ret = -EBUSY;
7521 goto done;
7524 /* Grab isolated pages from freelists. */
7525 outer_end = isolate_freepages_range(&cc, outer_start, end);
7526 if (!outer_end) {
7527 ret = -EBUSY;
7528 goto done;
7531 /* Free head and tail (if any) */
7532 if (start != outer_start)
7533 free_contig_range(outer_start, start - outer_start);
7534 if (end != outer_end)
7535 free_contig_range(end, outer_end - end);
7537 done:
7538 undo_isolate_page_range(pfn_max_align_down(start),
7539 pfn_max_align_up(end), migratetype);
7540 return ret;
7543 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7545 unsigned int count = 0;
7547 for (; nr_pages--; pfn++) {
7548 struct page *page = pfn_to_page(pfn);
7550 count += page_count(page) != 1;
7551 __free_page(page);
7553 WARN(count != 0, "%d pages are still in use!\n", count);
7555 #endif
7557 #ifdef CONFIG_MEMORY_HOTPLUG
7559 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7560 * page high values need to be recalulated.
7562 void __meminit zone_pcp_update(struct zone *zone)
7564 unsigned cpu;
7565 mutex_lock(&pcp_batch_high_lock);
7566 for_each_possible_cpu(cpu)
7567 pageset_set_high_and_batch(zone,
7568 per_cpu_ptr(zone->pageset, cpu));
7569 mutex_unlock(&pcp_batch_high_lock);
7571 #endif
7573 void zone_pcp_reset(struct zone *zone)
7575 unsigned long flags;
7576 int cpu;
7577 struct per_cpu_pageset *pset;
7579 /* avoid races with drain_pages() */
7580 local_irq_save(flags);
7581 if (zone->pageset != &boot_pageset) {
7582 for_each_online_cpu(cpu) {
7583 pset = per_cpu_ptr(zone->pageset, cpu);
7584 drain_zonestat(zone, pset);
7586 free_percpu(zone->pageset);
7587 zone->pageset = &boot_pageset;
7589 local_irq_restore(flags);
7592 #ifdef CONFIG_MEMORY_HOTREMOVE
7594 * All pages in the range must be in a single zone and isolated
7595 * before calling this.
7597 void
7598 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7600 struct page *page;
7601 struct zone *zone;
7602 unsigned int order, i;
7603 unsigned long pfn;
7604 unsigned long flags;
7605 /* find the first valid pfn */
7606 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7607 if (pfn_valid(pfn))
7608 break;
7609 if (pfn == end_pfn)
7610 return;
7611 zone = page_zone(pfn_to_page(pfn));
7612 spin_lock_irqsave(&zone->lock, flags);
7613 pfn = start_pfn;
7614 while (pfn < end_pfn) {
7615 if (!pfn_valid(pfn)) {
7616 pfn++;
7617 continue;
7619 page = pfn_to_page(pfn);
7621 * The HWPoisoned page may be not in buddy system, and
7622 * page_count() is not 0.
7624 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7625 pfn++;
7626 SetPageReserved(page);
7627 continue;
7630 BUG_ON(page_count(page));
7631 BUG_ON(!PageBuddy(page));
7632 order = page_order(page);
7633 #ifdef CONFIG_DEBUG_VM
7634 pr_info("remove from free list %lx %d %lx\n",
7635 pfn, 1 << order, end_pfn);
7636 #endif
7637 list_del(&page->lru);
7638 rmv_page_order(page);
7639 zone->free_area[order].nr_free--;
7640 for (i = 0; i < (1 << order); i++)
7641 SetPageReserved((page+i));
7642 pfn += (1 << order);
7644 spin_unlock_irqrestore(&zone->lock, flags);
7646 #endif
7648 bool is_free_buddy_page(struct page *page)
7650 struct zone *zone = page_zone(page);
7651 unsigned long pfn = page_to_pfn(page);
7652 unsigned long flags;
7653 unsigned int order;
7655 spin_lock_irqsave(&zone->lock, flags);
7656 for (order = 0; order < MAX_ORDER; order++) {
7657 struct page *page_head = page - (pfn & ((1 << order) - 1));
7659 if (PageBuddy(page_head) && page_order(page_head) >= order)
7660 break;
7662 spin_unlock_irqrestore(&zone->lock, flags);
7664 return order < MAX_ORDER;